1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. Any pointer arithmetic recurrences are raised to use array subscripts.
22 // If the trip count of a loop is computable, this pass also makes the following
24 // 1. The exit condition for the loop is canonicalized to compare the
25 // induction value against the exit value. This turns loops like:
26 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27 // 2. Any use outside of the loop of an expression derived from the indvar
28 // is changed to compute the derived value outside of the loop, eliminating
29 // the dependence on the exit value of the induction variable. If the only
30 // purpose of the loop is to compute the exit value of some derived
31 // expression, this transformation will make the loop dead.
33 // This transformation should be followed by strength reduction after all of the
34 // desired loop transformations have been performed. Additionally, on targets
35 // where it is profitable, the loop could be transformed to count down to zero
36 // (the "do loop" optimization).
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "indvars"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/BasicBlock.h"
43 #include "llvm/Constants.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/Type.h"
46 #include "llvm/Analysis/ScalarEvolutionExpander.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/GetElementPtrTypeIterator.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SetVector.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/Statistic.h"
61 STATISTIC(NumRemoved
, "Number of aux indvars removed");
62 STATISTIC(NumInserted
, "Number of canonical indvars added");
63 STATISTIC(NumReplaced
, "Number of exit values replaced");
64 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
67 class VISIBILITY_HIDDEN IndVarSimplify
: public LoopPass
{
73 static char ID
; // Pass identification, replacement for typeid
74 IndVarSimplify() : LoopPass(&ID
) {}
76 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
78 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
79 AU
.addRequired
<ScalarEvolution
>();
80 AU
.addRequiredID(LCSSAID
);
81 AU
.addRequiredID(LoopSimplifyID
);
82 AU
.addRequired
<LoopInfo
>();
83 AU
.addPreserved
<ScalarEvolution
>();
84 AU
.addPreservedID(LoopSimplifyID
);
85 AU
.addPreservedID(LCSSAID
);
91 void RewriteNonIntegerIVs(Loop
*L
);
93 void LinearFunctionTestReplace(Loop
*L
, SCEVHandle BackedgeTakenCount
,
95 BasicBlock
*ExitingBlock
,
97 SCEVExpander
&Rewriter
);
98 void RewriteLoopExitValues(Loop
*L
, const SCEV
*BackedgeTakenCount
);
100 void DeleteTriviallyDeadInstructions(SmallPtrSet
<Instruction
*, 16> &Insts
);
102 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
,
103 SmallPtrSet
<Instruction
*, 16> &DeadInsts
);
107 char IndVarSimplify::ID
= 0;
108 static RegisterPass
<IndVarSimplify
>
109 X("indvars", "Canonicalize Induction Variables");
111 Pass
*llvm::createIndVarSimplifyPass() {
112 return new IndVarSimplify();
115 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
116 /// specified set are trivially dead, delete them and see if this makes any of
117 /// their operands subsequently dead.
118 void IndVarSimplify::
119 DeleteTriviallyDeadInstructions(SmallPtrSet
<Instruction
*, 16> &Insts
) {
120 while (!Insts
.empty()) {
121 Instruction
*I
= *Insts
.begin();
123 if (isInstructionTriviallyDead(I
)) {
124 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
125 if (Instruction
*U
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
127 SE
->deleteValueFromRecords(I
);
128 DOUT
<< "INDVARS: Deleting: " << *I
;
129 I
->eraseFromParent();
135 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
136 /// loop to be a canonical != comparison against the incremented loop induction
137 /// variable. This pass is able to rewrite the exit tests of any loop where the
138 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
139 /// is actually a much broader range than just linear tests.
140 void IndVarSimplify::LinearFunctionTestReplace(Loop
*L
,
141 SCEVHandle BackedgeTakenCount
,
143 BasicBlock
*ExitingBlock
,
145 SCEVExpander
&Rewriter
) {
146 // If the exiting block is not the same as the backedge block, we must compare
147 // against the preincremented value, otherwise we prefer to compare against
148 // the post-incremented value.
150 SCEVHandle RHS
= BackedgeTakenCount
;
151 if (ExitingBlock
== L
->getLoopLatch()) {
152 // Add one to the "backedge-taken" count to get the trip count.
153 // If this addition may overflow, we have to be more pessimistic and
154 // cast the induction variable before doing the add.
155 SCEVHandle Zero
= SE
->getIntegerSCEV(0, BackedgeTakenCount
->getType());
157 SE
->getAddExpr(BackedgeTakenCount
,
158 SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType()));
159 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
160 SE
->isLoopGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
161 // No overflow. Cast the sum.
162 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
164 // Potential overflow. Cast before doing the add.
165 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
167 RHS
= SE
->getAddExpr(RHS
,
168 SE
->getIntegerSCEV(1, IndVar
->getType()));
171 // The BackedgeTaken expression contains the number of times that the
172 // backedge branches to the loop header. This is one less than the
173 // number of times the loop executes, so use the incremented indvar.
174 CmpIndVar
= L
->getCanonicalInductionVariableIncrement();
176 // We have to use the preincremented value...
177 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
182 // Expand the code for the iteration count into the preheader of the loop.
183 BasicBlock
*Preheader
= L
->getLoopPreheader();
184 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(),
185 Preheader
->getTerminator());
187 // Insert a new icmp_ne or icmp_eq instruction before the branch.
