Now that PR2957 is resolved, remove a bunch of
[llvm/msp430.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
blobcc3919da846e2f1e049a0b56f51c7db9466f1e1c
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. Any pointer arithmetic recurrences are raised to use array subscripts.
22 // If the trip count of a loop is computable, this pass also makes the following
23 // changes:
24 // 1. The exit condition for the loop is canonicalized to compare the
25 // induction value against the exit value. This turns loops like:
26 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27 // 2. Any use outside of the loop of an expression derived from the indvar
28 // is changed to compute the derived value outside of the loop, eliminating
29 // the dependence on the exit value of the induction variable. If the only
30 // purpose of the loop is to compute the exit value of some derived
31 // expression, this transformation will make the loop dead.
33 // This transformation should be followed by strength reduction after all of the
34 // desired loop transformations have been performed. Additionally, on targets
35 // where it is profitable, the loop could be transformed to count down to zero
36 // (the "do loop" optimization).
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "indvars"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/BasicBlock.h"
43 #include "llvm/Constants.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/Type.h"
46 #include "llvm/Analysis/ScalarEvolutionExpander.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/GetElementPtrTypeIterator.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SetVector.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/Statistic.h"
59 using namespace llvm;
61 STATISTIC(NumRemoved , "Number of aux indvars removed");
62 STATISTIC(NumInserted, "Number of canonical indvars added");
63 STATISTIC(NumReplaced, "Number of exit values replaced");
64 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
66 namespace {
67 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
68 LoopInfo *LI;
69 ScalarEvolution *SE;
70 bool Changed;
71 public:
73 static char ID; // Pass identification, replacement for typeid
74 IndVarSimplify() : LoopPass(&ID) {}
76 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.addRequired<ScalarEvolution>();
80 AU.addRequiredID(LCSSAID);
81 AU.addRequiredID(LoopSimplifyID);
82 AU.addRequired<LoopInfo>();
83 AU.addPreserved<ScalarEvolution>();
84 AU.addPreservedID(LoopSimplifyID);
85 AU.addPreservedID(LCSSAID);
86 AU.setPreservesCFG();
89 private:
91 void RewriteNonIntegerIVs(Loop *L);
93 void LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
94 Value *IndVar,
95 BasicBlock *ExitingBlock,
96 BranchInst *BI,
97 SCEVExpander &Rewriter);
98 void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
100 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
102 void HandleFloatingPointIV(Loop *L, PHINode *PH,
103 SmallPtrSet<Instruction*, 16> &DeadInsts);
107 char IndVarSimplify::ID = 0;
108 static RegisterPass<IndVarSimplify>
109 X("indvars", "Canonicalize Induction Variables");
111 Pass *llvm::createIndVarSimplifyPass() {
112 return new IndVarSimplify();
115 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
116 /// specified set are trivially dead, delete them and see if this makes any of
117 /// their operands subsequently dead.
118 void IndVarSimplify::
119 DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
120 while (!Insts.empty()) {
121 Instruction *I = *Insts.begin();
122 Insts.erase(I);
123 if (isInstructionTriviallyDead(I)) {
124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
126 Insts.insert(U);
127 SE->deleteValueFromRecords(I);
128 DOUT << "INDVARS: Deleting: " << *I;
129 I->eraseFromParent();
130 Changed = true;
135 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
136 /// loop to be a canonical != comparison against the incremented loop induction
137 /// variable. This pass is able to rewrite the exit tests of any loop where the
138 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
139 /// is actually a much broader range than just linear tests.
140 void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
141 SCEVHandle BackedgeTakenCount,
142 Value *IndVar,
143 BasicBlock *ExitingBlock,
144 BranchInst *BI,
145 SCEVExpander &Rewriter) {
146 // If the exiting block is not the same as the backedge block, we must compare
147 // against the preincremented value, otherwise we prefer to compare against
148 // the post-incremented value.
149 Value *CmpIndVar;
150 SCEVHandle RHS = BackedgeTakenCount;
151 if (ExitingBlock == L->getLoopLatch()) {
152 // Add one to the "backedge-taken" count to get the trip count.
153 // If this addition may overflow, we have to be more pessimistic and
154 // cast the induction variable before doing the add.
155 SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
156 SCEVHandle N =
157 SE->getAddExpr(BackedgeTakenCount,
158 SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
159 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
160 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
161 // No overflow. Cast the sum.
162 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
163 } else {
164 // Potential overflow. Cast before doing the add.
165 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
166 IndVar->getType());
167 RHS = SE->getAddExpr(RHS,
168 SE->getIntegerSCEV(1, IndVar->getType()));
171 // The BackedgeTaken expression contains the number of times that the
172 // backedge branches to the loop header. This is one less than the
173 // number of times the loop executes, so use the incremented indvar.
