1 //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuild.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/Module.h"
29 #include "llvm/CodeGen/FastISel.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/GCMetadata.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/PseudoSourceValue.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/DwarfWriter.h"
41 #include "llvm/Analysis/DebugInfo.h"
42 #include "llvm/Target/TargetRegisterInfo.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Target/TargetFrameInfo.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetIntrinsicInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
58 /// LimitFloatPrecision - Generate low-precision inline sequences for
59 /// some float libcalls (6, 8 or 12 bits).
60 static unsigned LimitFloatPrecision
;
62 static cl::opt
<unsigned, true>
63 LimitFPPrecision("limit-float-precision",
64 cl::desc("Generate low-precision inline sequences "
65 "for some float libcalls"),
66 cl::location(LimitFloatPrecision
),
69 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
70 /// of insertvalue or extractvalue indices that identify a member, return
71 /// the linearized index of the start of the member.
73 static unsigned ComputeLinearIndex(const TargetLowering
&TLI
, const Type
*Ty
,
74 const unsigned *Indices
,
75 const unsigned *IndicesEnd
,
76 unsigned CurIndex
= 0) {
77 // Base case: We're done.
78 if (Indices
&& Indices
== IndicesEnd
)
81 // Given a struct type, recursively traverse the elements.
82 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
83 for (StructType::element_iterator EB
= STy
->element_begin(),
85 EE
= STy
->element_end();
87 if (Indices
&& *Indices
== unsigned(EI
- EB
))
88 return ComputeLinearIndex(TLI
, *EI
, Indices
+1, IndicesEnd
, CurIndex
);
89 CurIndex
= ComputeLinearIndex(TLI
, *EI
, 0, 0, CurIndex
);
93 // Given an array type, recursively traverse the elements.
94 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
95 const Type
*EltTy
= ATy
->getElementType();
96 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
97 if (Indices
&& *Indices
== i
)
98 return ComputeLinearIndex(TLI
, EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
99 CurIndex
= ComputeLinearIndex(TLI
, EltTy
, 0, 0, CurIndex
);
103 // We haven't found the type we're looking for, so keep searching.
107 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
108 /// MVTs that represent all the individual underlying
109 /// non-aggregate types that comprise it.
111 /// If Offsets is non-null, it points to a vector to be filled in
112 /// with the in-memory offsets of each of the individual values.
114 static void ComputeValueVTs(const TargetLowering
&TLI
, const Type
*Ty
,
115 SmallVectorImpl
<MVT
> &ValueVTs
,
116 SmallVectorImpl
<uint64_t> *Offsets
= 0,
117 uint64_t StartingOffset
= 0) {
118 // Given a struct type, recursively traverse the elements.
119 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
120 const StructLayout
*SL
= TLI
.getTargetData()->getStructLayout(STy
);
121 for (StructType::element_iterator EB
= STy
->element_begin(),
123 EE
= STy
->element_end();
125 ComputeValueVTs(TLI
, *EI
, ValueVTs
, Offsets
,
126 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
129 // Given an array type, recursively traverse the elements.
130 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
131 const Type
*EltTy
= ATy
->getElementType();
132 uint64_t EltSize
= TLI
.getTargetData()->getTypePaddedSize(EltTy
);
133 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
134 ComputeValueVTs(TLI
, EltTy
, ValueVTs
, Offsets
,
135 StartingOffset
+ i
* EltSize
);
138 // Interpret void as zero return values.
139 if (Ty
== Type::VoidTy
)
141 // Base case: we can get an MVT for this LLVM IR type.
142 ValueVTs
.push_back(TLI
.getValueType(Ty
));
144 Offsets
->push_back(StartingOffset
);
148 /// RegsForValue - This struct represents the registers (physical or virtual)
149 /// that a particular set of values is assigned, and the type information about
150 /// the value. The most common situation is to represent one value at a time,
151 /// but struct or array values are handled element-wise as multiple values.
152 /// The splitting of aggregates is performed recursively, so that we never
153 /// have aggregate-typed registers. The values at this point do not necessarily
154 /// have legal types, so each value may require one or more registers of some
157 struct VISIBILITY_HIDDEN RegsForValue
{
158 /// TLI - The TargetLowering object.
160 const TargetLowering
*TLI
;
162 /// ValueVTs - The value types of the values, which may not be legal, and
163 /// may need be promoted or synthesized from one or more registers.
165 SmallVector
<MVT
, 4> ValueVTs
;
167 /// RegVTs - The value types of the registers. This is the same size as
168 /// ValueVTs and it records, for each value, what the type of the assigned
169 /// register or registers are. (Individual values are never synthesized
170 /// from more than one type of register.)
172 /// With virtual registers, the contents of RegVTs is redundant with TLI's
173 /// getRegisterType member function, however when with physical registers
174 /// it is necessary to have a separate record of the types.
176 SmallVector
<MVT
, 4> RegVTs
;
178 /// Regs - This list holds the registers assigned to the values.
179 /// Each legal or promoted value requires one register, and each
180 /// expanded value requires multiple registers.
182 SmallVector
<unsigned, 4> Regs
;
184 RegsForValue() : TLI(0) {}
186 RegsForValue(const TargetLowering
&tli
,
187 const SmallVector
<unsigned, 4> ®s
,
188 MVT regvt
, MVT valuevt
)
189 : TLI(&tli
), ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
) {}
190 RegsForValue(const TargetLowering
&tli
,
191 const SmallVector
<unsigned, 4> ®s
,
192 const SmallVector
<MVT
, 4> ®vts
,
193 const SmallVector
<MVT
, 4> &valuevts
)
194 : TLI(&tli
), ValueVTs(valuevts
), RegVTs(regvts
), Regs(regs
) {}
195 RegsForValue(const TargetLowering
&tli
,
196 unsigned Reg
, const Type
*Ty
) : TLI(&tli
) {
197 ComputeValueVTs(tli
, Ty
, ValueVTs
);
199 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
200 MVT ValueVT
= ValueVTs
[Value
];
201 unsigned NumRegs
= TLI
->getNumRegisters(ValueVT
);
202 MVT RegisterVT
= TLI
->getRegisterType(ValueVT
);
203 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
204 Regs
.push_back(Reg
+ i
);
205 RegVTs
.push_back(RegisterVT
);
210 /// append - Add the specified values to this one.
211 void append(const RegsForValue
&RHS
) {
213 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
214 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
215 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
219 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
220 /// this value and returns the result as a ValueVTs value. This uses
221 /// Chain/Flag as the input and updates them for the output Chain/Flag.
222 /// If the Flag pointer is NULL, no flag is used.
223 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
224 SDValue
&Chain
, SDValue
*Flag
) const;
226 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
227 /// specified value into the registers specified by this object. This uses
228 /// Chain/Flag as the input and updates them for the output Chain/Flag.
229 /// If the Flag pointer is NULL, no flag is used.
230 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
231 SDValue
&Chain
, SDValue
*Flag
) const;
233 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
234 /// operand list. This adds the code marker, matching input operand index
235 /// (if applicable), and includes the number of values added into it.
236 void AddInlineAsmOperands(unsigned Code
,
237 bool HasMatching
, unsigned MatchingIdx
,
238 SelectionDAG
&DAG
, std::vector
<SDValue
> &Ops
) const;
242 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
243 /// PHI nodes or outside of the basic block that defines it, or used by a
244 /// switch or atomic instruction, which may expand to multiple basic blocks.
245 static bool isUsedOutsideOfDefiningBlock(Instruction
*I
) {
246 if (isa
<PHINode
>(I
)) return true;
247 BasicBlock
*BB
= I
->getParent();
248 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
; ++UI
)
249 if (cast
<Instruction
>(*UI
)->getParent() != BB
|| isa
<PHINode
>(*UI
))
254 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
255 /// entry block, return true. This includes arguments used by switches, since
256 /// the switch may expand into multiple basic blocks.
257 static bool isOnlyUsedInEntryBlock(Argument
*A
, bool EnableFastISel
) {
258 // With FastISel active, we may be splitting blocks, so force creation
259 // of virtual registers for all non-dead arguments.
260 // Don't force virtual registers for byval arguments though, because
261 // fast-isel can't handle those in all cases.
262 if (EnableFastISel
&& !A
->hasByValAttr())
263 return A
->use_empty();
265 BasicBlock
*Entry
= A
->getParent()->begin();
266 for (Value::use_iterator UI
= A
->use_begin(), E
= A
->use_end(); UI
!= E
; ++UI
)
267 if (cast
<Instruction
>(*UI
)->getParent() != Entry
|| isa
<SwitchInst
>(*UI
))
268 return false; // Use not in entry block.
272 FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering
&tli
)
276 void FunctionLoweringInfo::set(Function
&fn
, MachineFunction
&mf
,
278 bool EnableFastISel
) {
281 RegInfo
= &MF
->getRegInfo();
283 // Create a vreg for each argument register that is not dead and is used
284 // outside of the entry block for the function.
285 for (Function::arg_iterator AI
= Fn
->arg_begin(), E
= Fn
->arg_end();
287 if (!isOnlyUsedInEntryBlock(AI
, EnableFastISel
))
288 InitializeRegForValue(AI
);
290 // Initialize the mapping of values to registers. This is only set up for
291 // instruction values that are used outside of the block that defines
293 Function::iterator BB
= Fn
->begin(), EB
= Fn
->end();
294 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
295 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
296 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(AI
->getArraySize())) {
297 const Type
*Ty
= AI
->getAllocatedType();
298 uint64_t TySize
= TLI
.getTargetData()->getTypePaddedSize(Ty
);
300 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
303 TySize
*= CUI
->getZExtValue(); // Get total allocated size.
304 if (TySize
== 0) TySize
= 1; // Don't create zero-sized stack objects.
305 StaticAllocaMap
[AI
] =
306 MF
->getFrameInfo()->CreateStackObject(TySize
, Align
);
309 for (; BB
!= EB
; ++BB
)
310 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
311 if (!I
->use_empty() && isUsedOutsideOfDefiningBlock(I
))
312 if (!isa
<AllocaInst
>(I
) ||
313 !StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
314 InitializeRegForValue(I
);
316 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
317 // also creates the initial PHI MachineInstrs, though none of the input
318 // operands are populated.
319 for (BB
= Fn
->begin(), EB
= Fn
->end(); BB
!= EB
; ++BB
) {
320 MachineBasicBlock
*MBB
= mf
.CreateMachineBasicBlock(BB
);
324 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
328 for (BasicBlock::iterator
329 I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
330 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
331 if (Function
*F
= CI
->getCalledFunction()) {
332 switch (F
->getIntrinsicID()) {
334 case Intrinsic::dbg_stoppoint
: {
335 DwarfWriter
*DW
= DAG
.getDwarfWriter();
336 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
338 if (DW
&& DW
->ValidDebugInfo(SPI
->getContext(), false)) {
339 DICompileUnit
CU(cast
<GlobalVariable
>(SPI
->getContext()));
341 unsigned SrcFile
= DW
->getOrCreateSourceID(CU
.getDirectory(Dir
),
343 unsigned idx
= MF
->getOrCreateDebugLocID(SrcFile
,
346 DL
= DebugLoc::get(idx
);
351 case Intrinsic::dbg_func_start
: {
352 DwarfWriter
*DW
= DAG
.getDwarfWriter();
354 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
355 Value
*SP
= FSI
->getSubprogram();
357 if (DW
->ValidDebugInfo(SP
, false)) {
358 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
359 DICompileUnit
CU(Subprogram
.getCompileUnit());
361 unsigned SrcFile
= DW
->getOrCreateSourceID(CU
.getDirectory(Dir
),
363 unsigned Line
= Subprogram
.getLineNumber();
364 DL
= DebugLoc::get(MF
->getOrCreateDebugLocID(SrcFile
, Line
, 0));
374 PN
= dyn_cast
<PHINode
>(I
);
375 if (!PN
|| PN
->use_empty()) continue;
377 unsigned PHIReg
= ValueMap
[PN
];
378 assert(PHIReg
&& "PHI node does not have an assigned virtual register!");
380 SmallVector
<MVT
, 4> ValueVTs
;
381 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
382 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
383 MVT VT
= ValueVTs
[vti
];
384 unsigned NumRegisters
= TLI
.getNumRegisters(VT
);
385 const TargetInstrInfo
*TII
= MF
->getTarget().getInstrInfo();
386 for (unsigned i
= 0; i
!= NumRegisters
; ++i
)
387 BuildMI(MBB
, DL
, TII
->get(TargetInstrInfo::PHI
), PHIReg
+ i
);
388 PHIReg
+= NumRegisters
;
394 unsigned FunctionLoweringInfo::MakeReg(MVT VT
) {
395 return RegInfo
->createVirtualRegister(TLI
.getRegClassFor(VT
));
398 /// CreateRegForValue - Allocate the appropriate number of virtual registers of
399 /// the correctly promoted or expanded types. Assign these registers
400 /// consecutive vreg numbers and return the first assigned number.
402 /// In the case that the given value has struct or array type, this function
403 /// will assign registers for each member or element.
405 unsigned FunctionLoweringInfo::CreateRegForValue(const Value
*V
) {
406 SmallVector
<MVT
, 4> ValueVTs
;
407 ComputeValueVTs(TLI
, V
->getType(), ValueVTs
);
409 unsigned FirstReg
= 0;
410 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
411 MVT ValueVT
= ValueVTs
[Value
];
412 MVT RegisterVT
= TLI
.getRegisterType(ValueVT
);
414 unsigned NumRegs
= TLI
.getNumRegisters(ValueVT
);
415 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
416 unsigned R
= MakeReg(RegisterVT
);
417 if (!FirstReg
) FirstReg
= R
;
423 /// getCopyFromParts - Create a value that contains the specified legal parts
424 /// combined into the value they represent. If the parts combine to a type
425 /// larger then ValueVT then AssertOp can be used to specify whether the extra
426 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
427 /// (ISD::AssertSext).
428 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, DebugLoc dl
,
429 const SDValue
*Parts
,
430 unsigned NumParts
, MVT PartVT
, MVT ValueVT
,
431 ISD::NodeType AssertOp
= ISD::DELETED_NODE
) {
432 assert(NumParts
> 0 && "No parts to assemble!");
433 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
434 SDValue Val
= Parts
[0];
437 // Assemble the value from multiple parts.
438 if (!ValueVT
.isVector()) {
439 unsigned PartBits
= PartVT
.getSizeInBits();
440 unsigned ValueBits
= ValueVT
.getSizeInBits();
442 // Assemble the power of 2 part.
443 unsigned RoundParts
= NumParts
& (NumParts
- 1) ?
444 1 << Log2_32(NumParts
) : NumParts
;
445 unsigned RoundBits
= PartBits
* RoundParts
;
446 MVT RoundVT
= RoundBits
== ValueBits
?
447 ValueVT
: MVT::getIntegerVT(RoundBits
);
450 MVT HalfVT
= ValueVT
.isInteger() ?
451 MVT::getIntegerVT(RoundBits
/2) :
452 MVT::getFloatingPointVT(RoundBits
/2);
454 if (RoundParts
> 2) {
455 Lo
= getCopyFromParts(DAG
, dl
, Parts
, RoundParts
/2, PartVT
, HalfVT
);
456 Hi
= getCopyFromParts(DAG
, dl
, Parts
+RoundParts
/2, RoundParts
/2,
459 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[0]);
460 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[1]);
462 if (TLI
.isBigEndian())
464 Val
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, RoundVT
, Lo
, Hi
);
466 if (RoundParts
< NumParts
) {
467 // Assemble the trailing non-power-of-2 part.
468 unsigned OddParts
= NumParts
- RoundParts
;
469 MVT OddVT
= MVT::getIntegerVT(OddParts
* PartBits
);
470 Hi
= getCopyFromParts(DAG
, dl
,
471 Parts
+RoundParts
, OddParts
, PartVT
, OddVT
);
473 // Combine the round and odd parts.
475 if (TLI
.isBigEndian())
477 MVT TotalVT
= MVT::getIntegerVT(NumParts
* PartBits
);
478 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, TotalVT
, Hi
);
479 Hi
= DAG
.getNode(ISD::SHL
, dl
, TotalVT
, Hi
,
480 DAG
.getConstant(Lo
.getValueType().getSizeInBits(),
481 TLI
.getPointerTy()));
482 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TotalVT
, Lo
);
483 Val
= DAG
.getNode(ISD::OR
, dl
, TotalVT
, Lo
, Hi
);
486 // Handle a multi-element vector.
487 MVT IntermediateVT
, RegisterVT
;
488 unsigned NumIntermediates
;
490 TLI
.getVectorTypeBreakdown(ValueVT
, IntermediateVT
, NumIntermediates
,
492 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
493 NumParts
= NumRegs
; // Silence a compiler warning.
494 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
495 assert(RegisterVT
== Parts
[0].getValueType() &&
496 "Part type doesn't match part!");
498 // Assemble the parts into intermediate operands.
499 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
500 if (NumIntermediates
== NumParts
) {
501 // If the register was not expanded, truncate or copy the value,
503 for (unsigned i
= 0; i
!= NumParts
; ++i
)
504 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
], 1,
505 PartVT
, IntermediateVT
);
506 } else if (NumParts
> 0) {
507 // If the intermediate type was expanded, build the intermediate operands
509 assert(NumParts
% NumIntermediates
== 0 &&
510 "Must expand into a divisible number of parts!");
511 unsigned Factor
= NumParts
/ NumIntermediates
;
512 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
513 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
* Factor
], Factor
,
514 PartVT
, IntermediateVT
);
517 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
519 Val
= DAG
.getNode(IntermediateVT
.isVector() ?
520 ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR
, dl
,
521 ValueVT
, &Ops
[0], NumIntermediates
);
525 // There is now one part, held in Val. Correct it to match ValueVT.
526 PartVT
= Val
.getValueType();
528 if (PartVT
== ValueVT
)
531 if (PartVT
.isVector()) {
532 assert(ValueVT
.isVector() && "Unknown vector conversion!");
533 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
536 if (ValueVT
.isVector()) {
537 assert(ValueVT
.getVectorElementType() == PartVT
&&
538 ValueVT
.getVectorNumElements() == 1 &&
539 "Only trivial scalar-to-vector conversions should get here!");
540 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ValueVT
, Val
);
543 if (PartVT
.isInteger() &&
544 ValueVT
.isInteger()) {
545 if (ValueVT
.bitsLT(PartVT
)) {
546 // For a truncate, see if we have any information to
547 // indicate whether the truncated bits will always be
548 // zero or sign-extension.
549 if (AssertOp
!= ISD::DELETED_NODE
)
550 Val
= DAG
.getNode(AssertOp
, dl
, PartVT
, Val
,
551 DAG
.getValueType(ValueVT
));
552 return DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
554 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, ValueVT
, Val
);
558 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
559 if (ValueVT
.bitsLT(Val
.getValueType()))
560 // FP_ROUND's are always exact here.
561 return DAG
.getNode(ISD::FP_ROUND
, dl
, ValueVT
, Val
,
562 DAG
.getIntPtrConstant(1));
563 return DAG
.getNode(ISD::FP_EXTEND
, dl
, ValueVT
, Val
);
566 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits())
567 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
569 assert(0 && "Unknown mismatch!");
573 /// getCopyToParts - Create a series of nodes that contain the specified value
574 /// split into legal parts. If the parts contain more bits than Val, then, for
575 /// integers, ExtendKind can be used to specify how to generate the extra bits.
576 static void getCopyToParts(SelectionDAG
&DAG
, DebugLoc dl
, SDValue Val
,
577 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
578 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
579 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
580 MVT PtrVT
= TLI
.getPointerTy();
581 MVT ValueVT
= Val
.getValueType();
582 unsigned PartBits
= PartVT
.getSizeInBits();
583 unsigned OrigNumParts
= NumParts
;
584 assert(TLI
.isTypeLegal(PartVT
) && "Copying to an illegal type!");
589 if (!ValueVT
.isVector()) {
590 if (PartVT
== ValueVT
) {
591 assert(NumParts
== 1 && "No-op copy with multiple parts!");
596 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
597 // If the parts cover more bits than the value has, promote the value.
598 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
599 assert(NumParts
== 1 && "Do not know what to promote to!");
600 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, PartVT
, Val
);
601 } else if (PartVT
.isInteger() && ValueVT
.isInteger()) {
602 ValueVT
= MVT::getIntegerVT(NumParts
* PartBits
);
603 Val
= DAG
.getNode(ExtendKind
, dl
, ValueVT
, Val
);
605 assert(0 && "Unknown mismatch!");
607 } else if (PartBits
== ValueVT
.getSizeInBits()) {
608 // Different types of the same size.
609 assert(NumParts
== 1 && PartVT
!= ValueVT
);
610 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
611 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
612 // If the parts cover less bits than value has, truncate the value.
613 if (PartVT
.isInteger() && ValueVT
.isInteger()) {
614 ValueVT
= MVT::getIntegerVT(NumParts
* PartBits
);
615 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
617 assert(0 && "Unknown mismatch!");
621 // The value may have changed - recompute ValueVT.
622 ValueVT
= Val
.getValueType();
623 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
624 "Failed to tile the value with PartVT!");
627 assert(PartVT
== ValueVT
&& "Type conversion failed!");
632 // Expand the value into multiple parts.
633 if (NumParts
& (NumParts
- 1)) {
634 // The number of parts is not a power of 2. Split off and copy the tail.
635 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
636 "Do not know what to expand to!");
637 unsigned RoundParts
= 1 << Log2_32(NumParts
);
638 unsigned RoundBits
= RoundParts
* PartBits
;
639 unsigned OddParts
= NumParts
- RoundParts
;
640 SDValue OddVal
= DAG
.getNode(ISD::SRL
, dl
, ValueVT
, Val
,
641 DAG
.getConstant(RoundBits
,
642 TLI
.getPointerTy()));
643 getCopyToParts(DAG
, dl
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
);
644 if (TLI
.isBigEndian())
645 // The odd parts were reversed by getCopyToParts - unreverse them.
646 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
647 NumParts
= RoundParts
;
648 ValueVT
= MVT::getIntegerVT(NumParts
* PartBits
);
649 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
652 // The number of parts is a power of 2. Repeatedly bisect the value using
654 Parts
[0] = DAG
.getNode(ISD::BIT_CONVERT
, dl
,
655 MVT::getIntegerVT(ValueVT
.getSizeInBits()),
657 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
658 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
659 unsigned ThisBits
= StepSize
* PartBits
/ 2;
660 MVT ThisVT
= MVT::getIntegerVT (ThisBits
);
661 SDValue
&Part0
= Parts
[i
];
662 SDValue
&Part1
= Parts
[i
+StepSize
/2];
664 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
666 DAG
.getConstant(1, PtrVT
));
667 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
669 DAG
.getConstant(0, PtrVT
));
671 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
672 Part0
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
674 Part1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
680 if (TLI
.isBigEndian())
681 std::reverse(Parts
, Parts
+ OrigNumParts
);
688 if (PartVT
!= ValueVT
) {
689 if (PartVT
.isVector()) {
690 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
692 assert(ValueVT
.getVectorElementType() == PartVT
&&
693 ValueVT
.getVectorNumElements() == 1 &&
694 "Only trivial vector-to-scalar conversions should get here!");
695 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
697 DAG
.getConstant(0, PtrVT
));
705 // Handle a multi-element vector.
706 MVT IntermediateVT
, RegisterVT
;
707 unsigned NumIntermediates
;
708 unsigned NumRegs
= TLI
709 .getVectorTypeBreakdown(ValueVT
, IntermediateVT
, NumIntermediates
,
711 unsigned NumElements
= ValueVT
.getVectorNumElements();
713 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
714 NumParts
= NumRegs
; // Silence a compiler warning.
715 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
717 // Split the vector into intermediate operands.
718 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
719 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
720 if (IntermediateVT
.isVector())
721 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
,
723 DAG
.getConstant(i
* (NumElements
/ NumIntermediates
),
726 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
728 DAG
.getConstant(i
, PtrVT
));
730 // Split the intermediate operands into legal parts.
731 if (NumParts
== NumIntermediates
) {
732 // If the register was not expanded, promote or copy the value,
734 for (unsigned i
= 0; i
!= NumParts
; ++i
)
735 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
], 1, PartVT
);
736 } else if (NumParts
> 0) {
737 // If the intermediate type was expanded, split each the value into
739 assert(NumParts
% NumIntermediates
== 0 &&
740 "Must expand into a divisible number of parts!");
741 unsigned Factor
= NumParts
/ NumIntermediates
;
742 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
743 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
);
748 void SelectionDAGLowering::init(GCFunctionInfo
*gfi
, AliasAnalysis
&aa
) {
751 TD
= DAG
.getTarget().getTargetData();
754 /// clear - Clear out the curret SelectionDAG and the associated
755 /// state and prepare this SelectionDAGLowering object to be used
756 /// for a new block. This doesn't clear out information about
757 /// additional blocks that are needed to complete switch lowering
758 /// or PHI node updating; that information is cleared out as it is
760 void SelectionDAGLowering::clear() {
762 PendingLoads
.clear();
763 PendingExports
.clear();
765 CurDebugLoc
= DebugLoc::getUnknownLoc();
768 /// getRoot - Return the current virtual root of the Selection DAG,
769 /// flushing any PendingLoad items. This must be done before emitting
770 /// a store or any other node that may need to be ordered after any
771 /// prior load instructions.
773 SDValue
SelectionDAGLowering::getRoot() {
774 if (PendingLoads
.empty())
775 return DAG
.getRoot();
777 if (PendingLoads
.size() == 1) {
778 SDValue Root
= PendingLoads
[0];
780 PendingLoads
.clear();
784 // Otherwise, we have to make a token factor node.
785 SDValue Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
786 &PendingLoads
[0], PendingLoads
.size());
787 PendingLoads
.clear();
792 /// getControlRoot - Similar to getRoot, but instead of flushing all the
793 /// PendingLoad items, flush all the PendingExports items. It is necessary
794 /// to do this before emitting a terminator instruction.