188 ICmpInst::Predicate Opcode
;
189 if (L
->contains(BI
->getSuccessor(0)))
190 Opcode
= ICmpInst::ICMP_NE
;
192 Opcode
= ICmpInst::ICMP_EQ
;
194 DOUT
<< "INDVARS: Rewriting loop exit condition to:\n"
195 << " LHS:" << *CmpIndVar
// includes a newline
197 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
198 << " RHS:\t" << *RHS
<< "\n";
200 Value
*Cond
= new ICmpInst(Opcode
, CmpIndVar
, ExitCnt
, "exitcond", BI
);
201 BI
->setCondition(Cond
);
206 /// RewriteLoopExitValues - Check to see if this loop has a computable
207 /// loop-invariant execution count. If so, this means that we can compute the
208 /// final value of any expressions that are recurrent in the loop, and
209 /// substitute the exit values from the loop into any instructions outside of
210 /// the loop that use the final values of the current expressions.
211 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
,
212 const SCEV
*BackedgeTakenCount
) {
213 BasicBlock
*Preheader
= L
->getLoopPreheader();
215 // Scan all of the instructions in the loop, looking at those that have
216 // extra-loop users and which are recurrences.
217 SCEVExpander
Rewriter(*SE
, *LI
);
219 // We insert the code into the preheader of the loop if the loop contains
220 // multiple exit blocks, or in the exit block if there is exactly one.
221 BasicBlock
*BlockToInsertInto
;
222 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
223 L
->getUniqueExitBlocks(ExitBlocks
);
224 if (ExitBlocks
.size() == 1)
225 BlockToInsertInto
= ExitBlocks
[0];
227 BlockToInsertInto
= Preheader
;
228 BasicBlock::iterator InsertPt
= BlockToInsertInto
->getFirstNonPHI();
230 bool HasConstantItCount
= isa
<SCEVConstant
>(BackedgeTakenCount
);
232 SmallPtrSet
<Instruction
*, 16> InstructionsToDelete
;
233 std::map
<Instruction
*, Value
*> ExitValues
;
235 // Find all values that are computed inside the loop, but used outside of it.
236 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
237 // the exit blocks of the loop to find them.
238 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
239 BasicBlock
*ExitBB
= ExitBlocks
[i
];
241 // If there are no PHI nodes in this exit block, then no values defined
242 // inside the loop are used on this path, skip it.
243 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
246 unsigned NumPreds
= PN
->getNumIncomingValues();
248 // Iterate over all of the PHI nodes.
249 BasicBlock::iterator BBI
= ExitBB
->begin();
250 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
252 // Iterate over all of the values in all the PHI nodes.
253 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
254 // If the value being merged in is not integer or is not defined
255 // in the loop, skip it.
256 Value
*InVal
= PN
->getIncomingValue(i
);
257 if (!isa
<Instruction
>(InVal
) ||
258 // SCEV only supports integer expressions for now.
259 (!isa
<IntegerType
>(InVal
->getType()) &&
260 !isa
<PointerType
>(InVal
->getType())))
263 // If this pred is for a subloop, not L itself, skip it.
264 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
265 continue; // The Block is in a subloop, skip it.
267 // Check that InVal is defined in the loop.
268 Instruction
*Inst
= cast
<Instruction
>(InVal
);
269 if (!L
->contains(Inst
->getParent()))
272 // We require that this value either have a computable evolution or that
273 // the loop have a constant iteration count. In the case where the loop
274 // has a constant iteration count, we can sometimes force evaluation of
275 // the exit value through brute force.
276 SCEVHandle SH
= SE
->getSCEV(Inst
);
277 if (!SH
->hasComputableLoopEvolution(L
) && !HasConstantItCount
)
278 continue; // Cannot get exit evolution for the loop value.
280 // Okay, this instruction has a user outside of the current loop
281 // and varies predictably *inside* the loop. Evaluate the value it
282 // contains when the loop exits, if possible.
283 SCEVHandle ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
284 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
285 !ExitValue
->isLoopInvariant(L
))
291 // See if we already computed the exit value for the instruction, if so,
293 Value
*&ExitVal
= ExitValues
[Inst
];
295 ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), InsertPt
);
297 DOUT
<< "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
298 << " LoopVal = " << *Inst
<< "\n";
300 PN
->setIncomingValue(i
, ExitVal
);
302 // If this instruction is dead now, schedule it to be removed.
303 if (Inst
->use_empty())
304 InstructionsToDelete
.insert(Inst
);
306 // See if this is a single-entry LCSSA PHI node. If so, we can (and
308 // the PHI entirely. This is safe, because the NewVal won't be variant
309 // in the loop, so we don't need an LCSSA phi node anymore.
311 SE
->deleteValueFromRecords(PN
);
312 PN
->replaceAllUsesWith(ExitVal
);
313 PN
->eraseFromParent();
320 DeleteTriviallyDeadInstructions(InstructionsToDelete
);
323 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
324 // First step. Check to see if there are any floating-point recurrences.
325 // If there are, change them into integer recurrences, permitting analysis by
326 // the SCEV routines.
328 BasicBlock
*Header
= L
->getHeader();
330 SmallPtrSet
<Instruction
*, 16> DeadInsts
;
331 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
332 PHINode
*PN
= cast
<PHINode
>(I
);
333 HandleFloatingPointIV(L
, PN
, DeadInsts
);
336 // If the loop previously had floating-point IV, ScalarEvolution
337 // may not have been able to compute a trip count. Now that we've done some
338 // re-writing, the trip count may be computable.
