1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/MDNode.h"
49 #include "llvm/Module.h"
50 #include "llvm/ModuleProvider.h"
51 #include "llvm/Pass.h"
52 #include "llvm/PassManager.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/InstVisitor.h"
59 #include "llvm/Support/Streams.h"
60 #include "llvm/ADT/SmallPtrSet.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/raw_ostream.h"
71 namespace { // Anonymous namespace for class
72 struct VISIBILITY_HIDDEN PreVerifier
: public FunctionPass
{
73 static char ID
; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(&ID
) { }
77 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
81 // Check that the prerequisites for successful DominatorTree construction
83 bool runOnFunction(Function
&F
) {
86 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
87 if (I
->empty() || !I
->back().isTerminator()) {
88 cerr
<< "Basic Block does not have terminator!\n";
89 WriteAsOperand(*cerr
, I
, true);
103 char PreVerifier::ID
= 0;
104 static RegisterPass
<PreVerifier
>
105 PreVer("preverify", "Preliminary module verification");
106 static const PassInfo
*const PreVerifyID
= &PreVer
;
109 struct VISIBILITY_HIDDEN
110 Verifier
: public FunctionPass
, InstVisitor
<Verifier
> {
111 static char ID
; // Pass ID, replacement for typeid
112 bool Broken
; // Is this module found to be broken?
113 bool RealPass
; // Are we not being run by a PassManager?
114 VerifierFailureAction action
;
115 // What to do if verification fails.
116 Module
*Mod
; // Module we are verifying right now
117 DominatorTree
*DT
; // Dominator Tree, caution can be null!
118 std::stringstream msgs
; // A stringstream to collect messages
120 /// InstInThisBlock - when verifying a basic block, keep track of all of the
121 /// instructions we have seen so far. This allows us to do efficient
122 /// dominance checks for the case when an instruction has an operand that is
123 /// an instruction in the same block.
124 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
128 Broken(false), RealPass(true), action(AbortProcessAction
),
129 DT(0), msgs( std::ios::app
| std::ios::out
) {}
130 explicit Verifier(VerifierFailureAction ctn
)
132 Broken(false), RealPass(true), action(ctn
), DT(0),
133 msgs( std::ios::app
| std::ios::out
) {}
134 explicit Verifier(bool AB
)
136 Broken(false), RealPass(true),
137 action( AB
? AbortProcessAction
: PrintMessageAction
), DT(0),
138 msgs( std::ios::app
| std::ios::out
) {}
139 explicit Verifier(DominatorTree
&dt
)
141 Broken(false), RealPass(false), action(PrintMessageAction
),
142 DT(&dt
), msgs( std::ios::app
| std::ios::out
) {}
145 bool doInitialization(Module
&M
) {
147 verifyTypeSymbolTable(M
.getTypeSymbolTable());
149 // If this is a real pass, in a pass manager, we must abort before
150 // returning back to the pass manager, or else the pass manager may try to
151 // run other passes on the broken module.
153 return abortIfBroken();
157 bool runOnFunction(Function
&F
) {
158 // Get dominator information if we are being run by PassManager
159 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
164 InstsInThisBlock
.clear();
166 // If this is a real pass, in a pass manager, we must abort before
167 // returning back to the pass manager, or else the pass manager may try to
168 // run other passes on the broken module.
170 return abortIfBroken();
175 bool doFinalization(Module
&M
) {
176 // Scan through, checking all of the external function's linkage now...
177 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
178 visitGlobalValue(*I
);
180 // Check to make sure function prototypes are okay.
181 if (I
->isDeclaration()) visitFunction(*I
);
184 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
186 visitGlobalVariable(*I
);
188 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
190 visitGlobalAlias(*I
);
192 // If the module is broken, abort at this time.
193 return abortIfBroken();
196 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
197 AU
.setPreservesAll();
198 AU
.addRequiredID(PreVerifyID
);
200 AU
.addRequired
<DominatorTree
>();
203 /// abortIfBroken - If the module is broken and we are supposed to abort on
204 /// this condition, do so.
206 bool abortIfBroken() {
207 if (!Broken
) return false;
208 msgs
<< "Broken module found, ";
210 default: assert(0 && "Unknown action");
211 case AbortProcessAction
:
212 msgs
<< "compilation aborted!\n";
215 case PrintMessageAction
:
216 msgs
<< "verification continues.\n";
219 case ReturnStatusAction
:
220 msgs
<< "compilation terminated.\n";
226 // Verification methods...
227 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
228 void visitGlobalValue(GlobalValue
&GV
);
229 void visitGlobalVariable(GlobalVariable
&GV
);
230 void visitGlobalAlias(GlobalAlias
&GA
);
231 void visitFunction(Function
&F
);
232 void visitBasicBlock(BasicBlock
&BB
);
233 using InstVisitor
<Verifier
>::visit
;
235 void visit(Instruction
&I
);
237 void visitTruncInst(TruncInst
&I
);
238 void visitZExtInst(ZExtInst
&I
);
239 void visitSExtInst(SExtInst
&I
);
240 void visitFPTruncInst(FPTruncInst
&I
);
241 void visitFPExtInst(FPExtInst
&I
);
242 void visitFPToUIInst(FPToUIInst
&I
);
243 void visitFPToSIInst(FPToSIInst
&I
);
244 void visitUIToFPInst(UIToFPInst
&I
);
245 void visitSIToFPInst(SIToFPInst
&I
);
246 void visitIntToPtrInst(IntToPtrInst
&I
);
247 void visitPtrToIntInst(PtrToIntInst
&I
);
248 void visitBitCastInst(BitCastInst
&I
);
249 void visitPHINode(PHINode
&PN
);
250 void visitBinaryOperator(BinaryOperator
&B
);
251 void visitICmpInst(ICmpInst
&IC
);
252 void visitFCmpInst(FCmpInst
&FC
);
253 void visitExtractElementInst(ExtractElementInst
&EI
);
254 void visitInsertElementInst(InsertElementInst
&EI
);
255 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
256 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
257 void visitCallInst(CallInst
&CI
);
258 void visitInvokeInst(InvokeInst
&II
);
259 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
260 void visitLoadInst(LoadInst
&LI
);
261 void visitStoreInst(StoreInst
&SI
);
262 void visitInstruction(Instruction
&I
);
263 void visitTerminatorInst(TerminatorInst
&I
);
264 void visitReturnInst(ReturnInst
&RI
);
265 void visitSwitchInst(SwitchInst
&SI
);
266 void visitSelectInst(SelectInst
&SI
);
267 void visitUserOp1(Instruction
&I
);
268 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
269 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
270 void visitAllocationInst(AllocationInst
&AI
);
271 void visitExtractValueInst(ExtractValueInst
&EVI
);
272 void visitInsertValueInst(InsertValueInst
&IVI
);
274 void VerifyCallSite(CallSite CS
);
275 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
276 int VT
, unsigned ArgNo
, std::string
&Suffix
);
277 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
278 unsigned RetNum
, unsigned ParamNum
, ...);
279 void VerifyAttrs(Attributes Attrs
, const Type
*Ty
,
280 bool isReturnValue
, const Value
*V
);
281 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
284 void WriteValue(const Value
*V
) {
286 if (isa
<Instruction
>(V
)) {
289 WriteAsOperand(msgs
, V
, true, Mod
);
294 void WriteType(const Type
*T
) {
296 raw_os_ostream
RO(msgs
);
298 WriteTypeSymbolic(RO
, T
, Mod
);
302 // CheckFailed - A check failed, so print out the condition and the message
303 // that failed. This provides a nice place to put a breakpoint if you want
304 // to see why something is not correct.
