1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements integer type expansion and promotion for LegalizeTypes.
11 // Promotion is the act of changing a computation in an illegal type into a
12 // computation in a larger type. For example, implementing i8 arithmetic in an
13 // i32 register (often needed on powerpc).
14 // Expansion is the act of changing a computation in an illegal type into a
15 // computation in two identical registers of a smaller type. For example,
16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit
19 //===----------------------------------------------------------------------===//
21 #include "LegalizeTypes.h"
22 #include "llvm/CodeGen/PseudoSourceValue.h"
25 //===----------------------------------------------------------------------===//
26 // Integer Result Promotion
27 //===----------------------------------------------------------------------===//
29 /// PromoteIntegerResult - This method is called when a result of a node is
30 /// found to be in need of promotion to a larger type. At this point, the node
31 /// may also have invalid operands or may have other results that need
32 /// expansion, we just know that (at least) one result needs promotion.
33 void DAGTypeLegalizer::PromoteIntegerResult(SDNode
*N
, unsigned ResNo
) {
34 DEBUG(cerr
<< "Promote integer result: "; N
->dump(&DAG
); cerr
<< "\n");
35 SDValue Res
= SDValue();
37 // See if the target wants to custom expand this node.
38 if (CustomLowerResults(N
, N
->getValueType(ResNo
), true))
41 switch (N
->getOpcode()) {
44 cerr
<< "PromoteIntegerResult #" << ResNo
<< ": ";
45 N
->dump(&DAG
); cerr
<< "\n";
47 assert(0 && "Do not know how to promote this operator!");
49 case ISD::AssertSext
: Res
= PromoteIntRes_AssertSext(N
); break;
50 case ISD::AssertZext
: Res
= PromoteIntRes_AssertZext(N
); break;
51 case ISD::BIT_CONVERT
: Res
= PromoteIntRes_BIT_CONVERT(N
); break;
52 case ISD::BSWAP
: Res
= PromoteIntRes_BSWAP(N
); break;
53 case ISD::BUILD_PAIR
: Res
= PromoteIntRes_BUILD_PAIR(N
); break;
54 case ISD::Constant
: Res
= PromoteIntRes_Constant(N
); break;
55 case ISD::CONVERT_RNDSAT
:
56 Res
= PromoteIntRes_CONVERT_RNDSAT(N
); break;
57 case ISD::CTLZ
: Res
= PromoteIntRes_CTLZ(N
); break;
58 case ISD::CTPOP
: Res
= PromoteIntRes_CTPOP(N
); break;
59 case ISD::CTTZ
: Res
= PromoteIntRes_CTTZ(N
); break;
60 case ISD::EXTRACT_VECTOR_ELT
:
61 Res
= PromoteIntRes_EXTRACT_VECTOR_ELT(N
); break;
62 case ISD::LOAD
: Res
= PromoteIntRes_LOAD(cast
<LoadSDNode
>(N
));break;
63 case ISD::SELECT
: Res
= PromoteIntRes_SELECT(N
); break;
64 case ISD::SELECT_CC
: Res
= PromoteIntRes_SELECT_CC(N
); break;
65 case ISD::SETCC
: Res
= PromoteIntRes_SETCC(N
); break;
66 case ISD::SHL
: Res
= PromoteIntRes_SHL(N
); break;
67 case ISD::SIGN_EXTEND_INREG
:
68 Res
= PromoteIntRes_SIGN_EXTEND_INREG(N
); break;
69 case ISD::SRA
: Res
= PromoteIntRes_SRA(N
); break;
70 case ISD::SRL
: Res
= PromoteIntRes_SRL(N
); break;
71 case ISD::TRUNCATE
: Res
= PromoteIntRes_TRUNCATE(N
); break;
72 case ISD::UNDEF
: Res
= PromoteIntRes_UNDEF(N
); break;
73 case ISD::VAARG
: Res
= PromoteIntRes_VAARG(N
); break;
75 case ISD::SIGN_EXTEND
:
76 case ISD::ZERO_EXTEND
:
77 case ISD::ANY_EXTEND
: Res
= PromoteIntRes_INT_EXTEND(N
); break;
80 case ISD::FP_TO_UINT
: Res
= PromoteIntRes_FP_TO_XINT(N
); break;
87 case ISD::MUL
: Res
= PromoteIntRes_SimpleIntBinOp(N
); break;
90 case ISD::SREM
: Res
= PromoteIntRes_SDIV(N
); break;
93 case ISD::UREM
: Res
= PromoteIntRes_UDIV(N
); break;
96 case ISD::SSUBO
: Res
= PromoteIntRes_SADDSUBO(N
, ResNo
); break;
98 case ISD::USUBO
: Res
= PromoteIntRes_UADDSUBO(N
, ResNo
); break;
100 case ISD::UMULO
: Res
= PromoteIntRes_XMULO(N
, ResNo
); break;
102 case ISD::ATOMIC_LOAD_ADD
:
103 case ISD::ATOMIC_LOAD_SUB
:
104 case ISD::ATOMIC_LOAD_AND
:
105 case ISD::ATOMIC_LOAD_OR
:
106 case ISD::ATOMIC_LOAD_XOR
:
107 case ISD::ATOMIC_LOAD_NAND
:
108 case ISD::ATOMIC_LOAD_MIN
:
109 case ISD::ATOMIC_LOAD_MAX
:
110 case ISD::ATOMIC_LOAD_UMIN
:
111 case ISD::ATOMIC_LOAD_UMAX
:
112 case ISD::ATOMIC_SWAP
:
113 Res
= PromoteIntRes_Atomic1(cast
<AtomicSDNode
>(N
)); break;
115 case ISD::ATOMIC_CMP_SWAP
:
116 Res
= PromoteIntRes_Atomic2(cast
<AtomicSDNode
>(N
)); break;
119 // If the result is null then the sub-method took care of registering it.
121 SetPromotedInteger(SDValue(N
, ResNo
), Res
);
124 SDValue
DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode
*N
) {
125 // Sign-extend the new bits, and continue the assertion.
126 SDValue Op
= SExtPromotedInteger(N
->getOperand(0));
127 return DAG
.getNode(ISD::AssertSext
, N
->getDebugLoc(),
128 Op
.getValueType(), Op
, N
->getOperand(1));
131 SDValue
DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode
*N
) {
132 // Zero the new bits, and continue the assertion.
133 SDValue Op
= ZExtPromotedInteger(N
->getOperand(0));
134 return DAG
.getNode(ISD::AssertZext
, N
->getDebugLoc(),
135 Op
.getValueType(), Op
, N
->getOperand(1));
138 SDValue
DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode
*N
) {
139 SDValue Op2
= GetPromotedInteger(N
->getOperand(2));
140 SDValue Res
= DAG
.getAtomic(N
->getOpcode(), N
->getDebugLoc(),
142 N
->getChain(), N
->getBasePtr(),
143 Op2
, N
->getSrcValue(), N
->getAlignment());
144 // Legalized the chain result - switch anything that used the old chain to
146 ReplaceValueWith(SDValue(N
, 1), Res
.getValue(1));
150 SDValue
DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode
*N
) {
151 SDValue Op2
= GetPromotedInteger(N
->getOperand(2));
152 SDValue Op3
= GetPromotedInteger(N
->getOperand(3));
153 SDValue Res
= DAG
.getAtomic(N
->getOpcode(), N
->getDebugLoc(),
154 N
->getMemoryVT(), N
->getChain(), N
->getBasePtr(),
155 Op2
, Op3
, N
->getSrcValue(), N
->getAlignment());
156 // Legalized the chain result - switch anything that used the old chain to
158 ReplaceValueWith(SDValue(N
, 1), Res
.getValue(1));
162 SDValue
DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode
*N
) {
163 SDValue InOp
= N
->getOperand(0);
164 MVT InVT
= InOp
.getValueType();
165 MVT NInVT
= TLI
.getTypeToTransformTo(InVT
);
166 MVT OutVT
= N
->getValueType(0);
167 MVT NOutVT
= TLI
.getTypeToTransformTo(OutVT
);
168 DebugLoc dl
= N
->getDebugLoc();
170 switch (getTypeAction(InVT
)) {
172 assert(false && "Unknown type action!");
177 if (NOutVT
.bitsEq(NInVT
))
178 // The input promotes to the same size. Convert the promoted value.
179 return DAG
.getNode(ISD::BIT_CONVERT
, dl
,
180 NOutVT
, GetPromotedInteger(InOp
));
183 // Promote the integer operand by hand.
184 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, NOutVT
, GetSoftenedFloat(InOp
));
188 case ScalarizeVector
:
189 // Convert the element to an integer and promote it by hand.
190 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, NOutVT
,
191 BitConvertToInteger(GetScalarizedVector(InOp
)));
193 // For example, i32 = BIT_CONVERT v2i16 on alpha. Convert the split
194 // pieces of the input into integers and reassemble in the final type.
196 GetSplitVector(N
->getOperand(0), Lo
, Hi
);
197 Lo
= BitConvertToInteger(Lo
);
198 Hi
= BitConvertToInteger(Hi
);
200 if (TLI
.isBigEndian())
203 InOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
,
204 MVT::getIntegerVT(NOutVT
.getSizeInBits()),
205 JoinIntegers(Lo
, Hi
));
206 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, NOutVT
, InOp
);
209 if (OutVT
.bitsEq(NInVT
))
210 // The input is widened to the same size. Convert to the widened value.
211 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, OutVT
, GetWidenedVector(InOp
));
214 // Otherwise, lower the bit-convert to a store/load from the stack.
215 // Create the stack frame object. Make sure it is aligned for both
216 // the source and destination types.
217 SDValue FIPtr
= DAG
.CreateStackTemporary(InVT
, OutVT
);
218 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
219 const Value
*SV
= PseudoSourceValue::getFixedStack(FI
);
221 // Emit a store to the stack slot.
222 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, InOp
, FIPtr
, SV
, 0);
224 // Result is an extending load from the stack slot.
225 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NOutVT
, Store
, FIPtr
, SV
, 0, OutVT
);
228 SDValue
DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode
*N
) {
229 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
230 MVT OVT
= N
->getValueType(0);
231 MVT NVT
= Op
.getValueType();
232 DebugLoc dl
= N
->getDebugLoc();
234 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
235 return DAG
.getNode(ISD::SRL
, dl
, NVT
, DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Op
),
236 DAG
.getConstant(DiffBits
, TLI
.getPointerTy()));
239 SDValue
DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode
*N
) {
240 // The pair element type may be legal, or may not promote to the same type as
241 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
242 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(),
243 TLI
.getTypeToTransformTo(N
->getValueType(0)),
244 JoinIntegers(N
->getOperand(0), N
->getOperand(1)));
247 SDValue
DAGTypeLegalizer::PromoteIntRes_Constant(SDNode
*N
) {
248 MVT VT
= N
->getValueType(0);
249 // FIXME there is no actual debug info here
250 DebugLoc dl
= N
->getDebugLoc();
251 // Zero extend things like i1, sign extend everything else. It shouldn't
252 // matter in theory which one we pick, but this tends to give better code?
253 unsigned Opc
= VT
.isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
254 SDValue Result
= DAG
.getNode(Opc
, dl
, TLI
.getTypeToTransformTo(VT
),
256 assert(isa
<ConstantSDNode
>(Result
) && "Didn't constant fold ext?");
260 SDValue
DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode
*N
) {
261 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(N
)->getCvtCode();
262 assert ((CvtCode
== ISD::CVT_SS
|| CvtCode
== ISD::CVT_SU
||
263 CvtCode
== ISD::CVT_US
|| CvtCode
== ISD::CVT_UU
||
264 CvtCode
== ISD::CVT_SF
|| CvtCode
== ISD::CVT_UF
) &&
265 "can only promote integers");
266 MVT OutVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
267 return DAG
.getConvertRndSat(OutVT
, N
->getDebugLoc(), N
->getOperand(0),
268 N
->getOperand(1), N
->getOperand(2),
269 N
->getOperand(3), N
->getOperand(4), CvtCode
);
272 SDValue
DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode
*N
) {
273 // Zero extend to the promoted type and do the count there.
274 SDValue Op
= ZExtPromotedInteger(N
->getOperand(0));
275 DebugLoc dl
= N
->getDebugLoc();
276 MVT OVT
= N
->getValueType(0);
277 MVT NVT
= Op
.getValueType();
278 Op
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Op
);
279 // Subtract off the extra leading bits in the bigger type.
280 return DAG
.getNode(ISD::SUB
, dl
, NVT
, Op
,
281 DAG
.getConstant(NVT
.getSizeInBits() -
282 OVT
.getSizeInBits(), NVT
));
285 SDValue
DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode
*N
) {
286 // Zero extend to the promoted type and do the count there.
287 SDValue Op
= ZExtPromotedInteger(N
->getOperand(0));
288 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), Op
.getValueType(), Op
);
291 SDValue
DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode
*N
) {
292 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
293 MVT OVT
= N
->getValueType(0);
294 MVT NVT
= Op
.getValueType();
295 DebugLoc dl
= N
->getDebugLoc();
296 // The count is the same in the promoted type except if the original
297 // value was zero. This can be handled by setting the bit just off
298 // the top of the original type.