796 SDValue
SelectionDAGLowering::getControlRoot() {
797 SDValue Root
= DAG
.getRoot();
799 if (PendingExports
.empty())
802 // Turn all of the CopyToReg chains into one factored node.
803 if (Root
.getOpcode() != ISD::EntryToken
) {
804 unsigned i
= 0, e
= PendingExports
.size();
805 for (; i
!= e
; ++i
) {
806 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
807 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
808 break; // Don't add the root if we already indirectly depend on it.
812 PendingExports
.push_back(Root
);
815 Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
817 PendingExports
.size());
818 PendingExports
.clear();
823 void SelectionDAGLowering::visit(Instruction
&I
) {
824 visit(I
.getOpcode(), I
);
827 void SelectionDAGLowering::visit(unsigned Opcode
, User
&I
) {
828 // Note: this doesn't use InstVisitor, because it has to work with
829 // ConstantExpr's in addition to instructions.
831 default: assert(0 && "Unknown instruction type encountered!");
833 // Build the switch statement using the Instruction.def file.
834 #define HANDLE_INST(NUM, OPCODE, CLASS) \
835 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
836 #include "llvm/Instruction.def"
840 void SelectionDAGLowering::visitAdd(User
&I
) {
841 if (I
.getType()->isFPOrFPVector())
842 visitBinary(I
, ISD::FADD
);
844 visitBinary(I
, ISD::ADD
);
847 void SelectionDAGLowering::visitMul(User
&I
) {
848 if (I
.getType()->isFPOrFPVector())
849 visitBinary(I
, ISD::FMUL
);
851 visitBinary(I
, ISD::MUL
);
854 SDValue
SelectionDAGLowering::getValue(const Value
*V
) {
855 SDValue
&N
= NodeMap
[V
];
856 if (N
.getNode()) return N
;
858 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(V
))) {
859 MVT VT
= TLI
.getValueType(V
->getType(), true);
861 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
862 return N
= DAG
.getConstant(*CI
, VT
);
864 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
865 return N
= DAG
.getGlobalAddress(GV
, VT
);
867 if (isa
<ConstantPointerNull
>(C
))
868 return N
= DAG
.getConstant(0, TLI
.getPointerTy());
870 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
871 return N
= DAG
.getConstantFP(*CFP
, VT
);
873 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
874 return N
= DAG
.getUNDEF(VT
);
876 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
877 visit(CE
->getOpcode(), *CE
);
878 SDValue N1
= NodeMap
[V
];
879 assert(N1
.getNode() && "visit didn't populate the ValueMap!");
883 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
884 SmallVector
<SDValue
, 4> Constants
;
885 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
887 SDNode
*Val
= getValue(*OI
).getNode();
888 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
889 Constants
.push_back(SDValue(Val
, i
));
891 return DAG
.getMergeValues(&Constants
[0], Constants
.size(),
895 if (isa
<StructType
>(C
->getType()) || isa
<ArrayType
>(C
->getType())) {
896 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
897 "Unknown struct or array constant!");
899 SmallVector
<MVT
, 4> ValueVTs
;
900 ComputeValueVTs(TLI
, C
->getType(), ValueVTs
);
901 unsigned NumElts
= ValueVTs
.size();
903 return SDValue(); // empty struct
904 SmallVector
<SDValue
, 4> Constants(NumElts
);
905 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
906 MVT EltVT
= ValueVTs
[i
];
907 if (isa
<UndefValue
>(C
))
908 Constants
[i
] = DAG
.getUNDEF(EltVT
);
909 else if (EltVT
.isFloatingPoint())
910 Constants
[i
] = DAG
.getConstantFP(0, EltVT
);
912 Constants
[i
] = DAG
.getConstant(0, EltVT
);
914 return DAG
.getMergeValues(&Constants
[0], NumElts
, getCurDebugLoc());
917 const VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
918 unsigned NumElements
= VecTy
->getNumElements();
920 // Now that we know the number and type of the elements, get that number of
921 // elements into the Ops array based on what kind of constant it is.
922 SmallVector
<SDValue
, 16> Ops
;
923 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
)) {
924 for (unsigned i
= 0; i
!= NumElements
; ++i
)
925 Ops
.push_back(getValue(CP
->getOperand(i
)));
927 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
928 MVT EltVT
= TLI
.getValueType(VecTy
->getElementType());
931 if (EltVT
.isFloatingPoint())
932 Op
= DAG
.getConstantFP(0, EltVT
);
934 Op
= DAG
.getConstant(0, EltVT
);
935 Ops
.assign(NumElements
, Op
);
938 // Create a BUILD_VECTOR node.
939 return NodeMap
[V
] = DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
940 VT
, &Ops
[0], Ops
.size());
943 // If this is a static alloca, generate it as the frameindex instead of
945 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
946 DenseMap
<const AllocaInst
*, int>::iterator SI
=
947 FuncInfo
.StaticAllocaMap
.find(AI
);
948 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
949 return DAG
.getFrameIndex(SI
->second
, TLI
.getPointerTy());
952 unsigned InReg
= FuncInfo
.ValueMap
[V
];
953 assert(InReg
&& "Value not in map!");
955 RegsForValue
RFV(TLI
, InReg
, V
->getType());
956 SDValue Chain
= DAG
.getEntryNode();
957 return RFV
.getCopyFromRegs(DAG
, getCurDebugLoc(), Chain
, NULL
);
961 void SelectionDAGLowering::visitRet(ReturnInst
&I
) {
962 if (I
.getNumOperands() == 0) {
963 DAG
.setRoot(DAG
.getNode(ISD::RET
, getCurDebugLoc(),
964 MVT::Other
, getControlRoot()));
968 SmallVector
<SDValue
, 8> NewValues
;
969 NewValues
.push_back(getControlRoot());
970 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
971 SmallVector
<MVT
, 4> ValueVTs
;
972 ComputeValueVTs(TLI
, I
.getOperand(i
)->getType(), ValueVTs
);
973 unsigned NumValues
= ValueVTs
.size();
974 if (NumValues
== 0) continue;
976 SDValue RetOp
= getValue(I
.getOperand(i
));
977 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
978 MVT VT
= ValueVTs
[j
];
980 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
982 const Function
*F
= I
.getParent()->getParent();
983 if (F
->paramHasAttr(0, Attribute::SExt
))
984 ExtendKind
= ISD::SIGN_EXTEND
;
985 else if (F
->paramHasAttr(0, Attribute::ZExt
))
986 ExtendKind
= ISD::ZERO_EXTEND
;
988 // FIXME: C calling convention requires the return type to be promoted to
989 // at least 32-bit. But this is not necessary for non-C calling
990 // conventions. The frontend should mark functions whose return values
991 // require promoting with signext or zeroext attributes.
992 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
993 MVT MinVT
= TLI
.getRegisterType(MVT::i32
);
994 if (VT
.bitsLT(MinVT
))
998 unsigned NumParts
= TLI
.getNumRegisters(VT
);
999 MVT PartVT
= TLI
.getRegisterType(VT
);
1000 SmallVector
<SDValue
, 4> Parts(NumParts
);
1001 getCopyToParts(DAG
, getCurDebugLoc(),
1002 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1003 &Parts
[0], NumParts
, PartVT
, ExtendKind
);
1005 // 'inreg' on function refers to return value
1006 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1007 if (F
->paramHasAttr(0, Attribute::InReg
))
1009 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1010 NewValues
.push_back(Parts
[i
]);
1011 NewValues
.push_back(DAG
.getArgFlags(Flags
));
1015 DAG
.setRoot(DAG
.getNode(ISD::RET
, getCurDebugLoc(), MVT::Other
,
1016 &NewValues
[0], NewValues
.size()));
1019 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1020 /// created for it, emit nodes to copy the value into the virtual
1022 void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value
*V
) {
1023 if (!V
->use_empty()) {
1024 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1025 if (VMI
!= FuncInfo
.ValueMap
.end())
1026 CopyValueToVirtualRegister(V
, VMI
->second
);
1030 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1031 /// the current basic block, add it to ValueMap now so that we'll get a
1033 void SelectionDAGLowering::ExportFromCurrentBlock(Value
*V
) {
1034 // No need to export constants.
1035 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1037 // Already exported?
1038 if (FuncInfo
.isExportedInst(V
)) return;
1040 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1041 CopyValueToVirtualRegister(V
, Reg
);
1044 bool SelectionDAGLowering::isExportableFromCurrentBlock(Value
*V
,
1045 const BasicBlock
*FromBB
) {
1046 // The operands of the setcc have to be in this block. We don't know
1047 // how to export them from some other block.
1048 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1049 // Can export from current BB.
1050 if (VI
->getParent() == FromBB
)
1053 // Is already exported, noop.
1054 return FuncInfo
.isExportedInst(V
);
1057 // If this is an argument, we can export it if the BB is the entry block or
1058 // if it is already exported.
1059 if (isa
<Argument
>(V
)) {
1060 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1063 // Otherwise, can only export this if it is already exported.
1064 return FuncInfo
.isExportedInst(V
);
1067 // Otherwise, constants can always be exported.
1071 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
1072 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1073 return I
->getParent() == BB
;
1077 /// getFCmpCondCode - Return the ISD condition code corresponding to
1078 /// the given LLVM IR floating-point condition code. This includes
1079 /// consideration of global floating-point math flags.
1081 static ISD::CondCode
getFCmpCondCode(FCmpInst::Predicate Pred
) {
1082 ISD::CondCode FPC
, FOC
;
1084 case FCmpInst::FCMP_FALSE
: FOC
= FPC
= ISD::SETFALSE
; break;
1085 case FCmpInst::FCMP_OEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETOEQ
; break;
1086 case FCmpInst::FCMP_OGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETOGT
; break;
1087 case FCmpInst::FCMP_OGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETOGE
; break;
1088 case FCmpInst::FCMP_OLT
: FOC
= ISD::SETLT
; FPC
= ISD::SETOLT
; break;
1089 case FCmpInst::FCMP_OLE
: FOC
= ISD::SETLE
; FPC
= ISD::SETOLE
; break;
1090 case FCmpInst::FCMP_ONE
: FOC
= ISD::SETNE
; FPC
= ISD::SETONE
; break;
1091 case FCmpInst::FCMP_ORD
: FOC
= FPC
= ISD::SETO
; break;
1092 case FCmpInst::FCMP_UNO
: FOC
= FPC
= ISD::SETUO
; break;
1093 case FCmpInst::FCMP_UEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETUEQ
; break;
1094 case FCmpInst::FCMP_UGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETUGT
; break;
1095 case FCmpInst::FCMP_UGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETUGE
; break;
1096 case FCmpInst::FCMP_ULT
: FOC
= ISD::SETLT
; FPC
= ISD::SETULT
; break;
1097 case FCmpInst::FCMP_ULE
: FOC
= ISD::SETLE
; FPC
= ISD::SETULE
; break;
1098 case FCmpInst::FCMP_UNE
: FOC
= ISD::SETNE
; FPC
= ISD::SETUNE
; break;
1099 case FCmpInst::FCMP_TRUE
: FOC
= FPC
= ISD::SETTRUE
; break;
1101 assert(0 && "Invalid FCmp predicate opcode!");
1102 FOC
= FPC
= ISD::SETFALSE
;
1105 if (FiniteOnlyFPMath())
1111 /// getICmpCondCode - Return the ISD condition code corresponding to
1112 /// the given LLVM IR integer condition code.
1114 static ISD::CondCode
getICmpCondCode(ICmpInst::Predicate Pred
) {
1116 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
1117 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
1118 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
1119 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
1120 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
1121 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
1122 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
1123 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
1124 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
1125 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
1127 assert(0 && "Invalid ICmp predicate opcode!");
1132 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1133 /// This function emits a branch and is used at the leaves of an OR or an
1134 /// AND operator tree.
1137 SelectionDAGLowering::EmitBranchForMergedCondition(Value
*Cond
,
1138 MachineBasicBlock
*TBB
,
1139 MachineBasicBlock
*FBB
,
1140 MachineBasicBlock
*CurBB
) {
1141 const BasicBlock
*BB
= CurBB
->getBasicBlock();
1143 // If the leaf of the tree is a comparison, merge the condition into
1145 if (CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
1146 // The operands of the cmp have to be in this block. We don't know
1147 // how to export them from some other block. If this is the first block
1148 // of the sequence, no exporting is needed.
1149 if (CurBB
== CurMBB
||
1150 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
1151 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
1152 ISD::CondCode Condition
;
1153 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
1154 Condition
= getICmpCondCode(IC
->getPredicate());
1155 } else if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(Cond
)) {
1156 Condition
= getFCmpCondCode(FC
->getPredicate());
1158 Condition
= ISD::SETEQ
; // silence warning.
1159 assert(0 && "Unknown compare instruction");
1162 CaseBlock
CB(Condition
, BOp
->getOperand(0),
1163 BOp
->getOperand(1), NULL
, TBB
, FBB
, CurBB
);
1164 SwitchCases
.push_back(CB
);
1169 // Create a CaseBlock record representing this branch.
1170 CaseBlock
CB(ISD::SETEQ
, Cond
, ConstantInt::getTrue(),
1171 NULL
, TBB
, FBB
, CurBB
);
1172 SwitchCases
.push_back(CB
);
1175 /// FindMergedConditions - If Cond is an expression like
1176 void SelectionDAGLowering::FindMergedConditions(Value
*Cond
,
1177 MachineBasicBlock
*TBB
,
1178 MachineBasicBlock
*FBB
,
1179 MachineBasicBlock
*CurBB
,
1181 // If this node is not part of the or/and tree, emit it as a branch.
1182 Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
1183 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
1184 (unsigned)BOp
->getOpcode() != Opc
|| !BOp
->hasOneUse() ||
1185 BOp
->getParent() != CurBB
->getBasicBlock() ||
1186 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
1187 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
1188 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
);
1192 // Create TmpBB after CurBB.
1193 MachineFunction::iterator BBI
= CurBB
;
1194 MachineFunction
&MF
= DAG
.getMachineFunction();
1195 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
1196 CurBB
->getParent()->insert(++BBI
, TmpBB
);
1198 if (Opc
== Instruction::Or
) {
1199 // Codegen X | Y as:
1207 // Emit the LHS condition.
1208 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, Opc
);
1210 // Emit the RHS condition into TmpBB.
1211 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1213 assert(Opc
== Instruction::And
&& "Unknown merge op!");
1214 // Codegen X & Y as:
1221 // This requires creation of TmpBB after CurBB.
1223 // Emit the LHS condition.
1224 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, Opc
);
1226 // Emit the RHS condition into TmpBB.
1227 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1231 /// If the set of cases should be emitted as a series of branches, return true.
1232 /// If we should emit this as a bunch of and/or'd together conditions, return
1235 SelectionDAGLowering::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
){
1236 if (Cases
.size() != 2) return true;
1238 // If this is two comparisons of the same values or'd or and'd together, they
1239 // will get folded into a single comparison, so don't emit two blocks.
1240 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
1241 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
1242 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
1243 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
1250 void SelectionDAGLowering::visitBr(BranchInst
&I
) {
1251 // Update machine-CFG edges.
1252 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1254 // Figure out which block is immediately after the current one.
1255 MachineBasicBlock
*NextBlock
= 0;
1256 MachineFunction::iterator BBI
= CurMBB
;
1257 if (++BBI
!= CurMBB
->getParent()->end())
1260 if (I
.isUnconditional()) {
1261 // Update machine-CFG edges.
1262 CurMBB
->addSuccessor(Succ0MBB
);
1264 // If this is not a fall-through branch, emit the branch.
1265 if (Succ0MBB
!= NextBlock
)
1266 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1267 MVT::Other
, getControlRoot(),
1268 DAG
.getBasicBlock(Succ0MBB
)));
1272 // If this condition is one of the special cases we handle, do special stuff
1274 Value
*CondVal
= I
.getCondition();
1275 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1277 // If this is a series of conditions that are or'd or and'd together, emit
1278 // this as a sequence of branches instead of setcc's with and/or operations.
1279 // For example, instead of something like:
1292 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
1293 if (BOp
->hasOneUse() &&
1294 (BOp
->getOpcode() == Instruction::And
||
1295 BOp
->getOpcode() == Instruction::Or
)) {
1296 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, CurMBB
, BOp
->getOpcode());
1297 // If the compares in later blocks need to use values not currently
1298 // exported from this block, export them now. This block should always
1299 // be the first entry.
1300 assert(SwitchCases
[0].ThisBB
== CurMBB
&& "Unexpected lowering!");
1302 // Allow some cases to be rejected.
1303 if (ShouldEmitAsBranches(SwitchCases
)) {
1304 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
1305 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
1306 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
1309 // Emit the branch for this block.
1310 visitSwitchCase(SwitchCases
[0]);
1311 SwitchCases
.erase(SwitchCases
.begin());
1315 // Okay, we decided not to do this, remove any inserted MBB's and clear
1317 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
1318 CurMBB
->getParent()->erase(SwitchCases
[i
].ThisBB
);
1320 SwitchCases
.clear();
1324 // Create a CaseBlock record representing this branch.
1325 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(),
1326 NULL
, Succ0MBB
, Succ1MBB
, CurMBB
);
1327 // Use visitSwitchCase to actually insert the fast branch sequence for this
1329 visitSwitchCase(CB
);
1332 /// visitSwitchCase - Emits the necessary code to represent a single node in
1333 /// the binary search tree resulting from lowering a switch instruction.
1334 void SelectionDAGLowering::visitSwitchCase(CaseBlock
&CB
) {
1336 SDValue CondLHS
= getValue(CB
.CmpLHS
);
1337 DebugLoc dl
= getCurDebugLoc();
1339 // Build the setcc now.
1340 if (CB
.CmpMHS
== NULL
) {
1341 // Fold "(X == true)" to X and "(X == false)" to !X to
1342 // handle common cases produced by branch lowering.
1343 if (CB
.CmpRHS
== ConstantInt::getTrue() && CB
.CC
== ISD::SETEQ
)
1345 else if (CB
.CmpRHS
== ConstantInt::getFalse() && CB
.CC
== ISD::SETEQ
) {
1346 SDValue True
= DAG
.getConstant(1, CondLHS
.getValueType());
1347 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
1349 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, getValue(CB
.CmpRHS
), CB
.CC
);
1351 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
1353 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
1354 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
1356 SDValue CmpOp
= getValue(CB
.CmpMHS
);
1357 MVT VT
= CmpOp
.getValueType();
1359 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
1360 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, VT
),
1363 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
1364 VT
, CmpOp
, DAG
.getConstant(Low
, VT
));
1365 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
1366 DAG
.getConstant(High
-Low
, VT
), ISD::SETULE
);
1370 // Update successor info
1371 CurMBB
->addSuccessor(CB
.TrueBB
);
1372 CurMBB
->addSuccessor(CB
.FalseBB
);
1374 // Set NextBlock to be the MBB immediately after the current one, if any.
1375 // This is used to avoid emitting unnecessary branches to the next block.
1376 MachineBasicBlock
*NextBlock
= 0;
1377 MachineFunction::iterator BBI
= CurMBB
;
1378 if (++BBI
!= CurMBB
->getParent()->end())
1381 // If the lhs block is the next block, invert the condition so that we can
1382 // fall through to the lhs instead of the rhs block.
1383 if (CB
.TrueBB
== NextBlock
) {
1384 std::swap(CB
.TrueBB
, CB
.FalseBB
);
1385 SDValue True
= DAG
.getConstant(1, Cond
.getValueType());
1386 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
1388 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
1389 MVT::Other
, getControlRoot(), Cond
,
1390 DAG
.getBasicBlock(CB
.TrueBB
));
1392 // If the branch was constant folded, fix up the CFG.
1393 if (BrCond
.getOpcode() == ISD::BR
) {
1394 CurMBB
->removeSuccessor(CB
.FalseBB
);
1395 DAG
.setRoot(BrCond
);
1397 // Otherwise, go ahead and insert the false branch.
1398 if (BrCond
== getControlRoot())
1399 CurMBB
->removeSuccessor(CB
.TrueBB
);
1401 if (CB
.FalseBB
== NextBlock
)
1402 DAG
.setRoot(BrCond
);
1404 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
1405 DAG
.getBasicBlock(CB
.FalseBB
)));
1409 /// visitJumpTable - Emit JumpTable node in the current MBB
1410 void SelectionDAGLowering::visitJumpTable(JumpTable
&JT
) {
1411 // Emit the code for the jump table
1412 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
1413 MVT PTy
= TLI
.getPointerTy();
1414 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1416 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
1417 DAG
.setRoot(DAG
.getNode(ISD::BR_JT
, getCurDebugLoc(),
1418 MVT::Other
, Index
.getValue(1),
1422 /// visitJumpTableHeader - This function emits necessary code to produce index
1423 /// in the JumpTable from switch case.
1424 void SelectionDAGLowering::visitJumpTableHeader(JumpTable
&JT
,
1425 JumpTableHeader
&JTH
) {
1426 // Subtract the lowest switch case value from the value being switched on and
1427 // conditional branch to default mbb if the result is greater than the
1428 // difference between smallest and largest cases.
1429 SDValue SwitchOp
= getValue(JTH
.SValue
);
1430 MVT VT
= SwitchOp
.getValueType();
1431 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1432 DAG
.getConstant(JTH
.First
, VT
));
1434 // The SDNode we just created, which holds the value being switched on minus
1435 // the the smallest case value, needs to be copied to a virtual register so it
1436 // can be used as an index into the jump table in a subsequent basic block.
1437 // This value may be smaller or larger than the target's pointer type, and
1438 // therefore require extension or truncating.
1439 if (VT
.bitsGT(TLI
.getPointerTy()))
1440 SwitchOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1441 TLI
.getPointerTy(), SUB
);
1443 SwitchOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1444 TLI
.getPointerTy(), SUB
);
1446 unsigned JumpTableReg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1447 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1448 JumpTableReg
, SwitchOp
);
1449 JT
.Reg
= JumpTableReg
;
1451 // Emit the range check for the jump table, and branch to the default block
1452 // for the switch statement if the value being switched on exceeds the largest
1453 // case in the switch.
1454 SDValue CMP
= DAG
.getSetCC(getCurDebugLoc(),
1455 TLI
.getSetCCResultType(SUB
.getValueType()), SUB
,
1456 DAG
.getConstant(JTH
.Last
-JTH
.First
,VT
),
1459 // Set NextBlock to be the MBB immediately after the current one, if any.
1460 // This is used to avoid emitting unnecessary branches to the next block.
1461 MachineBasicBlock
*NextBlock
= 0;
1462 MachineFunction::iterator BBI
= CurMBB
;
1463 if (++BBI
!= CurMBB
->getParent()->end())
1466 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1467 MVT::Other
, CopyTo
, CMP
,
1468 DAG
.getBasicBlock(JT
.Default
));
1470 if (JT
.MBB
== NextBlock
)
1471 DAG
.setRoot(BrCond
);
1473 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrCond
,
1474 DAG
.getBasicBlock(JT
.MBB
)));
1477 /// visitBitTestHeader - This function emits necessary code to produce value
1478 /// suitable for "bit tests"
1479 void SelectionDAGLowering::visitBitTestHeader(BitTestBlock
&B
) {
1480 // Subtract the minimum value
1481 SDValue SwitchOp
= getValue(B
.SValue
);
1482 MVT VT
= SwitchOp
.getValueType();
1483 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1484 DAG
.getConstant(B
.First
, VT
));
1487 SDValue RangeCmp
= DAG
.getSetCC(getCurDebugLoc(),
1488 TLI
.getSetCCResultType(SUB
.getValueType()),
1489 SUB
, DAG
.getConstant(B
.Range
, VT
),
1493 if (VT
.bitsGT(TLI
.getPointerTy()))
1494 ShiftOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1495 TLI
.getPointerTy(), SUB
);
1497 ShiftOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1498 TLI
.getPointerTy(), SUB
);
1500 B
.Reg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1501 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1504 // Set NextBlock to be the MBB immediately after the current one, if any.
1505 // This is used to avoid emitting unnecessary branches to the next block.
1506 MachineBasicBlock
*NextBlock
= 0;
1507 MachineFunction::iterator BBI
= CurMBB
;
1508 if (++BBI
!= CurMBB
->getParent()->end())
1511 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
1513 CurMBB
->addSuccessor(B
.Default
);
1514 CurMBB
->addSuccessor(MBB
);
1516 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1517 MVT::Other
, CopyTo
, RangeCmp
,
1518 DAG
.getBasicBlock(B
.Default
));
1520 if (MBB
== NextBlock
)
1521 DAG
.setRoot(BrRange
);
1523 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, CopyTo
,
1524 DAG
.getBasicBlock(MBB
)));
1527 /// visitBitTestCase - this function produces one "bit test"
1528 void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock
* NextMBB
,
1531 // Make desired shift
1532 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg
,
1533 TLI
.getPointerTy());
1534 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
1536 DAG
.getConstant(1, TLI
.getPointerTy()),
1539 // Emit bit tests and jumps
1540 SDValue AndOp
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
1541 TLI
.getPointerTy(), SwitchVal
,
1542 DAG
.getConstant(B
.Mask
, TLI
.getPointerTy()));
1543 SDValue AndCmp
= DAG
.getSetCC(getCurDebugLoc(),
1544 TLI
.getSetCCResultType(AndOp
.getValueType()),
1545 AndOp
, DAG
.getConstant(0, TLI
.getPointerTy()),
1548 CurMBB
->addSuccessor(B
.TargetBB
);
1549 CurMBB
->addSuccessor(NextMBB
);
1551 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1552 MVT::Other
, getControlRoot(),
1553 AndCmp
, DAG
.getBasicBlock(B
.TargetBB
));
1555 // Set NextBlock to be the MBB immediately after the current one, if any.
1556 // This is used to avoid emitting unnecessary branches to the next block.