305 void CheckFailed(const std::string
&Message
,
306 const Value
*V1
= 0, const Value
*V2
= 0,
307 const Value
*V3
= 0, const Value
*V4
= 0) {
308 msgs
<< Message
<< "\n";
316 void CheckFailed( const std::string
& Message
, const Value
* V1
,
317 const Type
* T2
, const Value
* V3
= 0 ) {
318 msgs
<< Message
<< "\n";
325 } // End anonymous namespace
327 char Verifier::ID
= 0;
328 static RegisterPass
<Verifier
> X("verify", "Module Verifier");
330 // Assert - We know that cond should be true, if not print an error message.
331 #define Assert(C, M) \
332 do { if (!(C)) { CheckFailed(M); return; } } while (0)
333 #define Assert1(C, M, V1) \
334 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
335 #define Assert2(C, M, V1, V2) \
336 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
337 #define Assert3(C, M, V1, V2, V3) \
338 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
339 #define Assert4(C, M, V1, V2, V3, V4) \
340 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
342 /// Check whether or not a Value is metadata or made up of a constant
343 /// expression involving metadata.
344 static bool isMetadata(Value
*X
) {
345 SmallPtrSet
<Value
*, 8> Visited
;
346 SmallVector
<Value
*, 8> Queue
;
349 while (!Queue
.empty()) {
350 Value
*V
= Queue
.back();
352 if (!Visited
.insert(V
))
355 if (isa
<MDString
>(V
) || isa
<MDNode
>(V
))
357 if (!isa
<ConstantExpr
>(V
))
359 ConstantExpr
*CE
= cast
<ConstantExpr
>(V
);
361 if (CE
->getType() != Type::EmptyStructTy
)
364 // The only constant expression that works on metadata type is select.
365 if (CE
->getOpcode() != Instruction::Select
) return false;
367 Queue
.push_back(CE
->getOperand(1));
368 Queue
.push_back(CE
->getOperand(2));
373 void Verifier::visit(Instruction
&I
) {
374 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
375 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
376 InstVisitor
<Verifier
>::visit(I
);
380 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
381 Assert1(!GV
.isDeclaration() ||
382 GV
.hasExternalLinkage() ||
383 GV
.hasDLLImportLinkage() ||
384 GV
.hasExternalWeakLinkage() ||
385 GV
.hasGhostLinkage() ||
386 (isa
<GlobalAlias
>(GV
) &&
387 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
388 "Global is external, but doesn't have external or dllimport or weak linkage!",
391 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
392 "Global is marked as dllimport, but not external", &GV
);
394 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
395 "Only global variables can have appending linkage!", &GV
);
397 if (GV
.hasAppendingLinkage()) {
398 GlobalVariable
&GVar
= cast
<GlobalVariable
>(GV
);
399 Assert1(isa
<ArrayType
>(GVar
.getType()->getElementType()),
400 "Only global arrays can have appending linkage!", &GV
);
404 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
405 if (GV
.hasInitializer()) {
406 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
407 "Global variable initializer type does not match global "
408 "variable type!", &GV
);
410 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
411 GV
.hasExternalWeakLinkage(),
412 "invalid linkage type for global declaration", &GV
);
415 visitGlobalValue(GV
);
418 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
419 Assert1(!GA
.getName().empty(),
420 "Alias name cannot be empty!", &GA
);
421 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
423 "Alias should have external or external weak linkage!", &GA
);
424 Assert1(GA
.getAliasee(),
425 "Aliasee cannot be NULL!", &GA
);
426 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
427 "Alias and aliasee types should match!", &GA
);
429 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
430 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
432 (CE
->getOpcode() == Instruction::BitCast
||
433 CE
->getOpcode() == Instruction::GetElementPtr
) &&
434 isa
<GlobalValue
>(CE
->getOperand(0)),
435 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
439 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
441 "Aliasing chain should end with function or global variable", &GA
);
443 visitGlobalValue(GA
);
446 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
449 // VerifyAttrs - Check the given parameter attributes for an argument or return
450 // value of the specified type. The value V is printed in error messages.
451 void Verifier::VerifyAttrs(Attributes Attrs
, const Type
*Ty
,
452 bool isReturnValue
, const Value
*V
) {
453 if (Attrs
== Attribute::None
)
457 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
458 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
459 " does not apply to return values!", V
);
461 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
462 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
463 " only applies to functions!", V
);
466 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
467 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
468 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
469 Attribute::getAsString(MutI
) + " are incompatible!", V
);
472 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
473 Assert1(!TypeI
, "Wrong type for attribute " +
474 Attribute::getAsString(TypeI
), V
);
476 Attributes ByValI
= Attrs
& Attribute::ByVal
;
477 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
478 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
479 "Attribute " + Attribute::getAsString(ByValI
) +
480 " does not support unsized types!", V
);
483 "Attribute " + Attribute::getAsString(ByValI
) +
484 " only applies to parameters with pointer type!", V
);
488 // VerifyFunctionAttrs - Check parameter attributes against a function type.
489 // The value V is printed in error messages.
490 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
491 const AttrListPtr
&Attrs
,
496 bool SawNest
= false;
498 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
499 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
503 Ty
= FT
->getReturnType();
504 else if (Attr
.Index
-1 < FT
->getNumParams())
505 Ty
= FT
->getParamType(Attr
.Index
-1);
507 break; // VarArgs attributes, don't verify.
