Merge branch 'master' into msp430
[llvm/msp430.git] / lib / VMCore / Verifier.cpp
blobfc4cfcfe45db80ca6c2596da8a4a050c50b2501f
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/MDNode.h"
49 #include "llvm/Module.h"
50 #include "llvm/ModuleProvider.h"
51 #include "llvm/Pass.h"
52 #include "llvm/PassManager.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/InstVisitor.h"
59 #include "llvm/Support/Streams.h"
60 #include "llvm/ADT/SmallPtrSet.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <sstream>
68 #include <cstdarg>
69 using namespace llvm;
71 namespace { // Anonymous namespace for class
72 struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
73 static char ID; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(&ID) { }
77 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.setPreservesAll();
81 // Check that the prerequisites for successful DominatorTree construction
82 // are satisfied.
83 bool runOnFunction(Function &F) {
84 bool Broken = false;
86 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
87 if (I->empty() || !I->back().isTerminator()) {
88 cerr << "Basic Block does not have terminator!\n";
89 WriteAsOperand(*cerr, I, true);
90 cerr << "\n";
91 Broken = true;
95 if (Broken)
96 abort();
98 return false;
103 char PreVerifier::ID = 0;
104 static RegisterPass<PreVerifier>
105 PreVer("preverify", "Preliminary module verification");
106 static const PassInfo *const PreVerifyID = &PreVer;
108 namespace {
109 struct VISIBILITY_HIDDEN
110 Verifier : public FunctionPass, InstVisitor<Verifier> {
111 static char ID; // Pass ID, replacement for typeid
112 bool Broken; // Is this module found to be broken?
113 bool RealPass; // Are we not being run by a PassManager?
114 VerifierFailureAction action;
115 // What to do if verification fails.
116 Module *Mod; // Module we are verifying right now
117 DominatorTree *DT; // Dominator Tree, caution can be null!
118 std::stringstream msgs; // A stringstream to collect messages
120 /// InstInThisBlock - when verifying a basic block, keep track of all of the
121 /// instructions we have seen so far. This allows us to do efficient
122 /// dominance checks for the case when an instruction has an operand that is
123 /// an instruction in the same block.
124 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
126 Verifier()
127 : FunctionPass(&ID),
128 Broken(false), RealPass(true), action(AbortProcessAction),
129 DT(0), msgs( std::ios::app | std::ios::out ) {}
130 explicit Verifier(VerifierFailureAction ctn)
131 : FunctionPass(&ID),
132 Broken(false), RealPass(true), action(ctn), DT(0),
133 msgs( std::ios::app | std::ios::out ) {}
134 explicit Verifier(bool AB)
135 : FunctionPass(&ID),
136 Broken(false), RealPass(true),
137 action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
138 msgs( std::ios::app | std::ios::out ) {}
139 explicit Verifier(DominatorTree &dt)
140 : FunctionPass(&ID),
141 Broken(false), RealPass(false), action(PrintMessageAction),
142 DT(&dt), msgs( std::ios::app | std::ios::out ) {}
145 bool doInitialization(Module &M) {
146 Mod = &M;
147 verifyTypeSymbolTable(M.getTypeSymbolTable());
149 // If this is a real pass, in a pass manager, we must abort before
150 // returning back to the pass manager, or else the pass manager may try to
151 // run other passes on the broken module.
152 if (RealPass)
153 return abortIfBroken();
154 return false;
157 bool runOnFunction(Function &F) {
158 // Get dominator information if we are being run by PassManager
159 if (RealPass) DT = &getAnalysis<DominatorTree>();
161 Mod = F.getParent();
163 visit(F);
164 InstsInThisBlock.clear();
166 // If this is a real pass, in a pass manager, we must abort before
167 // returning back to the pass manager, or else the pass manager may try to
168 // run other passes on the broken module.
169 if (RealPass)
170 return abortIfBroken();
172 return false;
175 bool doFinalization(Module &M) {
176 // Scan through, checking all of the external function's linkage now...
177 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
178 visitGlobalValue(*I);
180 // Check to make sure function prototypes are okay.
181 if (I->isDeclaration()) visitFunction(*I);
184 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
185 I != E; ++I)
186 visitGlobalVariable(*I);
188 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
189 I != E; ++I)
190 visitGlobalAlias(*I);
192 // If the module is broken, abort at this time.
193 return abortIfBroken();
196 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
197 AU.setPreservesAll();
198 AU.addRequiredID(PreVerifyID);
199 if (RealPass)
200 AU.addRequired<DominatorTree>();
203 /// abortIfBroken - If the module is broken and we are supposed to abort on
204 /// this condition, do so.
206 bool abortIfBroken() {
207 if (!Broken) return false;
208 msgs << "Broken module found, ";
209 switch (action) {
210 default: assert(0 && "Unknown action");
211 case AbortProcessAction:
212 msgs << "compilation aborted!\n";
213 cerr << msgs.str();
214 abort();
215 case PrintMessageAction:
216 msgs << "verification continues.\n";
217 cerr << msgs.str();
218 return false;
219 case ReturnStatusAction:
220 msgs << "compilation terminated.\n";
221 return true;
226 // Verification methods...