299 APInt
TopBit(NVT
.getSizeInBits(), 0);
300 TopBit
.set(OVT
.getSizeInBits());
301 Op
= DAG
.getNode(ISD::OR
, dl
, NVT
, Op
, DAG
.getConstant(TopBit
, NVT
));
302 return DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Op
);
305 SDValue
DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode
*N
) {
306 MVT OldVT
= N
->getValueType(0);
307 SDValue OldVec
= N
->getOperand(0);
308 if (getTypeAction(OldVec
.getValueType()) == WidenVector
)
309 OldVec
= GetWidenedVector(N
->getOperand(0));
310 unsigned OldElts
= OldVec
.getValueType().getVectorNumElements();
311 DebugLoc dl
= N
->getDebugLoc();
314 assert(!isTypeLegal(OldVec
.getValueType()) &&
315 "Legal one-element vector of a type needing promotion!");
316 // It is tempting to follow GetScalarizedVector by a call to
317 // GetPromotedInteger, but this would be wrong because the
318 // scalarized value may not yet have been processed.
319 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, TLI
.getTypeToTransformTo(OldVT
),
320 GetScalarizedVector(OldVec
));
323 // Convert to a vector half as long with an element type of twice the width,
324 // for example <4 x i16> -> <2 x i32>.
325 assert(!(OldElts
& 1) && "Odd length vectors not supported!");
326 MVT NewVT
= MVT::getIntegerVT(2 * OldVT
.getSizeInBits());
327 assert(OldVT
.isSimple() && NewVT
.isSimple());
329 SDValue NewVec
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
330 MVT::getVectorVT(NewVT
, OldElts
/ 2),
333 // Extract the element at OldIdx / 2 from the new vector.
334 SDValue OldIdx
= N
->getOperand(1);
335 SDValue NewIdx
= DAG
.getNode(ISD::SRL
, dl
, OldIdx
.getValueType(), OldIdx
,
336 DAG
.getConstant(1, TLI
.getPointerTy()));
337 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewVT
, NewVec
, NewIdx
);
339 // Select the appropriate half of the element: Lo if OldIdx was even,
342 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, NewVT
, Elt
,
343 DAG
.getConstant(OldVT
.getSizeInBits(),
344 TLI
.getPointerTy()));
345 if (TLI
.isBigEndian())
348 // Extend to the promoted type.
349 SDValue Odd
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, OldIdx
);
350 SDValue Res
= DAG
.getNode(ISD::SELECT
, dl
, NewVT
, Odd
, Hi
, Lo
);
351 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, TLI
.getTypeToTransformTo(OldVT
), Res
);
354 SDValue
DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode
*N
) {
355 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
356 unsigned NewOpc
= N
->getOpcode();
357 DebugLoc dl
= N
->getDebugLoc();
359 // If we're promoting a UINT to a larger size, check to see if the new node
360 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
361 // we can use that instead. This allows us to generate better code for
362 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
363 // legal, such as PowerPC.
364 if (N
->getOpcode() == ISD::FP_TO_UINT
&&
365 !TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NVT
) &&
366 TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
))
367 NewOpc
= ISD::FP_TO_SINT
;
369 SDValue Res
= DAG
.getNode(NewOpc
, dl
, NVT
, N
->getOperand(0));
371 // Assert that the converted value fits in the original type. If it doesn't
372 // (eg: because the value being converted is too big), then the result of the
373 // original operation was undefined anyway, so the assert is still correct.
374 return DAG
.getNode(N
->getOpcode() == ISD::FP_TO_UINT
?
375 ISD::AssertZext
: ISD::AssertSext
, dl
,
376 NVT
, Res
, DAG
.getValueType(N
->getValueType(0)));
379 SDValue
DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode
*N
) {
380 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
381 DebugLoc dl
= N
->getDebugLoc();
383 if (getTypeAction(N
->getOperand(0).getValueType()) == PromoteInteger
) {
384 SDValue Res
= GetPromotedInteger(N
->getOperand(0));
385 assert(Res
.getValueType().bitsLE(NVT
) && "Extension doesn't make sense!");
387 // If the result and operand types are the same after promotion, simplify
388 // to an in-register extension.
389 if (NVT
== Res
.getValueType()) {
390 // The high bits are not guaranteed to be anything. Insert an extend.
391 if (N
->getOpcode() == ISD::SIGN_EXTEND
)
392 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Res
,
393 DAG
.getValueType(N
->getOperand(0).getValueType()));
394 if (N
->getOpcode() == ISD::ZERO_EXTEND
)
395 return DAG
.getZeroExtendInReg(Res
, dl
, N
->getOperand(0).getValueType());
396 assert(N
->getOpcode() == ISD::ANY_EXTEND
&& "Unknown integer extension!");
401 // Otherwise, just extend the original operand all the way to the larger type.
402 return DAG
.getNode(N
->getOpcode(), dl
, NVT
, N
->getOperand(0));
405 SDValue
DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode
*N
) {
406 assert(ISD::isUNINDEXEDLoad(N
) && "Indexed load during type legalization!");
407 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
408 ISD::LoadExtType ExtType
=
409 ISD::isNON_EXTLoad(N
) ? ISD::EXTLOAD
: N
->getExtensionType();
410 DebugLoc dl
= N
->getDebugLoc();
411 SDValue Res
= DAG
.getExtLoad(ExtType
, dl
, NVT
, N
->getChain(), N
->getBasePtr(),
412 N
->getSrcValue(), N
->getSrcValueOffset(),
413 N
->getMemoryVT(), N
->isVolatile(),
416 // Legalized the chain result - switch anything that used the old chain to
418 ReplaceValueWith(SDValue(N
, 1), Res
.getValue(1));
422 /// Promote the overflow flag of an overflowing arithmetic node.
423 SDValue
DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode
*N
) {
424 // Simply change the return type of the boolean result.
425 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(1));
426 MVT ValueVTs
[] = { N
->getValueType(0), NVT
};
427 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1) };
428 SDValue Res
= DAG
.getNode(N
->getOpcode(), N
->getDebugLoc(),
429 DAG
.getVTList(ValueVTs
, 2), Ops
, 2);
431 // Modified the sum result - switch anything that used the old sum to use
433 ReplaceValueWith(SDValue(N
, 0), Res
);
435 return SDValue(Res
.getNode(), 1);
438 SDValue
DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode
*N
, unsigned ResNo
) {
440 return PromoteIntRes_Overflow(N
);
442 // The operation overflowed iff the result in the larger type is not the
443 // sign extension of its truncation to the original type.
444 SDValue LHS
= SExtPromotedInteger(N
->getOperand(0));
445 SDValue RHS
= SExtPromotedInteger(N
->getOperand(1));
446 MVT OVT
= N
->getOperand(0).getValueType();
447 MVT NVT
= LHS
.getValueType();
448 DebugLoc dl
= N
->getDebugLoc();
450 // Do the arithmetic in the larger type.
451 unsigned Opcode
= N
->getOpcode() == ISD::SADDO
? ISD::ADD
: ISD::SUB
;
452 SDValue Res
= DAG
.getNode(Opcode
, dl
, NVT
, LHS
, RHS
);
454 // Calculate the overflow flag: sign extend the arithmetic result from
455 // the original type.
456 SDValue Ofl
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Res
,
457 DAG
.getValueType(OVT
));
458 // Overflowed if and only if this is not equal to Res.
459 Ofl
= DAG
.getSetCC(dl
, N
->getValueType(1), Ofl
, Res
, ISD::SETNE
);
461 // Use the calculated overflow everywhere.
462 ReplaceValueWith(SDValue(N
, 1), Ofl
);
467 SDValue
DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode
*N
) {
468 // Sign extend the input.
469 SDValue LHS
= SExtPromotedInteger(N
->getOperand(0));
470 SDValue RHS
= SExtPromotedInteger(N
->getOperand(1));
471 return DAG
.getNode(N
->getOpcode(), N
->getDebugLoc(),
472 LHS
.getValueType(), LHS
, RHS
);
475 SDValue
DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode
*N
) {
476 SDValue LHS
= GetPromotedInteger(N
->getOperand(1));
477 SDValue RHS
= GetPromotedInteger(N
->getOperand(2));
478 return DAG
.getNode(ISD::SELECT
, N
->getDebugLoc(),
479 LHS
.getValueType(), N
->getOperand(0),LHS
,RHS
);
482 SDValue
DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode
*N
) {
483 SDValue LHS
= GetPromotedInteger(N
->getOperand(2));
484 SDValue RHS
= GetPromotedInteger(N
->getOperand(3));
485 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(),
486 LHS
.getValueType(), N
->getOperand(0),
487 N
->getOperand(1), LHS
, RHS
, N
->getOperand(4));
490 SDValue
DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode
*N
) {
491 MVT SVT
= TLI
.getSetCCResultType(N
->getOperand(0).getValueType());
492 assert(isTypeLegal(SVT
) && "Illegal SetCC type!");
493 DebugLoc dl
= N
->getDebugLoc();
495 // Get the SETCC result using the canonical SETCC type.
496 SDValue SetCC
= DAG
.getNode(ISD::SETCC
, dl
, SVT
, N
->getOperand(0),
497 N
->getOperand(1), N
->getOperand(2));
499 // Convert to the expected type.
500 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
501 assert(NVT
.bitsLE(SVT
) && "Integer type overpromoted?");
502 return DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, SetCC
);
505 SDValue
DAGTypeLegalizer::PromoteIntRes_SHL(SDNode
*N
) {
506 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(),
507 TLI
.getTypeToTransformTo(N
->getValueType(0)),
508 GetPromotedInteger(N
->getOperand(0)), N
->getOperand(1));
511 SDValue
DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode
*N
) {
512 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
513 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(),
514 Op
.getValueType(), Op
, N
->getOperand(1));
517 SDValue
DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode
*N
) {
518 // The input may have strange things in the top bits of the registers, but
519 // these operations don't care. They may have weird bits going out, but
520 // that too is okay if they are integer operations.
521 SDValue LHS
= GetPromotedInteger(N
->getOperand(0));
522 SDValue RHS
= GetPromotedInteger(N
->getOperand(1));
523 return DAG
.getNode(N
->getOpcode(), N
->getDebugLoc(),
524 LHS
.getValueType(), LHS
, RHS
);
527 SDValue
DAGTypeLegalizer::PromoteIntRes_SRA(SDNode
*N
) {
528 // The input value must be properly sign extended.
529 SDValue Res
= SExtPromotedInteger(N
->getOperand(0));
530 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(),
531 Res
.getValueType(), Res
, N
->getOperand(1));
534 SDValue
DAGTypeLegalizer::PromoteIntRes_SRL(SDNode
*N
) {
535 // The input value must be properly zero extended.
536 MVT VT
= N
->getValueType(0);
537 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
538 SDValue Res
= ZExtPromotedInteger(N
->getOperand(0));
539 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), NVT
, Res
, N
->getOperand(1));
542 SDValue
DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode
*N
) {
543 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
546 switch (getTypeAction(N
->getOperand(0).getValueType())) {
547 default: assert(0 && "Unknown type action!");
550 Res
= N
->getOperand(0);
553 Res
= GetPromotedInteger(N
->getOperand(0));
557 // Truncate to NVT instead of VT
558 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), NVT
, Res
);
561 SDValue
DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode
*N
, unsigned ResNo
) {
563 return PromoteIntRes_Overflow(N
);
565 // The operation overflowed iff the result in the larger type is not the
566 // zero extension of its truncation to the original type.
567 SDValue LHS
= ZExtPromotedInteger(N
->getOperand(0));
568 SDValue RHS
= ZExtPromotedInteger(N
->getOperand(1));
569 MVT OVT
= N
->getOperand(0).getValueType();
570 MVT NVT
= LHS
.getValueType();
571 DebugLoc dl
= N
->getDebugLoc();
573 // Do the arithmetic in the larger type.
574 unsigned Opcode
= N
->getOpcode() == ISD::UADDO
? ISD::ADD
: ISD::SUB
;
575 SDValue Res
= DAG
.getNode(Opcode
, dl
, NVT
, LHS
, RHS
);
577 // Calculate the overflow flag: zero extend the arithmetic result from
578 // the original type.
579 SDValue Ofl
= DAG
.getZeroExtendInReg(Res
, dl
, OVT
);
580 // Overflowed if and only if this is not equal to Res.
581 Ofl
= DAG
.getSetCC(dl
, N
->getValueType(1), Ofl
, Res
, ISD::SETNE
);
583 // Use the calculated overflow everywhere.
584 ReplaceValueWith(SDValue(N
, 1), Ofl
);
589 SDValue
DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode
*N
) {
590 // Zero extend the input.