509 VerifyAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
511 if (Attr
.Attrs
& Attribute::Nest
) {
512 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
516 if (Attr
.Attrs
& Attribute::StructRet
)
517 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
520 Attributes FAttrs
= Attrs
.getFnAttributes();
521 Assert1(!(FAttrs
& (~Attribute::FunctionOnly
)),
522 "Attribute " + Attribute::getAsString(FAttrs
) +
523 " does not apply to function!", V
);
526 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
527 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
528 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
529 Attribute::getAsString(MutI
) + " are incompatible!", V
);
533 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
537 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
538 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
539 if (LastIndex
<= Params
540 || (LastIndex
== (unsigned)~0
541 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
546 // visitFunction - Verify that a function is ok.
548 void Verifier::visitFunction(Function
&F
) {
549 // Check function arguments.
550 const FunctionType
*FT
= F
.getFunctionType();
551 unsigned NumArgs
= F
.arg_size();
553 Assert2(FT
->getNumParams() == NumArgs
,
554 "# formal arguments must match # of arguments for function type!",
556 Assert1(F
.getReturnType()->isFirstClassType() ||
557 F
.getReturnType() == Type::VoidTy
||
558 isa
<StructType
>(F
.getReturnType()),
559 "Functions cannot return aggregate values!", &F
);
561 Assert1(!F
.hasStructRetAttr() || F
.getReturnType() == Type::VoidTy
,
562 "Invalid struct return type!", &F
);
564 const AttrListPtr
&Attrs
= F
.getAttributes();
566 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
567 "Attributes after last parameter!", &F
);
569 // Check function attributes.
570 VerifyFunctionAttrs(FT
, Attrs
, &F
);
572 // Check that this function meets the restrictions on this calling convention.
573 switch (F
.getCallingConv()) {
578 case CallingConv::Fast
:
579 case CallingConv::Cold
:
580 case CallingConv::X86_FastCall
:
581 Assert1(!F
.isVarArg(),
582 "Varargs functions must have C calling conventions!", &F
);
586 // Check that the argument values match the function type for this function...
588 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
590 Assert2(I
->getType() == FT
->getParamType(i
),
591 "Argument value does not match function argument type!",
592 I
, FT
->getParamType(i
));
593 Assert1(I
->getType()->isFirstClassType(),
594 "Function arguments must have first-class types!", I
);
597 if (F
.isDeclaration()) {
598 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
599 F
.hasExternalWeakLinkage() || F
.hasGhostLinkage(),
600 "invalid linkage type for function declaration", &F
);
602 // Verify that this function (which has a body) is not named "llvm.*". It
603 // is not legal to define intrinsics.
604 if (F
.getName().size() >= 5)
605 Assert1(F
.getName().substr(0, 5) != "llvm.",
606 "llvm intrinsics cannot be defined!", &F
);
608 // Check the entry node
609 BasicBlock
*Entry
= &F
.getEntryBlock();
610 Assert1(pred_begin(Entry
) == pred_end(Entry
),
611 "Entry block to function must not have predecessors!", Entry
);
616 // verifyBasicBlock - Verify that a basic block is well formed...
618 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
619 InstsInThisBlock
.clear();
621 // Ensure that basic blocks have terminators!
622 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
624 // Check constraints that this basic block imposes on all of the PHI nodes in
626 if (isa
<PHINode
>(BB
.front())) {
627 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
628 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
629 std::sort(Preds
.begin(), Preds
.end());
631 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
633 // Ensure that PHI nodes have at least one entry!
634 Assert1(PN
->getNumIncomingValues() != 0,
635 "PHI nodes must have at least one entry. If the block is dead, "
636 "the PHI should be removed!", PN
);
637 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
638 "PHINode should have one entry for each predecessor of its "
639 "parent basic block!", PN
);
641 // Get and sort all incoming values in the PHI node...
643 Values
.reserve(PN
->getNumIncomingValues());
644 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
645 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
646 PN
->getIncomingValue(i
)));
647 std::sort(Values
.begin(), Values
.end());
649 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
650 // Check to make sure that if there is more than one entry for a
651 // particular basic block in this PHI node, that the incoming values are
654 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
655 Values
[i
].second
== Values
[i
-1].second
,
656 "PHI node has multiple entries for the same basic block with "
657 "different incoming values!", PN
, Values
[i
].first
,
658 Values
[i
].second
, Values
[i
-1].second
);
660 // Check to make sure that the predecessors and PHI node entries are
662 Assert3(Values
[i
].first
== Preds
[i
],
663 "PHI node entries do not match predecessors!", PN
,
664 Values
[i
].first
, Preds
[i
]);
670 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
671 // Ensure that terminators only exist at the end of the basic block.
672 Assert1(&I
== I
.getParent()->getTerminator(),
673 "Terminator found in the middle of a basic block!", I
.getParent());
677 void Verifier::visitReturnInst(ReturnInst
&RI
) {
678 Function
*F
= RI
.getParent()->getParent();
679 unsigned N
= RI
.getNumOperands();
680 if (F
->getReturnType() == Type::VoidTy
)
682 "Found return instr that returns non-void in Function of void "
683 "return type!", &RI
, F
->getReturnType());
684 else if (N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType()) {
685 Assert1(!isMetadata(RI
.getOperand(0)), "Invalid use of metadata!", &RI
);
686 // Exactly one return value and it matches the return type. Good.
687 } else if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
688 // The return type is a struct; check for multiple return values.
689 Assert2(STy
->getNumElements() == N
,
690 "Incorrect number of return values in ret instruction!",
691 &RI
, F
->getReturnType());
692 for (unsigned i
= 0; i
!= N
; ++i
)
693 Assert2(STy
->getElementType(i
) == RI
.getOperand(i
)->getType(),
694 "Function return type does not match operand "
695 "type of return inst!", &RI
, F
->getReturnType());
696 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(F
->getReturnType())) {
697 // The return type is an array; check for multiple return values.
698 Assert2(ATy
->getNumElements() == N
,
699 "Incorrect number of return values in ret instruction!",
700 &RI
, F
->getReturnType());
701 for (unsigned i
= 0; i
!= N
; ++i
)
702 Assert2(ATy
->getElementType() == RI
.getOperand(i
)->getType(),
703 "Function return type does not match operand "
704 "type of return inst!", &RI
, F
->getReturnType());
706 CheckFailed("Function return type does not match operand "
707 "type of return inst!", &RI
, F
->getReturnType());
710 // Check to make sure that the return value has necessary properties for
712 visitTerminatorInst(RI
);
715 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
716 // Check to make sure that all of the constants in the switch instruction
717 // have the same type as the switched-on value.