174 CmpIndVar = L->getCanonicalInductionVariableIncrement();
175 } else {
176 // We have to use the preincremented value...
177 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
178 IndVar->getType());
179 CmpIndVar = IndVar;
182 // Expand the code for the iteration count into the preheader of the loop.
183 BasicBlock *Preheader = L->getLoopPreheader();
184 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
185 Preheader->getTerminator());
187 // Insert a new icmp_ne or icmp_eq instruction before the branch.
188 ICmpInst::Predicate Opcode;
189 if (L->contains(BI->getSuccessor(0)))
190 Opcode = ICmpInst::ICMP_NE;
191 else
192 Opcode = ICmpInst::ICMP_EQ;
194 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
195 << " LHS:" << *CmpIndVar // includes a newline
196 << " op:\t"
197 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
198 << " RHS:\t" << *RHS << "\n";
200 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
201 BI->setCondition(Cond);
202 ++NumLFTR;
203 Changed = true;
206 /// RewriteLoopExitValues - Check to see if this loop has a computable
207 /// loop-invariant execution count. If so, this means that we can compute the
208 /// final value of any expressions that are recurrent in the loop, and
209 /// substitute the exit values from the loop into any instructions outside of
210 /// the loop that use the final values of the current expressions.
211 void IndVarSimplify::RewriteLoopExitValues(Loop *L,
212 const SCEV *BackedgeTakenCount) {
213 BasicBlock *Preheader = L->getLoopPreheader();
215 // Scan all of the instructions in the loop, looking at those that have
216 // extra-loop users and which are recurrences.
217 SCEVExpander Rewriter(*SE, *LI);
219 // We insert the code into the preheader of the loop if the loop contains
220 // multiple exit blocks, or in the exit block if there is exactly one.
221 BasicBlock *BlockToInsertInto;
222 SmallVector<BasicBlock*, 8> ExitBlocks;
223 L->getUniqueExitBlocks(ExitBlocks);
224 if (ExitBlocks.size() == 1)
225 BlockToInsertInto = ExitBlocks[0];
226 else
227 BlockToInsertInto = Preheader;
228 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
230 bool HasConstantItCount = isa<SCEVConstant>(BackedgeTakenCount);
232 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
233 std::map<Instruction*, Value*> ExitValues;
235 // Find all values that are computed inside the loop, but used outside of it.
236 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
237 // the exit blocks of the loop to find them.
238 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
239 BasicBlock *ExitBB = ExitBlocks[i];
241 // If there are no PHI nodes in this exit block, then no values defined
242 // inside the loop are used on this path, skip it.
243 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
244 if (!PN) continue;
246 unsigned NumPreds = PN->getNumIncomingValues();
248 // Iterate over all of the PHI nodes.
249 BasicBlock::iterator BBI = ExitBB->begin();
250 while ((PN = dyn_cast<PHINode>(BBI++))) {
252 // Iterate over all of the values in all the PHI nodes.
253 for (unsigned i = 0; i != NumPreds; ++i) {
254 // If the value being merged in is not integer or is not defined
255 // in the loop, skip it.
256 Value *InVal = PN->getIncomingValue(i);
257 if (!isa<Instruction>(InVal) ||
258 // SCEV only supports integer expressions for now.
259 (!isa<IntegerType>(InVal->getType()) &&
260 !isa<PointerType>(InVal->getType())))
261 continue;
263 // If this pred is for a subloop, not L itself, skip it.
264 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
265 continue; // The Block is in a subloop, skip it.
267 // Check that InVal is defined in the loop.
268 Instruction *Inst = cast<Instruction>(InVal);
269 if (!L->contains(Inst->getParent()))
270 continue;
272 // We require that this value either have a computable evolution or that
273 // the loop have a constant iteration count. In the case where the loop
274 // has a constant iteration count, we can sometimes force evaluation of
275 // the exit value through brute force.
276 SCEVHandle SH = SE->getSCEV(Inst);
277 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
278 continue; // Cannot get exit evolution for the loop value.
280 // Okay, this instruction has a user outside of the current loop
281 // and varies predictably *inside* the loop. Evaluate the value it
282 // contains when the loop exits, if possible.
283 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
284 if (isa<SCEVCouldNotCompute>(ExitValue) ||
285 !ExitValue->isLoopInvariant(L))
286 continue;
288 Changed = true;
289 ++NumReplaced;
291 // See if we already computed the exit value for the instruction, if so,
292 // just reuse it.