340 SE
->forgetLoopBackedgeTakenCount(L
);
342 if (!DeadInsts
.empty())
343 DeleteTriviallyDeadInstructions(DeadInsts
);
346 /// getEffectiveIndvarType - Determine the widest type that the
347 /// induction-variable PHINode Phi is cast to.
349 static const Type
*getEffectiveIndvarType(const PHINode
*Phi
,
350 const ScalarEvolution
*SE
) {
351 const Type
*Ty
= Phi
->getType();
353 for (Value::use_const_iterator UI
= Phi
->use_begin(), UE
= Phi
->use_end();
355 const Type
*CandidateType
= NULL
;
356 if (const ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(UI
))
357 CandidateType
= ZI
->getDestTy();
358 else if (const SExtInst
*SI
= dyn_cast
<SExtInst
>(UI
))
359 CandidateType
= SI
->getDestTy();
360 else if (const IntToPtrInst
*IP
= dyn_cast
<IntToPtrInst
>(UI
))
361 CandidateType
= IP
->getDestTy();
362 else if (const PtrToIntInst
*PI
= dyn_cast
<PtrToIntInst
>(UI
))
363 CandidateType
= PI
->getDestTy();
365 SE
->isSCEVable(CandidateType
) &&
366 SE
->getTypeSizeInBits(CandidateType
) > SE
->getTypeSizeInBits(Ty
))
373 /// TestOrigIVForWrap - Analyze the original induction variable
374 /// that controls the loop's iteration to determine whether it
375 /// would ever undergo signed or unsigned overflow. Also, check
376 /// whether an induction variable in the same type that starts
377 /// at 0 would undergo signed overflow.
379 /// In addition to setting the NoSignedWrap and NoUnsignedWrap
380 /// variables to true when appropriate (they are not set to false here),
381 /// return the PHI for this induction variable. Also record the initial
382 /// and final values and the increment; these are not meaningful unless
383 /// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
384 /// in that case, although the final value may be 0 indicating a nonconstant.
386 /// TODO: This duplicates a fair amount of ScalarEvolution logic.
387 /// Perhaps this can be merged with
388 /// ScalarEvolution::getBackedgeTakenCount
389 /// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
391 static const PHINode
*TestOrigIVForWrap(const Loop
*L
,
392 const BranchInst
*BI
,
393 const Instruction
*OrigCond
,
394 const ScalarEvolution
&SE
,
396 bool &NoUnsignedWrap
,
397 const ConstantInt
* &InitialVal
,
398 const ConstantInt
* &IncrVal
,
399 const ConstantInt
* &LimitVal
) {
400 // Verify that the loop is sane and find the exit condition.
401 const ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(OrigCond
);
404 const Value
*CmpLHS
= Cmp
->getOperand(0);
405 const Value
*CmpRHS
= Cmp
->getOperand(1);
406 const BasicBlock
*TrueBB
= BI
->getSuccessor(0);
407 const BasicBlock
*FalseBB
= BI
->getSuccessor(1);
408 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
410 // Canonicalize a constant to the RHS.
411 if (isa
<ConstantInt
>(CmpLHS
)) {
412 Pred
= ICmpInst::getSwappedPredicate(Pred
);
413 std::swap(CmpLHS
, CmpRHS
);
415 // Canonicalize SLE to SLT.
416 if (Pred
== ICmpInst::ICMP_SLE
)
417 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
418 if (!CI
->getValue().isMaxSignedValue()) {
419 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
420 Pred
= ICmpInst::ICMP_SLT
;
422 // Canonicalize SGT to SGE.
423 if (Pred
== ICmpInst::ICMP_SGT
)
424 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
425 if (!CI
->getValue().isMaxSignedValue()) {
426 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
427 Pred
= ICmpInst::ICMP_SGE
;
429 // Canonicalize SGE to SLT.
430 if (Pred
== ICmpInst::ICMP_SGE
) {
431 std::swap(TrueBB
, FalseBB
);
432 Pred
= ICmpInst::ICMP_SLT
;
434 // Canonicalize ULE to ULT.
435 if (Pred
== ICmpInst::ICMP_ULE
)
436 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
437 if (!CI
->getValue().isMaxValue()) {
438 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
439 Pred
= ICmpInst::ICMP_ULT
;
441 // Canonicalize UGT to UGE.
442 if (Pred
== ICmpInst::ICMP_UGT
)
443 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
444 if (!CI
->getValue().isMaxValue()) {
445 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
446 Pred
= ICmpInst::ICMP_UGE
;
448 // Canonicalize UGE to ULT.
449 if (Pred
== ICmpInst::ICMP_UGE
) {
450 std::swap(TrueBB
, FalseBB
);
451 Pred
= ICmpInst::ICMP_ULT
;
453 // For now, analyze only LT loops for signed overflow.
454 if (Pred
!= ICmpInst::ICMP_SLT
&& Pred
!= ICmpInst::ICMP_ULT
)
457 bool isSigned
= Pred
== ICmpInst::ICMP_SLT
;
459 // Get the increment instruction. Look past casts if we will
460 // be able to prove that the original induction variable doesn't
461 // undergo signed or unsigned overflow, respectively.