718 const Type
*SwitchTy
= SI
.getCondition()->getType();
719 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
)
720 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
721 "Switch constants must all be same type as switch value!", &SI
);
723 visitTerminatorInst(SI
);
726 void Verifier::visitSelectInst(SelectInst
&SI
) {
727 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
729 "Invalid operands for select instruction!", &SI
);
731 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
732 "Select values must have same type as select instruction!", &SI
);
733 Assert1(!isMetadata(SI
.getOperand(1)) && !isMetadata(SI
.getOperand(2)),
734 "Invalid use of metadata!", &SI
);
735 visitInstruction(SI
);
739 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
740 /// a pass, if any exist, it's an error.
742 void Verifier::visitUserOp1(Instruction
&I
) {
743 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
746 void Verifier::visitTruncInst(TruncInst
&I
) {
747 // Get the source and destination types
748 const Type
*SrcTy
= I
.getOperand(0)->getType();
749 const Type
*DestTy
= I
.getType();
751 // Get the size of the types in bits, we'll need this later
752 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
753 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
755 Assert1(SrcTy
->isIntOrIntVector(), "Trunc only operates on integer", &I
);
756 Assert1(DestTy
->isIntOrIntVector(), "Trunc only produces integer", &I
);
757 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
758 "trunc source and destination must both be a vector or neither", &I
);
759 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
764 void Verifier::visitZExtInst(ZExtInst
&I
) {
765 // Get the source and destination types
766 const Type
*SrcTy
= I
.getOperand(0)->getType();
767 const Type
*DestTy
= I
.getType();
769 // Get the size of the types in bits, we'll need this later
770 Assert1(SrcTy
->isIntOrIntVector(), "ZExt only operates on integer", &I
);
771 Assert1(DestTy
->isIntOrIntVector(), "ZExt only produces an integer", &I
);
772 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
773 "zext source and destination must both be a vector or neither", &I
);
774 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
775 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
777 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
782 void Verifier::visitSExtInst(SExtInst
&I
) {
783 // Get the source and destination types
784 const Type
*SrcTy
= I
.getOperand(0)->getType();
785 const Type
*DestTy
= I
.getType();
787 // Get the size of the types in bits, we'll need this later
788 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
789 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
791 Assert1(SrcTy
->isIntOrIntVector(), "SExt only operates on integer", &I
);
792 Assert1(DestTy
->isIntOrIntVector(), "SExt only produces an integer", &I
);
793 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
794 "sext source and destination must both be a vector or neither", &I
);
795 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
800 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
801 // Get the source and destination types
802 const Type
*SrcTy
= I
.getOperand(0)->getType();
803 const Type
*DestTy
= I
.getType();
804 // Get the size of the types in bits, we'll need this later
805 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
806 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
808 Assert1(SrcTy
->isFPOrFPVector(),"FPTrunc only operates on FP", &I
);
809 Assert1(DestTy
->isFPOrFPVector(),"FPTrunc only produces an FP", &I
);
810 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
811 "fptrunc source and destination must both be a vector or neither",&I
);
812 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
817 void Verifier::visitFPExtInst(FPExtInst
&I
) {
818 // Get the source and destination types
819 const Type
*SrcTy
= I
.getOperand(0)->getType();
820 const Type
*DestTy
= I
.getType();
822 // Get the size of the types in bits, we'll need this later
823 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
824 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
826 Assert1(SrcTy
->isFPOrFPVector(),"FPExt only operates on FP", &I
);
827 Assert1(DestTy
->isFPOrFPVector(),"FPExt only produces an FP", &I
);
828 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
829 "fpext source and destination must both be a vector or neither", &I
);
830 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
835 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
836 // Get the source and destination types
837 const Type
*SrcTy
= I
.getOperand(0)->getType();
838 const Type
*DestTy
= I
.getType();
840 bool SrcVec
= isa
<VectorType
>(SrcTy
);
841 bool DstVec
= isa
<VectorType
>(DestTy
);
843 Assert1(SrcVec
== DstVec
,
844 "UIToFP source and dest must both be vector or scalar", &I
);
845 Assert1(SrcTy
->isIntOrIntVector(),
846 "UIToFP source must be integer or integer vector", &I
);
847 Assert1(DestTy
->isFPOrFPVector(),
848 "UIToFP result must be FP or FP vector", &I
);
850 if (SrcVec
&& DstVec
)
851 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
852 cast
<VectorType
>(DestTy
)->getNumElements(),
853 "UIToFP source and dest vector length mismatch", &I
);
858 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
859 // Get the source and destination types
860 const Type
*SrcTy
= I
.getOperand(0)->getType();
861 const Type
*DestTy
= I
.getType();
863 bool SrcVec
= SrcTy
->getTypeID() == Type::VectorTyID
;
864 bool DstVec
= DestTy
->getTypeID() == Type::VectorTyID
;
866 Assert1(SrcVec
== DstVec
,
867 "SIToFP source and dest must both be vector or scalar", &I
);
868 Assert1(SrcTy
->isIntOrIntVector(),
869 "SIToFP source must be integer or integer vector", &I
);
870 Assert1(DestTy
->isFPOrFPVector(),
871 "SIToFP result must be FP or FP vector", &I
);
873 if (SrcVec
&& DstVec
)
874 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
875 cast
<VectorType
>(DestTy
)->getNumElements(),
876 "SIToFP source and dest vector length mismatch", &I
);
881 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
882 // Get the source and destination types
883 const Type
*SrcTy
= I
.getOperand(0)->getType();
884 const Type
*DestTy
= I
.getType();
886 bool SrcVec
= isa
<VectorType
>(SrcTy
);
887 bool DstVec
= isa
<VectorType
>(DestTy
);
889 Assert1(SrcVec
== DstVec
,
890 "FPToUI source and dest must both be vector or scalar", &I
);
891 Assert1(SrcTy
->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I
);
892 Assert1(DestTy
->isIntOrIntVector(),
893 "FPToUI result must be integer or integer vector", &I
);
895 if (SrcVec
&& DstVec
)
896 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
897 cast
<VectorType
>(DestTy
)->getNumElements(),
898 "FPToUI source and dest vector length mismatch", &I
);
903 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
904 // Get the source and destination types
905 const Type
*SrcTy
= I
.getOperand(0)->getType();
906 const Type
*DestTy
= I
.getType();
908 bool SrcVec
= isa
<VectorType
>(SrcTy
);
909 bool DstVec
= isa
<VectorType
>(DestTy
);
911 Assert1(SrcVec
== DstVec
,
912 "FPToSI source and dest must both be vector or scalar", &I
);
913 Assert1(SrcTy
->isFPOrFPVector(),
914 "FPToSI source must be FP or FP vector", &I
);
915 Assert1(DestTy
->isIntOrIntVector(),
916 "FPToSI result must be integer or integer vector", &I
);
918 if (SrcVec
&& DstVec
)
919 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
920 cast
<VectorType
>(DestTy
)->getNumElements(),
921 "FPToSI source and dest vector length mismatch", &I
);
926 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
927 // Get the source and destination types
928 const Type
*SrcTy
= I
.getOperand(0)->getType();
929 const Type
*DestTy
= I
.getType();
931 Assert1(isa
<PointerType
>(SrcTy
), "PtrToInt source must be pointer", &I
);
932 Assert1(DestTy
->isInteger(), "PtrToInt result must be integral", &I
);
937 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
938 // Get the source and destination types
939 const Type
*SrcTy
= I
.getOperand(0)->getType();
940 const Type
*DestTy
= I
.getType();
942 Assert1(SrcTy
->isInteger(), "IntToPtr source must be an integral", &I
);
943 Assert1(isa
<PointerType
>(DestTy
), "IntToPtr result must be a pointer",&I
);
948 void Verifier::visitBitCastInst(BitCastInst
&I
) {
949 // Get the source and destination types
950 const Type
*SrcTy
= I
.getOperand(0)->getType();
951 const Type
*DestTy
= I
.getType();
953 // Get the size of the types in bits, we'll need this later
954 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
955 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
957 // BitCast implies a no-op cast of type only. No bits change.