293 Value *&ExitVal = ExitValues[Inst];
294 if (!ExitVal)
295 ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
297 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
298 << " LoopVal = " << *Inst << "\n";
300 PN->setIncomingValue(i, ExitVal);
302 // If this instruction is dead now, schedule it to be removed.
303 if (Inst->use_empty())
304 InstructionsToDelete.insert(Inst);
306 // See if this is a single-entry LCSSA PHI node. If so, we can (and
307 // have to) remove
308 // the PHI entirely. This is safe, because the NewVal won't be variant
309 // in the loop, so we don't need an LCSSA phi node anymore.
310 if (NumPreds == 1) {
311 SE->deleteValueFromRecords(PN);
312 PN->replaceAllUsesWith(ExitVal);
313 PN->eraseFromParent();
314 break;
320 DeleteTriviallyDeadInstructions(InstructionsToDelete);
323 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
324 // First step. Check to see if there are any floating-point recurrences.
325 // If there are, change them into integer recurrences, permitting analysis by
326 // the SCEV routines.
328 BasicBlock *Header = L->getHeader();
330 SmallPtrSet<Instruction*, 16> DeadInsts;
331 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
332 PHINode *PN = cast<PHINode>(I);
333 HandleFloatingPointIV(L, PN, DeadInsts);
336 // If the loop previously had floating-point IV, ScalarEvolution
337 // may not have been able to compute a trip count. Now that we've done some
338 // re-writing, the trip count may be computable.
339 if (Changed)
340 SE->forgetLoopBackedgeTakenCount(L);
342 if (!DeadInsts.empty())
343 DeleteTriviallyDeadInstructions(DeadInsts);
346 /// getEffectiveIndvarType - Determine the widest type that the
347 /// induction-variable PHINode Phi is cast to.
349 static const Type *getEffectiveIndvarType(const PHINode *Phi,
350 const ScalarEvolution *SE) {
351 const Type *Ty = Phi->getType();
353 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
354 UI != UE; ++UI) {
355 const Type *CandidateType = NULL;
356 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
357 CandidateType = ZI->getDestTy();
358 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
359 CandidateType = SI->getDestTy();
360 else if (const IntToPtrInst *IP = dyn_cast<IntToPtrInst>(UI))
361 CandidateType = IP->getDestTy();
362 else if (const PtrToIntInst *PI = dyn_cast<PtrToIntInst>(UI))
363 CandidateType = PI->getDestTy();
364 if (CandidateType &&
365 SE->isSCEVable(CandidateType) &&
366 SE->getTypeSizeInBits(CandidateType) > SE->getTypeSizeInBits(Ty))
367 Ty = CandidateType;
370 return Ty;
373 /// TestOrigIVForWrap - Analyze the original induction variable
374 /// that controls the loop's iteration to determine whether it
375 /// would ever undergo signed or unsigned overflow. Also, check
376 /// whether an induction variable in the same type that starts
377 /// at 0 would undergo signed overflow.
379 /// In addition to setting the NoSignedWrap and NoUnsignedWrap
380 /// variables to true when appropriate (they are not set to false here),
381 /// return the PHI for this induction variable. Also record the initial
382 /// and final values and the increment; these are not meaningful unless
383 /// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
384 /// in that case, although the final value may be 0 indicating a nonconstant.
386 /// TODO: This duplicates a fair amount of ScalarEvolution logic.
387 /// Perhaps this can be merged with
388 /// ScalarEvolution::getBackedgeTakenCount
389 /// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
391 static const PHINode *TestOrigIVForWrap(const Loop *L,
392 const BranchInst *BI,
393 const Instruction *OrigCond,
394 const ScalarEvolution &SE,
395 bool &NoSignedWrap,
396 bool &NoUnsignedWrap,
397 const ConstantInt* &InitialVal,
398 const ConstantInt* &IncrVal,
399 const ConstantInt* &LimitVal) {
400 // Verify that the loop is sane and find the exit condition.
401 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
402 if (!Cmp) return 0;
404 const Value *CmpLHS = Cmp->getOperand(0);
405 const Value *CmpRHS = Cmp->getOperand(1);
406 const BasicBlock *TrueBB = BI->getSuccessor(0);
407 const BasicBlock *FalseBB = BI->getSuccessor(1);
408 ICmpInst::Predicate Pred = Cmp->getPredicate();
410 // Canonicalize a constant to the RHS.
411 if (isa<ConstantInt>(CmpLHS)) {
412 Pred = ICmpInst::getSwappedPredicate(Pred);
413 std::swap(CmpLHS, CmpRHS);
415 // Canonicalize SLE to SLT.