1557 MachineBasicBlock
*NextBlock
= 0;
1558 MachineFunction::iterator BBI
= CurMBB
;
1559 if (++BBI
!= CurMBB
->getParent()->end())
1562 if (NextMBB
== NextBlock
)
1565 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrAnd
,
1566 DAG
.getBasicBlock(NextMBB
)));
1569 void SelectionDAGLowering::visitInvoke(InvokeInst
&I
) {
1570 // Retrieve successors.
1571 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1572 MachineBasicBlock
*LandingPad
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1574 const Value
*Callee(I
.getCalledValue());
1575 if (isa
<InlineAsm
>(Callee
))
1578 LowerCallTo(&I
, getValue(Callee
), false, LandingPad
);
1580 // If the value of the invoke is used outside of its defining block, make it
1581 // available as a virtual register.
1582 CopyToExportRegsIfNeeded(&I
);
1584 // Update successor info
1585 CurMBB
->addSuccessor(Return
);
1586 CurMBB
->addSuccessor(LandingPad
);
1588 // Drop into normal successor.
1589 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1590 MVT::Other
, getControlRoot(),
1591 DAG
.getBasicBlock(Return
)));
1594 void SelectionDAGLowering::visitUnwind(UnwindInst
&I
) {
1597 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1598 /// small case ranges).
1599 bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec
& CR
,
1600 CaseRecVector
& WorkList
,
1602 MachineBasicBlock
* Default
) {
1603 Case
& BackCase
= *(CR
.Range
.second
-1);
1605 // Size is the number of Cases represented by this range.
1606 size_t Size
= CR
.Range
.second
- CR
.Range
.first
;
1610 // Get the MachineFunction which holds the current MBB. This is used when
1611 // inserting any additional MBBs necessary to represent the switch.
1612 MachineFunction
*CurMF
= CurMBB
->getParent();
1614 // Figure out which block is immediately after the current one.
1615 MachineBasicBlock
*NextBlock
= 0;
1616 MachineFunction::iterator BBI
= CR
.CaseBB
;
1618 if (++BBI
!= CurMBB
->getParent()->end())
1621 // TODO: If any two of the cases has the same destination, and if one value
1622 // is the same as the other, but has one bit unset that the other has set,
1623 // use bit manipulation to do two compares at once. For example:
1624 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1626 // Rearrange the case blocks so that the last one falls through if possible.
1627 if (NextBlock
&& Default
!= NextBlock
&& BackCase
.BB
!= NextBlock
) {
1628 // The last case block won't fall through into 'NextBlock' if we emit the
1629 // branches in this order. See if rearranging a case value would help.
1630 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
-1; I
!= E
; ++I
) {
1631 if (I
->BB
== NextBlock
) {
1632 std::swap(*I
, BackCase
);
1638 // Create a CaseBlock record representing a conditional branch to
1639 // the Case's target mbb if the value being switched on SV is equal
1641 MachineBasicBlock
*CurBlock
= CR
.CaseBB
;
1642 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++I
) {
1643 MachineBasicBlock
*FallThrough
;
1645 FallThrough
= CurMF
->CreateMachineBasicBlock(CurBlock
->getBasicBlock());
1646 CurMF
->insert(BBI
, FallThrough
);
1648 // Put SV in a virtual register to make it available from the new blocks.
1649 ExportFromCurrentBlock(SV
);
1651 // If the last case doesn't match, go to the default block.
1652 FallThrough
= Default
;
1655 Value
*RHS
, *LHS
, *MHS
;
1657 if (I
->High
== I
->Low
) {
1658 // This is just small small case range :) containing exactly 1 case
1660 LHS
= SV
; RHS
= I
->High
; MHS
= NULL
;
1663 LHS
= I
->Low
; MHS
= SV
; RHS
= I
->High
;
1665 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->BB
, FallThrough
, CurBlock
);
1667 // If emitting the first comparison, just call visitSwitchCase to emit the
1668 // code into the current block. Otherwise, push the CaseBlock onto the
1669 // vector to be later processed by SDISel, and insert the node's MBB
1670 // before the next MBB.
1671 if (CurBlock
== CurMBB
)
1672 visitSwitchCase(CB
);
1674 SwitchCases
.push_back(CB
);
1676 CurBlock
= FallThrough
;
1682 static inline bool areJTsAllowed(const TargetLowering
&TLI
) {
1683 return !DisableJumpTables
&&
1684 (TLI
.isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1685 TLI
.isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
));
1688 static APInt
ComputeRange(const APInt
&First
, const APInt
&Last
) {
1689 APInt
LastExt(Last
), FirstExt(First
);
1690 uint32_t BitWidth
= std::max(Last
.getBitWidth(), First
.getBitWidth()) + 1;
1691 LastExt
.sext(BitWidth
); FirstExt
.sext(BitWidth
);
1692 return (LastExt
- FirstExt
+ 1ULL);
1695 /// handleJTSwitchCase - Emit jumptable for current switch case range
1696 bool SelectionDAGLowering::handleJTSwitchCase(CaseRec
& CR
,
1697 CaseRecVector
& WorkList
,
1699 MachineBasicBlock
* Default
) {
1700 Case
& FrontCase
= *CR
.Range
.first
;
1701 Case
& BackCase
= *(CR
.Range
.second
-1);
1703 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1704 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1707 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1711 if (!areJTsAllowed(TLI
) || TSize
<= 3)
1714 APInt Range
= ComputeRange(First
, Last
);
1715 double Density
= (double)TSize
/ Range
.roundToDouble();
1719 DEBUG(errs() << "Lowering jump table\n"
1720 << "First entry: " << First
<< ". Last entry: " << Last
<< '\n'
1721 << "Range: " << Range
1722 << "Size: " << TSize
<< ". Density: " << Density
<< "\n\n");
1724 // Get the MachineFunction which holds the current MBB. This is used when
1725 // inserting any additional MBBs necessary to represent the switch.
1726 MachineFunction
*CurMF
= CurMBB
->getParent();
1728 // Figure out which block is immediately after the current one.
1729 MachineBasicBlock
*NextBlock
= 0;
1730 MachineFunction::iterator BBI
= CR
.CaseBB
;
1732 if (++BBI
!= CurMBB
->getParent()->end())
1735 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1737 // Create a new basic block to hold the code for loading the address
1738 // of the jump table, and jumping to it. Update successor information;
1739 // we will either branch to the default case for the switch, or the jump
1741 MachineBasicBlock
*JumpTableBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1742 CurMF
->insert(BBI
, JumpTableBB
);
1743 CR
.CaseBB
->addSuccessor(Default
);
1744 CR
.CaseBB
->addSuccessor(JumpTableBB
);
1746 // Build a vector of destination BBs, corresponding to each target
1747 // of the jump table. If the value of the jump table slot corresponds to
1748 // a case statement, push the case's BB onto the vector, otherwise, push
1750 std::vector
<MachineBasicBlock
*> DestBBs
;
1752 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++TEI
) {
1753 const APInt
& Low
= cast
<ConstantInt
>(I
->Low
)->getValue();
1754 const APInt
& High
= cast
<ConstantInt
>(I
->High
)->getValue();
1756 if (Low
.sle(TEI
) && TEI
.sle(High
)) {
1757 DestBBs
.push_back(I
->BB
);
1761 DestBBs
.push_back(Default
);
1765 // Update successor info. Add one edge to each unique successor.
1766 BitVector
SuccsHandled(CR
.CaseBB
->getParent()->getNumBlockIDs());
1767 for (std::vector
<MachineBasicBlock
*>::iterator I
= DestBBs
.begin(),
1768 E
= DestBBs
.end(); I
!= E
; ++I
) {
1769 if (!SuccsHandled
[(*I
)->getNumber()]) {
1770 SuccsHandled
[(*I
)->getNumber()] = true;
1771 JumpTableBB
->addSuccessor(*I
);
1775 // Create a jump table index for this jump table, or return an existing
1777 unsigned JTI
= CurMF
->getJumpTableInfo()->getJumpTableIndex(DestBBs
);
1779 // Set the jump table information so that we can codegen it as a second
1780 // MachineBasicBlock
1781 JumpTable
JT(-1U, JTI
, JumpTableBB
, Default
);
1782 JumpTableHeader
JTH(First
, Last
, SV
, CR
.CaseBB
, (CR
.CaseBB
== CurMBB
));
1783 if (CR
.CaseBB
== CurMBB
)
1784 visitJumpTableHeader(JT
, JTH
);
1786 JTCases
.push_back(JumpTableBlock(JTH
, JT
));
1791 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1793 bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec
& CR
,
1794 CaseRecVector
& WorkList
,
1796 MachineBasicBlock
* Default
) {
1797 // Get the MachineFunction which holds the current MBB. This is used when
1798 // inserting any additional MBBs necessary to represent the switch.
1799 MachineFunction
*CurMF
= CurMBB
->getParent();
1801 // Figure out which block is immediately after the current one.
1802 MachineBasicBlock
*NextBlock
= 0;
1803 MachineFunction::iterator BBI
= CR
.CaseBB
;
1805 if (++BBI
!= CurMBB
->getParent()->end())
1808 Case
& FrontCase
= *CR
.Range
.first
;
1809 Case
& BackCase
= *(CR
.Range
.second
-1);
1810 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1812 // Size is the number of Cases represented by this range.
1813 unsigned Size
= CR
.Range
.second
- CR
.Range
.first
;
1815 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1816 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1818 CaseItr Pivot
= CR
.Range
.first
+ Size
/2;
1820 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1821 // (heuristically) allow us to emit JumpTable's later.
1823 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1827 size_t LSize
= FrontCase
.size();
1828 size_t RSize
= TSize
-LSize
;
1829 DEBUG(errs() << "Selecting best pivot: \n"
1830 << "First: " << First
<< ", Last: " << Last
<<'\n'
1831 << "LSize: " << LSize
<< ", RSize: " << RSize
<< '\n');
1832 for (CaseItr I
= CR
.Range
.first
, J
=I
+1, E
= CR
.Range
.second
;
1834 const APInt
& LEnd
= cast
<ConstantInt
>(I
->High
)->getValue();
1835 const APInt
& RBegin
= cast
<ConstantInt
>(J
->Low
)->getValue();
1836 APInt Range
= ComputeRange(LEnd
, RBegin
);
1837 assert((Range
- 2ULL).isNonNegative() &&
1838 "Invalid case distance");
1839 double LDensity
= (double)LSize
/ (LEnd
- First
+ 1ULL).roundToDouble();
1840 double RDensity
= (double)RSize
/ (Last
- RBegin
+ 1ULL).roundToDouble();
1841 double Metric
= Range
.logBase2()*(LDensity
+RDensity
);
1842 // Should always split in some non-trivial place
1843 DEBUG(errs() <<"=>Step\n"
1844 << "LEnd: " << LEnd
<< ", RBegin: " << RBegin
<< '\n'
1845 << "LDensity: " << LDensity
1846 << ", RDensity: " << RDensity
<< '\n'
1847 << "Metric: " << Metric
<< '\n');
1848 if (FMetric
< Metric
) {
1851 DEBUG(errs() << "Current metric set to: " << FMetric
<< '\n');
1857 if (areJTsAllowed(TLI
)) {
1858 // If our case is dense we *really* should handle it earlier!
1859 assert((FMetric
> 0) && "Should handle dense range earlier!");
1861 Pivot
= CR
.Range
.first
+ Size
/2;
1864 CaseRange
LHSR(CR
.Range
.first
, Pivot
);
1865 CaseRange
RHSR(Pivot
, CR
.Range
.second
);
1866 Constant
*C
= Pivot
->Low
;
1867 MachineBasicBlock
*FalseBB
= 0, *TrueBB
= 0;
1869 // We know that we branch to the LHS if the Value being switched on is
1870 // less than the Pivot value, C. We use this to optimize our binary
1871 // tree a bit, by recognizing that if SV is greater than or equal to the
1872 // LHS's Case Value, and that Case Value is exactly one less than the
1873 // Pivot's Value, then we can branch directly to the LHS's Target,
1874 // rather than creating a leaf node for it.
1875 if ((LHSR
.second
- LHSR
.first
) == 1 &&
1876 LHSR
.first
->High
== CR
.GE
&&
1877 cast
<ConstantInt
>(C
)->getValue() ==
1878 (cast
<ConstantInt
>(CR
.GE
)->getValue() + 1LL)) {
1879 TrueBB
= LHSR
.first
->BB
;
1881 TrueBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1882 CurMF
->insert(BBI
, TrueBB
);
1883 WorkList
.push_back(CaseRec(TrueBB
, C
, CR
.GE
, LHSR
));
1885 // Put SV in a virtual register to make it available from the new blocks.
1886 ExportFromCurrentBlock(SV
);
1889 // Similar to the optimization above, if the Value being switched on is
1890 // known to be less than the Constant CR.LT, and the current Case Value
1891 // is CR.LT - 1, then we can branch directly to the target block for
1892 // the current Case Value, rather than emitting a RHS leaf node for it.
1893 if ((RHSR
.second
- RHSR
.first
) == 1 && CR
.LT
&&
1894 cast
<ConstantInt
>(RHSR
.first
->Low
)->getValue() ==
1895 (cast
<ConstantInt
>(CR
.LT
)->getValue() - 1LL)) {
1896 FalseBB
= RHSR
.first
->BB
;
1898 FalseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1899 CurMF
->insert(BBI
, FalseBB
);
1900 WorkList
.push_back(CaseRec(FalseBB
,CR
.LT
,C
,RHSR
));
1902 // Put SV in a virtual register to make it available from the new blocks.
1903 ExportFromCurrentBlock(SV
);
1906 // Create a CaseBlock record representing a conditional branch to
1907 // the LHS node if the value being switched on SV is less than C.
1908 // Otherwise, branch to LHS.
1909 CaseBlock
CB(ISD::SETLT
, SV
, C
, NULL
, TrueBB
, FalseBB
, CR
.CaseBB
);
1911 if (CR
.CaseBB
== CurMBB
)
1912 visitSwitchCase(CB
);
1914 SwitchCases
.push_back(CB
);
1919 /// handleBitTestsSwitchCase - if current case range has few destination and
1920 /// range span less, than machine word bitwidth, encode case range into series
1921 /// of masks and emit bit tests with these masks.
1922 bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec
& CR
,
1923 CaseRecVector
& WorkList
,
1925 MachineBasicBlock
* Default
){
1926 unsigned IntPtrBits
= TLI
.getPointerTy().getSizeInBits();
1928 Case
& FrontCase
= *CR
.Range
.first
;
1929 Case
& BackCase
= *(CR
.Range
.second
-1);
1931 // Get the MachineFunction which holds the current MBB. This is used when
1932 // inserting any additional MBBs necessary to represent the switch.
1933 MachineFunction
*CurMF
= CurMBB
->getParent();
1936 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1938 // Single case counts one, case range - two.
1939 numCmps
+= (I
->Low
== I
->High
? 1 : 2);
1942 // Count unique destinations
1943 SmallSet
<MachineBasicBlock
*, 4> Dests
;
1944 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1945 Dests
.insert(I
->BB
);
1946 if (Dests
.size() > 3)
1947 // Don't bother the code below, if there are too much unique destinations
1950 DEBUG(errs() << "Total number of unique destinations: " << Dests
.size() << '\n'
1951 << "Total number of comparisons: " << numCmps
<< '\n');
1953 // Compute span of values.
1954 const APInt
& minValue
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1955 const APInt
& maxValue
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1956 APInt cmpRange
= maxValue
- minValue
;
1958 DEBUG(errs() << "Compare range: " << cmpRange
<< '\n'
1959 << "Low bound: " << minValue
<< '\n'
1960 << "High bound: " << maxValue
<< '\n');
1962 if (cmpRange
.uge(APInt(cmpRange
.getBitWidth(), IntPtrBits
)) ||
1963 (!(Dests
.size() == 1 && numCmps
>= 3) &&
1964 !(Dests
.size() == 2 && numCmps
>= 5) &&
1965 !(Dests
.size() >= 3 && numCmps
>= 6)))
1968 DEBUG(errs() << "Emitting bit tests\n");
1969 APInt lowBound
= APInt::getNullValue(cmpRange
.getBitWidth());
1971 // Optimize the case where all the case values fit in a
1972 // word without having to subtract minValue. In this case,
1973 // we can optimize away the subtraction.
1974 if (minValue
.isNonNegative() &&
1975 maxValue
.slt(APInt(maxValue
.getBitWidth(), IntPtrBits
))) {
1976 cmpRange
= maxValue
;
1978 lowBound
= minValue
;
1981 CaseBitsVector CasesBits
;
1982 unsigned i
, count
= 0;
1984 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1985 MachineBasicBlock
* Dest
= I
->BB
;
1986 for (i
= 0; i
< count
; ++i
)
1987 if (Dest
== CasesBits
[i
].BB
)
1991 assert((count
< 3) && "Too much destinations to test!");
1992 CasesBits
.push_back(CaseBits(0, Dest
, 0));
1996 const APInt
& lowValue
= cast
<ConstantInt
>(I
->Low
)->getValue();
1997 const APInt
& highValue
= cast
<ConstantInt
>(I
->High
)->getValue();
1999 uint64_t lo
= (lowValue
- lowBound
).getZExtValue();
2000 uint64_t hi
= (highValue
- lowBound
).getZExtValue();
2002 for (uint64_t j
= lo
; j
<= hi
; j
++) {
2003 CasesBits
[i
].Mask
|= 1ULL << j
;
2004 CasesBits
[i
].Bits
++;
2008 std::sort(CasesBits
.begin(), CasesBits
.end(), CaseBitsCmp());
2012 // Figure out which block is immediately after the current one.
2013 MachineFunction::iterator BBI
= CR
.CaseBB
;
2016 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2018 DEBUG(errs() << "Cases:\n");
2019 for (unsigned i
= 0, e
= CasesBits
.size(); i
!=e
; ++i
) {
2020 DEBUG(errs() << "Mask: " << CasesBits
[i
].Mask
2021 << ", Bits: " << CasesBits
[i
].Bits
2022 << ", BB: " << CasesBits
[i
].BB
<< '\n');
2024 MachineBasicBlock
*CaseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2025 CurMF
->insert(BBI
, CaseBB
);
2026 BTC
.push_back(BitTestCase(CasesBits
[i
].Mask
,
2030 // Put SV in a virtual register to make it available from the new blocks.
2031 ExportFromCurrentBlock(SV
);
2034 BitTestBlock
BTB(lowBound
, cmpRange
, SV
,
2035 -1U, (CR
.CaseBB
== CurMBB
),
2036 CR
.CaseBB
, Default
, BTC
);
2038 if (CR
.CaseBB
== CurMBB
)
2039 visitBitTestHeader(BTB
);
2041 BitTestCases
.push_back(BTB
);
2047 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2048 size_t SelectionDAGLowering::Clusterify(CaseVector
& Cases
,
2049 const SwitchInst
& SI
) {
2052 // Start with "simple" cases
2053 for (size_t i
= 1; i
< SI
.getNumSuccessors(); ++i
) {
2054 MachineBasicBlock
*SMBB
= FuncInfo
.MBBMap
[SI
.getSuccessor(i
)];
2055 Cases
.push_back(Case(SI
.getSuccessorValue(i
),
2056 SI
.getSuccessorValue(i
),
2059 std::sort(Cases
.begin(), Cases
.end(), CaseCmp());
2061 // Merge case into clusters
2062 if (Cases
.size() >= 2)
2063 // Must recompute end() each iteration because it may be
2064 // invalidated by erase if we hold on to it
2065 for (CaseItr I
= Cases
.begin(), J
= ++(Cases
.begin()); J
!= Cases
.end(); ) {
2066 const APInt
& nextValue
= cast
<ConstantInt
>(J
->Low
)->getValue();
2067 const APInt
& currentValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2068 MachineBasicBlock
* nextBB
= J
->BB
;
2069 MachineBasicBlock
* currentBB
= I
->BB
;
2071 // If the two neighboring cases go to the same destination, merge them
2072 // into a single case.
2073 if ((nextValue
- currentValue
== 1) && (currentBB
== nextBB
)) {
2081 for (CaseItr I
=Cases
.begin(), E
=Cases
.end(); I
!=E
; ++I
, ++numCmps
) {
2082 if (I
->Low
!= I
->High
)
2083 // A range counts double, since it requires two compares.
2090 void SelectionDAGLowering::visitSwitch(SwitchInst
&SI
) {
2091 // Figure out which block is immediately after the current one.
2092 MachineBasicBlock
*NextBlock
= 0;
2093 MachineFunction::iterator BBI
= CurMBB
;
2095 MachineBasicBlock
*Default
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
2097 // If there is only the default destination, branch to it if it is not the
2098 // next basic block. Otherwise, just fall through.
2099 if (SI
.getNumOperands() == 2) {
2100 // Update machine-CFG edges.
2102 // If this is not a fall-through branch, emit the branch.
2103 CurMBB
->addSuccessor(Default
);
2104 if (Default
!= NextBlock
)
2105 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
2106 MVT::Other
, getControlRoot(),
2107 DAG
.getBasicBlock(Default
)));
2111 // If there are any non-default case statements, create a vector of Cases
2112 // representing each one, and sort the vector so that we can efficiently
2113 // create a binary search tree from them.
2115 size_t numCmps
= Clusterify(Cases
, SI
);
2116 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases
.size()
2117 << ". Total compares: " << numCmps
<< '\n');
2120 // Get the Value to be switched on and default basic blocks, which will be
2121 // inserted into CaseBlock records, representing basic blocks in the binary
2123 Value
*SV
= SI
.getOperand(0);
2125 // Push the initial CaseRec onto the worklist
2126 CaseRecVector WorkList
;
2127 WorkList
.push_back(CaseRec(CurMBB
,0,0,CaseRange(Cases
.begin(),Cases
.end())));
2129 while (!WorkList
.empty()) {
2130 // Grab a record representing a case range to process off the worklist
2131 CaseRec CR
= WorkList
.back();
2132 WorkList
.pop_back();
2134 if (handleBitTestsSwitchCase(CR
, WorkList
, SV
, Default
))
2137 // If the range has few cases (two or less) emit a series of specific
2139 if (handleSmallSwitchRange(CR
, WorkList
, SV
, Default
))
2142 // If the switch has more than 5 blocks, and at least 40% dense, and the
2143 // target supports indirect branches, then emit a jump table rather than
2144 // lowering the switch to a binary tree of conditional branches.
2145 if (handleJTSwitchCase(CR
, WorkList
, SV
, Default
))
2148 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2149 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2150 handleBTSplitSwitchCase(CR
, WorkList
, SV
, Default
);
2155 void SelectionDAGLowering::visitSub(User
&I
) {
2156 // -0.0 - X --> fneg
2157 const Type
*Ty
= I
.getType();
2158 if (isa
<VectorType
>(Ty
)) {
2159 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(I
.getOperand(0))) {
2160 const VectorType
*DestTy
= cast
<VectorType
>(I
.getType());
2161 const Type
*ElTy
= DestTy
->getElementType();
2162 if (ElTy
->isFloatingPoint()) {
2163 unsigned VL
= DestTy
->getNumElements();
2164 std::vector
<Constant
*> NZ(VL
, ConstantFP::getNegativeZero(ElTy
));
2165 Constant
*CNZ
= ConstantVector::get(&NZ
[0], NZ
.size());
2167 SDValue Op2
= getValue(I
.getOperand(1));
2168 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2169 Op2
.getValueType(), Op2
));
2175 if (Ty
->isFloatingPoint()) {
2176 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(I
.getOperand(0)))
2177 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero(Ty
)->getValueAPF())) {
2178 SDValue Op2
= getValue(I
.getOperand(1));
2179 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2180 Op2
.getValueType(), Op2
));
2185 visitBinary(I
, Ty
->isFPOrFPVector() ? ISD::FSUB
: ISD::SUB
);
2188 void SelectionDAGLowering::visitBinary(User
&I
, unsigned OpCode
) {
2189 SDValue Op1
= getValue(I
.getOperand(0));
2190 SDValue Op2
= getValue(I
.getOperand(1));
2192 setValue(&I
, DAG
.getNode(OpCode
, getCurDebugLoc(),
2193 Op1
.getValueType(), Op1
, Op2
));
2196 void SelectionDAGLowering::visitShift(User
&I
, unsigned Opcode
) {
2197 SDValue Op1
= getValue(I
.getOperand(0));
2198 SDValue Op2
= getValue(I
.getOperand(1));
2199 if (!isa
<VectorType
>(I
.getType()) &&
2200 Op2
.getValueType() != TLI
.getShiftAmountTy()) {
2201 // If the operand is smaller than the shift count type, promote it.
2202 if (TLI
.getShiftAmountTy().bitsGT(Op2
.getValueType()))
2203 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2204 TLI
.getShiftAmountTy(), Op2
);
2205 // If the operand is larger than the shift count type but the shift
2206 // count type has enough bits to represent any shift value, truncate
2207 // it now. This is a common case and it exposes the truncate to
2208 // optimization early.