958 // However, you can't cast pointers to anything but pointers.
959 Assert1(isa
<PointerType
>(DestTy
) == isa
<PointerType
>(DestTy
),
960 "Bitcast requires both operands to be pointer or neither", &I
);
961 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requies types of same width", &I
);
963 // Disallow aggregates.
964 Assert1(!SrcTy
->isAggregateType(),
965 "Bitcast operand must not be aggregate", &I
);
966 Assert1(!DestTy
->isAggregateType(),
967 "Bitcast type must not be aggregate", &I
);
972 /// visitPHINode - Ensure that a PHI node is well formed.
974 void Verifier::visitPHINode(PHINode
&PN
) {
975 // Ensure that the PHI nodes are all grouped together at the top of the block.
976 // This can be tested by checking whether the instruction before this is
977 // either nonexistent (because this is begin()) or is a PHI node. If not,
978 // then there is some other instruction before a PHI.
979 Assert2(&PN
== &PN
.getParent()->front() ||
980 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
981 "PHI nodes not grouped at top of basic block!",
982 &PN
, PN
.getParent());
984 // Check that all of the operands of the PHI node have the same type as the
986 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
987 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
988 "PHI node operands are not the same type as the result!", &PN
);
990 // Check that it's not a PHI of metadata.
991 if (PN
.getType() == Type::EmptyStructTy
) {
992 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
993 Assert1(!isMetadata(PN
.getIncomingValue(i
)),
994 "Invalid use of metadata!", &PN
);
997 // All other PHI node constraints are checked in the visitBasicBlock method.
999 visitInstruction(PN
);
1002 void Verifier::VerifyCallSite(CallSite CS
) {
1003 Instruction
*I
= CS
.getInstruction();
1005 Assert1(isa
<PointerType
>(CS
.getCalledValue()->getType()),
1006 "Called function must be a pointer!", I
);
1007 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1008 Assert1(isa
<FunctionType
>(FPTy
->getElementType()),
1009 "Called function is not pointer to function type!", I
);
1011 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1013 // Verify that the correct number of arguments are being passed
1014 if (FTy
->isVarArg())
1015 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1016 "Called function requires more parameters than were provided!",I
);
1018 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1019 "Incorrect number of arguments passed to called function!", I
);
1021 // Verify that all arguments to the call match the function type...
1022 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1023 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1024 "Call parameter type does not match function signature!",
1025 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1027 if (CS
.getCalledValue()->getNameLen() < 5 ||
1028 strncmp(CS
.getCalledValue()->getNameStart(), "llvm.", 5) != 0) {
1029 // Verify that none of the arguments are metadata...
1030 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1031 Assert2(!isMetadata(CS
.getArgument(i
)), "Invalid use of metadata!",
1032 CS
.getArgument(i
), I
);
1035 const AttrListPtr
&Attrs
= CS
.getAttributes();
1037 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1038 "Attributes after last parameter!", I
);
1040 // Verify call attributes.
1041 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1043 if (FTy
->isVarArg())
1044 // Check attributes on the varargs part.
1045 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1046 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1048 VerifyAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1050 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1051 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1052 " cannot be used for vararg call arguments!", I
);
1055 visitInstruction(*I
);
1058 void Verifier::visitCallInst(CallInst
&CI
) {
1059 VerifyCallSite(&CI
);
1061 if (Function
*F
= CI
.getCalledFunction())
1062 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1063 visitIntrinsicFunctionCall(ID
, CI
);
1066 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1067 VerifyCallSite(&II
);
1070 /// visitBinaryOperator - Check that both arguments to the binary operator are
1071 /// of the same type!
1073 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1074 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1075 "Both operands to a binary operator are not of the same type!", &B
);
1077 switch (B
.getOpcode()) {
1078 // Check that logical operators are only used with integral operands.