227 void verifyTypeSymbolTable(TypeSymbolTable &ST);
228 void visitGlobalValue(GlobalValue &GV);
229 void visitGlobalVariable(GlobalVariable &GV);
230 void visitGlobalAlias(GlobalAlias &GA);
231 void visitFunction(Function &F);
232 void visitBasicBlock(BasicBlock &BB);
233 using InstVisitor<Verifier>::visit;
235 void visit(Instruction &I);
237 void visitTruncInst(TruncInst &I);
238 void visitZExtInst(ZExtInst &I);
239 void visitSExtInst(SExtInst &I);
240 void visitFPTruncInst(FPTruncInst &I);
241 void visitFPExtInst(FPExtInst &I);
242 void visitFPToUIInst(FPToUIInst &I);
243 void visitFPToSIInst(FPToSIInst &I);
244 void visitUIToFPInst(UIToFPInst &I);
245 void visitSIToFPInst(SIToFPInst &I);
246 void visitIntToPtrInst(IntToPtrInst &I);
247 void visitPtrToIntInst(PtrToIntInst &I);
248 void visitBitCastInst(BitCastInst &I);
249 void visitPHINode(PHINode &PN);
250 void visitBinaryOperator(BinaryOperator &B);
251 void visitICmpInst(ICmpInst &IC);
252 void visitFCmpInst(FCmpInst &FC);
253 void visitExtractElementInst(ExtractElementInst &EI);
254 void visitInsertElementInst(InsertElementInst &EI);
255 void visitShuffleVectorInst(ShuffleVectorInst &EI);
256 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
257 void visitCallInst(CallInst &CI);
258 void visitInvokeInst(InvokeInst &II);
259 void visitGetElementPtrInst(GetElementPtrInst &GEP);
260 void visitLoadInst(LoadInst &LI);
261 void visitStoreInst(StoreInst &SI);
262 void visitInstruction(Instruction &I);
263 void visitTerminatorInst(TerminatorInst &I);
264 void visitReturnInst(ReturnInst &RI);
265 void visitSwitchInst(SwitchInst &SI);
266 void visitSelectInst(SelectInst &SI);
267 void visitUserOp1(Instruction &I);
268 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
269 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
270 void visitAllocationInst(AllocationInst &AI);
271 void visitExtractValueInst(ExtractValueInst &EVI);
272 void visitInsertValueInst(InsertValueInst &IVI);
274 void VerifyCallSite(CallSite CS);
275 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
276 int VT, unsigned ArgNo, std::string &Suffix);
277 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
278 unsigned RetNum, unsigned ParamNum, ...);
279 void VerifyAttrs(Attributes Attrs, const Type *Ty,
280 bool isReturnValue, const Value *V);
281 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
282 const Value *V);
284 void WriteValue(const Value *V) {
285 if (!V) return;
286 if (isa<Instruction>(V)) {
287 msgs << *V;
288 } else {
289 WriteAsOperand(msgs, V, true, Mod);
290 msgs << "\n";
294 void WriteType(const Type *T) {
295 if (!T) return;
296 raw_os_ostream RO(msgs);
297 RO << ' ';
298 WriteTypeSymbolic(RO, T, Mod);
302 // CheckFailed - A check failed, so print out the condition and the message
303 // that failed. This provides a nice place to put a breakpoint if you want
304 // to see why something is not correct.
305 void CheckFailed(const std::string &Message,
306 const Value *V1 = 0, const Value *V2 = 0,
307 const Value *V3 = 0, const Value *V4 = 0) {
308 msgs << Message << "\n";
309 WriteValue(V1);
310 WriteValue(V2);
311 WriteValue(V3);
312 WriteValue(V4);
313 Broken = true;
316 void CheckFailed( const std::string& Message, const Value* V1,
317 const Type* T2, const Value* V3 = 0 ) {
318 msgs << Message << "\n";
319 WriteValue(V1);
320 WriteType(T2);
321 WriteValue(V3);
322 Broken = true;
325 } // End anonymous namespace
327 char Verifier::ID = 0;
328 static RegisterPass<Verifier> X("verify", "Module Verifier");
330 // Assert - We know that cond should be true, if not print an error message.
331 #define Assert(C, M) \
332 do { if (!(C)) { CheckFailed(M); return; } } while (0)
333 #define Assert1(C, M, V1) \
334 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
335 #define Assert2(C, M, V1, V2) \
336 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
337 #define Assert3(C, M, V1, V2, V3) \
338 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
339 #define Assert4(C, M, V1, V2, V3, V4) \
340 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
342 /// Check whether or not a Value is metadata or made up of a constant
343 /// expression involving metadata.
344 static bool isMetadata(Value *X) {
345 SmallPtrSet<Value *, 8> Visited;
346 SmallVector<Value *, 8> Queue;
347 Queue.push_back(X);
349 while (!Queue.empty()) {
350 Value *V = Queue.back();
351 Queue.pop_back();
352 if (!Visited.insert(V))
353 continue;
355 if (isa<MDString>(V) || isa<MDNode>(V))
356 return true;
357 if (!isa<ConstantExpr>(V))
358 continue;
359 ConstantExpr *CE = cast<ConstantExpr>(V);
361 if (CE->getType() != Type::EmptyStructTy)
362 continue;
364 // The only constant expression that works on metadata type is select.
365 if (CE->getOpcode() != Instruction::Select) return false;
367 Queue.push_back(CE->getOperand(1));
368 Queue.push_back(CE->getOperand(2));
370 return false;
373 void Verifier::visit(Instruction &I) {
374 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
375 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
376 InstVisitor<Verifier>::visit(I);
380 void Verifier::visitGlobalValue(GlobalValue &GV) {
381 Assert1(!GV.isDeclaration() ||
382 GV.hasExternalLinkage() ||
383 GV.hasDLLImportLinkage() ||
384 GV.hasExternalWeakLinkage() ||
385 GV.hasGhostLinkage() ||
386 (isa<GlobalAlias>(GV) &&
387 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
388 "Global is external, but doesn't have external or dllimport or weak linkage!",
389 &GV);
391 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
392 "Global is marked as dllimport, but not external", &GV);
394 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
395 "Only global variables can have appending linkage!", &GV);
397 if (GV.hasAppendingLinkage()) {
398 GlobalVariable &GVar = cast<GlobalVariable>(GV);
399 Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
400 "Only global arrays can have appending linkage!", &GV);
404 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
405 if (GV.hasInitializer()) {
406 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
407 "Global variable initializer type does not match global "
408 "variable type!", &GV);
409 } else {
410 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
411 GV.hasExternalWeakLinkage(),
412 "invalid linkage type for global declaration", &GV);
415 visitGlobalValue(GV);
418 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
419 Assert1(!GA.getName().empty(),
420 "Alias name cannot be empty!", &GA);
421 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
422 GA.hasWeakLinkage(),
423 "Alias should have external or external weak linkage!", &GA);
424 Assert1(GA.getAliasee(),
425 "Aliasee cannot be NULL!", &GA);
426 Assert1(GA.getType() == GA.getAliasee()->getType(),
427 "Alias and aliasee types should match!", &GA);
429 if (!isa<GlobalValue>(GA.getAliasee())) {
430 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
431 Assert1(CE &&
432 (CE->getOpcode() == Instruction::BitCast ||
433 CE->getOpcode() == Instruction::GetElementPtr) &&
434 isa<GlobalValue>(CE->getOperand(0)),
435 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
436 &GA);
439 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
440 Assert1(Aliasee,
441 "Aliasing chain should end with function or global variable", &GA);
443 visitGlobalValue(GA);
446 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
449 // VerifyAttrs - Check the given parameter attributes for an argument or return
450 // value of the specified type. The value V is printed in error messages.