462 const Value
*IncrInst
= CmpLHS
;
464 if (const SExtInst
*SI
= dyn_cast
<SExtInst
>(CmpLHS
)) {
465 if (!isa
<ConstantInt
>(CmpRHS
) ||
466 !cast
<ConstantInt
>(CmpRHS
)->getValue()
467 .isSignedIntN(SE
.getTypeSizeInBits(IncrInst
->getType())))
469 IncrInst
= SI
->getOperand(0);
472 if (const ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(CmpLHS
)) {
473 if (!isa
<ConstantInt
>(CmpRHS
) ||
474 !cast
<ConstantInt
>(CmpRHS
)->getValue()
475 .isIntN(SE
.getTypeSizeInBits(IncrInst
->getType())))
477 IncrInst
= ZI
->getOperand(0);
481 // For now, only analyze induction variables that have simple increments.
482 const BinaryOperator
*IncrOp
= dyn_cast
<BinaryOperator
>(IncrInst
);
483 if (!IncrOp
|| IncrOp
->getOpcode() != Instruction::Add
)
485 IncrVal
= dyn_cast
<ConstantInt
>(IncrOp
->getOperand(1));
489 // Make sure the PHI looks like a normal IV.
490 const PHINode
*PN
= dyn_cast
<PHINode
>(IncrOp
->getOperand(0));
491 if (!PN
|| PN
->getNumIncomingValues() != 2)
493 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
494 unsigned BackEdge
= !IncomingEdge
;
495 if (!L
->contains(PN
->getIncomingBlock(BackEdge
)) ||
496 PN
->getIncomingValue(BackEdge
) != IncrOp
)
498 if (!L
->contains(TrueBB
))
501 // For now, only analyze loops with a constant start value, so that
502 // we can easily determine if the start value is not a maximum value
503 // which would wrap on the first iteration.
504 InitialVal
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(IncomingEdge
));
508 // The upper limit need not be a constant; we'll check later.
509 LimitVal
= dyn_cast
<ConstantInt
>(CmpRHS
);
511 // We detect the impossibility of wrapping in two cases, both of
512 // which require starting with a non-max value:
513 // - The IV counts up by one, and the loop iterates only while it remains
514 // less than a limiting value (any) in the same type.
515 // - The IV counts up by a positive increment other than 1, and the
516 // constant limiting value + the increment is less than the max value
517 // (computed as max-increment to avoid overflow)
518 if (isSigned
&& !InitialVal
->getValue().isMaxSignedValue()) {
519 if (IncrVal
->equalsInt(1))
520 NoSignedWrap
= true; // LimitVal need not be constant
522 uint64_t numBits
= LimitVal
->getValue().getBitWidth();
523 if (IncrVal
->getValue().sgt(APInt::getNullValue(numBits
)) &&
524 (APInt::getSignedMaxValue(numBits
) - IncrVal
->getValue())
525 .sgt(LimitVal
->getValue()))
528 } else if (!isSigned
&& !InitialVal
->getValue().isMaxValue()) {
529 if (IncrVal
->equalsInt(1))
530 NoUnsignedWrap
= true; // LimitVal need not be constant
532 uint64_t numBits
= LimitVal
->getValue().getBitWidth();
533 if (IncrVal
->getValue().ugt(APInt::getNullValue(numBits
)) &&
534 (APInt::getMaxValue(numBits
) - IncrVal
->getValue())
535 .ugt(LimitVal
->getValue()))
536 NoUnsignedWrap
= true;
542 static Value
*getSignExtendedTruncVar(const SCEVAddRecExpr
*AR
,
544 const Type
*LargestType
, Loop
*L
,
546 SCEVExpander
&Rewriter
) {
547 SCEVHandle ExtendedStart
=
548 SE
->getSignExtendExpr(AR
->getStart(), LargestType
);
549 SCEVHandle ExtendedStep
=
550 SE
->getSignExtendExpr(AR
->getStepRecurrence(*SE
), LargestType
);
551 SCEVHandle ExtendedAddRec
=
552 SE
->getAddRecExpr(ExtendedStart
, ExtendedStep
, L
);
553 if (LargestType
!= myType
)
554 ExtendedAddRec
= SE
->getTruncateExpr(ExtendedAddRec
, myType
);
555 return Rewriter
.expandCodeFor(ExtendedAddRec
, myType
);
558 static Value
*getZeroExtendedTruncVar(const SCEVAddRecExpr
*AR
,
560 const Type
*LargestType
, Loop
*L
,
562 SCEVExpander
&Rewriter
) {
563 SCEVHandle ExtendedStart
=
564 SE
->getZeroExtendExpr(AR
->getStart(), LargestType
);
565 SCEVHandle ExtendedStep
=
566 SE
->getZeroExtendExpr(AR
->getStepRecurrence(*SE
), LargestType
);
567 SCEVHandle ExtendedAddRec
=
568 SE
->getAddRecExpr(ExtendedStart
, ExtendedStep
, L
);
569 if (LargestType
!= myType
)
570 ExtendedAddRec
= SE
->getTruncateExpr(ExtendedAddRec
, myType
);
571 return Rewriter
.expandCodeFor(ExtendedAddRec
, myType
);
574 /// allUsesAreSameTyped - See whether all Uses of I are instructions
575 /// with the same Opcode and the same type.
576 static bool allUsesAreSameTyped(unsigned int Opcode
, Instruction
*I
) {
577 const Type
* firstType
= NULL
;
578 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
580 Instruction
*II
= dyn_cast
<Instruction
>(*UI
);
581 if (!II
|| II
->getOpcode() != Opcode
)
584 firstType
= II
->getType();
585 else if (firstType
!= II
->getType())
591 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
592 LI
= &getAnalysis
<LoopInfo
>();
593 SE
= &getAnalysis
<ScalarEvolution
>();
596 // If there are any floating-point recurrences, attempt to
597 // transform them to use integer recurrences.