416 if (Pred == ICmpInst::ICMP_SLE)
417 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
418 if (!CI->getValue().isMaxSignedValue()) {
419 CmpRHS = ConstantInt::get(CI->getValue() + 1);
420 Pred = ICmpInst::ICMP_SLT;
422 // Canonicalize SGT to SGE.
423 if (Pred == ICmpInst::ICMP_SGT)
424 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
425 if (!CI->getValue().isMaxSignedValue()) {
426 CmpRHS = ConstantInt::get(CI->getValue() + 1);
427 Pred = ICmpInst::ICMP_SGE;
429 // Canonicalize SGE to SLT.
430 if (Pred == ICmpInst::ICMP_SGE) {
431 std::swap(TrueBB, FalseBB);
432 Pred = ICmpInst::ICMP_SLT;
434 // Canonicalize ULE to ULT.
435 if (Pred == ICmpInst::ICMP_ULE)
436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
437 if (!CI->getValue().isMaxValue()) {
438 CmpRHS = ConstantInt::get(CI->getValue() + 1);
439 Pred = ICmpInst::ICMP_ULT;
441 // Canonicalize UGT to UGE.
442 if (Pred == ICmpInst::ICMP_UGT)
443 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
444 if (!CI->getValue().isMaxValue()) {
445 CmpRHS = ConstantInt::get(CI->getValue() + 1);
446 Pred = ICmpInst::ICMP_UGE;
448 // Canonicalize UGE to ULT.
449 if (Pred == ICmpInst::ICMP_UGE) {
450 std::swap(TrueBB, FalseBB);
451 Pred = ICmpInst::ICMP_ULT;
453 // For now, analyze only LT loops for signed overflow.
454 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
455 return 0;
457 bool isSigned = Pred == ICmpInst::ICMP_SLT;
459 // Get the increment instruction. Look past casts if we will
460 // be able to prove that the original induction variable doesn't
461 // undergo signed or unsigned overflow, respectively.
462 const Value *IncrInst = CmpLHS;
463 if (isSigned) {
464 if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
465 if (!isa<ConstantInt>(CmpRHS) ||
466 !cast<ConstantInt>(CmpRHS)->getValue()
467 .isSignedIntN(SE.getTypeSizeInBits(IncrInst->getType())))
468 return 0;
469 IncrInst = SI->getOperand(0);
471 } else {
472 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
473 if (!isa<ConstantInt>(CmpRHS) ||
474 !cast<ConstantInt>(CmpRHS)->getValue()
475 .isIntN(SE.getTypeSizeInBits(IncrInst->getType())))
476 return 0;
477 IncrInst = ZI->getOperand(0);
481 // For now, only analyze induction variables that have simple increments.
482 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrInst);
483 if (!IncrOp || IncrOp->getOpcode() != Instruction::Add)
484 return 0;
485 IncrVal = dyn_cast<ConstantInt>(IncrOp->getOperand(1));
486 if (!IncrVal)
487 return 0;
489 // Make sure the PHI looks like a normal IV.
490 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
491 if (!PN || PN->getNumIncomingValues() != 2)
492 return 0;
493 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
494 unsigned BackEdge = !IncomingEdge;
495 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
496 PN->getIncomingValue(BackEdge) != IncrOp)
497 return 0;
498 if (!L->contains(TrueBB))
499 return 0;
501 // For now, only analyze loops with a constant start value, so that
502 // we can easily determine if the start value is not a maximum value
503 // which would wrap on the first iteration.
504 InitialVal = dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
505 if (!InitialVal)
506 return 0;
508 // The upper limit need not be a constant; we'll check later.
509 LimitVal = dyn_cast<ConstantInt>(CmpRHS);
511 // We detect the impossibility of wrapping in two cases, both of
512 // which require starting with a non-max value:
513 // - The IV counts up by one, and the loop iterates only while it remains
514 // less than a limiting value (any) in the same type.