591 SDValue LHS
= ZExtPromotedInteger(N
->getOperand(0));
592 SDValue RHS
= ZExtPromotedInteger(N
->getOperand(1));
593 return DAG
.getNode(N
->getOpcode(), N
->getDebugLoc(),
594 LHS
.getValueType(), LHS
, RHS
);
597 SDValue
DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode
*N
) {
598 return DAG
.getUNDEF(TLI
.getTypeToTransformTo(N
->getValueType(0)));
601 SDValue
DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode
*N
) {
602 SDValue Chain
= N
->getOperand(0); // Get the chain.
603 SDValue Ptr
= N
->getOperand(1); // Get the pointer.
604 MVT VT
= N
->getValueType(0);
605 DebugLoc dl
= N
->getDebugLoc();
607 MVT RegVT
= TLI
.getRegisterType(VT
);
608 unsigned NumRegs
= TLI
.getNumRegisters(VT
);
609 // The argument is passed as NumRegs registers of type RegVT.
611 SmallVector
<SDValue
, 8> Parts(NumRegs
);
612 for (unsigned i
= 0; i
< NumRegs
; ++i
) {
613 Parts
[i
] = DAG
.getVAArg(RegVT
, dl
, Chain
, Ptr
, N
->getOperand(2));
614 Chain
= Parts
[i
].getValue(1);
617 // Handle endianness of the load.
618 if (TLI
.isBigEndian())
619 std::reverse(Parts
.begin(), Parts
.end());
621 // Assemble the parts in the promoted type.
622 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
623 SDValue Res
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Parts
[0]);
624 for (unsigned i
= 1; i
< NumRegs
; ++i
) {
625 SDValue Part
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Parts
[i
]);
626 // Shift it to the right position and "or" it in.
627 Part
= DAG
.getNode(ISD::SHL
, dl
, NVT
, Part
,
628 DAG
.getConstant(i
* RegVT
.getSizeInBits(),
629 TLI
.getPointerTy()));
630 Res
= DAG
.getNode(ISD::OR
, dl
, NVT
, Res
, Part
);
633 // Modified the chain result - switch anything that used the old chain to
635 ReplaceValueWith(SDValue(N
, 1), Chain
);
640 SDValue
DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode
*N
, unsigned ResNo
) {
641 assert(ResNo
== 1 && "Only boolean result promotion currently supported!");
642 return PromoteIntRes_Overflow(N
);
645 //===----------------------------------------------------------------------===//
646 // Integer Operand Promotion
647 //===----------------------------------------------------------------------===//
649 /// PromoteIntegerOperand - This method is called when the specified operand of
650 /// the specified node is found to need promotion. At this point, all of the
651 /// result types of the node are known to be legal, but other operands of the
652 /// node may need promotion or expansion as well as the specified one.
653 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode
*N
, unsigned OpNo
) {
654 DEBUG(cerr
<< "Promote integer operand: "; N
->dump(&DAG
); cerr
<< "\n");
655 SDValue Res
= SDValue();
657 if (CustomLowerResults(N
, N
->getOperand(OpNo
).getValueType(), false))
660 switch (N
->getOpcode()) {
663 cerr
<< "PromoteIntegerOperand Op #" << OpNo
<< ": ";
664 N
->dump(&DAG
); cerr
<< "\n";
666 assert(0 && "Do not know how to promote this operator's operand!");
669 case ISD::ANY_EXTEND
: Res
= PromoteIntOp_ANY_EXTEND(N
); break;
670 case ISD::BIT_CONVERT
: Res
= PromoteIntOp_BIT_CONVERT(N
); break;
671 case ISD::BR_CC
: Res
= PromoteIntOp_BR_CC(N
, OpNo
); break;
672 case ISD::BRCOND
: Res
= PromoteIntOp_BRCOND(N
, OpNo
); break;
673 case ISD::BUILD_PAIR
: Res
= PromoteIntOp_BUILD_PAIR(N
); break;
674 case ISD::BUILD_VECTOR
: Res
= PromoteIntOp_BUILD_VECTOR(N
); break;
675 case ISD::CONVERT_RNDSAT
:
676 Res
= PromoteIntOp_CONVERT_RNDSAT(N
); break;
677 case ISD::INSERT_VECTOR_ELT
:
678 Res
= PromoteIntOp_INSERT_VECTOR_ELT(N
, OpNo
);break;
679 case ISD::MEMBARRIER
: Res
= PromoteIntOp_MEMBARRIER(N
); break;
680 case ISD::SCALAR_TO_VECTOR
:
681 Res
= PromoteIntOp_SCALAR_TO_VECTOR(N
); break;
682 case ISD::SELECT
: Res
= PromoteIntOp_SELECT(N
, OpNo
); break;
683 case ISD::SELECT_CC
: Res
= PromoteIntOp_SELECT_CC(N
, OpNo
); break;
684 case ISD::SETCC
: Res
= PromoteIntOp_SETCC(N
, OpNo
); break;
685 case ISD::SIGN_EXTEND
: Res
= PromoteIntOp_SIGN_EXTEND(N
); break;
686 case ISD::SINT_TO_FP
: Res
= PromoteIntOp_SINT_TO_FP(N
); break;
687 case ISD::STORE
: Res
= PromoteIntOp_STORE(cast
<StoreSDNode
>(N
),
689 case ISD::TRUNCATE
: Res
= PromoteIntOp_TRUNCATE(N
); break;
690 case ISD::UINT_TO_FP
: Res
= PromoteIntOp_UINT_TO_FP(N
); break;
691 case ISD::ZERO_EXTEND
: Res
= PromoteIntOp_ZERO_EXTEND(N
); break;
697 case ISD::ROTR
: Res
= PromoteIntOp_Shift(N
); break;
700 // If the result is null, the sub-method took care of registering results etc.
701 if (!Res
.getNode()) return false;
703 // If the result is N, the sub-method updated N in place. Tell the legalizer
705 if (Res
.getNode() == N
)
708 assert(Res
.getValueType() == N
->getValueType(0) && N
->getNumValues() == 1 &&
709 "Invalid operand expansion");
711 ReplaceValueWith(SDValue(N
, 0), Res
);
715 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is
716 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
717 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue
&NewLHS
,SDValue
&NewRHS
,
718 ISD::CondCode CCCode
) {
719 // We have to insert explicit sign or zero extends. Note that we could
720 // insert sign extends for ALL conditions, but zero extend is cheaper on
721 // many machines (an AND instead of two shifts), so prefer it.
723 default: assert(0 && "Unknown integer comparison!");
730 // ALL of these operations will work if we either sign or zero extend
731 // the operands (including the unsigned comparisons!). Zero extend is
732 // usually a simpler/cheaper operation, so prefer it.
733 NewLHS
= ZExtPromotedInteger(NewLHS
);
734 NewRHS
= ZExtPromotedInteger(NewRHS
);
740 NewLHS
= SExtPromotedInteger(NewLHS
);
741 NewRHS
= SExtPromotedInteger(NewRHS
);
746 SDValue
DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode
*N
) {
747 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
748 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), N
->getValueType(0), Op
);
751 SDValue
DAGTypeLegalizer::PromoteIntOp_BIT_CONVERT(SDNode
*N
) {
752 // This should only occur in unusual situations like bitcasting to an
753 // x86_fp80, so just turn it into a store+load
754 return CreateStackStoreLoad(N
->getOperand(0), N
->getValueType(0));
757 SDValue
DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode
*N
, unsigned OpNo
) {
758 assert(OpNo
== 2 && "Don't know how to promote this operand!");
760 SDValue LHS
= N
->getOperand(2);
761 SDValue RHS
= N
->getOperand(3);
762 PromoteSetCCOperands(LHS
, RHS
, cast
<CondCodeSDNode
>(N
->getOperand(1))->get());
764 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
766 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0),
767 N
->getOperand(1), LHS
, RHS
, N
->getOperand(4));
770 SDValue
DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode
*N
, unsigned OpNo
) {
771 assert(OpNo
== 1 && "only know how to promote condition");
773 // Promote all the way up to the canonical SetCC type.
774 MVT SVT
= TLI
.getSetCCResultType(MVT::Other
);
775 SDValue Cond
= PromoteTargetBoolean(N
->getOperand(1), SVT
);
777 // The chain (Op#0) and basic block destination (Op#2) are always legal types.
778 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0), Cond
,
782 SDValue
DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode
*N
) {
783 // Since the result type is legal, the operands must promote to it.
784 MVT OVT
= N
->getOperand(0).getValueType();
785 SDValue Lo
= ZExtPromotedInteger(N
->getOperand(0));
786 SDValue Hi
= GetPromotedInteger(N
->getOperand(1));
787 assert(Lo
.getValueType() == N
->getValueType(0) && "Operand over promoted?");
788 DebugLoc dl
= N
->getDebugLoc();
790 Hi
= DAG
.getNode(ISD::SHL
, dl
, N
->getValueType(0), Hi
,
791 DAG
.getConstant(OVT
.getSizeInBits(), TLI
.getPointerTy()));
792 return DAG
.getNode(ISD::OR
, dl
, N
->getValueType(0), Lo
, Hi
);
795 SDValue
DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode
*N
) {
796 // The vector type is legal but the element type is not. This implies
797 // that the vector is a power-of-two in length and that the element
798 // type does not have a strange size (eg: it is not i1).
799 MVT VecVT
= N
->getValueType(0);
800 unsigned NumElts
= VecVT
.getVectorNumElements();
801 assert(!(NumElts
& 1) && "Legal vector of one illegal element?");
803 // Promote the inserted value. The type does not need to match the
804 // vector element type. Check that any extra bits introduced will be
806 assert(N
->getOperand(0).getValueType().getSizeInBits() >=
807 N
->getValueType(0).getVectorElementType().getSizeInBits() &&
808 "Type of inserted value narrower than vector element type!");
810 SmallVector
<SDValue
, 16> NewOps
;
811 for (unsigned i
= 0; i
< NumElts
; ++i
)
812 NewOps
.push_back(GetPromotedInteger(N
->getOperand(i
)));
814 return DAG
.UpdateNodeOperands(SDValue(N
, 0), &NewOps
[0], NumElts
);
817 SDValue
DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode
*N
) {
818 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(N
)->getCvtCode();
819 assert ((CvtCode
== ISD::CVT_SS
|| CvtCode
== ISD::CVT_SU
||
820 CvtCode
== ISD::CVT_US
|| CvtCode
== ISD::CVT_UU
||
821 CvtCode
== ISD::CVT_FS
|| CvtCode
== ISD::CVT_FU
) &&
822 "can only promote integer arguments");
823 SDValue InOp
= GetPromotedInteger(N
->getOperand(0));
824 return DAG
.getConvertRndSat(N
->getValueType(0), N
->getDebugLoc(), InOp
,
825 N
->getOperand(1), N
->getOperand(2),
826 N
->getOperand(3), N
->getOperand(4), CvtCode
);
829 SDValue
DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode
*N
,
832 // Promote the inserted value. This is valid because the type does not
833 // have to match the vector element type.
835 // Check that any extra bits introduced will be truncated away.
836 assert(N
->getOperand(1).getValueType().getSizeInBits() >=
837 N
->getValueType(0).getVectorElementType().getSizeInBits() &&
838 "Type of inserted value narrower than vector element type!");
839 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0),
840 GetPromotedInteger(N
->getOperand(1)),
844 assert(OpNo
== 2 && "Different operand and result vector types?");
846 // Promote the index.
847 SDValue Idx
= ZExtPromotedInteger(N
->getOperand(2));
848 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0),
849 N
->getOperand(1), Idx
);
852 SDValue
DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode
*N
) {
854 DebugLoc dl
= N
->getDebugLoc();
855 NewOps
[0] = N
->getOperand(0);
856 for (unsigned i
= 1; i
< array_lengthof(NewOps
); ++i
) {
857 SDValue Flag
= GetPromotedInteger(N
->getOperand(i
));
858 NewOps
[i
] = DAG
.getZeroExtendInReg(Flag
, dl
, MVT::i1
);
860 return DAG
.UpdateNodeOperands(SDValue (N
, 0), NewOps
,
861 array_lengthof(NewOps
));
864 SDValue
DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode
*N
) {
865 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
866 // the operand in place.
867 return DAG
.UpdateNodeOperands(SDValue(N
, 0),
868 GetPromotedInteger(N
->getOperand(0)));
871 SDValue
DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode
*N
, unsigned OpNo
) {
872 assert(OpNo
== 0 && "Only know how to promote condition");
874 // Promote all the way up to the canonical SetCC type.
875 MVT SVT
= TLI
.getSetCCResultType(N
->getOperand(1).getValueType());
876 SDValue Cond
= PromoteTargetBoolean(N
->getOperand(0), SVT
);
878 return DAG
.UpdateNodeOperands(SDValue(N
, 0), Cond
,
879 N
->getOperand(1), N
->getOperand(2));
882 SDValue
DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode
*N
, unsigned OpNo
) {
883 assert(OpNo
== 0 && "Don't know how to promote this operand!");
885 SDValue LHS
= N
->getOperand(0);
886 SDValue RHS
= N
->getOperand(1);
887 PromoteSetCCOperands(LHS
, RHS
, cast
<CondCodeSDNode
>(N
->getOperand(4))->get());
889 // The CC (#4) and the possible return values (#2 and #3) have legal types.