2209 else if (TLI
.getShiftAmountTy().getSizeInBits() >=
2210 Log2_32_Ceil(Op2
.getValueType().getSizeInBits()))
2211 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2212 TLI
.getShiftAmountTy(), Op2
);
2213 // Otherwise we'll need to temporarily settle for some other
2214 // convenient type; type legalization will make adjustments as
2216 else if (TLI
.getPointerTy().bitsLT(Op2
.getValueType()))
2217 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2218 TLI
.getPointerTy(), Op2
);
2219 else if (TLI
.getPointerTy().bitsGT(Op2
.getValueType()))
2220 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2221 TLI
.getPointerTy(), Op2
);
2224 setValue(&I
, DAG
.getNode(Opcode
, getCurDebugLoc(),
2225 Op1
.getValueType(), Op1
, Op2
));
2228 void SelectionDAGLowering::visitICmp(User
&I
) {
2229 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2230 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
2231 predicate
= IC
->getPredicate();
2232 else if (ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2233 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2234 SDValue Op1
= getValue(I
.getOperand(0));
2235 SDValue Op2
= getValue(I
.getOperand(1));
2236 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2237 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(),MVT::i1
, Op1
, Op2
, Opcode
));
2240 void SelectionDAGLowering::visitFCmp(User
&I
) {
2241 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2242 if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
2243 predicate
= FC
->getPredicate();
2244 else if (ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2245 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2246 SDValue Op1
= getValue(I
.getOperand(0));
2247 SDValue Op2
= getValue(I
.getOperand(1));
2248 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2249 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), MVT::i1
, Op1
, Op2
, Condition
));
2252 void SelectionDAGLowering::visitVICmp(User
&I
) {
2253 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2254 if (VICmpInst
*IC
= dyn_cast
<VICmpInst
>(&I
))
2255 predicate
= IC
->getPredicate();
2256 else if (ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2257 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2258 SDValue Op1
= getValue(I
.getOperand(0));
2259 SDValue Op2
= getValue(I
.getOperand(1));
2260 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2261 setValue(&I
, DAG
.getVSetCC(getCurDebugLoc(), Op1
.getValueType(),
2265 void SelectionDAGLowering::visitVFCmp(User
&I
) {
2266 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2267 if (VFCmpInst
*FC
= dyn_cast
<VFCmpInst
>(&I
))
2268 predicate
= FC
->getPredicate();
2269 else if (ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2270 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2271 SDValue Op1
= getValue(I
.getOperand(0));
2272 SDValue Op2
= getValue(I
.getOperand(1));
2273 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2274 MVT DestVT
= TLI
.getValueType(I
.getType());
2276 setValue(&I
, DAG
.getVSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Condition
));
2279 void SelectionDAGLowering::visitSelect(User
&I
) {
2280 SmallVector
<MVT
, 4> ValueVTs
;
2281 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2282 unsigned NumValues
= ValueVTs
.size();
2283 if (NumValues
!= 0) {
2284 SmallVector
<SDValue
, 4> Values(NumValues
);
2285 SDValue Cond
= getValue(I
.getOperand(0));
2286 SDValue TrueVal
= getValue(I
.getOperand(1));
2287 SDValue FalseVal
= getValue(I
.getOperand(2));
2289 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2290 Values
[i
] = DAG
.getNode(ISD::SELECT
, getCurDebugLoc(),
2291 TrueVal
.getValueType(), Cond
,
2292 SDValue(TrueVal
.getNode(), TrueVal
.getResNo() + i
),
2293 SDValue(FalseVal
.getNode(), FalseVal
.getResNo() + i
));
2295 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2296 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2297 &Values
[0], NumValues
));
2302 void SelectionDAGLowering::visitTrunc(User
&I
) {
2303 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2304 SDValue N
= getValue(I
.getOperand(0));
2305 MVT DestVT
= TLI
.getValueType(I
.getType());
2306 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2309 void SelectionDAGLowering::visitZExt(User
&I
) {
2310 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2311 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2312 SDValue N
= getValue(I
.getOperand(0));
2313 MVT DestVT
= TLI
.getValueType(I
.getType());
2314 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2317 void SelectionDAGLowering::visitSExt(User
&I
) {
2318 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2319 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2320 SDValue N
= getValue(I
.getOperand(0));
2321 MVT DestVT
= TLI
.getValueType(I
.getType());
2322 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2325 void SelectionDAGLowering::visitFPTrunc(User
&I
) {
2326 // FPTrunc is never a no-op cast, no need to check
2327 SDValue N
= getValue(I
.getOperand(0));
2328 MVT DestVT
= TLI
.getValueType(I
.getType());
2329 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, getCurDebugLoc(),
2330 DestVT
, N
, DAG
.getIntPtrConstant(0)));
2333 void SelectionDAGLowering::visitFPExt(User
&I
){
2334 // FPTrunc is never a no-op cast, no need to check
2335 SDValue N
= getValue(I
.getOperand(0));
2336 MVT DestVT
= TLI
.getValueType(I
.getType());
2337 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2340 void SelectionDAGLowering::visitFPToUI(User
&I
) {
2341 // FPToUI is never a no-op cast, no need to check
2342 SDValue N
= getValue(I
.getOperand(0));
2343 MVT DestVT
= TLI
.getValueType(I
.getType());
2344 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurDebugLoc(), DestVT
, N
));
2347 void SelectionDAGLowering::visitFPToSI(User
&I
) {
2348 // FPToSI is never a no-op cast, no need to check
2349 SDValue N
= getValue(I
.getOperand(0));
2350 MVT DestVT
= TLI
.getValueType(I
.getType());
2351 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurDebugLoc(), DestVT
, N
));
2354 void SelectionDAGLowering::visitUIToFP(User
&I
) {
2355 // UIToFP is never a no-op cast, no need to check
2356 SDValue N
= getValue(I
.getOperand(0));
2357 MVT DestVT
= TLI
.getValueType(I
.getType());
2358 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2361 void SelectionDAGLowering::visitSIToFP(User
&I
){
2362 // SIToFP is never a no-op cast, no need to check
2363 SDValue N
= getValue(I
.getOperand(0));
2364 MVT DestVT
= TLI
.getValueType(I
.getType());
2365 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2368 void SelectionDAGLowering::visitPtrToInt(User
&I
) {
2369 // What to do depends on the size of the integer and the size of the pointer.
2370 // We can either truncate, zero extend, or no-op, accordingly.
2371 SDValue N
= getValue(I
.getOperand(0));
2372 MVT SrcVT
= N
.getValueType();
2373 MVT DestVT
= TLI
.getValueType(I
.getType());
2375 if (DestVT
.bitsLT(SrcVT
))
2376 Result
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
);
2378 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2379 Result
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
);
2380 setValue(&I
, Result
);
2383 void SelectionDAGLowering::visitIntToPtr(User
&I
) {
2384 // What to do depends on the size of the integer and the size of the pointer.
2385 // We can either truncate, zero extend, or no-op, accordingly.
2386 SDValue N
= getValue(I
.getOperand(0));
2387 MVT SrcVT
= N
.getValueType();
2388 MVT DestVT
= TLI
.getValueType(I
.getType());
2389 if (DestVT
.bitsLT(SrcVT
))
2390 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2392 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2393 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2397 void SelectionDAGLowering::visitBitCast(User
&I
) {
2398 SDValue N
= getValue(I
.getOperand(0));
2399 MVT DestVT
= TLI
.getValueType(I
.getType());
2401 // BitCast assures us that source and destination are the same size so this
2402 // is either a BIT_CONVERT or a no-op.
2403 if (DestVT
!= N
.getValueType())
2404 setValue(&I
, DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
2405 DestVT
, N
)); // convert types
2407 setValue(&I
, N
); // noop cast.
2410 void SelectionDAGLowering::visitInsertElement(User
&I
) {
2411 SDValue InVec
= getValue(I
.getOperand(0));
2412 SDValue InVal
= getValue(I
.getOperand(1));
2413 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2415 getValue(I
.getOperand(2)));
2417 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurDebugLoc(),
2418 TLI
.getValueType(I
.getType()),
2419 InVec
, InVal
, InIdx
));
2422 void SelectionDAGLowering::visitExtractElement(User
&I
) {
2423 SDValue InVec
= getValue(I
.getOperand(0));
2424 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2426 getValue(I
.getOperand(1)));
2427 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2428 TLI
.getValueType(I
.getType()), InVec
, InIdx
));
2432 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2433 // from SIndx and increasing to the element length (undefs are allowed).
2434 static bool SequentialMask(SmallVectorImpl
<int> &Mask
, int SIndx
) {
2435 int MaskNumElts
= Mask
.size();
2436 for (int i
= 0; i
!= MaskNumElts
; ++i
)
2437 if ((Mask
[i
] >= 0) && (Mask
[i
] != i
+ SIndx
))
2442 void SelectionDAGLowering::visitShuffleVector(User
&I
) {
2443 SmallVector
<int, 8> Mask
;
2444 SDValue Src1
= getValue(I
.getOperand(0));
2445 SDValue Src2
= getValue(I
.getOperand(1));
2447 // Convert the ConstantVector mask operand into an array of ints, with -1
2448 // representing undef values.
2449 SmallVector
<Constant
*, 8> MaskElts
;
2450 cast
<Constant
>(I
.getOperand(2))->getVectorElements(MaskElts
);
2451 int MaskNumElts
= MaskElts
.size();
2452 for (int i
= 0; i
!= MaskNumElts
; ++i
) {
2453 if (isa
<UndefValue
>(MaskElts
[i
]))
2456 Mask
.push_back(cast
<ConstantInt
>(MaskElts
[i
])->getSExtValue());
2459 MVT VT
= TLI
.getValueType(I
.getType());
2460 MVT SrcVT
= Src1
.getValueType();
2461 int SrcNumElts
= SrcVT
.getVectorNumElements();
2463 if (SrcNumElts
== MaskNumElts
) {
2464 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2469 // Normalize the shuffle vector since mask and vector length don't match.
2470 if (SrcNumElts
< MaskNumElts
&& MaskNumElts
% SrcNumElts
== 0) {
2471 // Mask is longer than the source vectors and is a multiple of the source
2472 // vectors. We can use concatenate vector to make the mask and vectors
2474 if (SrcNumElts
*2 == MaskNumElts
&& SequentialMask(Mask
, 0)) {
2475 // The shuffle is concatenating two vectors together.
2476 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, getCurDebugLoc(),
2481 // Pad both vectors with undefs to make them the same length as the mask.
2482 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
2483 bool Src1U
= Src1
.getOpcode() == ISD::UNDEF
;
2484 bool Src2U
= Src2
.getOpcode() == ISD::UNDEF
;
2485 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
2487 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
2488 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
2492 Src1
= Src1U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2493 getCurDebugLoc(), VT
,
2494 &MOps1
[0], NumConcat
);
2495 Src2
= Src2U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2496 getCurDebugLoc(), VT
,
2497 &MOps2
[0], NumConcat
);
2499 // Readjust mask for new input vector length.
2500 SmallVector
<int, 8> MappedOps
;
2501 for (int i
= 0; i
!= MaskNumElts
; ++i
) {
2503 if (Idx
< SrcNumElts
)
2504 MappedOps
.push_back(Idx
);
2506 MappedOps
.push_back(Idx
+ MaskNumElts
- SrcNumElts
);
2508 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2513 if (SrcNumElts
> MaskNumElts
) {
2514 // Resulting vector is shorter than the incoming vector.
2515 if (SrcNumElts
== MaskNumElts
&& SequentialMask(Mask
,0)) {
2516 // Shuffle extracts 1st vector.
2521 if (SrcNumElts
== MaskNumElts
&& SequentialMask(Mask
,MaskNumElts
)) {
2522 // Shuffle extracts 2nd vector.
2527 // Analyze the access pattern of the vector to see if we can extract
2528 // two subvectors and do the shuffle. The analysis is done by calculating
2529 // the range of elements the mask access on both vectors.
2530 int MinRange
[2] = { SrcNumElts
+1, SrcNumElts
+1};
2531 int MaxRange
[2] = {-1, -1};
2533 for (int i
= 0; i
!= MaskNumElts
; ++i
) {
2539 if (Idx
>= SrcNumElts
) {
2543 if (Idx
> MaxRange
[Input
])
2544 MaxRange
[Input
] = Idx
;
2545 if (Idx
< MinRange
[Input
])
2546 MinRange
[Input
] = Idx
;
2549 // Check if the access is smaller than the vector size and can we find
2550 // a reasonable extract index.
2551 int RangeUse
[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2552 int StartIdx
[2]; // StartIdx to extract from
2553 for (int Input
=0; Input
< 2; ++Input
) {
2554 if (MinRange
[Input
] == SrcNumElts
+1 && MaxRange
[Input
] == -1) {
2555 RangeUse
[Input
] = 0; // Unused
2556 StartIdx
[Input
] = 0;
2557 } else if (MaxRange
[Input
] - MinRange
[Input
] < MaskNumElts
) {
2558 // Fits within range but we should see if we can find a good
2559 // start index that is a multiple of the mask length.
2560 if (MaxRange
[Input
] < MaskNumElts
) {
2561 RangeUse
[Input
] = 1; // Extract from beginning of the vector
2562 StartIdx
[Input
] = 0;
2564 StartIdx
[Input
] = (MinRange
[Input
]/MaskNumElts
)*MaskNumElts
;
2565 if (MaxRange
[Input
] - StartIdx
[Input
] < MaskNumElts
&&
2566 StartIdx
[Input
] + MaskNumElts
< SrcNumElts
)
2567 RangeUse
[Input
] = 1; // Extract from a multiple of the mask length.
2572 if (RangeUse
[0] == 0 && RangeUse
[0] == 0) {
2573 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
2576 else if (RangeUse
[0] < 2 && RangeUse
[1] < 2) {
2577 // Extract appropriate subvector and generate a vector shuffle
2578 for (int Input
=0; Input
< 2; ++Input
) {
2579 SDValue
& Src
= Input
== 0 ? Src1
: Src2
;
2580 if (RangeUse
[Input
] == 0) {
2581 Src
= DAG
.getUNDEF(VT
);
2583 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, getCurDebugLoc(), VT
,
2584 Src
, DAG
.getIntPtrConstant(StartIdx
[Input
]));
2587 // Calculate new mask.
2588 SmallVector
<int, 8> MappedOps
;
2589 for (int i
= 0; i
!= MaskNumElts
; ++i
) {
2592 MappedOps
.push_back(Idx
);
2593 else if (Idx
< SrcNumElts
)
2594 MappedOps
.push_back(Idx
- StartIdx
[0]);
2596 MappedOps
.push_back(Idx
- SrcNumElts
- StartIdx
[1] + MaskNumElts
);
2598 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2604 // We can't use either concat vectors or extract subvectors so fall back to
2605 // replacing the shuffle with extract and build vector.
2606 // to insert and build vector.
2607 MVT EltVT
= VT
.getVectorElementType();
2608 MVT PtrVT
= TLI
.getPointerTy();
2609 SmallVector
<SDValue
,8> Ops
;
2610 for (int i
= 0; i
!= MaskNumElts
; ++i
) {
2612 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2615 if (Idx
< SrcNumElts
)
2616 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2617 EltVT
, Src1
, DAG
.getConstant(Idx
, PtrVT
)));
2619 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2621 DAG
.getConstant(Idx
- SrcNumElts
, PtrVT
)));
2624 setValue(&I
, DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
2625 VT
, &Ops
[0], Ops
.size()));
2628 void SelectionDAGLowering::visitInsertValue(InsertValueInst
&I
) {
2629 const Value
*Op0
= I
.getOperand(0);
2630 const Value
*Op1
= I
.getOperand(1);
2631 const Type
*AggTy
= I
.getType();
2632 const Type
*ValTy
= Op1
->getType();
2633 bool IntoUndef
= isa
<UndefValue
>(Op0
);
2634 bool FromUndef
= isa
<UndefValue
>(Op1
);
2636 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2637 I
.idx_begin(), I
.idx_end());
2639 SmallVector
<MVT
, 4> AggValueVTs
;
2640 ComputeValueVTs(TLI
, AggTy
, AggValueVTs
);
2641 SmallVector
<MVT
, 4> ValValueVTs
;
2642 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2644 unsigned NumAggValues
= AggValueVTs
.size();
2645 unsigned NumValValues
= ValValueVTs
.size();
2646 SmallVector
<SDValue
, 4> Values(NumAggValues
);
2648 SDValue Agg
= getValue(Op0
);
2649 SDValue Val
= getValue(Op1
);
2651 // Copy the beginning value(s) from the original aggregate.
2652 for (; i
!= LinearIndex
; ++i
)
2653 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2654 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2655 // Copy values from the inserted value(s).
2656 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
2657 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2658 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
2659 // Copy remaining value(s) from the original aggregate.
2660 for (; i
!= NumAggValues
; ++i
)
2661 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2662 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2664 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2665 DAG
.getVTList(&AggValueVTs
[0], NumAggValues
),
2666 &Values
[0], NumAggValues
));
2669 void SelectionDAGLowering::visitExtractValue(ExtractValueInst
&I
) {
2670 const Value
*Op0
= I
.getOperand(0);
2671 const Type
*AggTy
= Op0
->getType();
2672 const Type
*ValTy
= I
.getType();
2673 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
2675 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2676 I
.idx_begin(), I
.idx_end());
2678 SmallVector
<MVT
, 4> ValValueVTs
;
2679 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2681 unsigned NumValValues
= ValValueVTs
.size();
2682 SmallVector
<SDValue
, 4> Values(NumValValues
);
2684 SDValue Agg
= getValue(Op0
);
2685 // Copy out the selected value(s).
2686 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
2687 Values
[i
- LinearIndex
] =
2689 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
2690 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2692 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2693 DAG
.getVTList(&ValValueVTs
[0], NumValValues
),
2694 &Values
[0], NumValValues
));
2698 void SelectionDAGLowering::visitGetElementPtr(User
&I
) {
2699 SDValue N
= getValue(I
.getOperand(0));
2700 const Type
*Ty
= I
.getOperand(0)->getType();
2702 for (GetElementPtrInst::op_iterator OI
= I
.op_begin()+1, E
= I
.op_end();
2705 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
2706 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
2709 uint64_t Offset
= TD
->getStructLayout(StTy
)->getElementOffset(Field
);
2710 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2711 DAG
.getIntPtrConstant(Offset
));
2713 Ty
= StTy
->getElementType(Field
);
2715 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
2717 // If this is a constant subscript, handle it quickly.
2718 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
2719 if (CI
->getZExtValue() == 0) continue;
2721 TD
->getTypePaddedSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
2723 unsigned PtrBits
= TLI
.getPointerTy().getSizeInBits();
2725 OffsVal
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2727 DAG
.getConstant(Offs
, MVT::i64
));
2729 OffsVal
= DAG
.getIntPtrConstant(Offs
);
2730 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2735 // N = N + Idx * ElementSize;
2736 uint64_t ElementSize
= TD
->getTypePaddedSize(Ty
);
2737 SDValue IdxN
= getValue(Idx
);
2739 // If the index is smaller or larger than intptr_t, truncate or extend
2741 if (IdxN
.getValueType().bitsLT(N
.getValueType()))
2742 IdxN
= DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(),
2743 N
.getValueType(), IdxN
);
2744 else if (IdxN
.getValueType().bitsGT(N
.getValueType()))
2745 IdxN
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2746 N
.getValueType(), IdxN
);
2748 // If this is a multiply by a power of two, turn it into a shl
2749 // immediately. This is a very common case.
2750 if (ElementSize
!= 1) {
2751 if (isPowerOf2_64(ElementSize
)) {
2752 unsigned Amt
= Log2_64(ElementSize
);
2753 IdxN
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
2754 N
.getValueType(), IdxN
,
2755 DAG
.getConstant(Amt
, TLI
.getPointerTy()));
2757 SDValue Scale
= DAG
.getIntPtrConstant(ElementSize
);
2758 IdxN
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(),
2759 N
.getValueType(), IdxN
, Scale
);
2763 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2764 N
.getValueType(), N
, IdxN
);
2770 void SelectionDAGLowering::visitAlloca(AllocaInst
&I
) {
2771 // If this is a fixed sized alloca in the entry block of the function,
2772 // allocate it statically on the stack.
2773 if (FuncInfo
.StaticAllocaMap
.count(&I
))
2774 return; // getValue will auto-populate this.
2776 const Type
*Ty
= I
.getAllocatedType();
2777 uint64_t TySize
= TLI
.getTargetData()->getTypePaddedSize(Ty
);
2779 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
2782 SDValue AllocSize
= getValue(I
.getArraySize());
2784 AllocSize
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), AllocSize
.getValueType(),
2786 DAG
.getConstant(TySize
, AllocSize
.getValueType()));
2790 MVT IntPtr
= TLI
.getPointerTy();
2791 if (IntPtr
.bitsLT(AllocSize
.getValueType()))
2792 AllocSize
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2794 else if (IntPtr
.bitsGT(AllocSize
.getValueType()))
2795 AllocSize
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2798 // Handle alignment. If the requested alignment is less than or equal to
2799 // the stack alignment, ignore it. If the size is greater than or equal to
2800 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2801 unsigned StackAlign
=
2802 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
2803 if (Align
<= StackAlign
)
2806 // Round the size of the allocation up to the stack alignment size
2807 // by add SA-1 to the size.
2808 AllocSize
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2809 AllocSize
.getValueType(), AllocSize
,
2810 DAG
.getIntPtrConstant(StackAlign
-1));
2811 // Mask out the low bits for alignment purposes.
2812 AllocSize
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
2813 AllocSize
.getValueType(), AllocSize
,
2814 DAG
.getIntPtrConstant(~(uint64_t)(StackAlign
-1)));
2816 SDValue Ops
[] = { getRoot(), AllocSize
, DAG
.getIntPtrConstant(Align
) };
2817 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
2818 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, getCurDebugLoc(),
2821 DAG
.setRoot(DSA
.getValue(1));
2823 // Inform the Frame Information that we have just allocated a variable-sized
2825 CurMBB
->getParent()->getFrameInfo()->CreateVariableSizedObject();
2828 void SelectionDAGLowering::visitLoad(LoadInst
&I
) {
2829 const Value
*SV
= I
.getOperand(0);
2830 SDValue Ptr
= getValue(SV
);
2832 const Type
*Ty
= I
.getType();
2833 bool isVolatile
= I
.isVolatile();
2834 unsigned Alignment
= I
.getAlignment();
2836 SmallVector
<MVT
, 4> ValueVTs
;
2837 SmallVector
<uint64_t, 4> Offsets
;
2838 ComputeValueVTs(TLI
, Ty
, ValueVTs
, &Offsets
);
2839 unsigned NumValues
= ValueVTs
.size();
2844 bool ConstantMemory
= false;
2846 // Serialize volatile loads with other side effects.
2848 else if (AA
->pointsToConstantMemory(SV
)) {
2849 // Do not serialize (non-volatile) loads of constant memory with anything.
2850 Root
= DAG
.getEntryNode();
2851 ConstantMemory
= true;
2853 // Do not serialize non-volatile loads against each other.
2854 Root
= DAG
.getRoot();
2857 SmallVector
<SDValue
, 4> Values(NumValues
);
2858 SmallVector
<SDValue
, 4> Chains(NumValues
);
2859 MVT PtrVT
= Ptr
.getValueType();
2860 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
2861 SDValue L
= DAG
.getLoad(ValueVTs
[i
], getCurDebugLoc(), Root
,
2862 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2864 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2866 isVolatile
, Alignment
);
2868 Chains
[i
] = L
.getValue(1);
2871 if (!ConstantMemory
) {
2872 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2874 &Chains
[0], NumValues
);
2878 PendingLoads
.push_back(Chain
);
2881 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2882 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2883 &Values
[0], NumValues
));
2887 void SelectionDAGLowering::visitStore(StoreInst
&I
) {
2888 Value
*SrcV
= I
.getOperand(0);
2889 Value
*PtrV
= I
.getOperand(1);
2891 SmallVector
<MVT
, 4> ValueVTs
;
2892 SmallVector
<uint64_t, 4> Offsets
;
2893 ComputeValueVTs(TLI
, SrcV
->getType(), ValueVTs
, &Offsets
);
2894 unsigned NumValues
= ValueVTs
.size();
2898 // Get the lowered operands. Note that we do this after
2899 // checking if NumResults is zero, because with zero results
2900 // the operands won't have values in the map.
2901 SDValue Src
= getValue(SrcV
);
2902 SDValue Ptr
= getValue(PtrV
);
2904 SDValue Root
= getRoot();
2905 SmallVector
<SDValue
, 4> Chains(NumValues
);
2906 MVT PtrVT
= Ptr
.getValueType();
2907 bool isVolatile
= I
.isVolatile();
2908 unsigned Alignment
= I
.getAlignment();
2909 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2910 Chains
[i
] = DAG
.getStore(Root
, getCurDebugLoc(),
2911 SDValue(Src
.getNode(), Src
.getResNo() + i
),
2912 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2914 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2916 isVolatile
, Alignment
);
2918 DAG
.setRoot(DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2919 MVT::Other
, &Chains
[0], NumValues
));
2922 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2924 void SelectionDAGLowering::visitTargetIntrinsic(CallInst
&I
,
2925 unsigned Intrinsic
) {
2926 bool HasChain
= !I
.doesNotAccessMemory();
2927 bool OnlyLoad
= HasChain
&& I
.onlyReadsMemory();
2929 // Build the operand list.
2930 SmallVector
<SDValue
, 8> Ops
;
2931 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
2933 // We don't need to serialize loads against other loads.
2934 Ops
.push_back(DAG
.getRoot());
2936 Ops
.push_back(getRoot());
2940 // Info is set by getTgtMemInstrinsic
2941 TargetLowering::IntrinsicInfo Info
;
2942 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
, Intrinsic
);
2944 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2945 if (!IsTgtIntrinsic
)
2946 Ops
.push_back(DAG
.getConstant(Intrinsic
, TLI
.getPointerTy()));
2948 // Add all operands of the call to the operand list.