515 // - The IV counts up by a positive increment other than 1, and the
516 // constant limiting value + the increment is less than the max value
517 // (computed as max-increment to avoid overflow)
518 if (isSigned && !InitialVal->getValue().isMaxSignedValue()) {
519 if (IncrVal->equalsInt(1))
520 NoSignedWrap = true; // LimitVal need not be constant
521 else if (LimitVal) {
522 uint64_t numBits = LimitVal->getValue().getBitWidth();
523 if (IncrVal->getValue().sgt(APInt::getNullValue(numBits)) &&
524 (APInt::getSignedMaxValue(numBits) - IncrVal->getValue())
525 .sgt(LimitVal->getValue()))
526 NoSignedWrap = true;
528 } else if (!isSigned && !InitialVal->getValue().isMaxValue()) {
529 if (IncrVal->equalsInt(1))
530 NoUnsignedWrap = true; // LimitVal need not be constant
531 else if (LimitVal) {
532 uint64_t numBits = LimitVal->getValue().getBitWidth();
533 if (IncrVal->getValue().ugt(APInt::getNullValue(numBits)) &&
534 (APInt::getMaxValue(numBits) - IncrVal->getValue())
535 .ugt(LimitVal->getValue()))
536 NoUnsignedWrap = true;
539 return PN;
542 static Value *getSignExtendedTruncVar(const SCEVAddRecExpr *AR,
543 ScalarEvolution *SE,
544 const Type *LargestType, Loop *L,
545 const Type *myType,
546 SCEVExpander &Rewriter) {
547 SCEVHandle ExtendedStart =
548 SE->getSignExtendExpr(AR->getStart(), LargestType);
549 SCEVHandle ExtendedStep =
550 SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
551 SCEVHandle ExtendedAddRec =
552 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
553 if (LargestType != myType)
554 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
555 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
558 static Value *getZeroExtendedTruncVar(const SCEVAddRecExpr *AR,
559 ScalarEvolution *SE,
560 const Type *LargestType, Loop *L,
561 const Type *myType,
562 SCEVExpander &Rewriter) {
563 SCEVHandle ExtendedStart =
564 SE->getZeroExtendExpr(AR->getStart(), LargestType);
565 SCEVHandle ExtendedStep =
566 SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
567 SCEVHandle ExtendedAddRec =
568 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
569 if (LargestType != myType)
570 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
571 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
574 /// allUsesAreSameTyped - See whether all Uses of I are instructions
575 /// with the same Opcode and the same type.
576 static bool allUsesAreSameTyped(unsigned int Opcode, Instruction *I) {
577 const Type* firstType = NULL;
578 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
579 UI != UE; ++UI) {
580 Instruction *II = dyn_cast<Instruction>(*UI);
581 if (!II || II->getOpcode() != Opcode)
582 return false;
583 if (!firstType)
584 firstType = II->getType();
585 else if (firstType != II->getType())
586 return false;
588 return true;
591 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
592 LI = &getAnalysis<LoopInfo>();
593 SE = &getAnalysis<ScalarEvolution>();
594 Changed = false;
596 // If there are any floating-point recurrences, attempt to
597 // transform them to use integer recurrences.
598 RewriteNonIntegerIVs(L);
600 BasicBlock *Header = L->getHeader();
601 BasicBlock *ExitingBlock = L->getExitingBlock();
602 SmallPtrSet<Instruction*, 16> DeadInsts;
604 // Verify the input to the pass in already in LCSSA form.
605 assert(L->isLCSSAForm());
607 // Check to see if this loop has a computable loop-invariant execution count.
608 // If so, this means that we can compute the final value of any expressions
609 // that are recurrent in the loop, and substitute the exit values from the
610 // loop into any instructions outside of the loop that use the final values of
611 // the current expressions.
613 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
614 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
615 RewriteLoopExitValues(L, BackedgeTakenCount);
617 // Next, analyze all of the induction variables in the loop, canonicalizing
618 // auxillary induction variables.
619 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
621 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
622 PHINode *PN = cast<PHINode>(I);
623 if (SE->isSCEVable(PN->getType())) {
624 SCEVHandle SCEV = SE->getSCEV(PN);
625 // FIXME: It is an extremely bad idea to indvar substitute anything more
626 // complex than affine induction variables. Doing so will put expensive
627 // polynomial evaluations inside of the loop, and the str reduction pass
628 // currently can only reduce affine polynomials. For now just disable
629 // indvar subst on anything more complex than an affine addrec.
630 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
631 if (AR->getLoop() == L && AR->isAffine())
632 IndVars.push_back(std::make_pair(PN, SCEV));
636 // Compute the type of the largest recurrence expression, and collect
637 // the set of the types of the other recurrence expressions.
638 const Type *LargestType = 0;
639 SmallSetVector<const Type *, 4> SizesToInsert;
640 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
641 LargestType = BackedgeTakenCount->getType();
642 LargestType = SE->getEffectiveSCEVType(LargestType);
643 SizesToInsert.insert(LargestType);
645 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
646 const PHINode *PN = IndVars[i].first;
647 const Type *PNTy = PN->getType();
648 PNTy = SE->getEffectiveSCEVType(PNTy);
649 SizesToInsert.insert(PNTy);
650 const Type *EffTy = getEffectiveIndvarType(PN, SE);
651 EffTy = SE->getEffectiveSCEVType(EffTy);
652 SizesToInsert.insert(EffTy);
653 if (!LargestType ||
654 SE->getTypeSizeInBits(EffTy) >
655 SE->getTypeSizeInBits(LargestType))
656 LargestType = EffTy;
659 // Create a rewriter object which we'll use to transform the code with.