451 void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty,
452 bool isReturnValue, const Value *V) {
453 if (Attrs == Attribute::None)
454 return;
456 if (isReturnValue) {
457 Attributes RetI = Attrs & Attribute::ParameterOnly;
458 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
459 " does not apply to return values!", V);
461 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
462 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
463 " only applies to functions!", V);
465 for (unsigned i = 0;
466 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
467 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
468 Assert1(!(MutI & (MutI - 1)), "Attributes " +
469 Attribute::getAsString(MutI) + " are incompatible!", V);
472 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
473 Assert1(!TypeI, "Wrong type for attribute " +
474 Attribute::getAsString(TypeI), V);
476 Attributes ByValI = Attrs & Attribute::ByVal;
477 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
478 Assert1(!ByValI || PTy->getElementType()->isSized(),
479 "Attribute " + Attribute::getAsString(ByValI) +
480 " does not support unsized types!", V);
481 } else {
482 Assert1(!ByValI,
483 "Attribute " + Attribute::getAsString(ByValI) +
484 " only applies to parameters with pointer type!", V);
488 // VerifyFunctionAttrs - Check parameter attributes against a function type.
489 // The value V is printed in error messages.
490 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
491 const AttrListPtr &Attrs,
492 const Value *V) {
493 if (Attrs.isEmpty())
494 return;
496 bool SawNest = false;
498 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
499 const AttributeWithIndex &Attr = Attrs.getSlot(i);
501 const Type *Ty;
502 if (Attr.Index == 0)
503 Ty = FT->getReturnType();
504 else if (Attr.Index-1 < FT->getNumParams())
505 Ty = FT->getParamType(Attr.Index-1);
506 else
507 break; // VarArgs attributes, don't verify.
509 VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
511 if (Attr.Attrs & Attribute::Nest) {
512 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
513 SawNest = true;
516 if (Attr.Attrs & Attribute::StructRet)
517 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
520 Attributes FAttrs = Attrs.getFnAttributes();
521 Assert1(!(FAttrs & (~Attribute::FunctionOnly)),
522 "Attribute " + Attribute::getAsString(FAttrs) +
523 " does not apply to function!", V);
525 for (unsigned i = 0;
526 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
527 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
528 Assert1(!(MutI & (MutI - 1)), "Attributes " +
529 Attribute::getAsString(MutI) + " are incompatible!", V);
533 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
534 if (Attrs.isEmpty())
535 return true;
537 unsigned LastSlot = Attrs.getNumSlots() - 1;
538 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
539 if (LastIndex <= Params
540 || (LastIndex == (unsigned)~0
541 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
542 return true;
544 return false;
546 // visitFunction - Verify that a function is ok.
548 void Verifier::visitFunction(Function &F) {
549 // Check function arguments.
550 const FunctionType *FT = F.getFunctionType();
551 unsigned NumArgs = F.arg_size();
553 Assert2(FT->getNumParams() == NumArgs,
554 "# formal arguments must match # of arguments for function type!",
555 &F, FT);
556 Assert1(F.getReturnType()->isFirstClassType() ||
557 F.getReturnType() == Type::VoidTy ||
558 isa<StructType>(F.getReturnType()),
559 "Functions cannot return aggregate values!", &F);
561 Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
562 "Invalid struct return type!", &F);
564 const AttrListPtr &Attrs = F.getAttributes();
566 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
567 "Attributes after last parameter!", &F);
569 // Check function attributes.
570 VerifyFunctionAttrs(FT, Attrs, &F);
572 // Check that this function meets the restrictions on this calling convention.
573 switch (F.getCallingConv()) {
574 default:
575 break;
576 case CallingConv::C:
577 break;
578 case CallingConv::Fast:
579 case CallingConv::Cold:
580 case CallingConv::X86_FastCall:
581 Assert1(!F.isVarArg(),
582 "Varargs functions must have C calling conventions!", &F);
583 break;
586 // Check that the argument values match the function type for this function...
587 unsigned i = 0;
588 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
589 I != E; ++I, ++i) {
590 Assert2(I->getType() == FT->getParamType(i),
591 "Argument value does not match function argument type!",
592 I, FT->getParamType(i));
593 Assert1(I->getType()->isFirstClassType(),
594 "Function arguments must have first-class types!", I);
597 if (F.isDeclaration()) {
598 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
599 F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
600 "invalid linkage type for function declaration", &F);
601 } else {
602 // Verify that this function (which has a body) is not named "llvm.*". It
603 // is not legal to define intrinsics.
604 if (F.getName().size() >= 5)
605 Assert1(F.getName().substr(0, 5) != "llvm.",
606 "llvm intrinsics cannot be defined!", &F);
608 // Check the entry node
609 BasicBlock *Entry = &F.getEntryBlock();
610 Assert1(pred_begin(Entry) == pred_end(Entry),
611 "Entry block to function must not have predecessors!", Entry);
616 // verifyBasicBlock - Verify that a basic block is well formed...
618 void Verifier::visitBasicBlock(BasicBlock &BB) {
619 InstsInThisBlock.clear();
621 // Ensure that basic blocks have terminators!
622 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
624 // Check constraints that this basic block imposes on all of the PHI nodes in
625 // it.
626 if (isa<PHINode>(BB.front())) {
627 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
628 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
629 std::sort(Preds.begin(), Preds.end());
630 PHINode *PN;
631 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
633 // Ensure that PHI nodes have at least one entry!
634 Assert1(PN->getNumIncomingValues() != 0,
635 "PHI nodes must have at least one entry. If the block is dead, "
636 "the PHI should be removed!", PN);
637 Assert1(PN->getNumIncomingValues() == Preds.size(),
638 "PHINode should have one entry for each predecessor of its "
639 "parent basic block!", PN);
641 // Get and sort all incoming values in the PHI node...
642 Values.clear();
643 Values.reserve(PN->getNumIncomingValues());
644 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
645 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
646 PN->getIncomingValue(i)));
647 std::sort(Values.begin(), Values.end());
649 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
650 // Check to make sure that if there is more than one entry for a
651 // particular basic block in this PHI node, that the incoming values are
652 // all identical.
654 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
655 Values[i].second == Values[i-1].second,
656 "PHI node has multiple entries for the same basic block with "
657 "different incoming values!", PN, Values[i].first,
658 Values[i].second, Values[i-1].second);
660 // Check to make sure that the predecessors and PHI node entries are
661 // matched up.
662 Assert3(Values[i].first == Preds[i],
663 "PHI node entries do not match predecessors!", PN,
664 Values[i].first, Preds[i]);
670 void Verifier::visitTerminatorInst(TerminatorInst &I) {
671 // Ensure that terminators only exist at the end of the basic block.