2949 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
2950 SDValue Op
= getValue(I
.getOperand(i
));
2951 assert(TLI
.isTypeLegal(Op
.getValueType()) &&
2952 "Intrinsic uses a non-legal type?");
2956 std::vector
<MVT
> VTArray
;
2957 if (I
.getType() != Type::VoidTy
) {
2958 MVT VT
= TLI
.getValueType(I
.getType());
2959 if (VT
.isVector()) {
2960 const VectorType
*DestTy
= cast
<VectorType
>(I
.getType());
2961 MVT EltVT
= TLI
.getValueType(DestTy
->getElementType());
2963 VT
= MVT::getVectorVT(EltVT
, DestTy
->getNumElements());
2964 assert(VT
!= MVT::Other
&& "Intrinsic uses a non-legal type?");
2967 assert(TLI
.isTypeLegal(VT
) && "Intrinsic uses a non-legal type?");
2968 VTArray
.push_back(VT
);
2971 VTArray
.push_back(MVT::Other
);
2973 SDVTList VTs
= DAG
.getVTList(&VTArray
[0], VTArray
.size());
2977 if (IsTgtIntrinsic
) {
2978 // This is target intrinsic that touches memory
2979 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurDebugLoc(),
2980 VTs
, &Ops
[0], Ops
.size(),
2981 Info
.memVT
, Info
.ptrVal
, Info
.offset
,
2982 Info
.align
, Info
.vol
,
2983 Info
.readMem
, Info
.writeMem
);
2986 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurDebugLoc(),
2987 VTs
, &Ops
[0], Ops
.size());
2988 else if (I
.getType() != Type::VoidTy
)
2989 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurDebugLoc(),
2990 VTs
, &Ops
[0], Ops
.size());
2992 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurDebugLoc(),
2993 VTs
, &Ops
[0], Ops
.size());
2996 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
2998 PendingLoads
.push_back(Chain
);
3002 if (I
.getType() != Type::VoidTy
) {
3003 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
3004 MVT VT
= TLI
.getValueType(PTy
);
3005 Result
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(), VT
, Result
);
3007 setValue(&I
, Result
);
3011 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3012 static GlobalVariable
*ExtractTypeInfo(Value
*V
) {
3013 V
= V
->stripPointerCasts();
3014 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
);
3015 assert ((GV
|| isa
<ConstantPointerNull
>(V
)) &&
3016 "TypeInfo must be a global variable or NULL");
3022 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
3023 /// call, and add them to the specified machine basic block.
3024 void AddCatchInfo(CallInst
&I
, MachineModuleInfo
*MMI
,
3025 MachineBasicBlock
*MBB
) {
3026 // Inform the MachineModuleInfo of the personality for this landing pad.
3027 ConstantExpr
*CE
= cast
<ConstantExpr
>(I
.getOperand(2));
3028 assert(CE
->getOpcode() == Instruction::BitCast
&&
3029 isa
<Function
>(CE
->getOperand(0)) &&
3030 "Personality should be a function");
3031 MMI
->addPersonality(MBB
, cast
<Function
>(CE
->getOperand(0)));
3033 // Gather all the type infos for this landing pad and pass them along to
3034 // MachineModuleInfo.
3035 std::vector
<GlobalVariable
*> TyInfo
;
3036 unsigned N
= I
.getNumOperands();
3038 for (unsigned i
= N
- 1; i
> 2; --i
) {
3039 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand(i
))) {
3040 unsigned FilterLength
= CI
->getZExtValue();
3041 unsigned FirstCatch
= i
+ FilterLength
+ !FilterLength
;
3042 assert (FirstCatch
<= N
&& "Invalid filter length");
3044 if (FirstCatch
< N
) {
3045 TyInfo
.reserve(N
- FirstCatch
);
3046 for (unsigned j
= FirstCatch
; j
< N
; ++j
)
3047 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3048 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
3052 if (!FilterLength
) {
3054 MMI
->addCleanup(MBB
);
3057 TyInfo
.reserve(FilterLength
- 1);
3058 for (unsigned j
= i
+ 1; j
< FirstCatch
; ++j
)
3059 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3060 MMI
->addFilterTypeInfo(MBB
, TyInfo
);
3069 TyInfo
.reserve(N
- 3);
3070 for (unsigned j
= 3; j
< N
; ++j
)
3071 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3072 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
3078 /// GetSignificand - Get the significand and build it into a floating-point
3079 /// number with exponent of 1:
3081 /// Op = (Op & 0x007fffff) | 0x3f800000;
3083 /// where Op is the hexidecimal representation of floating point value.
3085 GetSignificand(SelectionDAG
&DAG
, SDValue Op
, DebugLoc dl
) {
3086 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3087 DAG
.getConstant(0x007fffff, MVT::i32
));
3088 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
3089 DAG
.getConstant(0x3f800000, MVT::i32
));
3090 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t2
);
3093 /// GetExponent - Get the exponent:
3095 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3097 /// where Op is the hexidecimal representation of floating point value.
3099 GetExponent(SelectionDAG
&DAG
, SDValue Op
, const TargetLowering
&TLI
,
3101 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3102 DAG
.getConstant(0x7f800000, MVT::i32
));
3103 SDValue t1
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, t0
,
3104 DAG
.getConstant(23, TLI
.getPointerTy()));
3105 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
3106 DAG
.getConstant(127, MVT::i32
));
3107 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
3110 /// getF32Constant - Get 32-bit floating point constant.
3112 getF32Constant(SelectionDAG
&DAG
, unsigned Flt
) {
3113 return DAG
.getConstantFP(APFloat(APInt(32, Flt
)), MVT::f32
);
3116 /// Inlined utility function to implement binary input atomic intrinsics for
3117 /// visitIntrinsicCall: I is a call instruction
3118 /// Op is the associated NodeType for I
3120 SelectionDAGLowering::implVisitBinaryAtomic(CallInst
& I
, ISD::NodeType Op
) {
3121 SDValue Root
= getRoot();
3123 DAG
.getAtomic(Op
, getCurDebugLoc(),
3124 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
3126 getValue(I
.getOperand(1)),
3127 getValue(I
.getOperand(2)),
3130 DAG
.setRoot(L
.getValue(1));
3134 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3136 SelectionDAGLowering::implVisitAluOverflow(CallInst
&I
, ISD::NodeType Op
) {
3137 SDValue Op1
= getValue(I
.getOperand(1));
3138 SDValue Op2
= getValue(I
.getOperand(2));
3140 SDVTList VTs
= DAG
.getVTList(Op1
.getValueType(), MVT::i1
);
3141 SDValue Result
= DAG
.getNode(Op
, getCurDebugLoc(), VTs
, Op1
, Op2
);
3143 setValue(&I
, Result
);
3147 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3148 /// limited-precision mode.
3150 SelectionDAGLowering::visitExp(CallInst
&I
) {
3152 DebugLoc dl
= getCurDebugLoc();
3154 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3155 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3156 SDValue Op
= getValue(I
.getOperand(1));
3158 // Put the exponent in the right bit position for later addition to the
3161 // #define LOG2OFe 1.4426950f
3162 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3163 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3164 getF32Constant(DAG
, 0x3fb8aa3b));
3165 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3167 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3168 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3169 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3171 // IntegerPartOfX <<= 23;
3172 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3173 DAG
.getConstant(23, TLI
.getPointerTy()));
3175 if (LimitFloatPrecision
<= 6) {
3176 // For floating-point precision of 6:
3178 // TwoToFractionalPartOfX =
3180 // (0.735607626f + 0.252464424f * x) * x;
3182 // error 0.0144103317, which is 6 bits
3183 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3184 getF32Constant(DAG
, 0x3e814304));
3185 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3186 getF32Constant(DAG
, 0x3f3c50c8));
3187 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3188 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3189 getF32Constant(DAG
, 0x3f7f5e7e));
3190 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t5
);
3192 // Add the exponent into the result in integer domain.
3193 SDValue t6
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3194 TwoToFracPartOfX
, IntegerPartOfX
);
3196 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t6
);
3197 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3198 // For floating-point precision of 12:
3200 // TwoToFractionalPartOfX =
3203 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3205 // 0.000107046256 error, which is 13 to 14 bits
3206 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3207 getF32Constant(DAG
, 0x3da235e3));
3208 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3209 getF32Constant(DAG
, 0x3e65b8f3));
3210 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3211 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3212 getF32Constant(DAG
, 0x3f324b07));
3213 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3214 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3215 getF32Constant(DAG
, 0x3f7ff8fd));
3216 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t7
);
3218 // Add the exponent into the result in integer domain.
3219 SDValue t8
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3220 TwoToFracPartOfX
, IntegerPartOfX
);
3222 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t8
);
3223 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3224 // For floating-point precision of 18:
3226 // TwoToFractionalPartOfX =
3230 // (0.554906021e-1f +
3231 // (0.961591928e-2f +
3232 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3234 // error 2.47208000*10^(-7), which is better than 18 bits
3235 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3236 getF32Constant(DAG
, 0x3924b03e));
3237 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3238 getF32Constant(DAG
, 0x3ab24b87));
3239 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3240 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3241 getF32Constant(DAG
, 0x3c1d8c17));
3242 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3243 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3244 getF32Constant(DAG
, 0x3d634a1d));
3245 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3246 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3247 getF32Constant(DAG
, 0x3e75fe14));
3248 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3249 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3250 getF32Constant(DAG
, 0x3f317234));
3251 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3252 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3253 getF32Constant(DAG
, 0x3f800000));
3254 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3257 // Add the exponent into the result in integer domain.
3258 SDValue t14
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3259 TwoToFracPartOfX
, IntegerPartOfX
);
3261 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t14
);
3264 // No special expansion.
3265 result
= DAG
.getNode(ISD::FEXP
, dl
,
3266 getValue(I
.getOperand(1)).getValueType(),
3267 getValue(I
.getOperand(1)));
3270 setValue(&I
, result
);
3273 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3274 /// limited-precision mode.
3276 SelectionDAGLowering::visitLog(CallInst
&I
) {
3278 DebugLoc dl
= getCurDebugLoc();
3280 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3281 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3282 SDValue Op
= getValue(I
.getOperand(1));
3283 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3285 // Scale the exponent by log(2) [0.69314718f].
3286 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3287 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3288 getF32Constant(DAG
, 0x3f317218));
3290 // Get the significand and build it into a floating-point number with
3292 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3294 if (LimitFloatPrecision
<= 6) {
3295 // For floating-point precision of 6:
3299 // (1.4034025f - 0.23903021f * x) * x;
3301 // error 0.0034276066, which is better than 8 bits
3302 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3303 getF32Constant(DAG
, 0xbe74c456));
3304 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3305 getF32Constant(DAG
, 0x3fb3a2b1));
3306 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3307 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3308 getF32Constant(DAG
, 0x3f949a29));
3310 result
= DAG
.getNode(ISD::FADD
, dl
,
3311 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3312 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3313 // For floating-point precision of 12:
3319 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3321 // error 0.000061011436, which is 14 bits
3322 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3323 getF32Constant(DAG
, 0xbd67b6d6));
3324 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3325 getF32Constant(DAG
, 0x3ee4f4b8));
3326 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3327 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3328 getF32Constant(DAG
, 0x3fbc278b));
3329 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3330 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3331 getF32Constant(DAG
, 0x40348e95));
3332 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3333 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3334 getF32Constant(DAG
, 0x3fdef31a));
3336 result
= DAG
.getNode(ISD::FADD
, dl
,
3337 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3338 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3339 // For floating-point precision of 18:
3347 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3349 // error 0.0000023660568, which is better than 18 bits
3350 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3351 getF32Constant(DAG
, 0xbc91e5ac));
3352 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3353 getF32Constant(DAG
, 0x3e4350aa));
3354 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3355 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3356 getF32Constant(DAG
, 0x3f60d3e3));
3357 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3358 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3359 getF32Constant(DAG
, 0x4011cdf0));
3360 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3361 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3362 getF32Constant(DAG
, 0x406cfd1c));
3363 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3364 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3365 getF32Constant(DAG
, 0x408797cb));
3366 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3367 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3368 getF32Constant(DAG
, 0x4006dcab));
3370 result
= DAG
.getNode(ISD::FADD
, dl
,
3371 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3374 // No special expansion.
3375 result
= DAG
.getNode(ISD::FLOG
, dl
,
3376 getValue(I
.getOperand(1)).getValueType(),
3377 getValue(I
.getOperand(1)));
3380 setValue(&I
, result
);
3383 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3384 /// limited-precision mode.
3386 SelectionDAGLowering::visitLog2(CallInst
&I
) {
3388 DebugLoc dl
= getCurDebugLoc();
3390 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3391 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3392 SDValue Op
= getValue(I
.getOperand(1));
3393 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3395 // Get the exponent.
3396 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
3398 // Get the significand and build it into a floating-point number with
3400 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3402 // Different possible minimax approximations of significand in
3403 // floating-point for various degrees of accuracy over [1,2].
3404 if (LimitFloatPrecision
<= 6) {
3405 // For floating-point precision of 6:
3407 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3409 // error 0.0049451742, which is more than 7 bits
3410 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3411 getF32Constant(DAG
, 0xbeb08fe0));
3412 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3413 getF32Constant(DAG
, 0x40019463));
3414 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3415 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3416 getF32Constant(DAG
, 0x3fd6633d));
3418 result
= DAG
.getNode(ISD::FADD
, dl
,
3419 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3420 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3421 // For floating-point precision of 12:
3427 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3429 // error 0.0000876136000, which is better than 13 bits
3430 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3431 getF32Constant(DAG
, 0xbda7262e));
3432 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3433 getF32Constant(DAG
, 0x3f25280b));
3434 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3435 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3436 getF32Constant(DAG
, 0x4007b923));
3437 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3438 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3439 getF32Constant(DAG
, 0x40823e2f));
3440 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3441 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3442 getF32Constant(DAG
, 0x4020d29c));
3444 result
= DAG
.getNode(ISD::FADD
, dl
,
3445 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3446 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3447 // For floating-point precision of 18:
3456 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3458 // error 0.0000018516, which is better than 18 bits
3459 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3460 getF32Constant(DAG
, 0xbcd2769e));
3461 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3462 getF32Constant(DAG
, 0x3e8ce0b9));
3463 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3464 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3465 getF32Constant(DAG
, 0x3fa22ae7));
3466 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3467 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3468 getF32Constant(DAG
, 0x40525723));
3469 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3470 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3471 getF32Constant(DAG
, 0x40aaf200));
3472 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3473 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3474 getF32Constant(DAG
, 0x40c39dad));
3475 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3476 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3477 getF32Constant(DAG
, 0x4042902c));
3479 result
= DAG
.getNode(ISD::FADD
, dl
,
3480 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3483 // No special expansion.
3484 result
= DAG
.getNode(ISD::FLOG2
, dl
,
3485 getValue(I
.getOperand(1)).getValueType(),
3486 getValue(I
.getOperand(1)));
3489 setValue(&I
, result
);
3492 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3493 /// limited-precision mode.
3495 SelectionDAGLowering::visitLog10(CallInst
&I
) {
3497 DebugLoc dl
= getCurDebugLoc();
3499 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3500 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3501 SDValue Op
= getValue(I
.getOperand(1));
3502 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3504 // Scale the exponent by log10(2) [0.30102999f].
3505 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3506 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3507 getF32Constant(DAG
, 0x3e9a209a));
3509 // Get the significand and build it into a floating-point number with
3511 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3513 if (LimitFloatPrecision
<= 6) {
3514 // For floating-point precision of 6:
3516 // Log10ofMantissa =
3518 // (0.60948995f - 0.10380950f * x) * x;
3520 // error 0.0014886165, which is 6 bits
3521 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3522 getF32Constant(DAG
, 0xbdd49a13));
3523 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3524 getF32Constant(DAG
, 0x3f1c0789));
3525 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3526 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3527 getF32Constant(DAG
, 0x3f011300));
3529 result
= DAG
.getNode(ISD::FADD
, dl
,
3530 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3531 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3532 // For floating-point precision of 12:
3534 // Log10ofMantissa =
3537 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3539 // error 0.00019228036, which is better than 12 bits
3540 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3541 getF32Constant(DAG
, 0x3d431f31));
3542 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3543 getF32Constant(DAG
, 0x3ea21fb2));
3544 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3545 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3546 getF32Constant(DAG
, 0x3f6ae232));
3547 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3548 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3549 getF32Constant(DAG
, 0x3f25f7c3));
3551 result
= DAG
.getNode(ISD::FADD
, dl
,
3552 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3553 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3554 // For floating-point precision of 18:
3556 // Log10ofMantissa =
3561 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3563 // error 0.0000037995730, which is better than 18 bits
3564 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3565 getF32Constant(DAG
, 0x3c5d51ce));
3566 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3567 getF32Constant(DAG
, 0x3e00685a));
3568 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3569 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3570 getF32Constant(DAG
, 0x3efb6798));
3571 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3572 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3573 getF32Constant(DAG
, 0x3f88d192));
3574 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3575 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3576 getF32Constant(DAG
, 0x3fc4316c));
3577 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3578 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
3579 getF32Constant(DAG
, 0x3f57ce70));
3581 result
= DAG
.getNode(ISD::FADD
, dl
,
3582 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3585 // No special expansion.
3586 result
= DAG
.getNode(ISD::FLOG10
, dl
,
3587 getValue(I
.getOperand(1)).getValueType(),
3588 getValue(I
.getOperand(1)));
3591 setValue(&I
, result
);
3594 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3595 /// limited-precision mode.
3597 SelectionDAGLowering::visitExp2(CallInst
&I
) {
3599 DebugLoc dl
= getCurDebugLoc();
3601 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3602 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3603 SDValue Op
= getValue(I
.getOperand(1));
3605 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Op
);
3607 // FractionalPartOfX = x - (float)IntegerPartOfX;
3608 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3609 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, Op
, t1
);
3611 // IntegerPartOfX <<= 23;
3612 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3613 DAG
.getConstant(23, TLI
.getPointerTy()));
3615 if (LimitFloatPrecision
<= 6) {
3616 // For floating-point precision of 6:
3618 // TwoToFractionalPartOfX =
3620 // (0.735607626f + 0.252464424f * x) * x;
3622 // error 0.0144103317, which is 6 bits
3623 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3624 getF32Constant(DAG
, 0x3e814304));
3625 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3626 getF32Constant(DAG
, 0x3f3c50c8));
3627 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3628 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3629 getF32Constant(DAG
, 0x3f7f5e7e));
3630 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3631 SDValue TwoToFractionalPartOfX
=
3632 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3634 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3635 MVT::f32
, TwoToFractionalPartOfX
);
3636 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3637 // For floating-point precision of 12:
3639 // TwoToFractionalPartOfX =
3642 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3644 // error 0.000107046256, which is 13 to 14 bits
3645 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3646 getF32Constant(DAG
, 0x3da235e3));
3647 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3648 getF32Constant(DAG
, 0x3e65b8f3));
3649 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3650 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3651 getF32Constant(DAG
, 0x3f324b07));
3652 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3653 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3654 getF32Constant(DAG
, 0x3f7ff8fd));
3655 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3656 SDValue TwoToFractionalPartOfX
=
3657 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3659 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3660 MVT::f32
, TwoToFractionalPartOfX
);
3661 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3662 // For floating-point precision of 18:
3664 // TwoToFractionalPartOfX =
3668 // (0.554906021e-1f +
3669 // (0.961591928e-2f +
3670 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3671 // error 2.47208000*10^(-7), which is better than 18 bits
3672 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3673 getF32Constant(DAG
, 0x3924b03e));
3674 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3675 getF32Constant(DAG
, 0x3ab24b87));
3676 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3677 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3678 getF32Constant(DAG
, 0x3c1d8c17));
3679 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3680 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3681 getF32Constant(DAG
, 0x3d634a1d));
3682 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3683 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3684 getF32Constant(DAG
, 0x3e75fe14));
3685 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3686 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3687 getF32Constant(DAG
, 0x3f317234));
3688 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3689 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3690 getF32Constant(DAG
, 0x3f800000));
3691 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3692 SDValue TwoToFractionalPartOfX
=
3693 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3695 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3696 MVT::f32
, TwoToFractionalPartOfX
);
3699 // No special expansion.
3700 result
= DAG
.getNode(ISD::FEXP2
, dl
,
3701 getValue(I
.getOperand(1)).getValueType(),
3702 getValue(I
.getOperand(1)));
3705 setValue(&I
, result
);
3708 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3709 /// limited-precision mode with x == 10.0f.
3711 SelectionDAGLowering::visitPow(CallInst
&I
) {
3713 Value
*Val
= I
.getOperand(1);
3714 DebugLoc dl
= getCurDebugLoc();
3715 bool IsExp10
= false;
3717 if (getValue(Val
).getValueType() == MVT::f32
&&
3718 getValue(I
.getOperand(2)).getValueType() == MVT::f32
&&
3719 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3720 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(Val
))) {
3721 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
3723 IsExp10
= CFP
->getValueAPF().bitwiseIsEqual(Ten
);
3728 if (IsExp10
&& LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3729 SDValue Op
= getValue(I
.getOperand(2));
3731 // Put the exponent in the right bit position for later addition to the
3734 // #define LOG2OF10 3.3219281f
3735 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3736 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3737 getF32Constant(DAG
, 0x40549a78));
3738 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3740 // FractionalPartOfX = x - (float)IntegerPartOfX;
3741 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3742 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3744 // IntegerPartOfX <<= 23;
3745 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3746 DAG
.getConstant(23, TLI
.getPointerTy()));
3748 if (LimitFloatPrecision
<= 6) {
3749 // For floating-point precision of 6:
3751 // twoToFractionalPartOfX =
3753 // (0.735607626f + 0.252464424f * x) * x;
3755 // error 0.0144103317, which is 6 bits
3756 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3757 getF32Constant(DAG
, 0x3e814304));
3758 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3759 getF32Constant(DAG
, 0x3f3c50c8));
3760 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3761 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3762 getF32Constant(DAG
, 0x3f7f5e7e));
3763 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3764 SDValue TwoToFractionalPartOfX
=
3765 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3767 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3768 MVT::f32
, TwoToFractionalPartOfX
);
3769 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3770 // For floating-point precision of 12:
3772 // TwoToFractionalPartOfX =
3775 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3777 // error 0.000107046256, which is 13 to 14 bits
3778 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3779 getF32Constant(DAG
, 0x3da235e3));
3780 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3781 getF32Constant(DAG
, 0x3e65b8f3));
3782 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3783 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3784 getF32Constant(DAG
, 0x3f324b07));
3785 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3786 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3787 getF32Constant(DAG
, 0x3f7ff8fd));
3788 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3789 SDValue TwoToFractionalPartOfX
=
3790 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3792 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3793 MVT::f32
, TwoToFractionalPartOfX
);
3794 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3795 // For floating-point precision of 18:
3797 // TwoToFractionalPartOfX =
3801 // (0.554906021e-1f +
3802 // (0.961591928e-2f +
3803 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3804 // error 2.47208000*10^(-7), which is better than 18 bits
3805 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3806 getF32Constant(DAG
, 0x3924b03e));
3807 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3808 getF32Constant(DAG
, 0x3ab24b87));
3809 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3810 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3811 getF32Constant(DAG
, 0x3c1d8c17));
3812 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3813 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3814 getF32Constant(DAG
, 0x3d634a1d));
3815 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3816 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3817 getF32Constant(DAG
, 0x3e75fe14));
3818 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3819 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3820 getF32Constant(DAG
, 0x3f317234));
3821 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3822 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3823 getF32Constant(DAG
, 0x3f800000));
3824 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3825 SDValue TwoToFractionalPartOfX
=
3826 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3828 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3829 MVT::f32
, TwoToFractionalPartOfX
);
3832 // No special expansion.
3833 result
= DAG
.getNode(ISD::FPOW
, dl
,
3834 getValue(I
.getOperand(1)).getValueType(),
3835 getValue(I
.getOperand(1)),
3836 getValue(I
.getOperand(2)));
3839 setValue(&I
, result
);
3842 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3843 /// we want to emit this as a call to a named external function, return the name
3844 /// otherwise lower it and return null.
3846 SelectionDAGLowering::visitIntrinsicCall(CallInst
&I
, unsigned Intrinsic
) {
3847 DebugLoc dl
= getCurDebugLoc();
3848 switch (Intrinsic
) {
3850 // By default, turn this into a target intrinsic node.
3851 visitTargetIntrinsic(I
, Intrinsic
);
3853 case Intrinsic::vastart
: visitVAStart(I
); return 0;
3854 case Intrinsic::vaend
: visitVAEnd(I
); return 0;
3855 case Intrinsic::vacopy
: visitVACopy(I
); return 0;
3856 case Intrinsic::returnaddress
:
3857 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, dl
, TLI
.getPointerTy(),
3858 getValue(I
.getOperand(1))));
3860 case Intrinsic::frameaddress
:
3861 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(),
3862 getValue(I
.getOperand(1))));
3864 case Intrinsic::setjmp
:
3865 return "_setjmp"+!TLI
.usesUnderscoreSetJmp();
3867 case Intrinsic::longjmp
:
3868 return "_longjmp"+!TLI
.usesUnderscoreLongJmp();
3870 case Intrinsic::memcpy
: {
3871 SDValue Op1
= getValue(I
.getOperand(1));
3872 SDValue Op2
= getValue(I
.getOperand(2));
3873 SDValue Op3
= getValue(I
.getOperand(3));
3874 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3875 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3876 I
.getOperand(1), 0, I
.getOperand(2), 0));
3879 case Intrinsic::memset
: {
3880 SDValue Op1
= getValue(I
.getOperand(1));
3881 SDValue Op2
= getValue(I
.getOperand(2));
3882 SDValue Op3
= getValue(I
.getOperand(3));
3883 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3884 DAG
.setRoot(DAG
.getMemset(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3885 I
.getOperand(1), 0));
3888 case Intrinsic::memmove
: {
3889 SDValue Op1
= getValue(I
.getOperand(1));
3890 SDValue Op2
= getValue(I
.getOperand(2));
3891 SDValue Op3
= getValue(I
.getOperand(3));
3892 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3894 // If the source and destination are known to not be aliases, we can
3895 // lower memmove as memcpy.