660 SCEVExpander Rewriter(*SE, *LI);
662 // Now that we know the largest of of the induction variables in this loop,
663 // insert a canonical induction variable of the largest size.
664 Value *IndVar = 0;
665 if (!SizesToInsert.empty()) {
666 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
667 ++NumInserted;
668 Changed = true;
669 DOUT << "INDVARS: New CanIV: " << *IndVar;
672 // If we have a trip count expression, rewrite the loop's exit condition
673 // using it. We can currently only handle loops with a single exit.
674 bool NoSignedWrap = false;
675 bool NoUnsignedWrap = false;
676 const ConstantInt* InitialVal, * IncrVal, * LimitVal;
677 const PHINode *OrigControllingPHI = 0;
678 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock)
679 // Can't rewrite non-branch yet.
680 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
681 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
682 // Determine if the OrigIV will ever undergo overflow.
683 OrigControllingPHI =
684 TestOrigIVForWrap(L, BI, OrigCond, *SE,
685 NoSignedWrap, NoUnsignedWrap,
686 InitialVal, IncrVal, LimitVal);
688 // We'll be replacing the original condition, so it'll be dead.
689 DeadInsts.insert(OrigCond);
692 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
693 ExitingBlock, BI, Rewriter);
696 // Now that we have a canonical induction variable, we can rewrite any
697 // recurrences in terms of the induction variable. Start with the auxillary
698 // induction variables, and recursively rewrite any of their uses.
699 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
700 Rewriter.setInsertionPoint(InsertPt);
702 // If there were induction variables of other sizes, cast the primary
703 // induction variable to the right size for them, avoiding the need for the
704 // code evaluation methods to insert induction variables of different sizes.
705 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
706 const Type *Ty = SizesToInsert[i];
707 if (Ty != LargestType) {
708 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
709 Rewriter.addInsertedValue(New, SE->getSCEV(New));
710 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
711 << *New << "\n";
715 // Rewrite all induction variables in terms of the canonical induction
716 // variable.
717 while (!IndVars.empty()) {
718 PHINode *PN = IndVars.back().first;
719 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
720 Value *NewVal = Rewriter.expandCodeFor(AR, PN->getType());
721 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
722 << " into = " << *NewVal << "\n";
723 NewVal->takeName(PN);
725 /// If the new canonical induction variable is wider than the original,
726 /// and the original has uses that are casts to wider types, see if the
727 /// truncate and extend can be omitted.
728 if (PN == OrigControllingPHI && PN->getType() != LargestType)
729 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
730 UI != UE; ++UI) {
731 Instruction *UInst = dyn_cast<Instruction>(*UI);
732 if (UInst && isa<SExtInst>(UInst) && NoSignedWrap) {
733 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L,
734 UInst->getType(), Rewriter);
735 UInst->replaceAllUsesWith(TruncIndVar);
736 DeadInsts.insert(UInst);
738 // See if we can figure out sext(i+constant) doesn't wrap, so we can
739 // use a larger add. This is common in subscripting.
740 if (UInst && UInst->getOpcode()==Instruction::Add &&
741 !UInst->use_empty() &&
742 allUsesAreSameTyped(Instruction::SExt, UInst) &&
743 isa<ConstantInt>(UInst->getOperand(1)) &&
744 NoSignedWrap && LimitVal) {
745 uint64_t oldBitSize = LimitVal->getValue().getBitWidth();
746 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
747 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
748 if (((APInt::getSignedMaxValue(oldBitSize) - IncrVal->getValue()) -
749 AddRHS->getValue()).sgt(LimitVal->getValue())) {
750 // We've determined this is (i+constant) and it won't overflow.
751 if (isa<SExtInst>(UInst->use_begin())) {
752 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
753 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
754 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
755 L, oldSext->getType(), Rewriter);
756 APInt APnewAddRHS = APInt(AddRHS->getValue()).sext(newBitSize);
757 if (newBitSize > truncSize)
758 APnewAddRHS = APnewAddRHS.trunc(truncSize);
759 ConstantInt* newAddRHS =ConstantInt::get(APnewAddRHS);
760 Value *NewAdd =
761 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
762 UInst->getName()+".nosex", UInst);
763 for (Value::use_iterator UI2 = UInst->use_begin(),
764 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
765 Instruction *II = dyn_cast<Instruction>(UI2);
766 II->replaceAllUsesWith(NewAdd);
767 DeadInsts.insert(II);
769 DeadInsts.insert(UInst);
773 // Try for sext(i | constant). This is safe as long as the
774 // high bit of the constant is not set.