1079 case Instruction::And
:
1080 case Instruction::Or
:
1081 case Instruction::Xor
:
1082 Assert1(B
.getType()->isInteger() ||
1083 (isa
<VectorType
>(B
.getType()) &&
1084 cast
<VectorType
>(B
.getType())->getElementType()->isInteger()),
1085 "Logical operators only work with integral types!", &B
);
1086 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1087 "Logical operators must have same type for operands and result!",
1090 case Instruction::Shl
:
1091 case Instruction::LShr
:
1092 case Instruction::AShr
:
1093 Assert1(B
.getType()->isInteger() ||
1094 (isa
<VectorType
>(B
.getType()) &&
1095 cast
<VectorType
>(B
.getType())->getElementType()->isInteger()),
1096 "Shifts only work with integral types!", &B
);
1097 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1098 "Shift return type must be same as operands!", &B
);
1101 // Arithmetic operators only work on integer or fp values
1102 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1103 "Arithmetic operators must have same type for operands and result!",
1105 Assert1(B
.getType()->isInteger() || B
.getType()->isFloatingPoint() ||
1106 isa
<VectorType
>(B
.getType()),
1107 "Arithmetic operators must have integer, fp, or vector type!", &B
);
1111 visitInstruction(B
);
1114 void Verifier::visitICmpInst(ICmpInst
& IC
) {
1115 // Check that the operands are the same type
1116 const Type
* Op0Ty
= IC
.getOperand(0)->getType();
1117 const Type
* Op1Ty
= IC
.getOperand(1)->getType();
1118 Assert1(Op0Ty
== Op1Ty
,
1119 "Both operands to ICmp instruction are not of the same type!", &IC
);
1120 // Check that the operands are the right type
1121 Assert1(Op0Ty
->isIntOrIntVector() || isa
<PointerType
>(Op0Ty
),
1122 "Invalid operand types for ICmp instruction", &IC
);
1123 visitInstruction(IC
);
1126 void Verifier::visitFCmpInst(FCmpInst
& FC
) {
1127 // Check that the operands are the same type
1128 const Type
* Op0Ty
= FC
.getOperand(0)->getType();
1129 const Type
* Op1Ty
= FC
.getOperand(1)->getType();
1130 Assert1(Op0Ty
== Op1Ty
,
1131 "Both operands to FCmp instruction are not of the same type!", &FC
);
1132 // Check that the operands are the right type
1133 Assert1(Op0Ty
->isFPOrFPVector(),
1134 "Invalid operand types for FCmp instruction", &FC
);
1135 visitInstruction(FC
);
1138 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1139 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1141 "Invalid extractelement operands!", &EI
);
1142 visitInstruction(EI
);
1145 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1146 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1149 "Invalid insertelement operands!", &IE
);
1150 visitInstruction(IE
);
1153 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1154 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1156 "Invalid shufflevector operands!", &SV
);
1158 const VectorType
*VTy
= dyn_cast
<VectorType
>(SV
.getOperand(0)->getType());
1159 Assert1(VTy
, "Operands are not a vector type", &SV
);
1161 // Check to see if Mask is valid.
1162 if (const ConstantVector
*MV
= dyn_cast
<ConstantVector
>(SV
.getOperand(2))) {
1163 for (unsigned i
= 0, e
= MV
->getNumOperands(); i
!= e
; ++i
) {
1164 if (ConstantInt
* CI
= dyn_cast
<ConstantInt
>(MV
->getOperand(i
))) {
1165 Assert1(!CI
->uge(VTy
->getNumElements()*2),
1166 "Invalid shufflevector shuffle mask!", &SV
);
1168 Assert1(isa
<UndefValue
>(MV
->getOperand(i
)),
1169 "Invalid shufflevector shuffle mask!", &SV
);
1173 Assert1(isa
<UndefValue
>(SV
.getOperand(2)) ||
1174 isa
<ConstantAggregateZero
>(SV
.getOperand(2)),
1175 "Invalid shufflevector shuffle mask!", &SV
);
1178 visitInstruction(SV
);
1181 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1182 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1184 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1185 Idxs
.begin(), Idxs
.end());
1186 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1187 Assert2(isa
<PointerType
>(GEP
.getType()) &&
1188 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1189 "GEP is not of right type for indices!", &GEP
, ElTy
);
1190 visitInstruction(GEP
);
1193 void Verifier::visitLoadInst(LoadInst
&LI
) {
1195 cast
<PointerType
>(LI
.getOperand(0)->getType())->getElementType();
1196 Assert2(ElTy
== LI
.getType(),
1197 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1198 visitInstruction(LI
);
1201 void Verifier::visitStoreInst(StoreInst
&SI
) {
1203 cast
<PointerType
>(SI
.getOperand(1)->getType())->getElementType();
1204 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1205 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
1206 Assert1(!isMetadata(SI
.getOperand(0)), "Invalid use of metadata!", &SI
);
1207 visitInstruction(SI
);
1210 void Verifier::visitAllocationInst(AllocationInst
&AI
) {
1211 const PointerType
*PTy
= AI
.getType();
1212 Assert1(PTy
->getAddressSpace() == 0,
1213 "Allocation instruction pointer not in the generic address space!",
1215 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1217 visitInstruction(AI
);
1220 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1221 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1222 EVI
.idx_begin(), EVI
.idx_end()) ==
1224 "Invalid ExtractValueInst operands!", &EVI
);
1226 visitInstruction(EVI
);
1229 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1230 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1231 IVI
.idx_begin(), IVI
.idx_end()) ==
1232 IVI
.getOperand(1)->getType(),
1233 "Invalid InsertValueInst operands!", &IVI
);
1235 visitInstruction(IVI
);
1238 /// verifyInstruction - Verify that an instruction is well formed.
1240 void Verifier::visitInstruction(Instruction
&I
) {
1241 BasicBlock
*BB
= I
.getParent();
1242 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1244 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1245 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1247 Assert1(*UI
!= (User
*)&I
||
1248 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1249 "Only PHI nodes may reference their own value!", &I
);
1252 // Verify that if this is a terminator that it is at the end of the block.
1253 if (isa
<TerminatorInst
>(I
))
1254 Assert1(BB
->getTerminator() == &I
, "Terminator not at end of block!", &I
);
1257 // Check that void typed values don't have names
1258 Assert1(I
.getType() != Type::VoidTy
|| !I
.hasName(),
1259 "Instruction has a name, but provides a void value!", &I
);
1261 // Check that the return value of the instruction is either void or a legal
1263 Assert1(I
.getType() == Type::VoidTy
|| I
.getType()->isFirstClassType()
1264 || ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
))
1265 && isa
<StructType
>(I
.getType())),
1266 "Instruction returns a non-scalar type!", &I
);
1268 // Check that all uses of the instruction, if they are instructions
1269 // themselves, actually have parent basic blocks. If the use is not an
1270 // instruction, it is an error!