672 Assert1(&I == I.getParent()->getTerminator(),
673 "Terminator found in the middle of a basic block!", I.getParent());
674 visitInstruction(I);
677 void Verifier::visitReturnInst(ReturnInst &RI) {
678 Function *F = RI.getParent()->getParent();
679 unsigned N = RI.getNumOperands();
680 if (F->getReturnType() == Type::VoidTy)
681 Assert2(N == 0,
682 "Found return instr that returns non-void in Function of void "
683 "return type!", &RI, F->getReturnType());
684 else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
685 Assert1(!isMetadata(RI.getOperand(0)), "Invalid use of metadata!", &RI);
686 // Exactly one return value and it matches the return type. Good.
687 } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
688 // The return type is a struct; check for multiple return values.
689 Assert2(STy->getNumElements() == N,
690 "Incorrect number of return values in ret instruction!",
691 &RI, F->getReturnType());
692 for (unsigned i = 0; i != N; ++i)
693 Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
694 "Function return type does not match operand "
695 "type of return inst!", &RI, F->getReturnType());
696 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
697 // The return type is an array; check for multiple return values.
698 Assert2(ATy->getNumElements() == N,
699 "Incorrect number of return values in ret instruction!",
700 &RI, F->getReturnType());
701 for (unsigned i = 0; i != N; ++i)
702 Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
703 "Function return type does not match operand "
704 "type of return inst!", &RI, F->getReturnType());
705 } else {
706 CheckFailed("Function return type does not match operand "
707 "type of return inst!", &RI, F->getReturnType());
710 // Check to make sure that the return value has necessary properties for
711 // terminators...
712 visitTerminatorInst(RI);
715 void Verifier::visitSwitchInst(SwitchInst &SI) {
716 // Check to make sure that all of the constants in the switch instruction
717 // have the same type as the switched-on value.
718 const Type *SwitchTy = SI.getCondition()->getType();
719 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
720 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
721 "Switch constants must all be same type as switch value!", &SI);
723 visitTerminatorInst(SI);
726 void Verifier::visitSelectInst(SelectInst &SI) {
727 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
728 SI.getOperand(2)),
729 "Invalid operands for select instruction!", &SI);
731 Assert1(SI.getTrueValue()->getType() == SI.getType(),
732 "Select values must have same type as select instruction!", &SI);
733 Assert1(!isMetadata(SI.getOperand(1)) && !isMetadata(SI.getOperand(2)),
734 "Invalid use of metadata!", &SI);
735 visitInstruction(SI);
739 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
740 /// a pass, if any exist, it's an error.
742 void Verifier::visitUserOp1(Instruction &I) {
743 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
746 void Verifier::visitTruncInst(TruncInst &I) {
747 // Get the source and destination types
748 const Type *SrcTy = I.getOperand(0)->getType();
749 const Type *DestTy = I.getType();
751 // Get the size of the types in bits, we'll need this later
752 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
753 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
755 Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
756 Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
757 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
758 "trunc source and destination must both be a vector or neither", &I);
759 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
761 visitInstruction(I);
764 void Verifier::visitZExtInst(ZExtInst &I) {
765 // Get the source and destination types
766 const Type *SrcTy = I.getOperand(0)->getType();
767 const Type *DestTy = I.getType();
769 // Get the size of the types in bits, we'll need this later
770 Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
771 Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
772 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
773 "zext source and destination must both be a vector or neither", &I);
774 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
775 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
777 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
779 visitInstruction(I);
782 void Verifier::visitSExtInst(SExtInst &I) {
783 // Get the source and destination types
784 const Type *SrcTy = I.getOperand(0)->getType();
785 const Type *DestTy = I.getType();
787 // Get the size of the types in bits, we'll need this later
788 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
789 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
791 Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
792 Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
793 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
794 "sext source and destination must both be a vector or neither", &I);
795 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
797 visitInstruction(I);
800 void Verifier::visitFPTruncInst(FPTruncInst &I) {
801 // Get the source and destination types
802 const Type *SrcTy = I.getOperand(0)->getType();
803 const Type *DestTy = I.getType();
804 // Get the size of the types in bits, we'll need this later
805 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
806 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
808 Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
809 Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
810 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
811 "fptrunc source and destination must both be a vector or neither",&I);
812 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
814 visitInstruction(I);
817 void Verifier::visitFPExtInst(FPExtInst &I) {
818 // Get the source and destination types
819 const Type *SrcTy = I.getOperand(0)->getType();
820 const Type *DestTy = I.getType();
822 // Get the size of the types in bits, we'll need this later
823 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
824 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
826 Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
827 Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
828 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
829 "fpext source and destination must both be a vector or neither", &I);
830 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
832 visitInstruction(I);
835 void Verifier::visitUIToFPInst(UIToFPInst &I) {
836 // Get the source and destination types
837 const Type *SrcTy = I.getOperand(0)->getType();
838 const Type *DestTy = I.getType();
840 bool SrcVec = isa<VectorType>(SrcTy);
841 bool DstVec = isa<VectorType>(DestTy);
843 Assert1(SrcVec == DstVec,
844 "UIToFP source and dest must both be vector or scalar", &I);
845 Assert1(SrcTy->isIntOrIntVector(),
846 "UIToFP source must be integer or integer vector", &I);
847 Assert1(DestTy->isFPOrFPVector(),
848 "UIToFP result must be FP or FP vector", &I);
850 if (SrcVec && DstVec)
851 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
852 cast<VectorType>(DestTy)->getNumElements(),
853 "UIToFP source and dest vector length mismatch", &I);
855 visitInstruction(I);
858 void Verifier::visitSIToFPInst(SIToFPInst &I) {
859 // Get the source and destination types
860 const Type *SrcTy = I.getOperand(0)->getType();
861 const Type *DestTy = I.getType();
863 bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
864 bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
866 Assert1(SrcVec == DstVec,