775 if (UInst && UInst->getOpcode()==Instruction::Or &&
776 !UInst->use_empty() &&
777 allUsesAreSameTyped(Instruction::SExt, UInst) && NoSignedWrap &&
778 isa<ConstantInt>(UInst->getOperand(1))) {
779 ConstantInt* RHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
780 if (!RHS->getValue().isNegative()) {
781 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
782 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
783 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
784 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
785 L, oldSext->getType(), Rewriter);
786 APInt APnewOrRHS = APInt(RHS->getValue()).sext(newBitSize);
787 if (newBitSize > truncSize)
788 APnewOrRHS = APnewOrRHS.trunc(truncSize);
789 ConstantInt* newOrRHS =ConstantInt::get(APnewOrRHS);
790 Value *NewOr =
791 BinaryOperator::CreateOr(TruncIndVar, newOrRHS,
792 UInst->getName()+".nosex", UInst);
793 for (Value::use_iterator UI2 = UInst->use_begin(),
794 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
795 Instruction *II = dyn_cast<Instruction>(UI2);
796 II->replaceAllUsesWith(NewOr);
797 DeadInsts.insert(II);
799 DeadInsts.insert(UInst);
802 // A zext of a signed variable known not to overflow is still safe.
803 if (UInst && isa<ZExtInst>(UInst) && (NoUnsignedWrap || NoSignedWrap)) {
804 Value *TruncIndVar = getZeroExtendedTruncVar(AR, SE, LargestType, L,
805 UInst->getType(), Rewriter);
806 UInst->replaceAllUsesWith(TruncIndVar);
807 DeadInsts.insert(UInst);
809 // If we have zext(i&constant), it's always safe to use the larger
810 // variable. This is not common but is a bottleneck in Openssl.
811 // (RHS doesn't have to be constant. There should be a better approach
812 // than bottom-up pattern matching for this...)
813 if (UInst && UInst->getOpcode()==Instruction::And &&
814 !UInst->use_empty() &&
815 allUsesAreSameTyped(Instruction::ZExt, UInst) &&
816 isa<ConstantInt>(UInst->getOperand(1))) {
817 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
818 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
819 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst->use_begin());
820 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
821 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
822 L, oldZext->getType(), Rewriter);
823 APInt APnewAndRHS = APInt(AndRHS->getValue()).zext(newBitSize);
824 if (newBitSize > truncSize)
825 APnewAndRHS = APnewAndRHS.trunc(truncSize);
826 ConstantInt* newAndRHS = ConstantInt::get(APnewAndRHS);
827 Value *NewAnd =
828 BinaryOperator::CreateAnd(TruncIndVar, newAndRHS,
829 UInst->getName()+".nozex", UInst);
830 for (Value::use_iterator UI2 = UInst->use_begin(),
831 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
832 Instruction *II = dyn_cast<Instruction>(UI2);
833 II->replaceAllUsesWith(NewAnd);
834 DeadInsts.insert(II);
836 DeadInsts.insert(UInst);
838 // If we have zext((i+constant)&constant), we can use the larger
839 // variable even if the add does overflow. This works whenever the
840 // constant being ANDed is the same size as i, which it presumably is.
841 // We don't need to restrict the expression being and'ed to i+const,
842 // but we have to promote everything in it, so it's convenient.
843 // zext((i | constant)&constant) is also valid and accepted here.
844 if (UInst && (UInst->getOpcode()==Instruction::Add ||
845 UInst->getOpcode()==Instruction::Or) &&
846 UInst->hasOneUse() &&
847 isa<ConstantInt>(UInst->getOperand(1))) {
848 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
849 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
850 Instruction *UInst2 = dyn_cast<Instruction>(UInst->use_begin());
851 if (UInst2 && UInst2->getOpcode() == Instruction::And &&
852 !UInst2->use_empty() &&
853 allUsesAreSameTyped(Instruction::ZExt, UInst2) &&
854 isa<ConstantInt>(UInst2->getOperand(1))) {
855 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst2->use_begin());
856 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
857 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
858 L, oldZext->getType(), Rewriter);
859 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst2->getOperand(1));
860 APInt APnewAddRHS = APInt(AddRHS->getValue()).zext(newBitSize);
861 if (newBitSize > truncSize)