3896 uint64_t Size
= -1ULL;
3897 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op3
))
3898 Size
= C
->getZExtValue();
3899 if (AA
->alias(I
.getOperand(1), Size
, I
.getOperand(2), Size
) ==
3900 AliasAnalysis::NoAlias
) {
3901 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3902 I
.getOperand(1), 0, I
.getOperand(2), 0));
3906 DAG
.setRoot(DAG
.getMemmove(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3907 I
.getOperand(1), 0, I
.getOperand(2), 0));
3910 case Intrinsic::dbg_stoppoint
: {
3911 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3912 DbgStopPointInst
&SPI
= cast
<DbgStopPointInst
>(I
);
3913 if (DW
&& DW
->ValidDebugInfo(SPI
.getContext(), Fast
)) {
3914 MachineFunction
&MF
= DAG
.getMachineFunction();
3916 DAG
.setRoot(DAG
.getDbgStopPoint(getRoot(),
3920 DICompileUnit
CU(cast
<GlobalVariable
>(SPI
.getContext()));
3921 std::string Dir
, FN
;
3922 unsigned SrcFile
= DW
->getOrCreateSourceID(CU
.getDirectory(Dir
),
3923 CU
.getFilename(FN
));
3924 unsigned idx
= MF
.getOrCreateDebugLocID(SrcFile
,
3925 SPI
.getLine(), SPI
.getColumn());
3926 setCurDebugLoc(DebugLoc::get(idx
));
3930 case Intrinsic::dbg_region_start
: {
3931 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3932 DbgRegionStartInst
&RSI
= cast
<DbgRegionStartInst
>(I
);
3933 if (DW
&& DW
->ValidDebugInfo(RSI
.getContext(), Fast
)) {
3935 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
.getContext()));
3936 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3937 getRoot(), LabelID
));
3942 case Intrinsic::dbg_region_end
: {
3943 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3944 DbgRegionEndInst
&REI
= cast
<DbgRegionEndInst
>(I
);
3945 if (DW
&& DW
->ValidDebugInfo(REI
.getContext(), Fast
)) {
3947 MachineFunction
&MF
= DAG
.getMachineFunction();
3948 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
.getContext()));
3950 Subprogram
.getLinkageName(SPName
);
3952 && strcmp(SPName
.c_str(), MF
.getFunction()->getNameStart())) {
3953 // This is end of inlined function. Debugging information for
3954 // inlined function is not handled yet (only supported by FastISel).
3956 unsigned ID
= DW
->RecordInlinedFnEnd(Subprogram
);
3958 // Returned ID is 0 if this is unbalanced "end of inlined
3959 // scope". This could happen if optimizer eats dbg intrinsics
3960 // or "beginning of inlined scope" is not recoginized due to
3961 // missing location info. In such cases, do ignore this region.end.
3962 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3969 DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
.getContext()));
3970 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3971 getRoot(), LabelID
));
3976 case Intrinsic::dbg_func_start
: {
3977 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3979 DbgFuncStartInst
&FSI
= cast
<DbgFuncStartInst
>(I
);
3980 Value
*SP
= FSI
.getSubprogram();
3981 if (SP
&& DW
->ValidDebugInfo(SP
, Fast
)) {
3982 MachineFunction
&MF
= DAG
.getMachineFunction();
3984 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
3985 // (most?) gdb expects.
3986 DebugLoc PrevLoc
= CurDebugLoc
;
3987 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
3988 DICompileUnit CompileUnit
= Subprogram
.getCompileUnit();
3989 std::string Dir
, FN
;
3990 unsigned SrcFile
= DW
->getOrCreateSourceID(CompileUnit
.getDirectory(Dir
),
3991 CompileUnit
.getFilename(FN
));
3993 if (!Subprogram
.describes(MF
.getFunction())) {
3994 // This is a beginning of an inlined function.
3996 // If llvm.dbg.func.start is seen in a new block before any
3997 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
3998 // FIXME : Why DebugLoc is reset at the beginning of each block ?
3999 if (PrevLoc
.isUnknown())
4002 // Record the source line.
4003 unsigned Line
= Subprogram
.getLineNumber();
4004 unsigned LabelID
= DW
->RecordSourceLine(Line
, 0, SrcFile
);
4005 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(SrcFile
, Line
, 0)));
4007 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
4008 getRoot(), LabelID
));
4009 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
4010 DW
->RecordInlinedFnStart(&FSI
, Subprogram
, LabelID
,
4015 // Record the source line.
4016 unsigned Line
= Subprogram
.getLineNumber();
4017 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(SrcFile
, Line
, 0)));
4018 DW
->RecordSourceLine(Line
, 0, SrcFile
);
4019 // llvm.dbg.func_start also defines beginning of function scope.
4020 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
.getSubprogram()));
4023 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
4026 Subprogram
.getLinkageName(SPName
);
4028 && strcmp(SPName
.c_str(), MF
.getFunction()->getNameStart())) {
4029 // This is beginning of inlined function. Debugging information for
4030 // inlined function is not handled yet (only supported by FastISel).
4034 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
4035 // what (most?) gdb expects.
4036 DICompileUnit CompileUnit
= Subprogram
.getCompileUnit();
4037 std::string Dir
, FN
;
4038 unsigned SrcFile
= DW
->getOrCreateSourceID(CompileUnit
.getDirectory(Dir
),
4039 CompileUnit
.getFilename(FN
));
4041 // Record the source line but does not create a label for the normal
4042 // function start. It will be emitted at asm emission time. However,
4043 // create a label if this is a beginning of inlined function.
4044 unsigned Line
= Subprogram
.getLineNumber();
4045 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(SrcFile
, Line
, 0)));
4046 // FIXME - Start new region because llvm.dbg.func_start also defines
4047 // beginning of function scope.
4053 case Intrinsic::dbg_declare
: {
4055 DwarfWriter
*DW
= DAG
.getDwarfWriter();
4056 DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(I
);
4057 Value
*Variable
= DI
.getVariable();
4058 if (DW
&& DW
->ValidDebugInfo(Variable
, Fast
))
4059 DAG
.setRoot(DAG
.getNode(ISD::DECLARE
, dl
, MVT::Other
, getRoot(),
4060 getValue(DI
.getAddress()), getValue(Variable
)));
4062 // FIXME: Do something sensible here when we support debug declare.
4066 case Intrinsic::eh_exception
: {
4067 if (!CurMBB
->isLandingPad()) {
4068 // FIXME: Mark exception register as live in. Hack for PR1508.
4069 unsigned Reg
= TLI
.getExceptionAddressRegister();
4070 if (Reg
) CurMBB
->addLiveIn(Reg
);
4072 // Insert the EXCEPTIONADDR instruction.
4073 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
4075 Ops
[0] = DAG
.getRoot();
4076 SDValue Op
= DAG
.getNode(ISD::EXCEPTIONADDR
, dl
, VTs
, Ops
, 1);
4078 DAG
.setRoot(Op
.getValue(1));
4082 case Intrinsic::eh_selector_i32
:
4083 case Intrinsic::eh_selector_i64
: {
4084 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4085 MVT VT
= (Intrinsic
== Intrinsic::eh_selector_i32
?
4086 MVT::i32
: MVT::i64
);
4089 if (CurMBB
->isLandingPad())
4090 AddCatchInfo(I
, MMI
, CurMBB
);
4093 FuncInfo
.CatchInfoLost
.insert(&I
);
4095 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4096 unsigned Reg
= TLI
.getExceptionSelectorRegister();
4097 if (Reg
) CurMBB
->addLiveIn(Reg
);
4100 // Insert the EHSELECTION instruction.
4101 SDVTList VTs
= DAG
.getVTList(VT
, MVT::Other
);
4103 Ops
[0] = getValue(I
.getOperand(1));
4105 SDValue Op
= DAG
.getNode(ISD::EHSELECTION
, dl
, VTs
, Ops
, 2);
4107 DAG
.setRoot(Op
.getValue(1));
4109 setValue(&I
, DAG
.getConstant(0, VT
));
4115 case Intrinsic::eh_typeid_for_i32
:
4116 case Intrinsic::eh_typeid_for_i64
: {
4117 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4118 MVT VT
= (Intrinsic
== Intrinsic::eh_typeid_for_i32
?
4119 MVT::i32
: MVT::i64
);
4122 // Find the type id for the given typeinfo.
4123 GlobalVariable
*GV
= ExtractTypeInfo(I
.getOperand(1));
4125 unsigned TypeID
= MMI
->getTypeIDFor(GV
);
4126 setValue(&I
, DAG
.getConstant(TypeID
, VT
));
4128 // Return something different to eh_selector.
4129 setValue(&I
, DAG
.getConstant(1, VT
));
4135 case Intrinsic::eh_return_i32
:
4136 case Intrinsic::eh_return_i64
:
4137 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4138 MMI
->setCallsEHReturn(true);
4139 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, dl
,
4142 getValue(I
.getOperand(1)),
4143 getValue(I
.getOperand(2))));
4145 setValue(&I
, DAG
.getConstant(0, TLI
.getPointerTy()));
4149 case Intrinsic::eh_unwind_init
:
4150 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4151 MMI
->setCallsUnwindInit(true);
4156 case Intrinsic::eh_dwarf_cfa
: {
4157 MVT VT
= getValue(I
.getOperand(1)).getValueType();
4159 if (VT
.bitsGT(TLI
.getPointerTy()))
4160 CfaArg
= DAG
.getNode(ISD::TRUNCATE
, dl
,
4161 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4163 CfaArg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
,
4164 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4166 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
4168 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
4169 TLI
.getPointerTy()),
4171 setValue(&I
, DAG
.getNode(ISD::ADD
, dl
,
4173 DAG
.getNode(ISD::FRAMEADDR
, dl
,
4176 TLI
.getPointerTy())),
4181 case Intrinsic::convertff
:
4182 case Intrinsic::convertfsi
:
4183 case Intrinsic::convertfui
:
4184 case Intrinsic::convertsif
:
4185 case Intrinsic::convertuif
:
4186 case Intrinsic::convertss
:
4187 case Intrinsic::convertsu
:
4188 case Intrinsic::convertus
:
4189 case Intrinsic::convertuu
: {
4190 ISD::CvtCode Code
= ISD::CVT_INVALID
;
4191 switch (Intrinsic
) {
4192 case Intrinsic::convertff
: Code
= ISD::CVT_FF
; break;
4193 case Intrinsic::convertfsi
: Code
= ISD::CVT_FS
; break;
4194 case Intrinsic::convertfui
: Code
= ISD::CVT_FU
; break;
4195 case Intrinsic::convertsif
: Code
= ISD::CVT_SF
; break;
4196 case Intrinsic::convertuif
: Code
= ISD::CVT_UF
; break;
4197 case Intrinsic::convertss
: Code
= ISD::CVT_SS
; break;
4198 case Intrinsic::convertsu
: Code
= ISD::CVT_SU
; break;
4199 case Intrinsic::convertus
: Code
= ISD::CVT_US
; break;
4200 case Intrinsic::convertuu
: Code
= ISD::CVT_UU
; break;
4202 MVT DestVT
= TLI
.getValueType(I
.getType());
4203 Value
* Op1
= I
.getOperand(1);
4204 setValue(&I
, DAG
.getConvertRndSat(DestVT
, getCurDebugLoc(), getValue(Op1
),
4205 DAG
.getValueType(DestVT
),
4206 DAG
.getValueType(getValue(Op1
).getValueType()),
4207 getValue(I
.getOperand(2)),
4208 getValue(I
.getOperand(3)),
4213 case Intrinsic::sqrt
:
4214 setValue(&I
, DAG
.getNode(ISD::FSQRT
, dl
,
4215 getValue(I
.getOperand(1)).getValueType(),
4216 getValue(I
.getOperand(1))));
4218 case Intrinsic::powi
:
4219 setValue(&I
, DAG
.getNode(ISD::FPOWI
, dl
,
4220 getValue(I
.getOperand(1)).getValueType(),
4221 getValue(I
.getOperand(1)),
4222 getValue(I
.getOperand(2))));
4224 case Intrinsic::sin
:
4225 setValue(&I
, DAG
.getNode(ISD::FSIN
, dl
,
4226 getValue(I
.getOperand(1)).getValueType(),
4227 getValue(I
.getOperand(1))));
4229 case Intrinsic::cos
:
4230 setValue(&I
, DAG
.getNode(ISD::FCOS
, dl
,
4231 getValue(I
.getOperand(1)).getValueType(),
4232 getValue(I
.getOperand(1))));
4234 case Intrinsic::log
:
4237 case Intrinsic::log2
:
4240 case Intrinsic::log10
:
4243 case Intrinsic::exp
:
4246 case Intrinsic::exp2
:
4249 case Intrinsic::pow
:
4252 case Intrinsic::pcmarker
: {
4253 SDValue Tmp
= getValue(I
.getOperand(1));
4254 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, dl
, MVT::Other
, getRoot(), Tmp
));
4257 case Intrinsic::readcyclecounter
: {
4258 SDValue Op
= getRoot();
4259 SDValue Tmp
= DAG
.getNode(ISD::READCYCLECOUNTER
, dl
,
4260 DAG
.getVTList(MVT::i64
, MVT::Other
),
4263 DAG
.setRoot(Tmp
.getValue(1));
4266 case Intrinsic::part_select
: {
4267 // Currently not implemented: just abort
4268 assert(0 && "part_select intrinsic not implemented");
4271 case Intrinsic::part_set
: {
4272 // Currently not implemented: just abort
4273 assert(0 && "part_set intrinsic not implemented");
4276 case Intrinsic::bswap
:
4277 setValue(&I
, DAG
.getNode(ISD::BSWAP
, dl
,
4278 getValue(I
.getOperand(1)).getValueType(),
4279 getValue(I
.getOperand(1))));
4281 case Intrinsic::cttz
: {
4282 SDValue Arg
= getValue(I
.getOperand(1));
4283 MVT Ty
= Arg
.getValueType();
4284 SDValue result
= DAG
.getNode(ISD::CTTZ
, dl
, Ty
, Arg
);
4285 setValue(&I
, result
);
4288 case Intrinsic::ctlz
: {
4289 SDValue Arg
= getValue(I
.getOperand(1));
4290 MVT Ty
= Arg
.getValueType();
4291 SDValue result
= DAG
.getNode(ISD::CTLZ
, dl
, Ty
, Arg
);
4292 setValue(&I
, result
);
4295 case Intrinsic::ctpop
: {
4296 SDValue Arg
= getValue(I
.getOperand(1));
4297 MVT Ty
= Arg
.getValueType();
4298 SDValue result
= DAG
.getNode(ISD::CTPOP
, dl
, Ty
, Arg
);
4299 setValue(&I
, result
);
4302 case Intrinsic::stacksave
: {
4303 SDValue Op
= getRoot();
4304 SDValue Tmp
= DAG
.getNode(ISD::STACKSAVE
, dl
,
4305 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
), &Op
, 1);
4307 DAG
.setRoot(Tmp
.getValue(1));
4310 case Intrinsic::stackrestore
: {
4311 SDValue Tmp
= getValue(I
.getOperand(1));
4312 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, dl
, MVT::Other
, getRoot(), Tmp
));
4315 case Intrinsic::stackprotector
: {
4316 // Emit code into the DAG to store the stack guard onto the stack.
4317 MachineFunction
&MF
= DAG
.getMachineFunction();
4318 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
4319 MVT PtrTy
= TLI
.getPointerTy();
4321 SDValue Src
= getValue(I
.getOperand(1)); // The guard's value.
4322 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getOperand(2));
4324 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
4325 MFI
->setStackProtectorIndex(FI
);
4327 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4329 // Store the stack protector onto the stack.
4330 SDValue Result
= DAG
.getStore(getRoot(), getCurDebugLoc(), Src
, FIN
,
4331 PseudoSourceValue::getFixedStack(FI
),
4333 setValue(&I
, Result
);
4334 DAG
.setRoot(Result
);
4337 case Intrinsic::var_annotation
:
4338 // Discard annotate attributes
4341 case Intrinsic::init_trampoline
: {
4342 const Function
*F
= cast
<Function
>(I
.getOperand(2)->stripPointerCasts());
4346 Ops
[1] = getValue(I
.getOperand(1));
4347 Ops
[2] = getValue(I
.getOperand(2));
4348 Ops
[3] = getValue(I
.getOperand(3));
4349 Ops
[4] = DAG
.getSrcValue(I
.getOperand(1));
4350 Ops
[5] = DAG
.getSrcValue(F
);
4352 SDValue Tmp
= DAG
.getNode(ISD::TRAMPOLINE
, dl
,
4353 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
),
4357 DAG
.setRoot(Tmp
.getValue(1));
4361 case Intrinsic::gcroot
:
4363 Value
*Alloca
= I
.getOperand(1);
4364 Constant
*TypeMap
= cast
<Constant
>(I
.getOperand(2));
4366 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
4367 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
4371 case Intrinsic::gcread
:
4372 case Intrinsic::gcwrite
:
4373 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
4376 case Intrinsic::flt_rounds
: {
4377 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, dl
, MVT::i32
));
4381 case Intrinsic::trap
: {
4382 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, dl
,MVT::Other
, getRoot()));
4386 case Intrinsic::uadd_with_overflow
:
4387 return implVisitAluOverflow(I
, ISD::UADDO
);
4388 case Intrinsic::sadd_with_overflow
:
4389 return implVisitAluOverflow(I
, ISD::SADDO
);
4390 case Intrinsic::usub_with_overflow
:
4391 return implVisitAluOverflow(I
, ISD::USUBO
);
4392 case Intrinsic::ssub_with_overflow
:
4393 return implVisitAluOverflow(I
, ISD::SSUBO
);
4394 case Intrinsic::umul_with_overflow
:
4395 return implVisitAluOverflow(I
, ISD::UMULO
);
4396 case Intrinsic::smul_with_overflow
:
4397 return implVisitAluOverflow(I
, ISD::SMULO
);
4399 case Intrinsic::prefetch
: {
4402 Ops
[1] = getValue(I
.getOperand(1));
4403 Ops
[2] = getValue(I
.getOperand(2));
4404 Ops
[3] = getValue(I
.getOperand(3));
4405 DAG
.setRoot(DAG
.getNode(ISD::PREFETCH
, dl
, MVT::Other
, &Ops
[0], 4));
4409 case Intrinsic::memory_barrier
: {
4412 for (int x
= 1; x
< 6; ++x
)
4413 Ops
[x
] = getValue(I
.getOperand(x
));
4415 DAG
.setRoot(DAG
.getNode(ISD::MEMBARRIER
, dl
, MVT::Other
, &Ops
[0], 6));
4418 case Intrinsic::atomic_cmp_swap
: {
4419 SDValue Root
= getRoot();
4421 DAG
.getAtomic(ISD::ATOMIC_CMP_SWAP
, getCurDebugLoc(),
4422 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
4424 getValue(I
.getOperand(1)),
4425 getValue(I
.getOperand(2)),
4426 getValue(I
.getOperand(3)),
4429 DAG
.setRoot(L
.getValue(1));
4432 case Intrinsic::atomic_load_add
:
4433 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_ADD
);
4434 case Intrinsic::atomic_load_sub
:
4435 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_SUB
);
4436 case Intrinsic::atomic_load_or
:
4437 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_OR
);
4438 case Intrinsic::atomic_load_xor
:
4439 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_XOR
);
4440 case Intrinsic::atomic_load_and
:
4441 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_AND
);
4442 case Intrinsic::atomic_load_nand
:
4443 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_NAND
);
4444 case Intrinsic::atomic_load_max
:
4445 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MAX
);
4446 case Intrinsic::atomic_load_min
:
4447 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MIN
);
4448 case Intrinsic::atomic_load_umin
:
4449 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMIN
);
4450 case Intrinsic::atomic_load_umax
:
4451 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMAX
);
4452 case Intrinsic::atomic_swap
:
4453 return implVisitBinaryAtomic(I
, ISD::ATOMIC_SWAP
);
4458 void SelectionDAGLowering::LowerCallTo(CallSite CS
, SDValue Callee
,
4460 MachineBasicBlock
*LandingPad
) {
4461 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
4462 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
4463 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4464 unsigned BeginLabel
= 0, EndLabel
= 0;
4466 TargetLowering::ArgListTy Args
;
4467 TargetLowering::ArgListEntry Entry
;
4468 Args
.reserve(CS
.arg_size());
4469 for (CallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
4471 SDValue ArgNode
= getValue(*i
);
4472 Entry
.Node
= ArgNode
; Entry
.Ty
= (*i
)->getType();
4474 unsigned attrInd
= i
- CS
.arg_begin() + 1;
4475 Entry
.isSExt
= CS
.paramHasAttr(attrInd
, Attribute::SExt
);
4476 Entry
.isZExt
= CS
.paramHasAttr(attrInd
, Attribute::ZExt
);
4477 Entry
.isInReg
= CS
.paramHasAttr(attrInd
, Attribute::InReg
);
4478 Entry
.isSRet
= CS
.paramHasAttr(attrInd
, Attribute::StructRet
);
4479 Entry
.isNest
= CS
.paramHasAttr(attrInd
, Attribute::Nest
);
4480 Entry
.isByVal
= CS
.paramHasAttr(attrInd
, Attribute::ByVal
);
4481 Entry
.Alignment
= CS
.getParamAlignment(attrInd
);
4482 Args
.push_back(Entry
);
4485 if (LandingPad
&& MMI
) {
4486 // Insert a label before the invoke call to mark the try range. This can be
4487 // used to detect deletion of the invoke via the MachineModuleInfo.
4488 BeginLabel
= MMI
->NextLabelID();
4489 // Both PendingLoads and PendingExports must be flushed here;
4490 // this call might not return.
4492 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4493 getControlRoot(), BeginLabel
));
4496 std::pair
<SDValue
,SDValue
> Result
=
4497 TLI
.LowerCallTo(getRoot(), CS
.getType(),
4498 CS
.paramHasAttr(0, Attribute::SExt
),
4499 CS
.paramHasAttr(0, Attribute::ZExt
), FTy
->isVarArg(),
4500 CS
.paramHasAttr(0, Attribute::InReg
),
4501 CS
.getCallingConv(),
4502 IsTailCall
&& PerformTailCallOpt
,
4503 Callee
, Args
, DAG
, getCurDebugLoc());
4504 if (CS
.getType() != Type::VoidTy
)
4505 setValue(CS
.getInstruction(), Result
.first
);
4506 DAG
.setRoot(Result
.second
);
4508 if (LandingPad
&& MMI
) {
4509 // Insert a label at the end of the invoke call to mark the try range. This
4510 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4511 EndLabel
= MMI
->NextLabelID();
4512 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4513 getRoot(), EndLabel
));
4515 // Inform MachineModuleInfo of range.
4516 MMI
->addInvoke(LandingPad
, BeginLabel
, EndLabel
);
4521 void SelectionDAGLowering::visitCall(CallInst
&I
) {
4522 const char *RenameFn
= 0;
4523 if (Function
*F
= I
.getCalledFunction()) {
4524 if (F
->isDeclaration()) {
4525 const TargetIntrinsicInfo
*II
= TLI
.getTargetMachine().getIntrinsicInfo();
4527 if (unsigned IID
= II
->getIntrinsicID(F
)) {
4528 RenameFn
= visitIntrinsicCall(I
, IID
);
4533 if (unsigned IID
= F
->getIntrinsicID()) {
4534 RenameFn
= visitIntrinsicCall(I
, IID
);
4540 // Check for well-known libc/libm calls. If the function is internal, it
4541 // can't be a library call.
4542 unsigned NameLen
= F
->getNameLen();
4543 if (!F
->hasLocalLinkage() && NameLen
) {
4544 const char *NameStr
= F
->getNameStart();
4545 if (NameStr
[0] == 'c' &&
4546 ((NameLen
== 8 && !strcmp(NameStr
, "copysign")) ||
4547 (NameLen
== 9 && !strcmp(NameStr
, "copysignf")))) {
4548 if (I
.getNumOperands() == 3 && // Basic sanity checks.
4549 I
.getOperand(1)->getType()->isFloatingPoint() &&
4550 I
.getType() == I
.getOperand(1)->getType() &&
4551 I
.getType() == I
.getOperand(2)->getType()) {
4552 SDValue LHS
= getValue(I
.getOperand(1));
4553 SDValue RHS
= getValue(I
.getOperand(2));
4554 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurDebugLoc(),
4555 LHS
.getValueType(), LHS
, RHS
));
4558 } else if (NameStr
[0] == 'f' &&
4559 ((NameLen
== 4 && !strcmp(NameStr
, "fabs")) ||
4560 (NameLen
== 5 && !strcmp(NameStr
, "fabsf")) ||
4561 (NameLen
== 5 && !strcmp(NameStr
, "fabsl")))) {
4562 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4563 I
.getOperand(1)->getType()->isFloatingPoint() &&
4564 I
.getType() == I
.getOperand(1)->getType()) {
4565 SDValue Tmp
= getValue(I
.getOperand(1));
4566 setValue(&I
, DAG
.getNode(ISD::FABS
, getCurDebugLoc(),
4567 Tmp
.getValueType(), Tmp
));
4570 } else if (NameStr
[0] == 's' &&
4571 ((NameLen
== 3 && !strcmp(NameStr
, "sin")) ||
4572 (NameLen
== 4 && !strcmp(NameStr
, "sinf")) ||
4573 (NameLen
== 4 && !strcmp(NameStr
, "sinl")))) {
4574 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4575 I
.getOperand(1)->getType()->isFloatingPoint() &&
4576 I
.getType() == I
.getOperand(1)->getType()) {
4577 SDValue Tmp
= getValue(I
.getOperand(1));
4578 setValue(&I
, DAG
.getNode(ISD::FSIN
, getCurDebugLoc(),
4579 Tmp
.getValueType(), Tmp
));
4582 } else if (NameStr
[0] == 'c' &&
4583 ((NameLen
== 3 && !strcmp(NameStr
, "cos")) ||
4584 (NameLen
== 4 && !strcmp(NameStr
, "cosf")) ||
4585 (NameLen
== 4 && !strcmp(NameStr
, "cosl")))) {
4586 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4587 I
.getOperand(1)->getType()->isFloatingPoint() &&
4588 I
.getType() == I
.getOperand(1)->getType()) {
4589 SDValue Tmp
= getValue(I
.getOperand(1));
4590 setValue(&I
, DAG
.getNode(ISD::FCOS
, getCurDebugLoc(),
4591 Tmp
.getValueType(), Tmp
));
4596 } else if (isa
<InlineAsm
>(I
.getOperand(0))) {
4603 Callee
= getValue(I
.getOperand(0));
4605 Callee
= DAG
.getExternalSymbol(RenameFn
, TLI
.getPointerTy());
4607 LowerCallTo(&I
, Callee
, I
.isTailCall());
4611 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4612 /// this value and returns the result as a ValueVT value. This uses
4613 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4614 /// If the Flag pointer is NULL, no flag is used.