867 "SIToFP source and dest must both be vector or scalar", &I);
868 Assert1(SrcTy->isIntOrIntVector(),
869 "SIToFP source must be integer or integer vector", &I);
870 Assert1(DestTy->isFPOrFPVector(),
871 "SIToFP result must be FP or FP vector", &I);
873 if (SrcVec && DstVec)
874 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
875 cast<VectorType>(DestTy)->getNumElements(),
876 "SIToFP source and dest vector length mismatch", &I);
878 visitInstruction(I);
881 void Verifier::visitFPToUIInst(FPToUIInst &I) {
882 // Get the source and destination types
883 const Type *SrcTy = I.getOperand(0)->getType();
884 const Type *DestTy = I.getType();
886 bool SrcVec = isa<VectorType>(SrcTy);
887 bool DstVec = isa<VectorType>(DestTy);
889 Assert1(SrcVec == DstVec,
890 "FPToUI source and dest must both be vector or scalar", &I);
891 Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
892 Assert1(DestTy->isIntOrIntVector(),
893 "FPToUI result must be integer or integer vector", &I);
895 if (SrcVec && DstVec)
896 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
897 cast<VectorType>(DestTy)->getNumElements(),
898 "FPToUI source and dest vector length mismatch", &I);
900 visitInstruction(I);
903 void Verifier::visitFPToSIInst(FPToSIInst &I) {
904 // Get the source and destination types
905 const Type *SrcTy = I.getOperand(0)->getType();
906 const Type *DestTy = I.getType();
908 bool SrcVec = isa<VectorType>(SrcTy);
909 bool DstVec = isa<VectorType>(DestTy);
911 Assert1(SrcVec == DstVec,
912 "FPToSI source and dest must both be vector or scalar", &I);
913 Assert1(SrcTy->isFPOrFPVector(),
914 "FPToSI source must be FP or FP vector", &I);
915 Assert1(DestTy->isIntOrIntVector(),
916 "FPToSI result must be integer or integer vector", &I);
918 if (SrcVec && DstVec)
919 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
920 cast<VectorType>(DestTy)->getNumElements(),
921 "FPToSI source and dest vector length mismatch", &I);
923 visitInstruction(I);
926 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
927 // Get the source and destination types
928 const Type *SrcTy = I.getOperand(0)->getType();
929 const Type *DestTy = I.getType();
931 Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
932 Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
934 visitInstruction(I);
937 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
938 // Get the source and destination types
939 const Type *SrcTy = I.getOperand(0)->getType();
940 const Type *DestTy = I.getType();
942 Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
943 Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
945 visitInstruction(I);
948 void Verifier::visitBitCastInst(BitCastInst &I) {
949 // Get the source and destination types
950 const Type *SrcTy = I.getOperand(0)->getType();
951 const Type *DestTy = I.getType();
953 // Get the size of the types in bits, we'll need this later
954 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
955 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
957 // BitCast implies a no-op cast of type only. No bits change.
958 // However, you can't cast pointers to anything but pointers.
959 Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
960 "Bitcast requires both operands to be pointer or neither", &I);
961 Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
963 // Disallow aggregates.
964 Assert1(!SrcTy->isAggregateType(),
965 "Bitcast operand must not be aggregate", &I);
966 Assert1(!DestTy->isAggregateType(),
967 "Bitcast type must not be aggregate", &I);
969 visitInstruction(I);
972 /// visitPHINode - Ensure that a PHI node is well formed.
974 void Verifier::visitPHINode(PHINode &PN) {
975 // Ensure that the PHI nodes are all grouped together at the top of the block.
976 // This can be tested by checking whether the instruction before this is
977 // either nonexistent (because this is begin()) or is a PHI node. If not,
978 // then there is some other instruction before a PHI.
979 Assert2(&PN == &PN.getParent()->front() ||
980 isa<PHINode>(--BasicBlock::iterator(&PN)),
981 "PHI nodes not grouped at top of basic block!",
982 &PN, PN.getParent());
984 // Check that all of the operands of the PHI node have the same type as the
985 // result.
986 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
987 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
988 "PHI node operands are not the same type as the result!", &PN);
990 // Check that it's not a PHI of metadata.
991 if (PN.getType() == Type::EmptyStructTy) {
992 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
993 Assert1(!isMetadata(PN.getIncomingValue(i)),
994 "Invalid use of metadata!", &PN);
997 // All other PHI node constraints are checked in the visitBasicBlock method.
999 visitInstruction(PN);
1002 void Verifier::VerifyCallSite(CallSite CS) {
1003 Instruction *I = CS.getInstruction();
1005 Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
1006 "Called function must be a pointer!", I);
1007 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1008 Assert1(isa<FunctionType>(FPTy->getElementType()),
1009 "Called function is not pointer to function type!", I);
1011 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1013 // Verify that the correct number of arguments are being passed
1014 if (FTy->isVarArg())
1015 Assert1(CS.arg_size() >= FTy->getNumParams(),
1016 "Called function requires more parameters than were provided!",I);
1017 else
1018 Assert1(CS.arg_size() == FTy->getNumParams(),
1019 "Incorrect number of arguments passed to called function!", I);
1021 // Verify that all arguments to the call match the function type...
1022 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1023 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1024 "Call parameter type does not match function signature!",
1025 CS.getArgument(i), FTy->getParamType(i), I);
1027 if (CS.getCalledValue()->getNameLen() < 5 ||
1028 strncmp(CS.getCalledValue()->getNameStart(), "llvm.", 5) != 0) {
1029 // Verify that none of the arguments are metadata...
1030 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1031 Assert2(!isMetadata(CS.getArgument(i)), "Invalid use of metadata!",
1032 CS.getArgument(i), I);
1035 const AttrListPtr &Attrs = CS.getAttributes();
1037 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1038 "Attributes after last parameter!", I);
1040 // Verify call attributes.
1041 VerifyFunctionAttrs(FTy, Attrs, I);
1043 if (FTy->isVarArg())
1044 // Check attributes on the varargs part.
1045 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1046 Attributes Attr = Attrs.getParamAttributes(Idx);
1048 VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1050 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1051 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1052 " cannot be used for vararg call arguments!", I);
1055 visitInstruction(*I);
1058 void Verifier::visitCallInst(CallInst &CI) {
1059 VerifyCallSite(&CI);
1061 if (Function *F = CI.getCalledFunction())
1062 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1063 visitIntrinsicFunctionCall(ID, CI);
1066 void Verifier::visitInvokeInst(InvokeInst &II) {
1067 VerifyCallSite(&II);
1070 /// visitBinaryOperator - Check that both arguments to the binary operator are
1071 /// of the same type!
1073 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1074 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1075 "Both operands to a binary operator are not of the same type!", &B);
1077 switch (B.getOpcode()) {
1078 // Check that logical operators are only used with integral operands.