890 return DAG
.UpdateNodeOperands(SDValue(N
, 0), LHS
, RHS
, N
->getOperand(2),
891 N
->getOperand(3), N
->getOperand(4));
894 SDValue
DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode
*N
, unsigned OpNo
) {
895 assert(OpNo
== 0 && "Don't know how to promote this operand!");
897 SDValue LHS
= N
->getOperand(0);
898 SDValue RHS
= N
->getOperand(1);
899 PromoteSetCCOperands(LHS
, RHS
, cast
<CondCodeSDNode
>(N
->getOperand(2))->get());
901 // The CC (#2) is always legal.
902 return DAG
.UpdateNodeOperands(SDValue(N
, 0), LHS
, RHS
, N
->getOperand(2));
905 SDValue
DAGTypeLegalizer::PromoteIntOp_Shift(SDNode
*N
) {
906 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0),
907 ZExtPromotedInteger(N
->getOperand(1)));
910 SDValue
DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode
*N
) {
911 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
912 DebugLoc dl
= N
->getDebugLoc();
913 Op
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Op
);
914 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Op
.getValueType(),
915 Op
, DAG
.getValueType(N
->getOperand(0).getValueType()));
918 SDValue
DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode
*N
) {
919 return DAG
.UpdateNodeOperands(SDValue(N
, 0),
920 SExtPromotedInteger(N
->getOperand(0)));
923 SDValue
DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
){
924 assert(ISD::isUNINDEXEDStore(N
) && "Indexed store during type legalization!");
925 SDValue Ch
= N
->getChain(), Ptr
= N
->getBasePtr();
926 int SVOffset
= N
->getSrcValueOffset();
927 unsigned Alignment
= N
->getAlignment();
928 bool isVolatile
= N
->isVolatile();
929 DebugLoc dl
= N
->getDebugLoc();
931 SDValue Val
= GetPromotedInteger(N
->getValue()); // Get promoted value.
933 // Truncate the value and store the result.
934 return DAG
.getTruncStore(Ch
, dl
, Val
, Ptr
, N
->getSrcValue(),
935 SVOffset
, N
->getMemoryVT(),
936 isVolatile
, Alignment
);
939 SDValue
DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode
*N
) {
940 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
941 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), N
->getValueType(0), Op
);
944 SDValue
DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode
*N
) {
945 return DAG
.UpdateNodeOperands(SDValue(N
, 0),
946 ZExtPromotedInteger(N
->getOperand(0)));
949 SDValue
DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode
*N
) {
950 DebugLoc dl
= N
->getDebugLoc();
951 SDValue Op
= GetPromotedInteger(N
->getOperand(0));
952 Op
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Op
);
953 return DAG
.getZeroExtendInReg(Op
, dl
, N
->getOperand(0).getValueType());
957 //===----------------------------------------------------------------------===//
958 // Integer Result Expansion
959 //===----------------------------------------------------------------------===//
961 /// ExpandIntegerResult - This method is called when the specified result of the
962 /// specified node is found to need expansion. At this point, the node may also
963 /// have invalid operands or may have other results that need promotion, we just
964 /// know that (at least) one result needs expansion.
965 void DAGTypeLegalizer::ExpandIntegerResult(SDNode
*N
, unsigned ResNo
) {
966 DEBUG(cerr
<< "Expand integer result: "; N
->dump(&DAG
); cerr
<< "\n");
970 // See if the target wants to custom expand this node.
971 if (CustomLowerResults(N
, N
->getValueType(ResNo
), true))
974 switch (N
->getOpcode()) {
977 cerr
<< "ExpandIntegerResult #" << ResNo
<< ": ";
978 N
->dump(&DAG
); cerr
<< "\n";
980 assert(0 && "Do not know how to expand the result of this operator!");
983 case ISD::MERGE_VALUES
: SplitRes_MERGE_VALUES(N
, Lo
, Hi
); break;
984 case ISD::SELECT
: SplitRes_SELECT(N
, Lo
, Hi
); break;
985 case ISD::SELECT_CC
: SplitRes_SELECT_CC(N
, Lo
, Hi
); break;
986 case ISD::UNDEF
: SplitRes_UNDEF(N
, Lo
, Hi
); break;
988 case ISD::BIT_CONVERT
: ExpandRes_BIT_CONVERT(N
, Lo
, Hi
); break;
989 case ISD::BUILD_PAIR
: ExpandRes_BUILD_PAIR(N
, Lo
, Hi
); break;
990 case ISD::EXTRACT_ELEMENT
: ExpandRes_EXTRACT_ELEMENT(N
, Lo
, Hi
); break;
991 case ISD::EXTRACT_VECTOR_ELT
: ExpandRes_EXTRACT_VECTOR_ELT(N
, Lo
, Hi
); break;
992 case ISD::VAARG
: ExpandRes_VAARG(N
, Lo
, Hi
); break;
994 case ISD::ANY_EXTEND
: ExpandIntRes_ANY_EXTEND(N
, Lo
, Hi
); break;
995 case ISD::AssertSext
: ExpandIntRes_AssertSext(N
, Lo
, Hi
); break;
996 case ISD::AssertZext
: ExpandIntRes_AssertZext(N
, Lo
, Hi
); break;
997 case ISD::BSWAP
: ExpandIntRes_BSWAP(N
, Lo
, Hi
); break;
998 case ISD::Constant
: ExpandIntRes_Constant(N
, Lo
, Hi
); break;
999 case ISD::CTLZ
: ExpandIntRes_CTLZ(N
, Lo
, Hi
); break;
1000 case ISD::CTPOP
: ExpandIntRes_CTPOP(N
, Lo
, Hi
); break;
1001 case ISD::CTTZ
: ExpandIntRes_CTTZ(N
, Lo
, Hi
); break;
1002 case ISD::FP_TO_SINT
: ExpandIntRes_FP_TO_SINT(N
, Lo
, Hi
); break;
1003 case ISD::FP_TO_UINT
: ExpandIntRes_FP_TO_UINT(N
, Lo
, Hi
); break;
1004 case ISD::LOAD
: ExpandIntRes_LOAD(cast
<LoadSDNode
>(N
), Lo
, Hi
); break;
1005 case ISD::MUL
: ExpandIntRes_MUL(N
, Lo
, Hi
); break;
1006 case ISD::SDIV
: ExpandIntRes_SDIV(N
, Lo
, Hi
); break;
1007 case ISD::SIGN_EXTEND
: ExpandIntRes_SIGN_EXTEND(N
, Lo
, Hi
); break;
1008 case ISD::SIGN_EXTEND_INREG
: ExpandIntRes_SIGN_EXTEND_INREG(N
, Lo
, Hi
); break;
1009 case ISD::SREM
: ExpandIntRes_SREM(N
, Lo
, Hi
); break;
1010 case ISD::TRUNCATE
: ExpandIntRes_TRUNCATE(N
, Lo
, Hi
); break;
1011 case ISD::UDIV
: ExpandIntRes_UDIV(N
, Lo
, Hi
); break;
1012 case ISD::UREM
: ExpandIntRes_UREM(N
, Lo
, Hi
); break;
1013 case ISD::ZERO_EXTEND
: ExpandIntRes_ZERO_EXTEND(N
, Lo
, Hi
); break;
1017 case ISD::XOR
: ExpandIntRes_Logical(N
, Lo
, Hi
); break;
1020 case ISD::SUB
: ExpandIntRes_ADDSUB(N
, Lo
, Hi
); break;
1023 case ISD::SUBC
: ExpandIntRes_ADDSUBC(N
, Lo
, Hi
); break;
1026 case ISD::SUBE
: ExpandIntRes_ADDSUBE(N
, Lo
, Hi
); break;
1030 case ISD::SRL
: ExpandIntRes_Shift(N
, Lo
, Hi
); break;
1033 // If Lo/Hi is null, the sub-method took care of registering results etc.
1035 SetExpandedInteger(SDValue(N
, ResNo
), Lo
, Hi
);
1038 /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1039 /// and the shift amount is a constant 'Amt'. Expand the operation.
1040 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode
*N
, unsigned Amt
,
1041 SDValue
&Lo
, SDValue
&Hi
) {
1042 DebugLoc dl
= N
->getDebugLoc();
1043 // Expand the incoming operand to be shifted, so that we have its parts
1045 GetExpandedInteger(N
->getOperand(0), InL
, InH
);
1047 MVT NVT
= InL
.getValueType();
1048 unsigned VTBits
= N
->getValueType(0).getSizeInBits();
1049 unsigned NVTBits
= NVT
.getSizeInBits();
1050 MVT ShTy
= N
->getOperand(1).getValueType();
1052 if (N
->getOpcode() == ISD::SHL
) {
1054 Lo
= Hi
= DAG
.getConstant(0, NVT
);
1055 } else if (Amt
> NVTBits
) {
1056 Lo
= DAG
.getConstant(0, NVT
);
1057 Hi
= DAG
.getNode(ISD::SHL
, dl
,
1058 NVT
, InL
, DAG
.getConstant(Amt
-NVTBits
,ShTy
));
1059 } else if (Amt
== NVTBits
) {
1060 Lo
= DAG
.getConstant(0, NVT
);
1062 } else if (Amt
== 1 &&
1063 TLI
.isOperationLegalOrCustom(ISD::ADDC
,
1064 TLI
.getTypeToExpandTo(NVT
))) {
1065 // Emit this X << 1 as X+X.
1066 SDVTList VTList
= DAG
.getVTList(NVT
, MVT::Flag
);
1067 SDValue LoOps
[2] = { InL
, InL
};
1068 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
1069 SDValue HiOps
[3] = { InH
, InH
, Lo
.getValue(1) };
1070 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
1072 Lo
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, DAG
.getConstant(Amt
, ShTy
));
1073 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1074 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
,
1075 DAG
.getConstant(Amt
, ShTy
)),
1076 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
,
1077 DAG
.getConstant(NVTBits
-Amt
, ShTy
)));
1082 if (N
->getOpcode() == ISD::SRL
) {
1084 Lo
= DAG
.getConstant(0, NVT
);
1085 Hi
= DAG
.getConstant(0, NVT
);
1086 } else if (Amt
> NVTBits
) {
1087 Lo
= DAG
.getNode(ISD::SRL
, dl
,
1088 NVT
, InH
, DAG
.getConstant(Amt
-NVTBits
,ShTy
));
1089 Hi
= DAG
.getConstant(0, NVT
);
1090 } else if (Amt
== NVTBits
) {
1092 Hi
= DAG
.getConstant(0, NVT
);
1094 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1095 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
,
1096 DAG
.getConstant(Amt
, ShTy
)),
1097 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
,
1098 DAG
.getConstant(NVTBits
-Amt
, ShTy
)));
1099 Hi
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, DAG
.getConstant(Amt
, ShTy
));
1104 assert(N
->getOpcode() == ISD::SRA
&& "Unknown shift!");
1106 Hi
= Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
1107 DAG
.getConstant(NVTBits
-1, ShTy
));
1108 } else if (Amt
> NVTBits
) {
1109 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
1110 DAG
.getConstant(Amt
-NVTBits
, ShTy
));
1111 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
1112 DAG
.getConstant(NVTBits
-1, ShTy
));
1113 } else if (Amt
== NVTBits
) {
1115 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
1116 DAG
.getConstant(NVTBits
-1, ShTy
));
1118 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1119 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
,
1120 DAG
.getConstant(Amt
, ShTy
)),
1121 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
,
1122 DAG
.getConstant(NVTBits
-Amt
, ShTy
)));
1123 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, DAG
.getConstant(Amt
, ShTy
));
1127 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1128 /// this shift based on knowledge of the high bit of the shift amount. If we
1129 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1131 bool DAGTypeLegalizer::
1132 ExpandShiftWithKnownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
1133 SDValue Amt
= N
->getOperand(1);
1134 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1135 MVT ShTy
= Amt
.getValueType();
1136 unsigned ShBits
= ShTy
.getSizeInBits();
1137 unsigned NVTBits
= NVT
.getSizeInBits();
1138 assert(isPowerOf2_32(NVTBits
) &&
1139 "Expanded integer type size not a power of two!");
1140 DebugLoc dl
= N
->getDebugLoc();
1142 APInt HighBitMask
= APInt::getHighBitsSet(ShBits
, ShBits
- Log2_32(NVTBits
));
1143 APInt KnownZero
, KnownOne
;
1144 DAG
.ComputeMaskedBits(N
->getOperand(1), HighBitMask
, KnownZero
, KnownOne
);
1146 // If we don't know anything about the high bits, exit.
1147 if (((KnownZero
|KnownOne
) & HighBitMask
) == 0)
1150 // Get the incoming operand to be shifted.
1152 GetExpandedInteger(N
->getOperand(0), InL
, InH
);
1154 // If we know that any of the high bits of the shift amount are one, then we
1155 // can do this as a couple of simple shifts.