4615 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
4617 SDValue
*Flag
) const {
4618 // Assemble the legal parts into the final values.
4619 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
4620 SmallVector
<SDValue
, 8> Parts
;
4621 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4622 // Copy the legal parts from the registers.
4623 MVT ValueVT
= ValueVTs
[Value
];
4624 unsigned NumRegs
= TLI
->getNumRegisters(ValueVT
);
4625 MVT RegisterVT
= RegVTs
[Value
];
4627 Parts
.resize(NumRegs
);
4628 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4631 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
4633 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
4634 *Flag
= P
.getValue(2);
4636 Chain
= P
.getValue(1);
4638 // If the source register was virtual and if we know something about it,
4639 // add an assert node.
4640 if (TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) &&
4641 RegisterVT
.isInteger() && !RegisterVT
.isVector()) {
4642 unsigned SlotNo
= Regs
[Part
+i
]-TargetRegisterInfo::FirstVirtualRegister
;
4643 FunctionLoweringInfo
&FLI
= DAG
.getFunctionLoweringInfo();
4644 if (FLI
.LiveOutRegInfo
.size() > SlotNo
) {
4645 FunctionLoweringInfo::LiveOutInfo
&LOI
= FLI
.LiveOutRegInfo
[SlotNo
];
4647 unsigned RegSize
= RegisterVT
.getSizeInBits();
4648 unsigned NumSignBits
= LOI
.NumSignBits
;
4649 unsigned NumZeroBits
= LOI
.KnownZero
.countLeadingOnes();
4651 // FIXME: We capture more information than the dag can represent. For
4652 // now, just use the tightest assertzext/assertsext possible.
4654 MVT
FromVT(MVT::Other
);
4655 if (NumSignBits
== RegSize
)
4656 isSExt
= true, FromVT
= MVT::i1
; // ASSERT SEXT 1
4657 else if (NumZeroBits
>= RegSize
-1)
4658 isSExt
= false, FromVT
= MVT::i1
; // ASSERT ZEXT 1
4659 else if (NumSignBits
> RegSize
-8)
4660 isSExt
= true, FromVT
= MVT::i8
; // ASSERT SEXT 8
4661 else if (NumZeroBits
>= RegSize
-8)
4662 isSExt
= false, FromVT
= MVT::i8
; // ASSERT ZEXT 8
4663 else if (NumSignBits
> RegSize
-16)
4664 isSExt
= true, FromVT
= MVT::i16
; // ASSERT SEXT 16
4665 else if (NumZeroBits
>= RegSize
-16)
4666 isSExt
= false, FromVT
= MVT::i16
; // ASSERT ZEXT 16
4667 else if (NumSignBits
> RegSize
-32)
4668 isSExt
= true, FromVT
= MVT::i32
; // ASSERT SEXT 32
4669 else if (NumZeroBits
>= RegSize
-32)
4670 isSExt
= false, FromVT
= MVT::i32
; // ASSERT ZEXT 32
4672 if (FromVT
!= MVT::Other
) {
4673 P
= DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
4674 RegisterVT
, P
, DAG
.getValueType(FromVT
));
4683 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(),
4684 NumRegs
, RegisterVT
, ValueVT
);
4689 return DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4690 DAG
.getVTList(&ValueVTs
[0], ValueVTs
.size()),
4691 &Values
[0], ValueVTs
.size());
4694 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4695 /// specified value into the registers specified by this object. This uses
4696 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4697 /// If the Flag pointer is NULL, no flag is used.
4698 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
4699 SDValue
&Chain
, SDValue
*Flag
) const {
4700 // Get the list of the values's legal parts.
4701 unsigned NumRegs
= Regs
.size();
4702 SmallVector
<SDValue
, 8> Parts(NumRegs
);
4703 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4704 MVT ValueVT
= ValueVTs
[Value
];
4705 unsigned NumParts
= TLI
->getNumRegisters(ValueVT
);
4706 MVT RegisterVT
= RegVTs
[Value
];
4708 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
),
4709 &Parts
[Part
], NumParts
, RegisterVT
);
4713 // Copy the parts into the registers.
4714 SmallVector
<SDValue
, 8> Chains(NumRegs
);
4715 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4718 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
4720 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
4721 *Flag
= Part
.getValue(1);
4723 Chains
[i
] = Part
.getValue(0);
4726 if (NumRegs
== 1 || Flag
)
4727 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4728 // flagged to it. That is the CopyToReg nodes and the user are considered
4729 // a single scheduling unit. If we create a TokenFactor and return it as
4730 // chain, then the TokenFactor is both a predecessor (operand) of the
4731 // user as well as a successor (the TF operands are flagged to the user).
4732 // c1, f1 = CopyToReg
4733 // c2, f2 = CopyToReg
4734 // c3 = TokenFactor c1, c2
4737 Chain
= Chains
[NumRegs
-1];
4739 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Chains
[0], NumRegs
);
4742 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4743 /// operand list. This adds the code marker and includes the number of
4744 /// values added into it.
4745 void RegsForValue::AddInlineAsmOperands(unsigned Code
,
4746 bool HasMatching
,unsigned MatchingIdx
,
4748 std::vector
<SDValue
> &Ops
) const {
4749 MVT IntPtrTy
= DAG
.getTargetLoweringInfo().getPointerTy();
4750 assert(Regs
.size() < (1 << 13) && "Too many inline asm outputs!");
4751 unsigned Flag
= Code
| (Regs
.size() << 3);
4753 Flag
|= 0x80000000 | (MatchingIdx
<< 16);
4754 Ops
.push_back(DAG
.getTargetConstant(Flag
, IntPtrTy
));
4755 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4756 unsigned NumRegs
= TLI
->getNumRegisters(ValueVTs
[Value
]);
4757 MVT RegisterVT
= RegVTs
[Value
];
4758 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4759 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
4760 Ops
.push_back(DAG
.getRegister(Regs
[Reg
++], RegisterVT
));
4765 /// isAllocatableRegister - If the specified register is safe to allocate,
4766 /// i.e. it isn't a stack pointer or some other special register, return the
4767 /// register class for the register. Otherwise, return null.
4768 static const TargetRegisterClass
*
4769 isAllocatableRegister(unsigned Reg
, MachineFunction
&MF
,
4770 const TargetLowering
&TLI
,
4771 const TargetRegisterInfo
*TRI
) {
4772 MVT FoundVT
= MVT::Other
;
4773 const TargetRegisterClass
*FoundRC
= 0;
4774 for (TargetRegisterInfo::regclass_iterator RCI
= TRI
->regclass_begin(),
4775 E
= TRI
->regclass_end(); RCI
!= E
; ++RCI
) {
4776 MVT ThisVT
= MVT::Other
;
4778 const TargetRegisterClass
*RC
= *RCI
;
4779 // If none of the the value types for this register class are valid, we
4780 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4781 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
4783 if (TLI
.isTypeLegal(*I
)) {
4784 // If we have already found this register in a different register class,
4785 // choose the one with the largest VT specified. For example, on
4786 // PowerPC, we favor f64 register classes over f32.
4787 if (FoundVT
== MVT::Other
|| FoundVT
.bitsLT(*I
)) {
4794 if (ThisVT
== MVT::Other
) continue;
4796 // NOTE: This isn't ideal. In particular, this might allocate the
4797 // frame pointer in functions that need it (due to them not being taken
4798 // out of allocation, because a variable sized allocation hasn't been seen
4799 // yet). This is a slight code pessimization, but should still work.
4800 for (TargetRegisterClass::iterator I
= RC
->allocation_order_begin(MF
),
4801 E
= RC
->allocation_order_end(MF
); I
!= E
; ++I
)
4803 // We found a matching register class. Keep looking at others in case
4804 // we find one with larger registers that this physreg is also in.
4815 /// AsmOperandInfo - This contains information for each constraint that we are
4817 class VISIBILITY_HIDDEN SDISelAsmOperandInfo
:
4818 public TargetLowering::AsmOperandInfo
{
4820 /// CallOperand - If this is the result output operand or a clobber
4821 /// this is null, otherwise it is the incoming operand to the CallInst.
4822 /// This gets modified as the asm is processed.
4823 SDValue CallOperand
;
4825 /// AssignedRegs - If this is a register or register class operand, this
4826 /// contains the set of register corresponding to the operand.
4827 RegsForValue AssignedRegs
;
4829 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo
&info
)
4830 : TargetLowering::AsmOperandInfo(info
), CallOperand(0,0) {
4833 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4834 /// busy in OutputRegs/InputRegs.
4835 void MarkAllocatedRegs(bool isOutReg
, bool isInReg
,
4836 std::set
<unsigned> &OutputRegs
,
4837 std::set
<unsigned> &InputRegs
,
4838 const TargetRegisterInfo
&TRI
) const {
4840 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4841 MarkRegAndAliases(AssignedRegs
.Regs
[i
], OutputRegs
, TRI
);
4844 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4845 MarkRegAndAliases(AssignedRegs
.Regs
[i
], InputRegs
, TRI
);
4849 /// getCallOperandValMVT - Return the MVT of the Value* that this operand
4850 /// corresponds to. If there is no Value* for this operand, it returns
4852 MVT
getCallOperandValMVT(const TargetLowering
&TLI
,
4853 const TargetData
*TD
) const {
4854 if (CallOperandVal
== 0) return MVT::Other
;
4856 if (isa
<BasicBlock
>(CallOperandVal
))
4857 return TLI
.getPointerTy();
4859 const llvm::Type
*OpTy
= CallOperandVal
->getType();
4861 // If this is an indirect operand, the operand is a pointer to the
4864 OpTy
= cast
<PointerType
>(OpTy
)->getElementType();
4866 // If OpTy is not a single value, it may be a struct/union that we
4867 // can tile with integers.
4868 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4869 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
4878 OpTy
= IntegerType::get(BitSize
);
4883 return TLI
.getValueType(OpTy
, true);
4887 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4889 static void MarkRegAndAliases(unsigned Reg
, std::set
<unsigned> &Regs
,
4890 const TargetRegisterInfo
&TRI
) {
4891 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) && "Isn't a physreg");
4893 if (const unsigned *Aliases
= TRI
.getAliasSet(Reg
))
4894 for (; *Aliases
; ++Aliases
)
4895 Regs
.insert(*Aliases
);
4898 } // end llvm namespace.
4901 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4902 /// specified operand. We prefer to assign virtual registers, to allow the
4903 /// register allocator handle the assignment process. However, if the asm uses
4904 /// features that we can't model on machineinstrs, we have SDISel do the
4905 /// allocation. This produces generally horrible, but correct, code.
4907 /// OpInfo describes the operand.
4908 /// Input and OutputRegs are the set of already allocated physical registers.
4910 void SelectionDAGLowering::
4911 GetRegistersForValue(SDISelAsmOperandInfo
&OpInfo
,
4912 std::set
<unsigned> &OutputRegs
,
4913 std::set
<unsigned> &InputRegs
) {
4914 // Compute whether this value requires an input register, an output register,
4916 bool isOutReg
= false;
4917 bool isInReg
= false;
4918 switch (OpInfo
.Type
) {
4919 case InlineAsm::isOutput
:
4922 // If there is an input constraint that matches this, we need to reserve
4923 // the input register so no other inputs allocate to it.
4924 isInReg
= OpInfo
.hasMatchingInput();
4926 case InlineAsm::isInput
:
4930 case InlineAsm::isClobber
:
4937 MachineFunction
&MF
= DAG
.getMachineFunction();
4938 SmallVector
<unsigned, 4> Regs
;
4940 // If this is a constraint for a single physreg, or a constraint for a
4941 // register class, find it.
4942 std::pair
<unsigned, const TargetRegisterClass
*> PhysReg
=
4943 TLI
.getRegForInlineAsmConstraint(OpInfo
.ConstraintCode
,
4944 OpInfo
.ConstraintVT
);
4946 unsigned NumRegs
= 1;
4947 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
4948 // If this is a FP input in an integer register (or visa versa) insert a bit
4949 // cast of the input value. More generally, handle any case where the input
4950 // value disagrees with the register class we plan to stick this in.
4951 if (OpInfo
.Type
== InlineAsm::isInput
&&
4952 PhysReg
.second
&& !PhysReg
.second
->hasType(OpInfo
.ConstraintVT
)) {
4953 // Try to convert to the first MVT that the reg class contains. If the
4954 // types are identical size, use a bitcast to convert (e.g. two differing
4956 MVT RegVT
= *PhysReg
.second
->vt_begin();
4957 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
4958 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4959 RegVT
, OpInfo
.CallOperand
);
4960 OpInfo
.ConstraintVT
= RegVT
;
4961 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
4962 // If the input is a FP value and we want it in FP registers, do a
4963 // bitcast to the corresponding integer type. This turns an f64 value
4964 // into i64, which can be passed with two i32 values on a 32-bit
4966 RegVT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
4967 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4968 RegVT
, OpInfo
.CallOperand
);
4969 OpInfo
.ConstraintVT
= RegVT
;
4973 NumRegs
= TLI
.getNumRegisters(OpInfo
.ConstraintVT
);
4977 MVT ValueVT
= OpInfo
.ConstraintVT
;
4979 // If this is a constraint for a specific physical register, like {r17},
4981 if (unsigned AssignedReg
= PhysReg
.first
) {
4982 const TargetRegisterClass
*RC
= PhysReg
.second
;
4983 if (OpInfo
.ConstraintVT
== MVT::Other
)
4984 ValueVT
= *RC
->vt_begin();
4986 // Get the actual register value type. This is important, because the user
4987 // may have asked for (e.g.) the AX register in i32 type. We need to
4988 // remember that AX is actually i16 to get the right extension.
4989 RegVT
= *RC
->vt_begin();
4991 // This is a explicit reference to a physical register.
4992 Regs
.push_back(AssignedReg
);
4994 // If this is an expanded reference, add the rest of the regs to Regs.
4996 TargetRegisterClass::iterator I
= RC
->begin();
4997 for (; *I
!= AssignedReg
; ++I
)
4998 assert(I
!= RC
->end() && "Didn't find reg!");
5000 // Already added the first reg.
5002 for (; NumRegs
; --NumRegs
, ++I
) {
5003 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
5007 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
5008 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5009 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5013 // Otherwise, if this was a reference to an LLVM register class, create vregs
5014 // for this reference.
5015 if (const TargetRegisterClass
*RC
= PhysReg
.second
) {
5016 RegVT
= *RC
->vt_begin();
5017 if (OpInfo
.ConstraintVT
== MVT::Other
)
5020 // Create the appropriate number of virtual registers.
5021 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5022 for (; NumRegs
; --NumRegs
)
5023 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
5025 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
5029 // This is a reference to a register class that doesn't directly correspond
5030 // to an LLVM register class. Allocate NumRegs consecutive, available,
5031 // registers from the class.
5032 std::vector
<unsigned> RegClassRegs
5033 = TLI
.getRegClassForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5034 OpInfo
.ConstraintVT
);
5036 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5037 unsigned NumAllocated
= 0;
5038 for (unsigned i
= 0, e
= RegClassRegs
.size(); i
!= e
; ++i
) {
5039 unsigned Reg
= RegClassRegs
[i
];
5040 // See if this register is available.
5041 if ((isOutReg
&& OutputRegs
.count(Reg
)) || // Already used.
5042 (isInReg
&& InputRegs
.count(Reg
))) { // Already used.
5043 // Make sure we find consecutive registers.
5048 // Check to see if this register is allocatable (i.e. don't give out the
5050 const TargetRegisterClass
*RC
= isAllocatableRegister(Reg
, MF
, TLI
, TRI
);
5051 if (!RC
) { // Couldn't allocate this register.
5052 // Reset NumAllocated to make sure we return consecutive registers.
5057 // Okay, this register is good, we can use it.
5060 // If we allocated enough consecutive registers, succeed.
5061 if (NumAllocated
== NumRegs
) {
5062 unsigned RegStart
= (i
-NumAllocated
)+1;
5063 unsigned RegEnd
= i
+1;
5064 // Mark all of the allocated registers used.
5065 for (unsigned i
= RegStart
; i
!= RegEnd
; ++i
)
5066 Regs
.push_back(RegClassRegs
[i
]);
5068 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, *RC
->vt_begin(),
5069 OpInfo
.ConstraintVT
);
5070 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5075 // Otherwise, we couldn't allocate enough registers for this.
5078 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5079 /// processed uses a memory 'm' constraint.
5081 hasInlineAsmMemConstraint(std::vector
<InlineAsm::ConstraintInfo
> &CInfos
,
5082 const TargetLowering
&TLI
) {
5083 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
5084 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
5085 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
5086 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
5087 if (CType
== TargetLowering::C_Memory
)
5095 /// visitInlineAsm - Handle a call to an InlineAsm object.
5097 void SelectionDAGLowering::visitInlineAsm(CallSite CS
) {
5098 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
5100 /// ConstraintOperands - Information about all of the constraints.
5101 std::vector
<SDISelAsmOperandInfo
> ConstraintOperands
;
5103 // We won't need to flush pending loads if this asm doesn't touch
5104 // memory and is nonvolatile.
5105 SDValue Chain
= IA
->hasSideEffects() ? getRoot() : DAG
.getRoot();
5108 std::set
<unsigned> OutputRegs
, InputRegs
;
5110 // Do a prepass over the constraints, canonicalizing them, and building up the
5111 // ConstraintOperands list.
5112 std::vector
<InlineAsm::ConstraintInfo
>
5113 ConstraintInfos
= IA
->ParseConstraints();
5115 bool hasMemory
= hasInlineAsmMemConstraint(ConstraintInfos
, TLI
);
5116 // Flush pending loads if this touches memory (includes clobbering it).
5117 // It's possible this is overly conservative.
5121 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
5122 unsigned ResNo
= 0; // ResNo - The result number of the next output.
5123 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5124 ConstraintOperands
.push_back(SDISelAsmOperandInfo(ConstraintInfos
[i
]));
5125 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
5127 MVT OpVT
= MVT::Other
;
5129 // Compute the value type for each operand.
5130 switch (OpInfo
.Type
) {
5131 case InlineAsm::isOutput
:
5132 // Indirect outputs just consume an argument.
5133 if (OpInfo
.isIndirect
) {
5134 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5138 // The return value of the call is this value. As such, there is no
5139 // corresponding argument.
5140 assert(CS
.getType() != Type::VoidTy
&& "Bad inline asm!");
5141 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
5142 OpVT
= TLI
.getValueType(STy
->getElementType(ResNo
));
5144 assert(ResNo
== 0 && "Asm only has one result!");
5145 OpVT
= TLI
.getValueType(CS
.getType());
5149 case InlineAsm::isInput
:
5150 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5152 case InlineAsm::isClobber
:
5157 // If this is an input or an indirect output, process the call argument.
5158 // BasicBlocks are labels, currently appearing only in asm's.
5159 if (OpInfo
.CallOperandVal
) {
5160 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
5161 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
5163 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
5166 OpVT
= OpInfo
.getCallOperandValMVT(TLI
, TD
);
5169 OpInfo
.ConstraintVT
= OpVT
;
5172 // Second pass over the constraints: compute which constraint option to use
5173 // and assign registers to constraints that want a specific physreg.
5174 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5175 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5177 // If this is an output operand with a matching input operand, look up the
5178 // matching input. If their types mismatch, e.g. one is an integer, the
5179 // other is floating point, or their sizes are different, flag it as an
5181 if (OpInfo
.hasMatchingInput()) {
5182 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
5183 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
5184 if ((OpInfo
.ConstraintVT
.isInteger() !=
5185 Input
.ConstraintVT
.isInteger()) ||
5186 (OpInfo
.ConstraintVT
.getSizeInBits() !=
5187 Input
.ConstraintVT
.getSizeInBits())) {
5188 cerr
<< "llvm: error: Unsupported asm: input constraint with a "
5189 << "matching output constraint of incompatible type!\n";
5192 Input
.ConstraintVT
= OpInfo
.ConstraintVT
;
5196 // Compute the constraint code and ConstraintType to use.
5197 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, hasMemory
, &DAG
);
5199 // If this is a memory input, and if the operand is not indirect, do what we
5200 // need to to provide an address for the memory input.
5201 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5202 !OpInfo
.isIndirect
) {
5203 assert(OpInfo
.Type
== InlineAsm::isInput
&&
5204 "Can only indirectify direct input operands!");
5206 // Memory operands really want the address of the value. If we don't have
5207 // an indirect input, put it in the constpool if we can, otherwise spill
5208 // it to a stack slot.
5210 // If the operand is a float, integer, or vector constant, spill to a
5211 // constant pool entry to get its address.
5212 Value
*OpVal
= OpInfo
.CallOperandVal
;
5213 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
5214 isa
<ConstantVector
>(OpVal
)) {
5215 OpInfo
.CallOperand
= DAG
.getConstantPool(cast
<Constant
>(OpVal
),
5216 TLI
.getPointerTy());
5218 // Otherwise, create a stack slot and emit a store to it before the
5220 const Type
*Ty
= OpVal
->getType();
5221 uint64_t TySize
= TLI
.getTargetData()->getTypePaddedSize(Ty
);
5222 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(Ty
);
5223 MachineFunction
&MF
= DAG
.getMachineFunction();
5224 int SSFI
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
);
5225 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getPointerTy());
5226 Chain
= DAG
.getStore(Chain
, getCurDebugLoc(),
5227 OpInfo
.CallOperand
, StackSlot
, NULL
, 0);
5228 OpInfo
.CallOperand
= StackSlot
;
5231 // There is no longer a Value* corresponding to this operand.
5232 OpInfo
.CallOperandVal
= 0;
5233 // It is now an indirect operand.
5234 OpInfo
.isIndirect
= true;
5237 // If this constraint is for a specific register, allocate it before
5239 if (OpInfo
.ConstraintType
== TargetLowering::C_Register
)
5240 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5242 ConstraintInfos
.clear();
5245 // Second pass - Loop over all of the operands, assigning virtual or physregs
5246 // to register class operands.
5247 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5248 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5250 // C_Register operands have already been allocated, Other/Memory don't need
5252 if (OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
)
5253 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5256 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5257 std::vector
<SDValue
> AsmNodeOperands
;
5258 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
5259 AsmNodeOperands
.push_back(
5260 DAG
.getTargetExternalSymbol(IA
->getAsmString().c_str(), MVT::Other
));
5263 // Loop over all of the inputs, copying the operand values into the
5264 // appropriate registers and processing the output regs.
5265 RegsForValue RetValRegs
;
5267 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5268 std::vector
<std::pair
<RegsForValue
, Value
*> > IndirectStoresToEmit
;
5270 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5271 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5273 switch (OpInfo
.Type
) {
5274 case InlineAsm::isOutput
: {
5275 if (OpInfo
.ConstraintType
!= TargetLowering::C_RegisterClass
&&
5276 OpInfo
.ConstraintType
!= TargetLowering::C_Register
) {
5277 // Memory output, or 'other' output (e.g. 'X' constraint).
5278 assert(OpInfo
.isIndirect
&& "Memory output must be indirect operand");
5280 // Add information to the INLINEASM node to know about this output.
5281 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5282 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5283 TLI
.getPointerTy()));
5284 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
5288 // Otherwise, this is a register or register class output.
5290 // Copy the output from the appropriate register. Find a register that
5292 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5293 cerr
<< "llvm: error: Couldn't allocate output reg for constraint '"
5294 << OpInfo
.ConstraintCode
<< "'!\n";
5298 // If this is an indirect operand, store through the pointer after the
5300 if (OpInfo
.isIndirect
) {
5301 IndirectStoresToEmit
.push_back(std::make_pair(OpInfo
.AssignedRegs
,
5302 OpInfo
.CallOperandVal
));
5304 // This is the result value of the call.
5305 assert(CS
.getType() != Type::VoidTy
&& "Bad inline asm!");
5306 // Concatenate this output onto the outputs list.
5307 RetValRegs
.append(OpInfo
.AssignedRegs
);
5310 // Add information to the INLINEASM node to know that this register is
5312 OpInfo
.AssignedRegs
.AddInlineAsmOperands(OpInfo
.isEarlyClobber
?
5313 6 /* EARLYCLOBBER REGDEF */ :
5317 DAG
, AsmNodeOperands
);
5320 case InlineAsm::isInput
: {
5321 SDValue InOperandVal
= OpInfo
.CallOperand
;
5323 if (OpInfo
.isMatchingInputConstraint()) { // Matching constraint?
5324 // If this is required to match an output register we have already set,
5325 // just use its register.
5326 unsigned OperandNo
= OpInfo
.getMatchedOperand();
5328 // Scan until we find the definition we already emitted of this operand.
5329 // When we find it, create a RegsForValue operand.
5330 unsigned CurOp
= 2; // The first operand.
5331 for (; OperandNo
; --OperandNo
) {
5332 // Advance to the next operand.