1079 case Instruction::And:
1080 case Instruction::Or:
1081 case Instruction::Xor:
1082 Assert1(B.getType()->isInteger() ||
1083 (isa<VectorType>(B.getType()) &&
1084 cast<VectorType>(B.getType())->getElementType()->isInteger()),
1085 "Logical operators only work with integral types!", &B);
1086 Assert1(B.getType() == B.getOperand(0)->getType(),
1087 "Logical operators must have same type for operands and result!",
1088 &B);
1089 break;
1090 case Instruction::Shl:
1091 case Instruction::LShr:
1092 case Instruction::AShr:
1093 Assert1(B.getType()->isInteger() ||
1094 (isa<VectorType>(B.getType()) &&
1095 cast<VectorType>(B.getType())->getElementType()->isInteger()),
1096 "Shifts only work with integral types!", &B);
1097 Assert1(B.getType() == B.getOperand(0)->getType(),
1098 "Shift return type must be same as operands!", &B);
1099 /* FALL THROUGH */
1100 default:
1101 // Arithmetic operators only work on integer or fp values
1102 Assert1(B.getType() == B.getOperand(0)->getType(),
1103 "Arithmetic operators must have same type for operands and result!",
1104 &B);
1105 Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
1106 isa<VectorType>(B.getType()),
1107 "Arithmetic operators must have integer, fp, or vector type!", &B);
1108 break;
1111 visitInstruction(B);
1114 void Verifier::visitICmpInst(ICmpInst& IC) {
1115 // Check that the operands are the same type
1116 const Type* Op0Ty = IC.getOperand(0)->getType();
1117 const Type* Op1Ty = IC.getOperand(1)->getType();
1118 Assert1(Op0Ty == Op1Ty,
1119 "Both operands to ICmp instruction are not of the same type!", &IC);
1120 // Check that the operands are the right type
1121 Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty),
1122 "Invalid operand types for ICmp instruction", &IC);
1123 visitInstruction(IC);
1126 void Verifier::visitFCmpInst(FCmpInst& FC) {
1127 // Check that the operands are the same type
1128 const Type* Op0Ty = FC.getOperand(0)->getType();
1129 const Type* Op1Ty = FC.getOperand(1)->getType();
1130 Assert1(Op0Ty == Op1Ty,
1131 "Both operands to FCmp instruction are not of the same type!", &FC);
1132 // Check that the operands are the right type
1133 Assert1(Op0Ty->isFPOrFPVector(),
1134 "Invalid operand types for FCmp instruction", &FC);
1135 visitInstruction(FC);
1138 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1139 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1140 EI.getOperand(1)),
1141 "Invalid extractelement operands!", &EI);
1142 visitInstruction(EI);
1145 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1146 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1147 IE.getOperand(1),
1148 IE.getOperand(2)),
1149 "Invalid insertelement operands!", &IE);
1150 visitInstruction(IE);
1153 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1154 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1155 SV.getOperand(2)),
1156 "Invalid shufflevector operands!", &SV);
1158 const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType());
1159 Assert1(VTy, "Operands are not a vector type", &SV);
1161 // Check to see if Mask is valid.
1162 if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
1163 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1164 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1165 Assert1(!CI->uge(VTy->getNumElements()*2),
1166 "Invalid shufflevector shuffle mask!", &SV);
1167 } else {
1168 Assert1(isa<UndefValue>(MV->getOperand(i)),
1169 "Invalid shufflevector shuffle mask!", &SV);
1172 } else {
1173 Assert1(isa<UndefValue>(SV.getOperand(2)) ||
1174 isa<ConstantAggregateZero>(SV.getOperand(2)),
1175 "Invalid shufflevector shuffle mask!", &SV);
1178 visitInstruction(SV);
1181 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1182 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1183 const Type *ElTy =
1184 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1185 Idxs.begin(), Idxs.end());
1186 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1187 Assert2(isa<PointerType>(GEP.getType()) &&
1188 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1189 "GEP is not of right type for indices!", &GEP, ElTy);
1190 visitInstruction(GEP);
1193 void Verifier::visitLoadInst(LoadInst &LI) {
1194 const Type *ElTy =
1195 cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
1196 Assert2(ElTy == LI.getType(),
1197 "Load result type does not match pointer operand type!", &LI, ElTy);
1198 visitInstruction(LI);
1201 void Verifier::visitStoreInst(StoreInst &SI) {
1202 const Type *ElTy =
1203 cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
1204 Assert2(ElTy == SI.getOperand(0)->getType(),
1205 "Stored value type does not match pointer operand type!", &SI, ElTy);
1206 Assert1(!isMetadata(SI.getOperand(0)), "Invalid use of metadata!", &SI);
1207 visitInstruction(SI);
1210 void Verifier::visitAllocationInst(AllocationInst &AI) {
1211 const PointerType *PTy = AI.getType();
1212 Assert1(PTy->getAddressSpace() == 0,
1213 "Allocation instruction pointer not in the generic address space!",
1214 &AI);
1215 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1216 &AI);
1217 visitInstruction(AI);
1220 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1221 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1222 EVI.idx_begin(), EVI.idx_end()) ==
1223 EVI.getType(),
1224 "Invalid ExtractValueInst operands!", &EVI);
1226 visitInstruction(EVI);
1229 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1230 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1231 IVI.idx_begin(), IVI.idx_end()) ==
1232 IVI.getOperand(1)->getType(),
1233 "Invalid InsertValueInst operands!", &IVI);
1235 visitInstruction(IVI);
1238 /// verifyInstruction - Verify that an instruction is well formed.
1240 void Verifier::visitInstruction(Instruction &I) {
1241 BasicBlock *BB = I.getParent();
1242 Assert1(BB, "Instruction not embedded in basic block!", &I);
1244 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1245 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1246 UI != UE; ++UI)
1247 Assert1(*UI != (User*)&I ||
1248 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1249 "Only PHI nodes may reference their own value!", &I);
1252 // Verify that if this is a terminator that it is at the end of the block.
1253 if (isa<TerminatorInst>(I))
1254 Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
1257 // Check that void typed values don't have names
1258 Assert1(I.getType() != Type::VoidTy || !I.hasName(),
1259 "Instruction has a name, but provides a void value!", &I);
1261 // Check that the return value of the instruction is either void or a legal
1262 // value type.
1263 Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
1264 || ((isa<CallInst>(I) || isa<InvokeInst>(I))
1265 && isa<StructType>(I.getType())),
1266 "Instruction returns a non-scalar type!", &I);
1268 // Check that all uses of the instruction, if they are instructions
1269 // themselves, actually have parent basic blocks. If the use is not an
1270 // instruction, it is an error!
1271 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1272 UI != UE; ++UI) {
1273 Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
1274 *UI);
1275 Instruction *Used = cast<Instruction>(*UI);
1276 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1277 " embedded in a basic block!", &I, Used);
1280 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1281 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1283 // Check to make sure that only first-class-values are operands to
1284 // instructions.
1285 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1286 Assert1(0, "Instruction operands must be first-class values!", &I);
1289 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1290 // Check to make sure that the "address of" an intrinsic function is never
1291 // taken.