598 RewriteNonIntegerIVs(L
);
600 BasicBlock
*Header
= L
->getHeader();
601 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
602 SmallPtrSet
<Instruction
*, 16> DeadInsts
;
604 // Verify the input to the pass in already in LCSSA form.
605 assert(L
->isLCSSAForm());
607 // Check to see if this loop has a computable loop-invariant execution count.
608 // If so, this means that we can compute the final value of any expressions
609 // that are recurrent in the loop, and substitute the exit values from the
610 // loop into any instructions outside of the loop that use the final values of
611 // the current expressions.
613 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
614 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
615 RewriteLoopExitValues(L
, BackedgeTakenCount
);
617 // Next, analyze all of the induction variables in the loop, canonicalizing
618 // auxillary induction variables.
619 std::vector
<std::pair
<PHINode
*, SCEVHandle
> > IndVars
;
621 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
622 PHINode
*PN
= cast
<PHINode
>(I
);
623 if (SE
->isSCEVable(PN
->getType())) {
624 SCEVHandle SCEV
= SE
->getSCEV(PN
);
625 // FIXME: It is an extremely bad idea to indvar substitute anything more
626 // complex than affine induction variables. Doing so will put expensive
627 // polynomial evaluations inside of the loop, and the str reduction pass
628 // currently can only reduce affine polynomials. For now just disable
629 // indvar subst on anything more complex than an affine addrec.
630 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SCEV
))
631 if (AR
->getLoop() == L
&& AR
->isAffine())
632 IndVars
.push_back(std::make_pair(PN
, SCEV
));
636 // Compute the type of the largest recurrence expression, and collect
637 // the set of the types of the other recurrence expressions.
638 const Type
*LargestType
= 0;
639 SmallSetVector
<const Type
*, 4> SizesToInsert
;
640 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
641 LargestType
= BackedgeTakenCount
->getType();
642 LargestType
= SE
->getEffectiveSCEVType(LargestType
);
643 SizesToInsert
.insert(LargestType
);
645 for (unsigned i
= 0, e
= IndVars
.size(); i
!= e
; ++i
) {
646 const PHINode
*PN
= IndVars
[i
].first
;
647 const Type
*PNTy
= PN
->getType();
648 PNTy
= SE
->getEffectiveSCEVType(PNTy
);
649 SizesToInsert
.insert(PNTy
);
650 const Type
*EffTy
= getEffectiveIndvarType(PN
, SE
);
651 EffTy
= SE
->getEffectiveSCEVType(EffTy
);
652 SizesToInsert
.insert(EffTy
);
654 SE
->getTypeSizeInBits(EffTy
) >
655 SE
->getTypeSizeInBits(LargestType
))
659 // Create a rewriter object which we'll use to transform the code with.
660 SCEVExpander
Rewriter(*SE
, *LI
);
662 // Now that we know the largest of of the induction variables in this loop,
663 // insert a canonical induction variable of the largest size.
665 if (!SizesToInsert
.empty()) {
666 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
,LargestType
);
669 DOUT
<< "INDVARS: New CanIV: " << *IndVar
;
672 // If we have a trip count expression, rewrite the loop's exit condition
673 // using it. We can currently only handle loops with a single exit.
674 bool NoSignedWrap
= false;
675 bool NoUnsignedWrap
= false;
676 const ConstantInt
* InitialVal
, * IncrVal
, * LimitVal
;
677 const PHINode
*OrigControllingPHI
= 0;
678 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) && ExitingBlock
)
679 // Can't rewrite non-branch yet.
680 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator())) {
681 if (Instruction
*OrigCond
= dyn_cast
<Instruction
>(BI
->getCondition())) {
682 // Determine if the OrigIV will ever undergo overflow.
684 TestOrigIVForWrap(L
, BI
, OrigCond
, *SE
,
685 NoSignedWrap
, NoUnsignedWrap
,
686 InitialVal
, IncrVal
, LimitVal
);
688 // We'll be replacing the original condition, so it'll be dead.
689 DeadInsts
.insert(OrigCond
);
692 LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
693 ExitingBlock
, BI
, Rewriter
);
696 // Now that we have a canonical induction variable, we can rewrite any
697 // recurrences in terms of the induction variable. Start with the auxillary
698 // induction variables, and recursively rewrite any of their uses.
699 BasicBlock::iterator InsertPt
= Header
->getFirstNonPHI();
700 Rewriter
.setInsertionPoint(InsertPt
);
702 // If there were induction variables of other sizes, cast the primary
703 // induction variable to the right size for them, avoiding the need for the
704 // code evaluation methods to insert induction variables of different sizes.
705 for (unsigned i
= 0, e
= SizesToInsert
.size(); i
!= e
; ++i
) {
706 const Type
*Ty
= SizesToInsert
[i
];
707 if (Ty
!= LargestType
) {
708 Instruction
*New
= new TruncInst(IndVar
, Ty
, "indvar", InsertPt
);
709 Rewriter
.addInsertedValue(New
, SE
->getSCEV(New
));
710 DOUT
<< "INDVARS: Made trunc IV for type " << *Ty
<< ": "
715 // Rewrite all induction variables in terms of the canonical induction
717 while (!IndVars
.empty()) {
718 PHINode
*PN
= IndVars
.back().first
;
719 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(IndVars
.back().second
);
720 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, PN
->getType());
721 DOUT
<< "INDVARS: Rewrote IV '" << *AR
<< "' " << *PN
722 << " into = " << *NewVal
<< "\n";
723 NewVal
->takeName(PN
);
725 /// If the new canonical induction variable is wider than the original,
726 /// and the original has uses that are casts to wider types, see if the
727 /// truncate and extend can be omitted.