5334 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5335 assert(((OpFlag
& 7) == 2 /*REGDEF*/ ||
5336 (OpFlag
& 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5337 (OpFlag
& 7) == 4 /*MEM*/) &&
5338 "Skipped past definitions?");
5339 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
)+1;
5343 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5344 if ((OpFlag
& 7) == 2 /*REGDEF*/
5345 || (OpFlag
& 7) == 6 /* EARLYCLOBBER REGDEF */) {
5346 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5347 RegsForValue MatchedRegs
;
5348 MatchedRegs
.TLI
= &TLI
;
5349 MatchedRegs
.ValueVTs
.push_back(InOperandVal
.getValueType());
5350 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getValueType();
5351 MatchedRegs
.RegVTs
.push_back(RegVT
);
5352 MachineRegisterInfo
&RegInfo
= DAG
.getMachineFunction().getRegInfo();
5353 for (unsigned i
= 0, e
= InlineAsm::getNumOperandRegisters(OpFlag
);
5356 push_back(RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
)));
5358 // Use the produced MatchedRegs object to
5359 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5361 MatchedRegs
.AddInlineAsmOperands(1 /*REGUSE*/,
5362 true, OpInfo
.getMatchedOperand(),
5363 DAG
, AsmNodeOperands
);
5366 assert(((OpFlag
& 7) == 4) && "Unknown matching constraint!");
5367 assert((InlineAsm::getNumOperandRegisters(OpFlag
)) == 1 &&
5368 "Unexpected number of operands");
5369 // Add information to the INLINEASM node to know about this input.
5370 // See InlineAsm.h isUseOperandTiedToDef.
5371 OpFlag
|= 0x80000000 | (OpInfo
.getMatchedOperand() << 16);
5372 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlag
,
5373 TLI
.getPointerTy()));
5374 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
5379 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
5380 assert(!OpInfo
.isIndirect
&&
5381 "Don't know how to handle indirect other inputs yet!");
5383 std::vector
<SDValue
> Ops
;
5384 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
[0],
5385 hasMemory
, Ops
, DAG
);
5387 cerr
<< "llvm: error: Invalid operand for inline asm constraint '"
5388 << OpInfo
.ConstraintCode
<< "'!\n";
5392 // Add information to the INLINEASM node to know about this input.
5393 unsigned ResOpType
= 3 /*IMM*/ | (Ops
.size() << 3);
5394 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5395 TLI
.getPointerTy()));
5396 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
5398 } else if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
5399 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
5400 assert(InOperandVal
.getValueType() == TLI
.getPointerTy() &&
5401 "Memory operands expect pointer values");
5403 // Add information to the INLINEASM node to know about this input.
5404 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5405 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5406 TLI
.getPointerTy()));
5407 AsmNodeOperands
.push_back(InOperandVal
);
5411 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
5412 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
5413 "Unknown constraint type!");
5414 assert(!OpInfo
.isIndirect
&&
5415 "Don't know how to handle indirect register inputs yet!");
5417 // Copy the input into the appropriate registers.
5418 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5419 cerr
<< "llvm: error: Couldn't allocate output reg for constraint '"
5420 << OpInfo
.ConstraintCode
<< "'!\n";
5424 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5427 OpInfo
.AssignedRegs
.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5428 DAG
, AsmNodeOperands
);
5431 case InlineAsm::isClobber
: {
5432 // Add the clobbered value to the operand list, so that the register
5433 // allocator is aware that the physreg got clobbered.
5434 if (!OpInfo
.AssignedRegs
.Regs
.empty())
5435 OpInfo
.AssignedRegs
.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5436 false, 0, DAG
,AsmNodeOperands
);
5442 // Finish up input operands.
5443 AsmNodeOperands
[0] = Chain
;
5444 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
5446 Chain
= DAG
.getNode(ISD::INLINEASM
, getCurDebugLoc(),
5447 DAG
.getVTList(MVT::Other
, MVT::Flag
),
5448 &AsmNodeOperands
[0], AsmNodeOperands
.size());
5449 Flag
= Chain
.getValue(1);
5451 // If this asm returns a register value, copy the result from that register
5452 // and set it as the value of the call.
5453 if (!RetValRegs
.Regs
.empty()) {
5454 SDValue Val
= RetValRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5457 // FIXME: Why don't we do this for inline asms with MRVs?
5458 if (CS
.getType()->isSingleValueType() && CS
.getType()->isSized()) {
5459 MVT ResultType
= TLI
.getValueType(CS
.getType());
5461 // If any of the results of the inline asm is a vector, it may have the
5462 // wrong width/num elts. This can happen for register classes that can
5463 // contain multiple different value types. The preg or vreg allocated may
5464 // not have the same VT as was expected. Convert it to the right type
5465 // with bit_convert.
5466 if (ResultType
!= Val
.getValueType() && Val
.getValueType().isVector()) {
5467 Val
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5470 } else if (ResultType
!= Val
.getValueType() &&
5471 ResultType
.isInteger() && Val
.getValueType().isInteger()) {
5472 // If a result value was tied to an input value, the computed result may
5473 // have a wider width than the expected result. Extract the relevant
5475 Val
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), ResultType
, Val
);
5478 assert(ResultType
== Val
.getValueType() && "Asm result value mismatch!");
5481 setValue(CS
.getInstruction(), Val
);
5482 // Don't need to use this as a chain in this case.
5483 if (!IA
->hasSideEffects() && !hasMemory
&& IndirectStoresToEmit
.empty())
5487 std::vector
<std::pair
<SDValue
, Value
*> > StoresToEmit
;
5489 // Process indirect outputs, first output all of the flagged copies out of
5491 for (unsigned i
= 0, e
= IndirectStoresToEmit
.size(); i
!= e
; ++i
) {
5492 RegsForValue
&OutRegs
= IndirectStoresToEmit
[i
].first
;
5493 Value
*Ptr
= IndirectStoresToEmit
[i
].second
;
5494 SDValue OutVal
= OutRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5496 StoresToEmit
.push_back(std::make_pair(OutVal
, Ptr
));
5499 // Emit the non-flagged stores from the physregs.
5500 SmallVector
<SDValue
, 8> OutChains
;
5501 for (unsigned i
= 0, e
= StoresToEmit
.size(); i
!= e
; ++i
)
5502 OutChains
.push_back(DAG
.getStore(Chain
, getCurDebugLoc(),
5503 StoresToEmit
[i
].first
,
5504 getValue(StoresToEmit
[i
].second
),
5505 StoresToEmit
[i
].second
, 0));
5506 if (!OutChains
.empty())
5507 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
5508 &OutChains
[0], OutChains
.size());
5513 void SelectionDAGLowering::visitMalloc(MallocInst
&I
) {
5514 SDValue Src
= getValue(I
.getOperand(0));
5516 // Scale up by the type size in the original i32 type width. Various
5517 // mid-level optimizers may make assumptions about demanded bits etc from the
5518 // i32-ness of the optimizer: we do not want to promote to i64 and then
5519 // multiply on 64-bit targets.
5520 // FIXME: Malloc inst should go away: PR715.
5521 uint64_t ElementSize
= TD
->getTypePaddedSize(I
.getType()->getElementType());
5522 if (ElementSize
!= 1)
5523 Src
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), Src
.getValueType(),
5524 Src
, DAG
.getConstant(ElementSize
, Src
.getValueType()));
5526 MVT IntPtr
= TLI
.getPointerTy();
5528 if (IntPtr
.bitsLT(Src
.getValueType()))
5529 Src
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), IntPtr
, Src
);
5530 else if (IntPtr
.bitsGT(Src
.getValueType()))
5531 Src
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), IntPtr
, Src
);
5533 TargetLowering::ArgListTy Args
;
5534 TargetLowering::ArgListEntry Entry
;
5536 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
5537 Args
.push_back(Entry
);
5539 std::pair
<SDValue
,SDValue
> Result
=
5540 TLI
.LowerCallTo(getRoot(), I
.getType(), false, false, false, false,
5541 CallingConv::C
, PerformTailCallOpt
,
5542 DAG
.getExternalSymbol("malloc", IntPtr
),
5543 Args
, DAG
, getCurDebugLoc());
5544 setValue(&I
, Result
.first
); // Pointers always fit in registers
5545 DAG
.setRoot(Result
.second
);
5548 void SelectionDAGLowering::visitFree(FreeInst
&I
) {
5549 TargetLowering::ArgListTy Args
;
5550 TargetLowering::ArgListEntry Entry
;
5551 Entry
.Node
= getValue(I
.getOperand(0));
5552 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
5553 Args
.push_back(Entry
);
5554 MVT IntPtr
= TLI
.getPointerTy();
5555 std::pair
<SDValue
,SDValue
> Result
=
5556 TLI
.LowerCallTo(getRoot(), Type::VoidTy
, false, false, false, false,
5557 CallingConv::C
, PerformTailCallOpt
,
5558 DAG
.getExternalSymbol("free", IntPtr
), Args
, DAG
,
5560 DAG
.setRoot(Result
.second
);
5563 void SelectionDAGLowering::visitVAStart(CallInst
&I
) {
5564 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurDebugLoc(),
5565 MVT::Other
, getRoot(),
5566 getValue(I
.getOperand(1)),
5567 DAG
.getSrcValue(I
.getOperand(1))));
5570 void SelectionDAGLowering::visitVAArg(VAArgInst
&I
) {
5571 SDValue V
= DAG
.getVAArg(TLI
.getValueType(I
.getType()), getCurDebugLoc(),
5572 getRoot(), getValue(I
.getOperand(0)),
5573 DAG
.getSrcValue(I
.getOperand(0)));
5575 DAG
.setRoot(V
.getValue(1));
5578 void SelectionDAGLowering::visitVAEnd(CallInst
&I
) {
5579 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurDebugLoc(),
5580 MVT::Other
, getRoot(),
5581 getValue(I
.getOperand(1)),
5582 DAG
.getSrcValue(I
.getOperand(1))));
5585 void SelectionDAGLowering::visitVACopy(CallInst
&I
) {
5586 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurDebugLoc(),
5587 MVT::Other
, getRoot(),
5588 getValue(I
.getOperand(1)),
5589 getValue(I
.getOperand(2)),
5590 DAG
.getSrcValue(I
.getOperand(1)),
5591 DAG
.getSrcValue(I
.getOperand(2))));
5594 /// TargetLowering::LowerArguments - This is the default LowerArguments
5595 /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
5596 /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
5597 /// integrated into SDISel.
5598 void TargetLowering::LowerArguments(Function
&F
, SelectionDAG
&DAG
,
5599 SmallVectorImpl
<SDValue
> &ArgValues
,
5601 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
5602 SmallVector
<SDValue
, 3+16> Ops
;
5603 Ops
.push_back(DAG
.getRoot());
5604 Ops
.push_back(DAG
.getConstant(F
.getCallingConv(), getPointerTy()));
5605 Ops
.push_back(DAG
.getConstant(F
.isVarArg(), getPointerTy()));
5607 // Add one result value for each formal argument.
5608 SmallVector
<MVT
, 16> RetVals
;
5610 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
5612 SmallVector
<MVT
, 4> ValueVTs
;
5613 ComputeValueVTs(*this, I
->getType(), ValueVTs
);
5614 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5615 Value
!= NumValues
; ++Value
) {
5616 MVT VT
= ValueVTs
[Value
];
5617 const Type
*ArgTy
= VT
.getTypeForMVT();
5618 ISD::ArgFlagsTy Flags
;
5619 unsigned OriginalAlignment
=
5620 getTargetData()->getABITypeAlignment(ArgTy
);
5622 if (F
.paramHasAttr(j
, Attribute::ZExt
))
5624 if (F
.paramHasAttr(j
, Attribute::SExt
))
5626 if (F
.paramHasAttr(j
, Attribute::InReg
))
5628 if (F
.paramHasAttr(j
, Attribute::StructRet
))
5630 if (F
.paramHasAttr(j
, Attribute::ByVal
)) {
5632 const PointerType
*Ty
= cast
<PointerType
>(I
->getType());
5633 const Type
*ElementTy
= Ty
->getElementType();
5634 unsigned FrameAlign
= getByValTypeAlignment(ElementTy
);
5635 unsigned FrameSize
= getTargetData()->getTypePaddedSize(ElementTy
);
5636 // For ByVal, alignment should be passed from FE. BE will guess if
5637 // this info is not there but there are cases it cannot get right.
5638 if (F
.getParamAlignment(j
))
5639 FrameAlign
= F
.getParamAlignment(j
);
5640 Flags
.setByValAlign(FrameAlign
);
5641 Flags
.setByValSize(FrameSize
);
5643 if (F
.paramHasAttr(j
, Attribute::Nest
))
5645 Flags
.setOrigAlign(OriginalAlignment
);
5647 MVT RegisterVT
= getRegisterType(VT
);
5648 unsigned NumRegs
= getNumRegisters(VT
);
5649 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
5650 RetVals
.push_back(RegisterVT
);
5651 ISD::ArgFlagsTy MyFlags
= Flags
;
5652 if (NumRegs
> 1 && i
== 0)
5654 // if it isn't first piece, alignment must be 1
5656 MyFlags
.setOrigAlign(1);
5657 Ops
.push_back(DAG
.getArgFlags(MyFlags
));
5662 RetVals
.push_back(MVT::Other
);
5665 SDNode
*Result
= DAG
.getNode(ISD::FORMAL_ARGUMENTS
, dl
,
5666 DAG
.getVTList(&RetVals
[0], RetVals
.size()),
5667 &Ops
[0], Ops
.size()).getNode();
5669 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
5670 // allows exposing the loads that may be part of the argument access to the
5671 // first DAGCombiner pass.
5672 SDValue TmpRes
= LowerOperation(SDValue(Result
, 0), DAG
);
5674 // The number of results should match up, except that the lowered one may have
5675 // an extra flag result.
5676 assert((Result
->getNumValues() == TmpRes
.getNode()->getNumValues() ||
5677 (Result
->getNumValues()+1 == TmpRes
.getNode()->getNumValues() &&
5678 TmpRes
.getValue(Result
->getNumValues()).getValueType() == MVT::Flag
))
5679 && "Lowering produced unexpected number of results!");
5681 // The FORMAL_ARGUMENTS node itself is likely no longer needed.
5682 if (Result
!= TmpRes
.getNode() && Result
->use_empty()) {
5683 HandleSDNode
Dummy(DAG
.getRoot());
5684 DAG
.RemoveDeadNode(Result
);
5687 Result
= TmpRes
.getNode();
5689 unsigned NumArgRegs
= Result
->getNumValues() - 1;
5690 DAG
.setRoot(SDValue(Result
, NumArgRegs
));
5692 // Set up the return result vector.
5695 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
;
5697 SmallVector
<MVT
, 4> ValueVTs
;
5698 ComputeValueVTs(*this, I
->getType(), ValueVTs
);
5699 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5700 Value
!= NumValues
; ++Value
) {
5701 MVT VT
= ValueVTs
[Value
];
5702 MVT PartVT
= getRegisterType(VT
);
5704 unsigned NumParts
= getNumRegisters(VT
);
5705 SmallVector
<SDValue
, 4> Parts(NumParts
);
5706 for (unsigned j
= 0; j
!= NumParts
; ++j
)
5707 Parts
[j
] = SDValue(Result
, i
++);
5709 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5710 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
5711 AssertOp
= ISD::AssertSext
;
5712 else if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
5713 AssertOp
= ISD::AssertZext
;
5715 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &Parts
[0], NumParts
,
5716 PartVT
, VT
, AssertOp
));
5719 assert(i
== NumArgRegs
&& "Argument register count mismatch!");
5723 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5724 /// implementation, which just inserts an ISD::CALL node, which is later custom
5725 /// lowered by the target to something concrete. FIXME: When all targets are
5726 /// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5727 std::pair
<SDValue
, SDValue
>
5728 TargetLowering::LowerCallTo(SDValue Chain
, const Type
*RetTy
,
5729 bool RetSExt
, bool RetZExt
, bool isVarArg
,
5731 unsigned CallingConv
, bool isTailCall
,
5733 ArgListTy
&Args
, SelectionDAG
&DAG
, DebugLoc dl
) {
5734 assert((!isTailCall
|| PerformTailCallOpt
) &&
5735 "isTailCall set when tail-call optimizations are disabled!");
5737 SmallVector
<SDValue
, 32> Ops
;
5738 Ops
.push_back(Chain
); // Op#0 - Chain
5739 Ops
.push_back(Callee
);
5741 // Handle all of the outgoing arguments.
5742 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
5743 SmallVector
<MVT
, 4> ValueVTs
;
5744 ComputeValueVTs(*this, Args
[i
].Ty
, ValueVTs
);
5745 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5746 Value
!= NumValues
; ++Value
) {
5747 MVT VT
= ValueVTs
[Value
];
5748 const Type
*ArgTy
= VT
.getTypeForMVT();
5749 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
5750 Args
[i
].Node
.getResNo() + Value
);
5751 ISD::ArgFlagsTy Flags
;
5752 unsigned OriginalAlignment
=
5753 getTargetData()->getABITypeAlignment(ArgTy
);
5759 if (Args
[i
].isInReg
)
5763 if (Args
[i
].isByVal
) {
5765 const PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
5766 const Type
*ElementTy
= Ty
->getElementType();
5767 unsigned FrameAlign
= getByValTypeAlignment(ElementTy
);
5768 unsigned FrameSize
= getTargetData()->getTypePaddedSize(ElementTy
);
5769 // For ByVal, alignment should come from FE. BE will guess if this
5770 // info is not there but there are cases it cannot get right.
5771 if (Args
[i
].Alignment
)
5772 FrameAlign
= Args
[i
].Alignment
;
5773 Flags
.setByValAlign(FrameAlign
);
5774 Flags
.setByValSize(FrameSize
);
5778 Flags
.setOrigAlign(OriginalAlignment
);
5780 MVT PartVT
= getRegisterType(VT
);
5781 unsigned NumParts
= getNumRegisters(VT
);
5782 SmallVector
<SDValue
, 4> Parts(NumParts
);
5783 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
5786 ExtendKind
= ISD::SIGN_EXTEND
;
5787 else if (Args
[i
].isZExt
)
5788 ExtendKind
= ISD::ZERO_EXTEND
;
5790 getCopyToParts(DAG
, dl
, Op
, &Parts
[0], NumParts
, PartVT
, ExtendKind
);
5792 for (unsigned i
= 0; i
!= NumParts
; ++i
) {
5793 // if it isn't first piece, alignment must be 1
5794 ISD::ArgFlagsTy MyFlags
= Flags
;
5795 if (NumParts
> 1 && i
== 0)
5798 MyFlags
.setOrigAlign(1);
5800 Ops
.push_back(Parts
[i
]);
5801 Ops
.push_back(DAG
.getArgFlags(MyFlags
));
5806 // Figure out the result value types. We start by making a list of
5807 // the potentially illegal return value types.
5808 SmallVector
<MVT
, 4> LoweredRetTys
;
5809 SmallVector
<MVT
, 4> RetTys
;
5810 ComputeValueVTs(*this, RetTy
, RetTys
);
5812 // Then we translate that to a list of legal types.
5813 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5815 MVT RegisterVT
= getRegisterType(VT
);
5816 unsigned NumRegs
= getNumRegisters(VT
);
5817 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
5818 LoweredRetTys
.push_back(RegisterVT
);
5821 LoweredRetTys
.push_back(MVT::Other
); // Always has a chain.
5823 // Create the CALL node.
5824 SDValue Res
= DAG
.getCall(CallingConv
, dl
,
5825 isVarArg
, isTailCall
, isInreg
,
5826 DAG
.getVTList(&LoweredRetTys
[0],
5827 LoweredRetTys
.size()),
5830 Chain
= Res
.getValue(LoweredRetTys
.size() - 1);
5832 // Gather up the call result into a single value.
5833 if (RetTy
!= Type::VoidTy
&& !RetTys
.empty()) {
5834 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5837 AssertOp
= ISD::AssertSext
;
5839 AssertOp
= ISD::AssertZext
;
5841 SmallVector
<SDValue
, 4> ReturnValues
;
5843 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5845 MVT RegisterVT
= getRegisterType(VT
);
5846 unsigned NumRegs
= getNumRegisters(VT
);
5847 unsigned RegNoEnd
= NumRegs
+ RegNo
;
5848 SmallVector
<SDValue
, 4> Results
;
5849 for (; RegNo
!= RegNoEnd
; ++RegNo
)
5850 Results
.push_back(Res
.getValue(RegNo
));
5851 SDValue ReturnValue
=
5852 getCopyFromParts(DAG
, dl
, &Results
[0], NumRegs
, RegisterVT
, VT
,
5854 ReturnValues
.push_back(ReturnValue
);
5856 Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
5857 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
5858 &ReturnValues
[0], ReturnValues
.size());
5861 return std::make_pair(Res
, Chain
);
5864 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
5865 SmallVectorImpl
<SDValue
> &Results
,
5866 SelectionDAG
&DAG
) {
5867 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
5869 Results
.push_back(Res
);
5872 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
5873 assert(0 && "LowerOperation not implemented for this target!");
5879 void SelectionDAGLowering::CopyValueToVirtualRegister(Value
*V
, unsigned Reg
) {
5880 SDValue Op
= getValue(V
);
5881 assert((Op
.getOpcode() != ISD::CopyFromReg
||
5882 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
5883 "Copy from a reg to the same reg!");
5884 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
5886 RegsForValue
RFV(TLI
, Reg
, V
->getType());
5887 SDValue Chain
= DAG
.getEntryNode();
5888 RFV
.getCopyToRegs(Op
, DAG
, getCurDebugLoc(), Chain
, 0);
5889 PendingExports
.push_back(Chain
);
5892 #include "llvm/CodeGen/SelectionDAGISel.h"
5894 void SelectionDAGISel::
5895 LowerArguments(BasicBlock
*LLVMBB
) {
5896 // If this is the entry block, emit arguments.
5897 Function
&F
= *LLVMBB
->getParent();
5898 SDValue OldRoot
= SDL
->DAG
.getRoot();
5899 SmallVector
<SDValue
, 16> Args
;
5900 TLI
.LowerArguments(F
, SDL
->DAG
, Args
, SDL
->getCurDebugLoc());
5903 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
5905 SmallVector
<MVT
, 4> ValueVTs
;
5906 ComputeValueVTs(TLI
, AI
->getType(), ValueVTs
);
5907 unsigned NumValues
= ValueVTs
.size();
5908 if (!AI
->use_empty()) {
5909 SDL
->setValue(AI
, SDL
->DAG
.getMergeValues(&Args
[a
], NumValues
,
5910 SDL
->getCurDebugLoc()));
5911 // If this argument is live outside of the entry block, insert a copy from
5912 // whereever we got it to the vreg that other BB's will reference it as.
5913 SDL
->CopyToExportRegsIfNeeded(AI
);
5918 // Finally, if the target has anything special to do, allow it to do so.
5919 // FIXME: this should insert code into the DAG!
5920 EmitFunctionEntryCode(F
, SDL
->DAG
.getMachineFunction());
5923 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5924 /// ensure constants are generated when needed. Remember the virtual registers
5925 /// that need to be added to the Machine PHI nodes as input. We cannot just
5926 /// directly add them, because expansion might result in multiple MBB's for one
5927 /// BB. As such, the start of the BB might correspond to a different MBB than
5931 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock
*LLVMBB
) {
5932 TerminatorInst
*TI
= LLVMBB
->getTerminator();
5934 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
5936 // Check successor nodes' PHI nodes that expect a constant to be available
5938 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
5939 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
5940 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
5941 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
5943 // If this terminator has multiple identical successors (common for
5944 // switches), only handle each succ once.
5945 if (!SuccsHandled
.insert(SuccMBB
)) continue;
5947 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
5950 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5951 // nodes and Machine PHI nodes, but the incoming operands have not been
5953 for (BasicBlock::iterator I
= SuccBB
->begin();
5954 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
5955 // Ignore dead phi's.
5956 if (PN
->use_empty()) continue;
5959 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
5961 if (Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
5962 unsigned &RegOut
= SDL
->ConstantsOut
[C
];
5964 RegOut
= FuncInfo
->CreateRegForValue(C
);
5965 SDL
->CopyValueToVirtualRegister(C
, RegOut
);
5969 Reg
= FuncInfo
->ValueMap
[PHIOp
];
5971 assert(isa
<AllocaInst
>(PHIOp
) &&
5972 FuncInfo
->StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
5973 "Didn't codegen value into a register!??");
5974 Reg
= FuncInfo
->CreateRegForValue(PHIOp
);
5975 SDL
->CopyValueToVirtualRegister(PHIOp
, Reg
);
5979 // Remember that this register needs to added to the machine PHI node as
5980 // the input for this MBB.
5981 SmallVector
<MVT
, 4> ValueVTs
;
5982 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
5983 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
5984 MVT VT
= ValueVTs
[vti
];
5985 unsigned NumRegisters
= TLI
.getNumRegisters(VT
);
5986 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
5987 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
+i
));
5988 Reg
+= NumRegisters
;
5992 SDL
->ConstantsOut
.clear();
5995 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5996 /// supports legal types, and it emits MachineInstrs directly instead of
5997 /// creating SelectionDAG nodes.
6000 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock
*LLVMBB
,
6002 TerminatorInst
*TI
= LLVMBB
->getTerminator();
6004 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
6005 unsigned OrigNumPHINodesToUpdate
= SDL
->PHINodesToUpdate
.size();
6007 // Check successor nodes' PHI nodes that expect a constant to be available
6009 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
6010 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
6011 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
6012 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
6014 // If this terminator has multiple identical successors (common for
6015 // switches), only handle each succ once.
6016 if (!SuccsHandled
.insert(SuccMBB
)) continue;
6018 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
6021 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6022 // nodes and Machine PHI nodes, but the incoming operands have not been
6024 for (BasicBlock::iterator I
= SuccBB
->begin();
6025 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
6026 // Ignore dead phi's.
6027 if (PN
->use_empty()) continue;
6029 // Only handle legal types. Two interesting things to note here. First,
6030 // by bailing out early, we may leave behind some dead instructions,
6031 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6032 // own moves. Second, this check is necessary becuase FastISel doesn't
6033 // use CreateRegForValue to create registers, so it always creates
6034 // exactly one register for each non-void instruction.
6035 MVT VT
= TLI
.getValueType(PN
->getType(), /*AllowUnknown=*/true);
6036 if (VT
== MVT::Other
|| !TLI
.isTypeLegal(VT
)) {
6039 VT
= TLI
.getTypeToTransformTo(VT
);
6041 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6046 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
6048 unsigned Reg
= F
->getRegForValue(PHIOp
);
6050 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6053 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
));