1292 Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
1293 "Cannot take the address of an intrinsic!", &I);
1294 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1295 &I);
1296 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1297 Assert1(OpBB->getParent() == BB->getParent(),
1298 "Referring to a basic block in another function!", &I);
1299 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1300 Assert1(OpArg->getParent() == BB->getParent(),
1301 "Referring to an argument in another function!", &I);
1302 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1303 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1304 &I);
1305 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1306 BasicBlock *OpBlock = Op->getParent();
1308 // Check that a definition dominates all of its uses.
1309 if (!isa<PHINode>(I)) {
1310 // Invoke results are only usable in the normal destination, not in the
1311 // exceptional destination.
1312 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1313 OpBlock = II->getNormalDest();
1315 Assert2(OpBlock != II->getUnwindDest(),
1316 "No uses of invoke possible due to dominance structure!",
1317 Op, II);
1319 // If the normal successor of an invoke instruction has multiple
1320 // predecessors, then the normal edge from the invoke is critical, so
1321 // the invoke value can only be live if the destination block
1322 // dominates all of it's predecessors (other than the invoke) or if
1323 // the invoke value is only used by a phi in the successor.
1324 if (!OpBlock->getSinglePredecessor() &&
1325 DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
1326 // The first case we allow is if the use is a PHI operand in the
1327 // normal block, and if that PHI operand corresponds to the invoke's
1328 // block.
1329 bool Bad = true;
1330 if (PHINode *PN = dyn_cast<PHINode>(&I))
1331 if (PN->getParent() == OpBlock &&
1332 PN->getIncomingBlock(i/2) == Op->getParent())
1333 Bad = false;
1335 // If it is used by something non-phi, then the other case is that
1336 // 'OpBlock' dominates all of its predecessors other than the
1337 // invoke. In this case, the invoke value can still be used.
1338 if (Bad) {
1339 Bad = false;
1340 for (pred_iterator PI = pred_begin(OpBlock),
1341 E = pred_end(OpBlock); PI != E; ++PI) {
1342 if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
1343 Bad = true;
1344 break;
1348 Assert2(!Bad,
1349 "Invoke value defined on critical edge but not dead!", &I,
1350 Op);
1352 } else if (OpBlock == BB) {
1353 // If they are in the same basic block, make sure that the definition
1354 // comes before the use.
1355 Assert2(InstsInThisBlock.count(Op) ||
1356 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1357 "Instruction does not dominate all uses!", Op, &I);
1360 // Definition must dominate use unless use is unreachable!
1361 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1362 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1363 "Instruction does not dominate all uses!", Op, &I);
1364 } else {
1365 // PHI nodes are more difficult than other nodes because they actually
1366 // "use" the value in the predecessor basic blocks they correspond to.
1367 BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
1368 Assert2(DT->dominates(OpBlock, PredBB) ||
1369 !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
1370 "Instruction does not dominate all uses!", Op, &I);
1372 } else if (isa<InlineAsm>(I.getOperand(i))) {
1373 Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
1374 "Cannot take the address of an inline asm!", &I);
1377 InstsInThisBlock.insert(&I);
1380 // Flags used by TableGen to mark intrinsic parameters with the
1381 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1382 static const unsigned ExtendedElementVectorType = 0x40000000;
1383 static const unsigned TruncatedElementVectorType = 0x20000000;
1385 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1387 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1388 Function *IF = CI.getCalledFunction();
1389 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1390 IF);
1392 #define GET_INTRINSIC_VERIFIER
1393 #include "llvm/Intrinsics.gen"
1394 #undef GET_INTRINSIC_VERIFIER
1396 switch (ID) {
1397 default:
1398 break;
1399 case Intrinsic::dbg_declare: // llvm.dbg.declare
1400 if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
1401 Assert1(C && !isa<ConstantPointerNull>(C),
1402 "invalid llvm.dbg.declare intrinsic call", &CI);
1403 break;
1404 case Intrinsic::memcpy:
1405 case Intrinsic::memmove:
1406 case Intrinsic::memset:
1407 Assert1(isa<ConstantInt>(CI.getOperand(4)),
1408 "alignment argument of memory intrinsics must be a constant int",
1409 &CI);
1410 break;
1411 case Intrinsic::gcroot:
1412 case Intrinsic::gcwrite:
1413 case Intrinsic::gcread:
1414 if (ID == Intrinsic::gcroot) {
1415 AllocaInst *AI =
1416 dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts());
1417 Assert1(AI && isa<PointerType>(AI->getType()->getElementType()),
1418 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
1419 Assert1(isa<Constant>(CI.getOperand(2)),
1420 "llvm.gcroot parameter #2 must be a constant.", &CI);
1423 Assert1(CI.getParent()->getParent()->hasGC(),
1424 "Enclosing function does not use GC.", &CI);
1425 break;
1426 case Intrinsic::init_trampoline:
1427 Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
1428 "llvm.init_trampoline parameter #2 must resolve to a function.",
1429 &CI);
1430 break;
1431 case Intrinsic::prefetch:
1432 Assert1(isa<ConstantInt>(CI.getOperand(2)) &&
1433 isa<ConstantInt>(CI.getOperand(3)) &&
1434 cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 &&
1435 cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4,
1436 "invalid arguments to llvm.prefetch",
1437 &CI);
1438 break;
1439 case Intrinsic::stackprotector:
1440 Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()),
1441 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1442 &CI);
1443 break;
1447 /// Produce a string to identify an intrinsic parameter or return value.
1448 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1449 /// parameters beginning with NumRets.
1451 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1452 if (ArgNo < NumRets) {
1453 if (NumRets == 1)
1454 return "Intrinsic result type";
1455 else
1456 return "Intrinsic result type #" + utostr(ArgNo);
1457 } else
1458 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1461 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1462 int VT, unsigned ArgNo, std::string &Suffix) {
1463 const FunctionType *FTy = F->getFunctionType();
1465 unsigned NumElts = 0;
1466 const Type *EltTy = Ty;
1467 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1468 if (VTy) {
1469 EltTy = VTy->getElementType();
1470 NumElts = VTy->getNumElements();
1473 const Type *RetTy = FTy->getReturnType();
1474 const StructType *ST = dyn_cast<StructType>(RetTy);
1475 unsigned NumRets = 1;
1476 if (ST)
1477 NumRets = ST->getNumElements();
1479 if (VT < 0) {
1480 int Match = ~VT;
1482 // Check flags that indicate a type that is an integral vector type with
1483 // elements that are larger or smaller than the elements of the matched
1484 // type.