728 if (PN
== OrigControllingPHI
&& PN
->getType() != LargestType
)
729 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
731 Instruction
*UInst
= dyn_cast
<Instruction
>(*UI
);
732 if (UInst
&& isa
<SExtInst
>(UInst
) && NoSignedWrap
) {
733 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
, L
,
734 UInst
->getType(), Rewriter
);
735 UInst
->replaceAllUsesWith(TruncIndVar
);
736 DeadInsts
.insert(UInst
);
738 // See if we can figure out sext(i+constant) doesn't wrap, so we can
739 // use a larger add. This is common in subscripting.
740 if (UInst
&& UInst
->getOpcode()==Instruction::Add
&&
741 !UInst
->use_empty() &&
742 allUsesAreSameTyped(Instruction::SExt
, UInst
) &&
743 isa
<ConstantInt
>(UInst
->getOperand(1)) &&
744 NoSignedWrap
&& LimitVal
) {
745 uint64_t oldBitSize
= LimitVal
->getValue().getBitWidth();
746 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
747 ConstantInt
* AddRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
748 if (((APInt::getSignedMaxValue(oldBitSize
) - IncrVal
->getValue()) -
749 AddRHS
->getValue()).sgt(LimitVal
->getValue())) {
750 // We've determined this is (i+constant) and it won't overflow.
751 if (isa
<SExtInst
>(UInst
->use_begin())) {
752 SExtInst
* oldSext
= dyn_cast
<SExtInst
>(UInst
->use_begin());
753 uint64_t truncSize
= oldSext
->getType()->getPrimitiveSizeInBits();
754 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
755 L
, oldSext
->getType(), Rewriter
);
756 APInt APnewAddRHS
= APInt(AddRHS
->getValue()).sext(newBitSize
);
757 if (newBitSize
> truncSize
)
758 APnewAddRHS
= APnewAddRHS
.trunc(truncSize
);
759 ConstantInt
* newAddRHS
=ConstantInt::get(APnewAddRHS
);
761 BinaryOperator::CreateAdd(TruncIndVar
, newAddRHS
,
762 UInst
->getName()+".nosex", UInst
);
763 for (Value::use_iterator UI2
= UInst
->use_begin(),
764 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
765 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
766 II
->replaceAllUsesWith(NewAdd
);
767 DeadInsts
.insert(II
);
769 DeadInsts
.insert(UInst
);
773 // Try for sext(i | constant). This is safe as long as the
774 // high bit of the constant is not set.
775 if (UInst
&& UInst
->getOpcode()==Instruction::Or
&&
776 !UInst
->use_empty() &&
777 allUsesAreSameTyped(Instruction::SExt
, UInst
) && NoSignedWrap
&&
778 isa
<ConstantInt
>(UInst
->getOperand(1))) {
779 ConstantInt
* RHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
780 if (!RHS
->getValue().isNegative()) {
781 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
782 SExtInst
* oldSext
= dyn_cast
<SExtInst
>(UInst
->use_begin());
783 uint64_t truncSize
= oldSext
->getType()->getPrimitiveSizeInBits();
784 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
785 L
, oldSext
->getType(), Rewriter
);
786 APInt APnewOrRHS
= APInt(RHS
->getValue()).sext(newBitSize
);
787 if (newBitSize
> truncSize
)
788 APnewOrRHS
= APnewOrRHS
.trunc(truncSize
);
789 ConstantInt
* newOrRHS
=ConstantInt::get(APnewOrRHS
);
791 BinaryOperator::CreateOr(TruncIndVar
, newOrRHS
,
792 UInst
->getName()+".nosex", UInst
);
793 for (Value::use_iterator UI2
= UInst
->use_begin(),
794 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
795 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
796 II
->replaceAllUsesWith(NewOr
);
797 DeadInsts
.insert(II
);
799 DeadInsts
.insert(UInst
);
802 // A zext of a signed variable known not to overflow is still safe.
803 if (UInst
&& isa
<ZExtInst
>(UInst
) && (NoUnsignedWrap
|| NoSignedWrap
)) {
804 Value
*TruncIndVar
= getZeroExtendedTruncVar(AR
, SE
, LargestType
, L
,
805 UInst
->getType(), Rewriter
);
806 UInst
->replaceAllUsesWith(TruncIndVar
);
807 DeadInsts
.insert(UInst
);
809 // If we have zext(i&constant), it's always safe to use the larger
810 // variable. This is not common but is a bottleneck in Openssl.
811 // (RHS doesn't have to be constant. There should be a better approach
812 // than bottom-up pattern matching for this...)