1156 if (KnownOne
.intersects(HighBitMask
)) {
1157 // Mask out the high bit, which we know is set.
1158 Amt
= DAG
.getNode(ISD::AND
, dl
, ShTy
, Amt
,
1159 DAG
.getConstant(~HighBitMask
, ShTy
));
1161 switch (N
->getOpcode()) {
1162 default: assert(0 && "Unknown shift");
1164 Lo
= DAG
.getConstant(0, NVT
); // Low part is zero.
1165 Hi
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
); // High part from Lo part.
1168 Hi
= DAG
.getConstant(0, NVT
); // Hi part is zero.
1169 Lo
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
1172 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, // Sign extend high part.
1173 DAG
.getConstant(NVTBits
-1, ShTy
));
1174 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
1180 // FIXME: This code is broken for shifts with a zero amount!
1181 // If we know that all of the high bits of the shift amount are zero, then we
1182 // can do this as a couple of simple shifts.
1183 if ((KnownZero
& HighBitMask
) == HighBitMask
) {
1185 SDValue Amt2
= DAG
.getNode(ISD::SUB
, ShTy
,
1186 DAG
.getConstant(NVTBits
, ShTy
),
1189 switch (N
->getOpcode()) {
1190 default: assert(0 && "Unknown shift");
1191 case ISD::SHL
: Op1
= ISD::SHL
; Op2
= ISD::SRL
; break;
1193 case ISD::SRA
: Op1
= ISD::SRL
; Op2
= ISD::SHL
; break;
1196 Lo
= DAG
.getNode(N
->getOpcode(), NVT
, InL
, Amt
);
1197 Hi
= DAG
.getNode(ISD::OR
, NVT
,
1198 DAG
.getNode(Op1
, NVT
, InH
, Amt
),
1199 DAG
.getNode(Op2
, NVT
, InL
, Amt2
));
1207 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1209 bool DAGTypeLegalizer::
1210 ExpandShiftWithUnknownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
1211 SDValue Amt
= N
->getOperand(1);
1212 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1213 MVT ShTy
= Amt
.getValueType();
1214 unsigned NVTBits
= NVT
.getSizeInBits();
1215 assert(isPowerOf2_32(NVTBits
) &&
1216 "Expanded integer type size not a power of two!");
1217 DebugLoc dl
= N
->getDebugLoc();
1219 // Get the incoming operand to be shifted.
1221 GetExpandedInteger(N
->getOperand(0), InL
, InH
);
1223 SDValue NVBitsNode
= DAG
.getConstant(NVTBits
, ShTy
);
1224 SDValue Amt2
= DAG
.getNode(ISD::SUB
, dl
, ShTy
, NVBitsNode
, Amt
);
1225 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(ShTy
),
1226 Amt
, NVBitsNode
, ISD::SETULT
);
1228 SDValue Lo1
, Hi1
, Lo2
, Hi2
;
1229 switch (N
->getOpcode()) {
1230 default: assert(0 && "Unknown shift");
1233 Lo1
= DAG
.getConstant(0, NVT
); // Low part is zero.
1234 Hi1
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
); // High part from Lo part.
1237 Lo2
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
);
1238 Hi2
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1239 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt
),
1240 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt2
));
1242 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Lo1
, Lo2
);
1243 Hi
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Hi1
, Hi2
);
1247 Hi1
= DAG
.getConstant(0, NVT
); // Hi part is zero.
1248 Lo1
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
1251 Hi2
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
);
1252 Lo2
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1253 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
1254 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
1256 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Lo1
, Lo2
);
1257 Hi
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Hi1
, Hi2
);
1261 Hi1
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, // Sign extend high part.
1262 DAG
.getConstant(NVTBits
-1, ShTy
));
1263 Lo1
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
1266 Hi2
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
);
1267 Lo2
= DAG
.getNode(ISD::OR
, dl
, NVT
,
1268 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
1269 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
1271 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Lo1
, Lo2
);
1272 Hi
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
, Hi1
, Hi2
);
1279 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode
*N
,
1280 SDValue
&Lo
, SDValue
&Hi
) {
1281 DebugLoc dl
= N
->getDebugLoc();
1282 // Expand the subcomponents.
1283 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
1284 GetExpandedInteger(N
->getOperand(0), LHSL
, LHSH
);
1285 GetExpandedInteger(N
->getOperand(1), RHSL
, RHSH
);
1287 MVT NVT
= LHSL
.getValueType();
1288 SDValue LoOps
[2] = { LHSL
, RHSL
};
1289 SDValue HiOps
[3] = { LHSH
, RHSH
};
1291 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1292 // them. TODO: Teach operation legalization how to expand unsupported
1293 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
1294 // a carry of type MVT::Flag, but there doesn't seem to be any way to
1295 // generate a value of this type in the expanded code sequence.
1297 TLI
.isOperationLegalOrCustom(N
->getOpcode() == ISD::ADD
?
1298 ISD::ADDC
: ISD::SUBC
,
1299 TLI
.getTypeToExpandTo(NVT
));
1302 SDVTList VTList
= DAG
.getVTList(NVT
, MVT::Flag
);
1303 if (N
->getOpcode() == ISD::ADD
) {
1304 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
1305 HiOps
[2] = Lo
.getValue(1);
1306 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
1308 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
1309 HiOps
[2] = Lo
.getValue(1);
1310 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
1313 if (N
->getOpcode() == ISD::ADD
) {
1314 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, LoOps
, 2);
1315 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, HiOps
, 2);
1316 SDValue Cmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), Lo
, LoOps
[0],
1318 SDValue Carry1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp1
,
1319 DAG
.getConstant(1, NVT
),
1320 DAG
.getConstant(0, NVT
));
1321 SDValue Cmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), Lo
, LoOps
[1],
1323 SDValue Carry2
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp2
,
1324 DAG
.getConstant(1, NVT
), Carry1
);
1325 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, Carry2
);
1327 Lo
= DAG
.getNode(ISD::SUB
, dl
, NVT
, LoOps
, 2);
1328 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, HiOps
, 2);
1330 DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LoOps
[0].getValueType()),
1331 LoOps
[0], LoOps
[1], ISD::SETULT
);
1332 SDValue Borrow
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
,
1333 DAG
.getConstant(1, NVT
),
1334 DAG
.getConstant(0, NVT
));
1335 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Hi
, Borrow
);
1340 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode
*N
,
1341 SDValue
&Lo
, SDValue
&Hi
) {
1342 // Expand the subcomponents.
1343 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
1344 DebugLoc dl
= N
->getDebugLoc();
1345 GetExpandedInteger(N
->getOperand(0), LHSL
, LHSH
);
1346 GetExpandedInteger(N
->getOperand(1), RHSL
, RHSH
);
1347 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
1348 SDValue LoOps
[2] = { LHSL
, RHSL
};
1349 SDValue HiOps
[3] = { LHSH
, RHSH
};
1351 if (N
->getOpcode() == ISD::ADDC
) {
1352 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
1353 HiOps
[2] = Lo
.getValue(1);
1354 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
1356 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
1357 HiOps
[2] = Lo
.getValue(1);
1358 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
1361 // Legalized the flag result - switch anything that used the old flag to
1363 ReplaceValueWith(SDValue(N
, 1), Hi
.getValue(1));
1366 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode
*N
,
1367 SDValue
&Lo
, SDValue
&Hi
) {
1368 // Expand the subcomponents.
1369 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
1370 DebugLoc dl
= N
->getDebugLoc();
1371 GetExpandedInteger(N
->getOperand(0), LHSL
, LHSH
);
1372 GetExpandedInteger(N
->getOperand(1), RHSL
, RHSH
);
1373 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
1374 SDValue LoOps
[3] = { LHSL
, RHSL
, N
->getOperand(2) };
1375 SDValue HiOps
[3] = { LHSH
, RHSH
};
1377 Lo
= DAG
.getNode(N
->getOpcode(), dl
, VTList
, LoOps
, 3);
1378 HiOps
[2] = Lo
.getValue(1);
1379 Hi
= DAG
.getNode(N
->getOpcode(), dl
, VTList
, HiOps
, 3);
1381 // Legalized the flag result - switch anything that used the old flag to
1383 ReplaceValueWith(SDValue(N
, 1), Hi
.getValue(1));
1386 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode
*N
,
1387 SDValue
&Lo
, SDValue
&Hi
) {
1388 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1389 DebugLoc dl
= N
->getDebugLoc();
1390 SDValue Op
= N
->getOperand(0);
1391 if (Op
.getValueType().bitsLE(NVT
)) {
1392 // The low part is any extension of the input (which degenerates to a copy).
1393 Lo
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, NVT
, Op
);
1394 Hi
= DAG
.getUNDEF(NVT
); // The high part is undefined.
1396 // For example, extension of an i48 to an i64. The operand type necessarily
1397 // promotes to the result type, so will end up being expanded too.
1398 assert(getTypeAction(Op
.getValueType()) == PromoteInteger
&&
1399 "Only know how to promote this result!");
1400 SDValue Res
= GetPromotedInteger(Op
);
1401 assert(Res
.getValueType() == N
->getValueType(0) &&
1402 "Operand over promoted?");
1403 // Split the promoted operand. This will simplify when it is expanded.
1404 SplitInteger(Res
, Lo
, Hi
);
1408 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode
*N
,
1409 SDValue
&Lo
, SDValue
&Hi
) {
1410 DebugLoc dl
= N
->getDebugLoc();
1411 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1412 MVT NVT
= Lo
.getValueType();
1413 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
1414 unsigned NVTBits
= NVT
.getSizeInBits();
1415 unsigned EVTBits
= EVT
.getSizeInBits();
1417 if (NVTBits
< EVTBits
) {
1418 Hi
= DAG
.getNode(ISD::AssertSext
, dl
, NVT
, Hi
,
1419 DAG
.getValueType(MVT::getIntegerVT(EVTBits
- NVTBits
)));
1421 Lo
= DAG
.getNode(ISD::AssertSext
, dl
, NVT
, Lo
, DAG
.getValueType(EVT
));
1422 // The high part replicates the sign bit of Lo, make it explicit.
1423 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
1424 DAG
.getConstant(NVTBits
-1, TLI
.getPointerTy()));
1428 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode
*N
,
1429 SDValue
&Lo
, SDValue
&Hi
) {
1430 DebugLoc dl
= N
->getDebugLoc();
1431 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1432 MVT NVT
= Lo
.getValueType();
1433 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
1434 unsigned NVTBits
= NVT
.getSizeInBits();
1435 unsigned EVTBits
= EVT
.getSizeInBits();
1437 if (NVTBits
< EVTBits
) {
1438 Hi
= DAG
.getNode(ISD::AssertZext
, dl
, NVT
, Hi
,
1439 DAG
.getValueType(MVT::getIntegerVT(EVTBits
- NVTBits
)));
1441 Lo
= DAG
.getNode(ISD::AssertZext
, dl
, NVT
, Lo
, DAG
.getValueType(EVT
));
1442 // The high part must be zero, make it explicit.
1443 Hi
= DAG
.getConstant(0, NVT
);
1447 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode
*N
,
1448 SDValue
&Lo
, SDValue
&Hi
) {
1449 DebugLoc dl
= N
->getDebugLoc();
1450 GetExpandedInteger(N
->getOperand(0), Hi
, Lo
); // Note swapped operands.