1271 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1273 Assert1(isa
<Instruction
>(*UI
), "Use of instruction is not an instruction!",
1275 Instruction
*Used
= cast
<Instruction
>(*UI
);
1276 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1277 " embedded in a basic block!", &I
, Used
);
1280 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1281 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1283 // Check to make sure that only first-class-values are operands to
1285 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1286 Assert1(0, "Instruction operands must be first-class values!", &I
);
1289 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1290 // Check to make sure that the "address of" an intrinsic function is never
1292 Assert1(!F
->isIntrinsic() || (i
== 0 && isa
<CallInst
>(I
)),
1293 "Cannot take the address of an intrinsic!", &I
);
1294 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1296 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1297 Assert1(OpBB
->getParent() == BB
->getParent(),
1298 "Referring to a basic block in another function!", &I
);
1299 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1300 Assert1(OpArg
->getParent() == BB
->getParent(),
1301 "Referring to an argument in another function!", &I
);
1302 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1303 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1305 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1306 BasicBlock
*OpBlock
= Op
->getParent();
1308 // Check that a definition dominates all of its uses.
1309 if (!isa
<PHINode
>(I
)) {
1310 // Invoke results are only usable in the normal destination, not in the
1311 // exceptional destination.
1312 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1313 OpBlock
= II
->getNormalDest();
1315 Assert2(OpBlock
!= II
->getUnwindDest(),
1316 "No uses of invoke possible due to dominance structure!",
1319 // If the normal successor of an invoke instruction has multiple
1320 // predecessors, then the normal edge from the invoke is critical, so
1321 // the invoke value can only be live if the destination block
1322 // dominates all of it's predecessors (other than the invoke) or if
1323 // the invoke value is only used by a phi in the successor.
1324 if (!OpBlock
->getSinglePredecessor() &&
1325 DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
)) {
1326 // The first case we allow is if the use is a PHI operand in the
1327 // normal block, and if that PHI operand corresponds to the invoke's
1330 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
1331 if (PN
->getParent() == OpBlock
&&
1332 PN
->getIncomingBlock(i
/2) == Op
->getParent())
1335 // If it is used by something non-phi, then the other case is that
1336 // 'OpBlock' dominates all of its predecessors other than the
1337 // invoke. In this case, the invoke value can still be used.
1340 for (pred_iterator PI
= pred_begin(OpBlock
),
1341 E
= pred_end(OpBlock
); PI
!= E
; ++PI
) {
1342 if (*PI
!= II
->getParent() && !DT
->dominates(OpBlock
, *PI
)) {
1349 "Invoke value defined on critical edge but not dead!", &I
,
1352 } else if (OpBlock
== BB
) {
1353 // If they are in the same basic block, make sure that the definition
1354 // comes before the use.
1355 Assert2(InstsInThisBlock
.count(Op
) ||
1356 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1357 "Instruction does not dominate all uses!", Op
, &I
);
1360 // Definition must dominate use unless use is unreachable!
1361 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1362 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1363 "Instruction does not dominate all uses!", Op
, &I
);
1365 // PHI nodes are more difficult than other nodes because they actually
1366 // "use" the value in the predecessor basic blocks they correspond to.
1367 BasicBlock
*PredBB
= cast
<BasicBlock
>(I
.getOperand(i
+1));
1368 Assert2(DT
->dominates(OpBlock
, PredBB
) ||
1369 !DT
->dominates(&BB
->getParent()->getEntryBlock(), PredBB
),
1370 "Instruction does not dominate all uses!", Op
, &I
);
1372 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1373 Assert1(i
== 0 && (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)),
1374 "Cannot take the address of an inline asm!", &I
);
1377 InstsInThisBlock
.insert(&I
);
1380 // Flags used by TableGen to mark intrinsic parameters with the
1381 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1382 static const unsigned ExtendedElementVectorType
= 0x40000000;
1383 static const unsigned TruncatedElementVectorType
= 0x20000000;
1385 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1387 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1388 Function
*IF
= CI
.getCalledFunction();
1389 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1392 #define GET_INTRINSIC_VERIFIER
1393 #include "llvm/Intrinsics.gen"
1394 #undef GET_INTRINSIC_VERIFIER
1399 case Intrinsic::dbg_declare
: // llvm.dbg.declare
1400 if (Constant
*C
= dyn_cast
<Constant
>(CI
.getOperand(1)))
1401 Assert1(C
&& !isa
<ConstantPointerNull
>(C
),
1402 "invalid llvm.dbg.declare intrinsic call", &CI
);
1404 case Intrinsic::memcpy
:
1405 case Intrinsic::memmove
:
1406 case Intrinsic::memset
:
1407 Assert1(isa
<ConstantInt
>(CI
.getOperand(4)),
1408 "alignment argument of memory intrinsics must be a constant int",
1411 case Intrinsic::gcroot
:
1412 case Intrinsic::gcwrite
:
1413 case Intrinsic::gcread
:
1414 if (ID
== Intrinsic::gcroot
) {
1416 dyn_cast
<AllocaInst
>(CI
.getOperand(1)->stripPointerCasts());
1417 Assert1(AI
&& isa
<PointerType
>(AI
->getType()->getElementType()),
1418 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI
);
1419 Assert1(isa
<Constant
>(CI
.getOperand(2)),
1420 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1423 Assert1(CI
.getParent()->getParent()->hasGC(),
1424 "Enclosing function does not use GC.", &CI
);
1426 case Intrinsic::init_trampoline
:
1427 Assert1(isa
<Function
>(CI
.getOperand(2)->stripPointerCasts()),
1428 "llvm.init_trampoline parameter #2 must resolve to a function.",
1431 case Intrinsic::prefetch
:
1432 Assert1(isa
<ConstantInt
>(CI
.getOperand(2)) &&
1433 isa
<ConstantInt
>(CI
.getOperand(3)) &&
1434 cast
<ConstantInt
>(CI
.getOperand(2))->getZExtValue() < 2 &&
1435 cast
<ConstantInt
>(CI
.getOperand(3))->getZExtValue() < 4,
1436 "invalid arguments to llvm.prefetch",
1439 case Intrinsic::stackprotector
:
1440 Assert1(isa
<AllocaInst
>(CI
.getOperand(2)->stripPointerCasts()),
1441 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1447 /// Produce a string to identify an intrinsic parameter or return value.
1448 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1449 /// parameters beginning with NumRets.