813 if (UInst
&& UInst
->getOpcode()==Instruction::And
&&
814 !UInst
->use_empty() &&
815 allUsesAreSameTyped(Instruction::ZExt
, UInst
) &&
816 isa
<ConstantInt
>(UInst
->getOperand(1))) {
817 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
818 ConstantInt
* AndRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
819 ZExtInst
* oldZext
= dyn_cast
<ZExtInst
>(UInst
->use_begin());
820 uint64_t truncSize
= oldZext
->getType()->getPrimitiveSizeInBits();
821 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
822 L
, oldZext
->getType(), Rewriter
);
823 APInt APnewAndRHS
= APInt(AndRHS
->getValue()).zext(newBitSize
);
824 if (newBitSize
> truncSize
)
825 APnewAndRHS
= APnewAndRHS
.trunc(truncSize
);
826 ConstantInt
* newAndRHS
= ConstantInt::get(APnewAndRHS
);
828 BinaryOperator::CreateAnd(TruncIndVar
, newAndRHS
,
829 UInst
->getName()+".nozex", UInst
);
830 for (Value::use_iterator UI2
= UInst
->use_begin(),
831 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
832 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
833 II
->replaceAllUsesWith(NewAnd
);
834 DeadInsts
.insert(II
);
836 DeadInsts
.insert(UInst
);
838 // If we have zext((i+constant)&constant), we can use the larger
839 // variable even if the add does overflow. This works whenever the
840 // constant being ANDed is the same size as i, which it presumably is.
841 // We don't need to restrict the expression being and'ed to i+const,
842 // but we have to promote everything in it, so it's convenient.
843 // zext((i | constant)&constant) is also valid and accepted here.
844 if (UInst
&& (UInst
->getOpcode()==Instruction::Add
||
845 UInst
->getOpcode()==Instruction::Or
) &&
846 UInst
->hasOneUse() &&
847 isa
<ConstantInt
>(UInst
->getOperand(1))) {
848 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
849 ConstantInt
* AddRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
850 Instruction
*UInst2
= dyn_cast
<Instruction
>(UInst
->use_begin());
851 if (UInst2
&& UInst2
->getOpcode() == Instruction::And
&&
852 !UInst2
->use_empty() &&
853 allUsesAreSameTyped(Instruction::ZExt
, UInst2
) &&
854 isa
<ConstantInt
>(UInst2
->getOperand(1))) {
855 ZExtInst
* oldZext
= dyn_cast
<ZExtInst
>(UInst2
->use_begin());
856 uint64_t truncSize
= oldZext
->getType()->getPrimitiveSizeInBits();
857 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
858 L
, oldZext
->getType(), Rewriter
);
859 ConstantInt
* AndRHS
= dyn_cast
<ConstantInt
>(UInst2
->getOperand(1));
860 APInt APnewAddRHS
= APInt(AddRHS
->getValue()).zext(newBitSize
);
861 if (newBitSize
> truncSize
)
862 APnewAddRHS
= APnewAddRHS
.trunc(truncSize
);
863 ConstantInt
* newAddRHS
= ConstantInt::get(APnewAddRHS
);
864 Value
*NewAdd
= ((UInst
->getOpcode()==Instruction::Add
) ?
865 BinaryOperator::CreateAdd(TruncIndVar
, newAddRHS
,
866 UInst
->getName()+".nozex", UInst2
) :
867 BinaryOperator::CreateOr(TruncIndVar
, newAddRHS
,
868 UInst
->getName()+".nozex", UInst2
));
869 APInt APcopy2
= APInt(AndRHS
->getValue());
870 ConstantInt
* newAndRHS
= ConstantInt::get(APcopy2
.zext(newBitSize
));
872 BinaryOperator::CreateAnd(NewAdd
, newAndRHS
,
873 UInst
->getName()+".nozex", UInst2
);
874 for (Value::use_iterator UI2
= UInst2
->use_begin(),
875 UE2
= UInst2
->use_end(); UI2
!= UE2
; ++UI2
) {
876 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
877 II
->replaceAllUsesWith(NewAnd
);
878 DeadInsts
.insert(II
);
880 DeadInsts
.insert(UInst
);
881 DeadInsts
.insert(UInst2
);
886 // Replace the old PHI Node with the inserted computation.
887 PN
->replaceAllUsesWith(NewVal
);
888 DeadInsts
.insert(PN
);
894 DeleteTriviallyDeadInstructions(DeadInsts
);
895 assert(L
->isLCSSAForm());
899 /// Return true if it is OK to use SIToFPInst for an inducation variable
900 /// with given inital and exit values.
901 static bool useSIToFPInst(ConstantFP
&InitV
, ConstantFP
&ExitV
,
902 uint64_t intIV
, uint64_t intEV
) {
904 if (InitV
.getValueAPF().isNegative() || ExitV
.getValueAPF().isNegative())
907 // If the iteration range can be handled by SIToFPInst then use it.
908 APInt Max
= APInt::getSignedMaxValue(32);
909 if (Max
.getZExtValue() > static_cast<uint64_t>(abs(intEV
- intIV
)))
915 /// convertToInt - Convert APF to an integer, if possible.
916 static bool convertToInt(const APFloat
&APF
, uint64_t *intVal
) {
918 bool isExact
= false;
919 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
921 if (APF
.convertToInteger(intVal
, 32, APF
.isNegative(),
922 APFloat::rmTowardZero
, &isExact
)
931 /// HandleFloatingPointIV - If the loop has floating induction variable
932 /// then insert corresponding integer induction variable if possible.
934 /// for(double i = 0; i < 10000; ++i)
936 /// is converted into
937 /// for(int i = 0; i < 10000; ++i)
940 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PH
,
941 SmallPtrSet
<Instruction
*, 16> &DeadInsts
) {
943 unsigned IncomingEdge
= L
->contains(PH
->getIncomingBlock(0));
944 unsigned BackEdge
= IncomingEdge
^1;
946 // Check incoming value.