1451 Lo
= DAG
.getNode(ISD::BSWAP
, dl
, Lo
.getValueType(), Lo
);
1452 Hi
= DAG
.getNode(ISD::BSWAP
, dl
, Hi
.getValueType(), Hi
);
1455 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode
*N
,
1456 SDValue
&Lo
, SDValue
&Hi
) {
1457 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1458 unsigned NBitWidth
= NVT
.getSizeInBits();
1459 const APInt
&Cst
= cast
<ConstantSDNode
>(N
)->getAPIntValue();
1460 Lo
= DAG
.getConstant(APInt(Cst
).trunc(NBitWidth
), NVT
);
1461 Hi
= DAG
.getConstant(Cst
.lshr(NBitWidth
).trunc(NBitWidth
), NVT
);
1464 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode
*N
,
1465 SDValue
&Lo
, SDValue
&Hi
) {
1466 DebugLoc dl
= N
->getDebugLoc();
1467 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1468 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1469 MVT NVT
= Lo
.getValueType();
1471 SDValue HiNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), Hi
,
1472 DAG
.getConstant(0, NVT
), ISD::SETNE
);
1474 SDValue LoLZ
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Lo
);
1475 SDValue HiLZ
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Hi
);
1477 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, HiNotZero
, HiLZ
,
1478 DAG
.getNode(ISD::ADD
, dl
, NVT
, LoLZ
,
1479 DAG
.getConstant(NVT
.getSizeInBits(), NVT
)));
1480 Hi
= DAG
.getConstant(0, NVT
);
1483 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode
*N
,
1484 SDValue
&Lo
, SDValue
&Hi
) {
1485 DebugLoc dl
= N
->getDebugLoc();
1486 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1487 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1488 MVT NVT
= Lo
.getValueType();
1489 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Lo
),
1490 DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Hi
));
1491 Hi
= DAG
.getConstant(0, NVT
);
1494 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode
*N
,
1495 SDValue
&Lo
, SDValue
&Hi
) {
1496 DebugLoc dl
= N
->getDebugLoc();
1497 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1498 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1499 MVT NVT
= Lo
.getValueType();
1501 SDValue LoNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), Lo
,
1502 DAG
.getConstant(0, NVT
), ISD::SETNE
);
1504 SDValue LoLZ
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Lo
);
1505 SDValue HiLZ
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Hi
);
1507 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, LoNotZero
, LoLZ
,
1508 DAG
.getNode(ISD::ADD
, dl
, NVT
, HiLZ
,
1509 DAG
.getConstant(NVT
.getSizeInBits(), NVT
)));
1510 Hi
= DAG
.getConstant(0, NVT
);
1513 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode
*N
, SDValue
&Lo
,
1515 DebugLoc dl
= N
->getDebugLoc();
1516 MVT VT
= N
->getValueType(0);
1517 SDValue Op
= N
->getOperand(0);
1518 RTLIB::Libcall LC
= RTLIB::getFPTOSINT(Op
.getValueType(), VT
);
1519 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected fp-to-sint conversion!");
1520 SplitInteger(MakeLibCall(LC
, VT
, &Op
, 1, true/*irrelevant*/, dl
), Lo
, Hi
);
1523 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode
*N
, SDValue
&Lo
,
1525 DebugLoc dl
= N
->getDebugLoc();
1526 MVT VT
= N
->getValueType(0);
1527 SDValue Op
= N
->getOperand(0);
1528 RTLIB::Libcall LC
= RTLIB::getFPTOUINT(Op
.getValueType(), VT
);
1529 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected fp-to-uint conversion!");
1530 SplitInteger(MakeLibCall(LC
, VT
, &Op
, 1, false/*irrelevant*/, dl
), Lo
, Hi
);
1533 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode
*N
,
1534 SDValue
&Lo
, SDValue
&Hi
) {
1535 if (ISD::isNormalLoad(N
)) {
1536 ExpandRes_NormalLoad(N
, Lo
, Hi
);
1540 assert(ISD::isUNINDEXEDLoad(N
) && "Indexed load during type legalization!");
1542 MVT VT
= N
->getValueType(0);
1543 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
1544 SDValue Ch
= N
->getChain();
1545 SDValue Ptr
= N
->getBasePtr();
1546 ISD::LoadExtType ExtType
= N
->getExtensionType();
1547 int SVOffset
= N
->getSrcValueOffset();
1548 unsigned Alignment
= N
->getAlignment();
1549 bool isVolatile
= N
->isVolatile();
1550 DebugLoc dl
= N
->getDebugLoc();
1552 assert(NVT
.isByteSized() && "Expanded type not byte sized!");
1554 if (N
->getMemoryVT().bitsLE(NVT
)) {
1555 MVT EVT
= N
->getMemoryVT();
1557 Lo
= DAG
.getExtLoad(ExtType
, dl
, NVT
, Ch
, Ptr
, N
->getSrcValue(), SVOffset
,
1558 EVT
, isVolatile
, Alignment
);
1560 // Remember the chain.
1561 Ch
= Lo
.getValue(1);
1563 if (ExtType
== ISD::SEXTLOAD
) {
1564 // The high part is obtained by SRA'ing all but one of the bits of the
1566 unsigned LoSize
= Lo
.getValueType().getSizeInBits();
1567 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
1568 DAG
.getConstant(LoSize
-1, TLI
.getPointerTy()));
1569 } else if (ExtType
== ISD::ZEXTLOAD
) {
1570 // The high part is just a zero.
1571 Hi
= DAG
.getConstant(0, NVT
);
1573 assert(ExtType
== ISD::EXTLOAD
&& "Unknown extload!");
1574 // The high part is undefined.
1575 Hi
= DAG
.getUNDEF(NVT
);
1577 } else if (TLI
.isLittleEndian()) {
1578 // Little-endian - low bits are at low addresses.
1579 Lo
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, N
->getSrcValue(), SVOffset
,
1580 isVolatile
, Alignment
);
1582 unsigned ExcessBits
=
1583 N
->getMemoryVT().getSizeInBits() - NVT
.getSizeInBits();
1584 MVT NEVT
= MVT::getIntegerVT(ExcessBits
);
1586 // Increment the pointer to the other half.
1587 unsigned IncrementSize
= NVT
.getSizeInBits()/8;
1588 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
1589 DAG
.getIntPtrConstant(IncrementSize
));
1590 Hi
= DAG
.getExtLoad(ExtType
, dl
, NVT
, Ch
, Ptr
, N
->getSrcValue(),
1591 SVOffset
+IncrementSize
, NEVT
,
1592 isVolatile
, MinAlign(Alignment
, IncrementSize
));
1594 // Build a factor node to remember that this load is independent of the
1596 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
1599 // Big-endian - high bits are at low addresses. Favor aligned loads at
1600 // the cost of some bit-fiddling.
1601 MVT EVT
= N
->getMemoryVT();
1602 unsigned EBytes
= EVT
.getStoreSizeInBits()/8;
1603 unsigned IncrementSize
= NVT
.getSizeInBits()/8;
1604 unsigned ExcessBits
= (EBytes
- IncrementSize
)*8;
1606 // Load both the high bits and maybe some of the low bits.
1607 Hi
= DAG
.getExtLoad(ExtType
, dl
, NVT
, Ch
, Ptr
, N
->getSrcValue(), SVOffset
,
1608 MVT::getIntegerVT(EVT
.getSizeInBits() - ExcessBits
),
1609 isVolatile
, Alignment
);
1611 // Increment the pointer to the other half.
1612 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
1613 DAG
.getIntPtrConstant(IncrementSize
));
1614 // Load the rest of the low bits.
1615 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, NVT
, Ch
, Ptr
, N
->getSrcValue(),
1616 SVOffset
+IncrementSize
,
1617 MVT::getIntegerVT(ExcessBits
),
1618 isVolatile
, MinAlign(Alignment
, IncrementSize
));
1620 // Build a factor node to remember that this load is independent of the
1622 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
1625 if (ExcessBits
< NVT
.getSizeInBits()) {
1626 // Transfer low bits from the bottom of Hi to the top of Lo.
1627 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
, Lo
,
1628 DAG
.getNode(ISD::SHL
, dl
, NVT
, Hi
,
1629 DAG
.getConstant(ExcessBits
,
1630 TLI
.getPointerTy())));
1631 // Move high bits to the right position in Hi.
1632 Hi
= DAG
.getNode(ExtType
== ISD::SEXTLOAD
? ISD::SRA
: ISD::SRL
, dl
,
1634 DAG
.getConstant(NVT
.getSizeInBits() - ExcessBits
,
1635 TLI
.getPointerTy()));
1639 // Legalized the chain result - switch anything that used the old chain to
1641 ReplaceValueWith(SDValue(N
, 1), Ch
);
1644 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode
*N
,
1645 SDValue
&Lo
, SDValue
&Hi
) {
1646 DebugLoc dl
= N
->getDebugLoc();
1647 SDValue LL
, LH
, RL
, RH
;
1648 GetExpandedInteger(N
->getOperand(0), LL
, LH
);
1649 GetExpandedInteger(N
->getOperand(1), RL
, RH
);
1650 Lo
= DAG
.getNode(N
->getOpcode(), dl
, LL
.getValueType(), LL
, RL
);
1651 Hi
= DAG
.getNode(N
->getOpcode(), dl
, LL
.getValueType(), LH
, RH
);
1654 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode
*N
,
1655 SDValue
&Lo
, SDValue
&Hi
) {
1656 MVT VT
= N
->getValueType(0);
1657 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
1658 DebugLoc dl
= N
->getDebugLoc();
1660 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, NVT
);
1661 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, NVT
);
1662 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, NVT
);
1663 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, NVT
);
1664 if (HasMULHU
|| HasMULHS
|| HasUMUL_LOHI
|| HasSMUL_LOHI
) {
1665 SDValue LL
, LH
, RL
, RH
;
1666 GetExpandedInteger(N
->getOperand(0), LL
, LH
);
1667 GetExpandedInteger(N
->getOperand(1), RL
, RH
);
1668 unsigned OuterBitSize
= VT
.getSizeInBits();
1669 unsigned InnerBitSize
= NVT
.getSizeInBits();
1670 unsigned LHSSB
= DAG
.ComputeNumSignBits(N
->getOperand(0));
1671 unsigned RHSSB
= DAG
.ComputeNumSignBits(N
->getOperand(1));
1673 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
1674 if (DAG
.MaskedValueIsZero(N
->getOperand(0), HighMask
) &&
1675 DAG
.MaskedValueIsZero(N
->getOperand(1), HighMask
)) {
1676 // The inputs are both zero-extended.
1678 // We can emit a umul_lohi.
1679 Lo
= DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
1680 Hi
= SDValue(Lo
.getNode(), 1);
1684 // We can emit a mulhu+mul.
1685 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
1686 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
1690 if (LHSSB
> InnerBitSize
&& RHSSB
> InnerBitSize
) {
1691 // The input values are both sign-extended.
1693 // We can emit a smul_lohi.
1694 Lo
= DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
1695 Hi
= SDValue(Lo
.getNode(), 1);
1699 // We can emit a mulhs+mul.
1700 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
1701 Hi
= DAG
.getNode(ISD::MULHS
, dl
, NVT
, LL
, RL
);
1706 // Lo,Hi = umul LHS, RHS.
1707 SDValue UMulLOHI
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
1708 DAG
.getVTList(NVT
, NVT
), LL
, RL
);
1710 Hi
= UMulLOHI
.getValue(1);
1711 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
1712 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
1713 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
1714 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
1718 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
1719 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
1720 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
1721 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
1722 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
1723 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
1728 // If nothing else, we can make a libcall.
1729 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1731 LC
= RTLIB::MUL_I16
;
1732 else if (VT
== MVT::i32
)
1733 LC
= RTLIB::MUL_I32
;
1734 else if (VT
== MVT::i64
)
1735 LC
= RTLIB::MUL_I64
;
1736 else if (VT
== MVT::i128
)
1737 LC
= RTLIB::MUL_I128
;
1738 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported MUL!");
1740 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1741 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, true/*irrelevant*/, dl
), Lo
, Hi
);
1744 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode
*N
,
1745 SDValue
&Lo
, SDValue
&Hi
) {
1746 MVT VT
= N
->getValueType(0);
1747 DebugLoc dl
= N
->getDebugLoc();
1749 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1751 LC
= RTLIB::SDIV_I32
;
1752 else if (VT
== MVT::i64
)
1753 LC
= RTLIB::SDIV_I64
;
1754 else if (VT
== MVT::i128
)
1755 LC
= RTLIB::SDIV_I128
;
1756 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported SDIV!");
1758 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1759 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, true, dl
), Lo
, Hi
);
1762 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode
*N
,
1763 SDValue
&Lo
, SDValue
&Hi
) {
1764 MVT VT
= N
->getValueType(0);
1765 DebugLoc dl
= N
->getDebugLoc();
1767 // If we can emit an efficient shift operation, do so now. Check to see if
1768 // the RHS is a constant.
1769 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1)))
1770 return ExpandShiftByConstant(N
, CN
->getZExtValue(), Lo
, Hi
);
1772 // If we can determine that the high bit of the shift is zero or one, even if
1773 // the low bits are variable, emit this shift in an optimized form.
1774 if (ExpandShiftWithKnownAmountBit(N
, Lo
, Hi
))
1777 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
1779 if (N
->getOpcode() == ISD::SHL
) {
1780 PartsOpc
= ISD::SHL_PARTS
;
1781 } else if (N
->getOpcode() == ISD::SRL
) {
1782 PartsOpc
= ISD::SRL_PARTS
;
1784 assert(N
->getOpcode() == ISD::SRA
&& "Unknown shift!");
1785 PartsOpc
= ISD::SRA_PARTS
;
1788 // Next check to see if the target supports this SHL_PARTS operation or if it
1789 // will custom expand it.
1790 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
1791 TargetLowering::LegalizeAction Action
= TLI
.getOperationAction(PartsOpc
, NVT
);
1792 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
1793 Action
== TargetLowering::Custom
) {
1794 // Expand the subcomponents.
1796 GetExpandedInteger(N
->getOperand(0), LHSL
, LHSH
);
1798 SDValue Ops
[] = { LHSL
, LHSH
, N
->getOperand(1) };
1799 MVT VT
= LHSL
.getValueType();
1800 Lo
= DAG
.getNode(PartsOpc
, dl
, DAG
.getVTList(VT
, VT
), Ops
, 3);
1801 Hi
= Lo
.getValue(1);
1805 // Otherwise, emit a libcall.