1451 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1452 if (ArgNo
< NumRets
) {
1454 return "Intrinsic result type";
1456 return "Intrinsic result type #" + utostr(ArgNo
);
1458 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1461 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1462 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1463 const FunctionType
*FTy
= F
->getFunctionType();
1465 unsigned NumElts
= 0;
1466 const Type
*EltTy
= Ty
;
1467 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1469 EltTy
= VTy
->getElementType();
1470 NumElts
= VTy
->getNumElements();
1473 const Type
*RetTy
= FTy
->getReturnType();
1474 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1475 unsigned NumRets
= 1;
1477 NumRets
= ST
->getNumElements();
1482 // Check flags that indicate a type that is an integral vector type with
1483 // elements that are larger or smaller than the elements of the matched
1485 if ((Match
& (ExtendedElementVectorType
|
1486 TruncatedElementVectorType
)) != 0) {
1487 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1488 if (!VTy
|| !IEltTy
) {
1489 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1490 "an integral vector type.", F
);
1493 // Adjust the current Ty (in the opposite direction) rather than
1494 // the type being matched against.
1495 if ((Match
& ExtendedElementVectorType
) != 0) {
1496 if ((IEltTy
->getBitWidth() & 1) != 0) {
1497 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " vector "
1498 "element bit-width is odd.", F
);
1501 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1503 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1504 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1507 if (Match
<= static_cast<int>(NumRets
- 1)) {
1509 RetTy
= ST
->getElementType(Match
);
1512 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1513 "match return type.", F
);
1517 if (Ty
!= FTy
->getParamType(Match
- 1)) {
1518 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1519 "match parameter %" + utostr(Match
- 1) + ".", F
);
1523 } else if (VT
== MVT::iAny
) {
1524 if (!EltTy
->isInteger()) {
1525 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1526 "an integer type.", F
);
1530 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1534 Suffix
+= "v" + utostr(NumElts
);
1536 Suffix
+= "i" + utostr(GotBits
);
1538 // Check some constraints on various intrinsics.
1540 default: break; // Not everything needs to be checked.
1541 case Intrinsic::bswap
:
1542 if (GotBits
< 16 || GotBits
% 16 != 0) {
1543 CheckFailed("Intrinsic requires even byte width argument", F
);
1548 } else if (VT
== MVT::fAny
) {
1549 if (!EltTy
->isFloatingPoint()) {
1550 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1551 "a floating-point type.", F
);
1558 Suffix
+= "v" + utostr(NumElts
);
1560 Suffix
+= MVT::getMVT(EltTy
).getMVTString();
1561 } else if (VT
== MVT::iPTR
) {
1562 if (!isa
<PointerType
>(Ty
)) {
1563 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1564 "pointer and a pointer is required.", F
);
1567 } else if (VT
== MVT::iPTRAny
) {
1568 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1569 // and iPTR. In the verifier, we can not distinguish which case we have so
1570 // allow either case to be legal.
1571 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1572 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1573 MVT::getMVT(PTyp
->getElementType()).getMVTString();
1575 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1576 "pointer and a pointer is required.", F
);
1579 } else if (MVT((MVT::SimpleValueType
)VT
).isVector()) {
1580 MVT VVT
= MVT((MVT::SimpleValueType
)VT
);
1582 // If this is a vector argument, verify the number and type of elements.
1583 if (VVT
.getVectorElementType() != MVT::getMVT(EltTy
)) {
1584 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1588 if (VVT
.getVectorNumElements() != NumElts
) {
1589 CheckFailed("Intrinsic prototype has incorrect number of "
1590 "vector elements!", F
);
1593 } else if (MVT((MVT::SimpleValueType
)VT
).getTypeForMVT() != EltTy
) {
1594 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is wrong!", F
);
1596 } else if (EltTy
!= Ty
) {
1597 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is a vector "
1598 "and a scalar is required.", F
);
1605 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1606 /// Intrinsics.gen. This implements a little state machine that verifies the
1607 /// prototype of intrinsics.
1608 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1610 unsigned ParamNum
, ...) {
1612 va_start(VA
, ParamNum
);
1613 const FunctionType
*FTy
= F
->getFunctionType();
1615 // For overloaded intrinsics, the Suffix of the function name must match the
1616 // types of the arguments. This variable keeps track of the expected
1617 // suffix, to be checked at the end.
1620 if (FTy
->getNumParams() + FTy
->isVarArg() != ParamNum
) {
1621 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1625 const Type
*Ty
= FTy
->getReturnType();
1626 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1628 // Verify the return types.
1629 if (ST
&& ST
->getNumElements() != RetNum
) {
1630 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1634 for (unsigned ArgNo
= 0; ArgNo
< RetNum
; ++ArgNo
) {
1635 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1637 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1639 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1643 // Verify the parameter types.
1644 for (unsigned ArgNo
= 0; ArgNo
< ParamNum
; ++ArgNo
) {
1645 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1647 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1648 if (!FTy
->isVarArg())
1649 CheckFailed("Intrinsic prototype has no '...'!", F
);
1653 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
, ArgNo
+ RetNum
,
1660 // For intrinsics without pointer arguments, if we computed a Suffix then the
1661 // intrinsic is overloaded and we need to make sure that the name of the
1662 // function is correct. We add the suffix to the name of the intrinsic and
1663 // compare against the given function name. If they are not the same, the
1664 // function name is invalid. This ensures that overloading of intrinsics
1665 // uses a sane and consistent naming convention. Note that intrinsics with
1666 // pointer argument may or may not be overloaded so we will check assuming it
1667 // has a suffix and not.
1668 if (!Suffix
.empty()) {
1669 std::string
Name(Intrinsic::getName(ID
));
1670 if (Name
+ Suffix
!= F
->getName()) {
1671 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1672 F
->getName().substr(Name
.length()) + "'. It should be '" +
1677 // Check parameter attributes.
1678 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1679 "Intrinsic has wrong parameter attributes!", F
);
1683 //===----------------------------------------------------------------------===//
1684 // Implement the public interfaces to this file...
1685 //===----------------------------------------------------------------------===//
1687 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1688 return new Verifier(action
);
1692 // verifyFunction - Create
1693 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1694 Function
&F
= const_cast<Function
&>(f
);
1695 assert(!F
.isDeclaration() && "Cannot verify external functions");
1697 ExistingModuleProvider
MP(F
.getParent());
1698 FunctionPassManager
FPM(&MP
);
1699 Verifier
*V
= new Verifier(action
);
1706 /// verifyModule - Check a module for errors, printing messages on stderr.
1707 /// Return true if the module is corrupt.
1709 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1710 std::string
*ErrorInfo
) {
1712 Verifier
*V
= new Verifier(action
);
1714 PM
.run(const_cast<Module
&>(M
));
1716 if (ErrorInfo
&& V
->Broken
)
1717 *ErrorInfo
= V
->msgs
.str();