947 ConstantFP
*InitValue
= dyn_cast
<ConstantFP
>(PH
->getIncomingValue(IncomingEdge
));
948 if (!InitValue
) return;
949 uint64_t newInitValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
950 if (!convertToInt(InitValue
->getValueAPF(), &newInitValue
))
953 // Check IV increment. Reject this PH if increement operation is not
954 // an add or increment value can not be represented by an integer.
955 BinaryOperator
*Incr
=
956 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(BackEdge
));
958 if (Incr
->getOpcode() != Instruction::Add
) return;
959 ConstantFP
*IncrValue
= NULL
;
960 unsigned IncrVIndex
= 1;
961 if (Incr
->getOperand(1) == PH
)
963 IncrValue
= dyn_cast
<ConstantFP
>(Incr
->getOperand(IncrVIndex
));
964 if (!IncrValue
) return;
965 uint64_t newIncrValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
966 if (!convertToInt(IncrValue
->getValueAPF(), &newIncrValue
))
969 // Check Incr uses. One user is PH and the other users is exit condition used
970 // by the conditional terminator.
971 Value::use_iterator IncrUse
= Incr
->use_begin();
972 Instruction
*U1
= cast
<Instruction
>(IncrUse
++);
973 if (IncrUse
== Incr
->use_end()) return;
974 Instruction
*U2
= cast
<Instruction
>(IncrUse
++);
975 if (IncrUse
!= Incr
->use_end()) return;
977 // Find exit condition.
978 FCmpInst
*EC
= dyn_cast
<FCmpInst
>(U1
);
980 EC
= dyn_cast
<FCmpInst
>(U2
);
983 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(EC
->getParent()->getTerminator())) {
984 if (!BI
->isConditional()) return;
985 if (BI
->getCondition() != EC
) return;
988 // Find exit value. If exit value can not be represented as an interger then
989 // do not handle this floating point PH.
990 ConstantFP
*EV
= NULL
;
991 unsigned EVIndex
= 1;
992 if (EC
->getOperand(1) == Incr
)
994 EV
= dyn_cast
<ConstantFP
>(EC
->getOperand(EVIndex
));
996 uint64_t intEV
= Type::Int32Ty
->getPrimitiveSizeInBits();
997 if (!convertToInt(EV
->getValueAPF(), &intEV
))
1000 // Find new predicate for integer comparison.
1001 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
1002 switch (EC
->getPredicate()) {
1003 case CmpInst::FCMP_OEQ
:
1004 case CmpInst::FCMP_UEQ
:
1005 NewPred
= CmpInst::ICMP_EQ
;
1007 case CmpInst::FCMP_OGT
:
1008 case CmpInst::FCMP_UGT
:
1009 NewPred
= CmpInst::ICMP_UGT
;
1011 case CmpInst::FCMP_OGE
:
1012 case CmpInst::FCMP_UGE
:
1013 NewPred
= CmpInst::ICMP_UGE
;
1015 case CmpInst::FCMP_OLT
:
1016 case CmpInst::FCMP_ULT
:
1017 NewPred
= CmpInst::ICMP_ULT
;
1019 case CmpInst::FCMP_OLE
:
1020 case CmpInst::FCMP_ULE
:
1021 NewPred
= CmpInst::ICMP_ULE
;
1026 if (NewPred
== CmpInst::BAD_ICMP_PREDICATE
) return;
1028 // Insert new integer induction variable.
1029 PHINode
*NewPHI
= PHINode::Create(Type::Int32Ty
,
1030 PH
->getName()+".int", PH
);
1031 NewPHI
->addIncoming(ConstantInt::get(Type::Int32Ty
, newInitValue
),
1032 PH
->getIncomingBlock(IncomingEdge
));
1034 Value
*NewAdd
= BinaryOperator::CreateAdd(NewPHI
,
1035 ConstantInt::get(Type::Int32Ty
,
1037 Incr
->getName()+".int", Incr
);
1038 NewPHI
->addIncoming(NewAdd
, PH
->getIncomingBlock(BackEdge
));
1040 ConstantInt
*NewEV
= ConstantInt::get(Type::Int32Ty
, intEV
);
1041 Value
*LHS
= (EVIndex
== 1 ? NewPHI
->getIncomingValue(BackEdge
) : NewEV
);
1042 Value
*RHS
= (EVIndex
== 1 ? NewEV
: NewPHI
->getIncomingValue(BackEdge
));
1043 ICmpInst
*NewEC
= new ICmpInst(NewPred
, LHS
, RHS
, EC
->getNameStart(),
1044 EC
->getParent()->getTerminator());
1046 // Delete old, floating point, exit comparision instruction.
1047 EC
->replaceAllUsesWith(NewEC
);
1048 DeadInsts
.insert(EC
);
1050 // Delete old, floating point, increment instruction.
1051 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
1052 DeadInsts
.insert(Incr
);
1054 // Replace floating induction variable. Give SIToFPInst preference over
1055 // UIToFPInst because it is faster on platforms that are widely used.
1056 if (useSIToFPInst(*InitValue
, *EV
, newInitValue
, intEV
)) {
1057 SIToFPInst
*Conv
= new SIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
1058 PH
->getParent()->getFirstNonPHI());
1059 PH
->replaceAllUsesWith(Conv
);
1061 UIToFPInst
*Conv
= new UIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
1062 PH
->getParent()->getFirstNonPHI());
1063 PH
->replaceAllUsesWith(Conv
);
1065 DeadInsts
.insert(PH
);