1806 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1808 if (N
->getOpcode() == ISD::SHL
) {
1809 isSigned
= false; /*sign irrelevant*/
1811 LC
= RTLIB::SHL_I16
;
1812 else if (VT
== MVT::i32
)
1813 LC
= RTLIB::SHL_I32
;
1814 else if (VT
== MVT::i64
)
1815 LC
= RTLIB::SHL_I64
;
1816 else if (VT
== MVT::i128
)
1817 LC
= RTLIB::SHL_I128
;
1818 } else if (N
->getOpcode() == ISD::SRL
) {
1821 LC
= RTLIB::SRL_I16
;
1822 else if (VT
== MVT::i32
)
1823 LC
= RTLIB::SRL_I32
;
1824 else if (VT
== MVT::i64
)
1825 LC
= RTLIB::SRL_I64
;
1826 else if (VT
== MVT::i128
)
1827 LC
= RTLIB::SRL_I128
;
1829 assert(N
->getOpcode() == ISD::SRA
&& "Unknown shift!");
1832 LC
= RTLIB::SRA_I16
;
1833 else if (VT
== MVT::i32
)
1834 LC
= RTLIB::SRA_I32
;
1835 else if (VT
== MVT::i64
)
1836 LC
= RTLIB::SRA_I64
;
1837 else if (VT
== MVT::i128
)
1838 LC
= RTLIB::SRA_I128
;
1841 if (LC
!= RTLIB::UNKNOWN_LIBCALL
&& TLI
.getLibcallName(LC
)) {
1842 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1843 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, isSigned
, dl
), Lo
, Hi
);
1847 if (!ExpandShiftWithUnknownAmountBit(N
, Lo
, Hi
))
1848 assert(0 && "Unsupported shift!");
1851 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode
*N
,
1852 SDValue
&Lo
, SDValue
&Hi
) {
1853 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1854 DebugLoc dl
= N
->getDebugLoc();
1855 SDValue Op
= N
->getOperand(0);
1856 if (Op
.getValueType().bitsLE(NVT
)) {
1857 // The low part is sign extension of the input (degenerates to a copy).
1858 Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, NVT
, N
->getOperand(0));
1859 // The high part is obtained by SRA'ing all but one of the bits of low part.
1860 unsigned LoSize
= NVT
.getSizeInBits();
1861 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
1862 DAG
.getConstant(LoSize
-1, TLI
.getPointerTy()));
1864 // For example, extension of an i48 to an i64. The operand type necessarily
1865 // promotes to the result type, so will end up being expanded too.
1866 assert(getTypeAction(Op
.getValueType()) == PromoteInteger
&&
1867 "Only know how to promote this result!");
1868 SDValue Res
= GetPromotedInteger(Op
);
1869 assert(Res
.getValueType() == N
->getValueType(0) &&
1870 "Operand over promoted?");
1871 // Split the promoted operand. This will simplify when it is expanded.
1872 SplitInteger(Res
, Lo
, Hi
);
1873 unsigned ExcessBits
=
1874 Op
.getValueType().getSizeInBits() - NVT
.getSizeInBits();
1875 Hi
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Hi
.getValueType(), Hi
,
1876 DAG
.getValueType(MVT::getIntegerVT(ExcessBits
)));
1880 void DAGTypeLegalizer::
1881 ExpandIntRes_SIGN_EXTEND_INREG(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
) {
1882 DebugLoc dl
= N
->getDebugLoc();
1883 GetExpandedInteger(N
->getOperand(0), Lo
, Hi
);
1884 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
1886 if (EVT
.bitsLE(Lo
.getValueType())) {
1887 // sext_inreg the low part if needed.
1888 Lo
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Lo
.getValueType(), Lo
,
1891 // The high part gets the sign extension from the lo-part. This handles
1892 // things like sextinreg V:i64 from i8.
1893 Hi
= DAG
.getNode(ISD::SRA
, dl
, Hi
.getValueType(), Lo
,
1894 DAG
.getConstant(Hi
.getValueType().getSizeInBits()-1,
1895 TLI
.getPointerTy()));
1897 // For example, extension of an i48 to an i64. Leave the low part alone,
1898 // sext_inreg the high part.
1899 unsigned ExcessBits
=
1900 EVT
.getSizeInBits() - Lo
.getValueType().getSizeInBits();
1901 Hi
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Hi
.getValueType(), Hi
,
1902 DAG
.getValueType(MVT::getIntegerVT(ExcessBits
)));
1906 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode
*N
,
1907 SDValue
&Lo
, SDValue
&Hi
) {
1908 MVT VT
= N
->getValueType(0);
1909 DebugLoc dl
= N
->getDebugLoc();
1911 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1913 LC
= RTLIB::SREM_I32
;
1914 else if (VT
== MVT::i64
)
1915 LC
= RTLIB::SREM_I64
;
1916 else if (VT
== MVT::i128
)
1917 LC
= RTLIB::SREM_I128
;
1918 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported SREM!");
1920 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1921 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, true, dl
), Lo
, Hi
);
1924 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode
*N
,
1925 SDValue
&Lo
, SDValue
&Hi
) {
1926 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1927 DebugLoc dl
= N
->getDebugLoc();
1928 Lo
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, N
->getOperand(0));
1929 Hi
= DAG
.getNode(ISD::SRL
, dl
,
1930 N
->getOperand(0).getValueType(), N
->getOperand(0),
1931 DAG
.getConstant(NVT
.getSizeInBits(), TLI
.getPointerTy()));
1932 Hi
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, Hi
);
1935 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode
*N
,
1936 SDValue
&Lo
, SDValue
&Hi
) {
1937 MVT VT
= N
->getValueType(0);
1938 DebugLoc dl
= N
->getDebugLoc();
1940 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1942 LC
= RTLIB::UDIV_I32
;
1943 else if (VT
== MVT::i64
)
1944 LC
= RTLIB::UDIV_I64
;
1945 else if (VT
== MVT::i128
)
1946 LC
= RTLIB::UDIV_I128
;
1947 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported UDIV!");
1949 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1950 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, false, dl
), Lo
, Hi
);
1953 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode
*N
,
1954 SDValue
&Lo
, SDValue
&Hi
) {
1955 MVT VT
= N
->getValueType(0);
1956 DebugLoc dl
= N
->getDebugLoc();
1958 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1960 LC
= RTLIB::UREM_I32
;
1961 else if (VT
== MVT::i64
)
1962 LC
= RTLIB::UREM_I64
;
1963 else if (VT
== MVT::i128
)
1964 LC
= RTLIB::UREM_I128
;
1965 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported UREM!");
1967 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1968 SplitInteger(MakeLibCall(LC
, VT
, Ops
, 2, false, dl
), Lo
, Hi
);
1971 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode
*N
,
1972 SDValue
&Lo
, SDValue
&Hi
) {
1973 MVT NVT
= TLI
.getTypeToTransformTo(N
->getValueType(0));
1974 DebugLoc dl
= N
->getDebugLoc();
1975 SDValue Op
= N
->getOperand(0);
1976 if (Op
.getValueType().bitsLE(NVT
)) {
1977 // The low part is zero extension of the input (degenerates to a copy).
1978 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, N
->getOperand(0));
1979 Hi
= DAG
.getConstant(0, NVT
); // The high part is just a zero.
1981 // For example, extension of an i48 to an i64. The operand type necessarily
1982 // promotes to the result type, so will end up being expanded too.
1983 assert(getTypeAction(Op
.getValueType()) == PromoteInteger
&&
1984 "Only know how to promote this result!");
1985 SDValue Res
= GetPromotedInteger(Op
);
1986 assert(Res
.getValueType() == N
->getValueType(0) &&
1987 "Operand over promoted?");
1988 // Split the promoted operand. This will simplify when it is expanded.
1989 SplitInteger(Res
, Lo
, Hi
);
1990 unsigned ExcessBits
=
1991 Op
.getValueType().getSizeInBits() - NVT
.getSizeInBits();
1992 Hi
= DAG
.getZeroExtendInReg(Hi
, dl
, MVT::getIntegerVT(ExcessBits
));
1997 //===----------------------------------------------------------------------===//
1998 // Integer Operand Expansion
1999 //===----------------------------------------------------------------------===//
2001 /// ExpandIntegerOperand - This method is called when the specified operand of
2002 /// the specified node is found to need expansion. At this point, all of the
2003 /// result types of the node are known to be legal, but other operands of the
2004 /// node may need promotion or expansion as well as the specified one.
2005 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode
*N
, unsigned OpNo
) {
2006 DEBUG(cerr
<< "Expand integer operand: "; N
->dump(&DAG
); cerr
<< "\n");
2007 SDValue Res
= SDValue();
2009 if (CustomLowerResults(N
, N
->getOperand(OpNo
).getValueType(), false))
2012 switch (N
->getOpcode()) {
2015 cerr
<< "ExpandIntegerOperand Op #" << OpNo
<< ": ";
2016 N
->dump(&DAG
); cerr
<< "\n";
2018 assert(0 && "Do not know how to expand this operator's operand!");
2021 case ISD::BIT_CONVERT
: Res
= ExpandOp_BIT_CONVERT(N
); break;
2022 case ISD::BR_CC
: Res
= ExpandIntOp_BR_CC(N
); break;
2023 case ISD::BUILD_VECTOR
: Res
= ExpandOp_BUILD_VECTOR(N
); break;
2024 case ISD::EXTRACT_ELEMENT
: Res
= ExpandOp_EXTRACT_ELEMENT(N
); break;
2025 case ISD::INSERT_VECTOR_ELT
: Res
= ExpandOp_INSERT_VECTOR_ELT(N
); break;
2026 case ISD::SCALAR_TO_VECTOR
: Res
= ExpandOp_SCALAR_TO_VECTOR(N
); break;
2027 case ISD::SELECT_CC
: Res
= ExpandIntOp_SELECT_CC(N
); break;
2028 case ISD::SETCC
: Res
= ExpandIntOp_SETCC(N
); break;
2029 case ISD::SINT_TO_FP
: Res
= ExpandIntOp_SINT_TO_FP(N
); break;
2030 case ISD::STORE
: Res
= ExpandIntOp_STORE(cast
<StoreSDNode
>(N
), OpNo
); break;
2031 case ISD::TRUNCATE
: Res
= ExpandIntOp_TRUNCATE(N
); break;
2032 case ISD::UINT_TO_FP
: Res
= ExpandIntOp_UINT_TO_FP(N
); break;
2038 case ISD::ROTR
: Res
= ExpandIntOp_Shift(N
); break;
2041 // If the result is null, the sub-method took care of registering results etc.
2042 if (!Res
.getNode()) return false;
2044 // If the result is N, the sub-method updated N in place. Tell the legalizer
2046 if (Res
.getNode() == N
)
2049 assert(Res
.getValueType() == N
->getValueType(0) && N
->getNumValues() == 1 &&
2050 "Invalid operand expansion");
2052 ReplaceValueWith(SDValue(N
, 0), Res
);
2056 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
2057 /// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2058 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue
&NewLHS
,
2060 ISD::CondCode
&CCCode
,
2062 SDValue LHSLo
, LHSHi
, RHSLo
, RHSHi
;
2063 GetExpandedInteger(NewLHS
, LHSLo
, LHSHi
);
2064 GetExpandedInteger(NewRHS
, RHSLo
, RHSHi
);
2066 MVT VT
= NewLHS
.getValueType();
2068 if (CCCode
== ISD::SETEQ
|| CCCode
== ISD::SETNE
) {
2069 if (RHSLo
== RHSHi
) {
2070 if (ConstantSDNode
*RHSCST
= dyn_cast
<ConstantSDNode
>(RHSLo
)) {
2071 if (RHSCST
->isAllOnesValue()) {
2072 // Equality comparison to -1.
2073 NewLHS
= DAG
.getNode(ISD::AND
, dl
,
2074 LHSLo
.getValueType(), LHSLo
, LHSHi
);
2081 NewLHS
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSLo
, RHSLo
);
2082 NewRHS
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSHi
, RHSHi
);
2083 NewLHS
= DAG
.getNode(ISD::OR
, dl
, NewLHS
.getValueType(), NewLHS
, NewRHS
);
2084 NewRHS
= DAG
.getConstant(0, NewLHS
.getValueType());
2088 // If this is a comparison of the sign bit, just look at the top part.
2090 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(NewRHS
))
2091 if ((CCCode
== ISD::SETLT
&& CST
->isNullValue()) || // X < 0
2092 (CCCode
== ISD::SETGT
&& CST
->isAllOnesValue())) { // X > -1
2098 // FIXME: This generated code sucks.