1485 if ((Match & (ExtendedElementVectorType |
1486 TruncatedElementVectorType)) != 0) {
1487 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1488 if (!VTy || !IEltTy) {
1489 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1490 "an integral vector type.", F);
1491 return false;
1493 // Adjust the current Ty (in the opposite direction) rather than
1494 // the type being matched against.
1495 if ((Match & ExtendedElementVectorType) != 0) {
1496 if ((IEltTy->getBitWidth() & 1) != 0) {
1497 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector "
1498 "element bit-width is odd.", F);
1499 return false;
1501 Ty = VectorType::getTruncatedElementVectorType(VTy);
1502 } else
1503 Ty = VectorType::getExtendedElementVectorType(VTy);
1504 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1507 if (Match <= static_cast<int>(NumRets - 1)) {
1508 if (ST)
1509 RetTy = ST->getElementType(Match);
1511 if (Ty != RetTy) {
1512 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
1513 "match return type.", F);
1514 return false;
1516 } else {
1517 if (Ty != FTy->getParamType(Match - 1)) {
1518 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
1519 "match parameter %" + utostr(Match - 1) + ".", F);
1520 return false;
1523 } else if (VT == MVT::iAny) {
1524 if (!EltTy->isInteger()) {
1525 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1526 "an integer type.", F);
1527 return false;
1530 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1531 Suffix += ".";
1533 if (EltTy != Ty)
1534 Suffix += "v" + utostr(NumElts);
1536 Suffix += "i" + utostr(GotBits);
1538 // Check some constraints on various intrinsics.
1539 switch (ID) {
1540 default: break; // Not everything needs to be checked.
1541 case Intrinsic::bswap:
1542 if (GotBits < 16 || GotBits % 16 != 0) {
1543 CheckFailed("Intrinsic requires even byte width argument", F);
1544 return false;
1546 break;
1548 } else if (VT == MVT::fAny) {
1549 if (!EltTy->isFloatingPoint()) {
1550 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1551 "a floating-point type.", F);
1552 return false;
1555 Suffix += ".";
1557 if (EltTy != Ty)
1558 Suffix += "v" + utostr(NumElts);
1560 Suffix += MVT::getMVT(EltTy).getMVTString();
1561 } else if (VT == MVT::iPTR) {
1562 if (!isa<PointerType>(Ty)) {
1563 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
1564 "pointer and a pointer is required.", F);
1565 return false;
1567 } else if (VT == MVT::iPTRAny) {
1568 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1569 // and iPTR. In the verifier, we can not distinguish which case we have so
1570 // allow either case to be legal.
1571 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1572 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1573 MVT::getMVT(PTyp->getElementType()).getMVTString();
1574 } else {
1575 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
1576 "pointer and a pointer is required.", F);
1577 return false;
1579 } else if (MVT((MVT::SimpleValueType)VT).isVector()) {
1580 MVT VVT = MVT((MVT::SimpleValueType)VT);
1582 // If this is a vector argument, verify the number and type of elements.
1583 if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
1584 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1585 return false;
1588 if (VVT.getVectorNumElements() != NumElts) {
1589 CheckFailed("Intrinsic prototype has incorrect number of "
1590 "vector elements!", F);
1591 return false;
1593 } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
1594 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
1595 return false;
1596 } else if (EltTy != Ty) {
1597 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector "
1598 "and a scalar is required.", F);
1599 return false;
1602 return true;
1605 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1606 /// Intrinsics.gen. This implements a little state machine that verifies the
1607 /// prototype of intrinsics.
1608 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1609 unsigned RetNum,
1610 unsigned ParamNum, ...) {
1611 va_list VA;
1612 va_start(VA, ParamNum);
1613 const FunctionType *FTy = F->getFunctionType();
1615 // For overloaded intrinsics, the Suffix of the function name must match the
1616 // types of the arguments. This variable keeps track of the expected
1617 // suffix, to be checked at the end.
1618 std::string Suffix;
1620 if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) {
1621 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1622 return;
1625 const Type *Ty = FTy->getReturnType();
1626 const StructType *ST = dyn_cast<StructType>(Ty);
1628 // Verify the return types.
1629 if (ST && ST->getNumElements() != RetNum) {
1630 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1631 return;
1634 for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) {
1635 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1637 if (ST) Ty = ST->getElementType(ArgNo);
1639 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1640 break;
1643 // Verify the parameter types.
1644 for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) {
1645 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1647 if (VT == MVT::isVoid && ArgNo > 0) {
1648 if (!FTy->isVarArg())
1649 CheckFailed("Intrinsic prototype has no '...'!", F);
1650 break;
1653 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum,
1654 Suffix))
1655 break;
1658 va_end(VA);
1660 // For intrinsics without pointer arguments, if we computed a Suffix then the
1661 // intrinsic is overloaded and we need to make sure that the name of the
1662 // function is correct. We add the suffix to the name of the intrinsic and
1663 // compare against the given function name. If they are not the same, the
1664 // function name is invalid. This ensures that overloading of intrinsics
1665 // uses a sane and consistent naming convention. Note that intrinsics with
1666 // pointer argument may or may not be overloaded so we will check assuming it
1667 // has a suffix and not.
1668 if (!Suffix.empty()) {
1669 std::string Name(Intrinsic::getName(ID));
1670 if (Name + Suffix != F->getName()) {
1671 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1672 F->getName().substr(Name.length()) + "'. It should be '" +
1673 Suffix + "'", F);
1677 // Check parameter attributes.
1678 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1679 "Intrinsic has wrong parameter attributes!", F);
1683 //===----------------------------------------------------------------------===//
1684 // Implement the public interfaces to this file...
1685 //===----------------------------------------------------------------------===//
1687 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1688 return new Verifier(action);
1692 // verifyFunction - Create
1693 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1694 Function &F = const_cast<Function&>(f);
1695 assert(!F.isDeclaration() && "Cannot verify external functions");
1697 ExistingModuleProvider MP(F.getParent());
1698 FunctionPassManager FPM(&MP);
1699 Verifier *V = new Verifier(action);
1700 FPM.add(V);
1701 FPM.run(F);
1702 MP.releaseModule();
1703 return V->Broken;
1706 /// verifyModule - Check a module for errors, printing messages on stderr.
1707 /// Return true if the module is corrupt.
1709 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1710 std::string *ErrorInfo) {
1711 PassManager PM;
1712 Verifier *V = new Verifier(action);
1713 PM.add(V);
1714 PM.run(const_cast<Module&>(M));
1716 if (ErrorInfo && V->Broken)
1717 *ErrorInfo = V->msgs.str();
1718 return V->Broken;
1721 // vim: sw=2