2099 ISD::CondCode LowCC
;
2101 default: assert(0 && "Unknown integer setcc!");
2103 case ISD::SETULT
: LowCC
= ISD::SETULT
; break;
2105 case ISD::SETUGT
: LowCC
= ISD::SETUGT
; break;
2107 case ISD::SETULE
: LowCC
= ISD::SETULE
; break;
2109 case ISD::SETUGE
: LowCC
= ISD::SETUGE
; break;
2112 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
2113 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
2114 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2116 // NOTE: on targets without efficient SELECT of bools, we can always use
2117 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2118 TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG
, false, true, NULL
);
2120 Tmp1
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSLo
.getValueType()),
2121 LHSLo
, RHSLo
, LowCC
, false, DagCombineInfo
, dl
);
2122 if (!Tmp1
.getNode())
2123 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSLo
.getValueType()),
2124 LHSLo
, RHSLo
, LowCC
);
2125 Tmp2
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
2126 LHSHi
, RHSHi
, CCCode
, false, DagCombineInfo
, dl
);
2127 if (!Tmp2
.getNode())
2128 Tmp2
= DAG
.getNode(ISD::SETCC
, dl
,
2129 TLI
.getSetCCResultType(LHSHi
.getValueType()),
2130 LHSHi
, RHSHi
, DAG
.getCondCode(CCCode
));
2132 ConstantSDNode
*Tmp1C
= dyn_cast
<ConstantSDNode
>(Tmp1
.getNode());
2133 ConstantSDNode
*Tmp2C
= dyn_cast
<ConstantSDNode
>(Tmp2
.getNode());
2134 if ((Tmp1C
&& Tmp1C
->isNullValue()) ||
2135 (Tmp2C
&& Tmp2C
->isNullValue() &&
2136 (CCCode
== ISD::SETLE
|| CCCode
== ISD::SETGE
||
2137 CCCode
== ISD::SETUGE
|| CCCode
== ISD::SETULE
)) ||
2138 (Tmp2C
&& Tmp2C
->getAPIntValue() == 1 &&
2139 (CCCode
== ISD::SETLT
|| CCCode
== ISD::SETGT
||
2140 CCCode
== ISD::SETUGT
|| CCCode
== ISD::SETULT
))) {
2141 // low part is known false, returns high part.
2142 // For LE / GE, if high part is known false, ignore the low part.
2143 // For LT / GT, if high part is known true, ignore the low part.
2149 NewLHS
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
2150 LHSHi
, RHSHi
, ISD::SETEQ
, false,
2151 DagCombineInfo
, dl
);
2152 if (!NewLHS
.getNode())
2153 NewLHS
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
2154 LHSHi
, RHSHi
, ISD::SETEQ
);
2155 NewLHS
= DAG
.getNode(ISD::SELECT
, dl
, Tmp1
.getValueType(),
2156 NewLHS
, Tmp1
, Tmp2
);
2160 SDValue
DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode
*N
) {
2161 SDValue NewLHS
= N
->getOperand(2), NewRHS
= N
->getOperand(3);
2162 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
2163 IntegerExpandSetCCOperands(NewLHS
, NewRHS
, CCCode
, N
->getDebugLoc());
2165 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2166 // against zero to select between true and false values.
2167 if (NewRHS
.getNode() == 0) {
2168 NewRHS
= DAG
.getConstant(0, NewLHS
.getValueType());
2169 CCCode
= ISD::SETNE
;
2172 // Update N to have the operands specified.
2173 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0),
2174 DAG
.getCondCode(CCCode
), NewLHS
, NewRHS
,
2178 SDValue
DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode
*N
) {
2179 SDValue NewLHS
= N
->getOperand(0), NewRHS
= N
->getOperand(1);
2180 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(N
->getOperand(4))->get();
2181 IntegerExpandSetCCOperands(NewLHS
, NewRHS
, CCCode
, N
->getDebugLoc());
2183 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2184 // against zero to select between true and false values.
2185 if (NewRHS
.getNode() == 0) {
2186 NewRHS
= DAG
.getConstant(0, NewLHS
.getValueType());
2187 CCCode
= ISD::SETNE
;
2190 // Update N to have the operands specified.
2191 return DAG
.UpdateNodeOperands(SDValue(N
, 0), NewLHS
, NewRHS
,
2192 N
->getOperand(2), N
->getOperand(3),
2193 DAG
.getCondCode(CCCode
));
2196 SDValue
DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode
*N
) {
2197 SDValue NewLHS
= N
->getOperand(0), NewRHS
= N
->getOperand(1);
2198 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
2199 IntegerExpandSetCCOperands(NewLHS
, NewRHS
, CCCode
, N
->getDebugLoc());
2201 // If ExpandSetCCOperands returned a scalar, use it.
2202 if (NewRHS
.getNode() == 0) {
2203 assert(NewLHS
.getValueType() == N
->getValueType(0) &&
2204 "Unexpected setcc expansion!");
2208 // Otherwise, update N to have the operands specified.
2209 return DAG
.UpdateNodeOperands(SDValue(N
, 0), NewLHS
, NewRHS
,
2210 DAG
.getCondCode(CCCode
));
2213 SDValue
DAGTypeLegalizer::ExpandIntOp_Shift(SDNode
*N
) {
2214 // The value being shifted is legal, but the shift amount is too big.
2215 // It follows that either the result of the shift is undefined, or the
2216 // upper half of the shift amount is zero. Just use the lower half.
2218 GetExpandedInteger(N
->getOperand(1), Lo
, Hi
);
2219 return DAG
.UpdateNodeOperands(SDValue(N
, 0), N
->getOperand(0), Lo
);
2222 SDValue
DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode
*N
) {
2223 SDValue Op
= N
->getOperand(0);
2224 MVT DstVT
= N
->getValueType(0);
2225 RTLIB::Libcall LC
= RTLIB::getSINTTOFP(Op
.getValueType(), DstVT
);
2226 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
2227 "Don't know how to expand this SINT_TO_FP!");
2228 return MakeLibCall(LC
, DstVT
, &Op
, 1, true, N
->getDebugLoc());
2231 SDValue
DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
) {
2232 if (ISD::isNormalStore(N
))
2233 return ExpandOp_NormalStore(N
, OpNo
);
2235 assert(ISD::isUNINDEXEDStore(N
) && "Indexed store during type legalization!");
2236 assert(OpNo
== 1 && "Can only expand the stored value so far");
2238 MVT VT
= N
->getOperand(1).getValueType();
2239 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
2240 SDValue Ch
= N
->getChain();
2241 SDValue Ptr
= N
->getBasePtr();
2242 int SVOffset
= N
->getSrcValueOffset();
2243 unsigned Alignment
= N
->getAlignment();
2244 bool isVolatile
= N
->isVolatile();
2245 DebugLoc dl
= N
->getDebugLoc();
2248 assert(NVT
.isByteSized() && "Expanded type not byte sized!");
2250 if (N
->getMemoryVT().bitsLE(NVT
)) {
2251 GetExpandedInteger(N
->getValue(), Lo
, Hi
);
2252 return DAG
.getTruncStore(Ch
, dl
, Lo
, Ptr
, N
->getSrcValue(), SVOffset
,
2253 N
->getMemoryVT(), isVolatile
, Alignment
);
2254 } else if (TLI
.isLittleEndian()) {
2255 // Little-endian - low bits are at low addresses.
2256 GetExpandedInteger(N
->getValue(), Lo
, Hi
);
2258 Lo
= DAG
.getStore(Ch
, dl
, Lo
, Ptr
, N
->getSrcValue(), SVOffset
,
2259 isVolatile
, Alignment
);
2261 unsigned ExcessBits
=
2262 N
->getMemoryVT().getSizeInBits() - NVT
.getSizeInBits();
2263 MVT NEVT
= MVT::getIntegerVT(ExcessBits
);
2265 // Increment the pointer to the other half.
2266 unsigned IncrementSize
= NVT
.getSizeInBits()/8;
2267 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
2268 DAG
.getIntPtrConstant(IncrementSize
));
2269 Hi
= DAG
.getTruncStore(Ch
, dl
, Hi
, Ptr
, N
->getSrcValue(),
2270 SVOffset
+IncrementSize
, NEVT
,
2271 isVolatile
, MinAlign(Alignment
, IncrementSize
));
2272 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2274 // Big-endian - high bits are at low addresses. Favor aligned stores at
2275 // the cost of some bit-fiddling.
2276 GetExpandedInteger(N
->getValue(), Lo
, Hi
);
2278 MVT EVT
= N
->getMemoryVT();
2279 unsigned EBytes
= EVT
.getStoreSizeInBits()/8;
2280 unsigned IncrementSize
= NVT
.getSizeInBits()/8;
2281 unsigned ExcessBits
= (EBytes
- IncrementSize
)*8;
2282 MVT HiVT
= MVT::getIntegerVT(EVT
.getSizeInBits() - ExcessBits
);
2284 if (ExcessBits
< NVT
.getSizeInBits()) {
2285 // Transfer high bits from the top of Lo to the bottom of Hi.
2286 Hi
= DAG
.getNode(ISD::SHL
, dl
, NVT
, Hi
,
2287 DAG
.getConstant(NVT
.getSizeInBits() - ExcessBits
,
2288 TLI
.getPointerTy()));
2289 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
, Hi
,
2290 DAG
.getNode(ISD::SRL
, dl
, NVT
, Lo
,
2291 DAG
.getConstant(ExcessBits
,
2292 TLI
.getPointerTy())));
2295 // Store both the high bits and maybe some of the low bits.
2296 Hi
= DAG
.getTruncStore(Ch
, dl
, Hi
, Ptr
, N
->getSrcValue(),
2297 SVOffset
, HiVT
, isVolatile
, Alignment
);
2299 // Increment the pointer to the other half.
2300 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
2301 DAG
.getIntPtrConstant(IncrementSize
));
2302 // Store the lowest ExcessBits bits in the second half.
2303 Lo
= DAG
.getTruncStore(Ch
, dl
, Lo
, Ptr
, N
->getSrcValue(),
2304 SVOffset
+IncrementSize
,
2305 MVT::getIntegerVT(ExcessBits
),
2306 isVolatile
, MinAlign(Alignment
, IncrementSize
));
2307 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2311 SDValue
DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode
*N
) {
2313 GetExpandedInteger(N
->getOperand(0), InL
, InH
);
2314 // Just truncate the low part of the source.
2315 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), N
->getValueType(0), InL
);
2318 SDValue
DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode
*N
) {
2319 SDValue Op
= N
->getOperand(0);
2320 MVT SrcVT
= Op
.getValueType();
2321 MVT DstVT
= N
->getValueType(0);
2322 DebugLoc dl
= N
->getDebugLoc();
2324 if (TLI
.getOperationAction(ISD::SINT_TO_FP
, SrcVT
) == TargetLowering::Custom
){
2325 // Do a signed conversion then adjust the result.
2326 SDValue SignedConv
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Op
);
2327 SignedConv
= TLI
.LowerOperation(SignedConv
, DAG
);
2329 // The result of the signed conversion needs adjusting if the 'sign bit' of
2330 // the incoming integer was set. To handle this, we dynamically test to see
2331 // if it is set, and, if so, add a fudge factor.
2333 const uint64_t F32TwoE32
= 0x4F800000ULL
;
2334 const uint64_t F32TwoE64
= 0x5F800000ULL
;
2335 const uint64_t F32TwoE128
= 0x7F800000ULL
;
2338 if (SrcVT
== MVT::i32
)
2339 FF
= APInt(32, F32TwoE32
);
2340 else if (SrcVT
== MVT::i64
)
2341 FF
= APInt(32, F32TwoE64
);
2342 else if (SrcVT
== MVT::i128
)
2343 FF
= APInt(32, F32TwoE128
);
2345 assert(false && "Unsupported UINT_TO_FP!");
2347 // Check whether the sign bit is set.
2349 GetExpandedInteger(Op
, Lo
, Hi
);
2350 SDValue SignSet
= DAG
.getSetCC(dl
,
2351 TLI
.getSetCCResultType(Hi
.getValueType()),
2352 Hi
, DAG
.getConstant(0, Hi
.getValueType()),
2355 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2356 SDValue FudgePtr
= DAG
.getConstantPool(ConstantInt::get(FF
.zext(64)),
2357 TLI
.getPointerTy());
2359 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2360 SDValue Zero
= DAG
.getIntPtrConstant(0);
2361 SDValue Four
= DAG
.getIntPtrConstant(4);
2362 if (TLI
.isBigEndian()) std::swap(Zero
, Four
);
2363 SDValue Offset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(), SignSet
,
2365 unsigned Alignment
= cast
<ConstantPoolSDNode
>(FudgePtr
)->getAlignment();
2366 FudgePtr
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), FudgePtr
, Offset
);
2367 Alignment
= std::min(Alignment
, 4u);
2369 // Load the value out, extending it from f32 to the destination float type.
2370 // FIXME: Avoid the extend by constructing the right constant pool?
2371 SDValue Fudge
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DstVT
, DAG
.getEntryNode(),
2372 FudgePtr
, NULL
, 0, MVT::f32
,
2374 return DAG
.getNode(ISD::FADD
, dl
, DstVT
, SignedConv
, Fudge
);
2377 // Otherwise, use a libcall.
2378 RTLIB::Libcall LC
= RTLIB::getUINTTOFP(SrcVT
, DstVT
);
2379 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
2380 "Don't know how to expand this UINT_TO_FP!");
2381 return MakeLibCall(LC
, DstVT
, &Op
, 1, true, dl
);