862 APnewAddRHS = APnewAddRHS.trunc(truncSize);
863 ConstantInt* newAddRHS = ConstantInt::get(APnewAddRHS);
864 Value *NewAdd = ((UInst->getOpcode()==Instruction::Add) ?
865 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
866 UInst->getName()+".nozex", UInst2) :
867 BinaryOperator::CreateOr(TruncIndVar, newAddRHS,
868 UInst->getName()+".nozex", UInst2));
869 APInt APcopy2 = APInt(AndRHS->getValue());
870 ConstantInt* newAndRHS = ConstantInt::get(APcopy2.zext(newBitSize));
871 Value *NewAnd =
872 BinaryOperator::CreateAnd(NewAdd, newAndRHS,
873 UInst->getName()+".nozex", UInst2);
874 for (Value::use_iterator UI2 = UInst2->use_begin(),
875 UE2 = UInst2->use_end(); UI2 != UE2; ++UI2) {
876 Instruction *II = dyn_cast<Instruction>(UI2);
877 II->replaceAllUsesWith(NewAnd);
878 DeadInsts.insert(II);
880 DeadInsts.insert(UInst);
881 DeadInsts.insert(UInst2);
886 // Replace the old PHI Node with the inserted computation.
887 PN->replaceAllUsesWith(NewVal);
888 DeadInsts.insert(PN);
889 IndVars.pop_back();
890 ++NumRemoved;
891 Changed = true;
894 DeleteTriviallyDeadInstructions(DeadInsts);
895 assert(L->isLCSSAForm());
896 return Changed;
899 /// Return true if it is OK to use SIToFPInst for an inducation variable
900 /// with given inital and exit values.
901 static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
902 uint64_t intIV, uint64_t intEV) {
904 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
905 return true;
907 // If the iteration range can be handled by SIToFPInst then use it.
908 APInt Max = APInt::getSignedMaxValue(32);
909 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
910 return true;
912 return false;
915 /// convertToInt - Convert APF to an integer, if possible.
916 static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
918 bool isExact = false;
919 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
920 return false;
921 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
922 APFloat::rmTowardZero, &isExact)
923 != APFloat::opOK)
924 return false;
925 if (!isExact)
926 return false;
927 return true;
931 /// HandleFloatingPointIV - If the loop has floating induction variable
932 /// then insert corresponding integer induction variable if possible.
933 /// For example,
934 /// for(double i = 0; i < 10000; ++i)
935 /// bar(i)
936 /// is converted into
937 /// for(int i = 0; i < 10000; ++i)
938 /// bar((double)i);
940 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
941 SmallPtrSet<Instruction*, 16> &DeadInsts) {
943 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
944 unsigned BackEdge = IncomingEdge^1;
946 // Check incoming value.
947 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
948 if (!InitValue) return;
949 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
950 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
951 return;
953 // Check IV increment. Reject this PH if increement operation is not
954 // an add or increment value can not be represented by an integer.
955 BinaryOperator *Incr =
956 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
957 if (!Incr) return;
958 if (Incr->getOpcode() != Instruction::Add) return;
959 ConstantFP *IncrValue = NULL;
960 unsigned IncrVIndex = 1;
961 if (Incr->getOperand(1) == PH)
962 IncrVIndex = 0;
963 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
964 if (!IncrValue) return;
965 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
966 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
967 return;
969 // Check Incr uses. One user is PH and the other users is exit condition used
970 // by the conditional terminator.
971 Value::use_iterator IncrUse = Incr->use_begin();
972 Instruction *U1 = cast<Instruction>(IncrUse++);
973 if (IncrUse == Incr->use_end()) return;
974 Instruction *U2 = cast<Instruction>(IncrUse++);
975 if (IncrUse != Incr->use_end()) return;
977 // Find exit condition.
978 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
979 if (!EC)
980 EC = dyn_cast<FCmpInst>(U2);
981 if (!EC) return;
983 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
984 if (!BI->isConditional()) return;
985 if (BI->getCondition() != EC) return;
988 // Find exit value. If exit value can not be represented as an interger then
989 // do not handle this floating point PH.
990 ConstantFP *EV = NULL;
991 unsigned EVIndex = 1;
992 if (EC->getOperand(1) == Incr)
993 EVIndex = 0;
994 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
995 if (!EV) return;
996 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
997 if (!convertToInt(EV->getValueAPF(), &intEV))
998 return;
1000 // Find new predicate for integer comparison.
1001 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1002 switch (EC->getPredicate()) {
1003 case CmpInst::FCMP_OEQ:
1004 case CmpInst::FCMP_UEQ:
1005 NewPred = CmpInst::ICMP_EQ;
1006 break;
1007 case CmpInst::FCMP_OGT:
1008 case CmpInst::FCMP_UGT:
1009 NewPred = CmpInst::ICMP_UGT;
1010 break;
1011 case CmpInst::FCMP_OGE:
1012 case CmpInst::FCMP_UGE:
1013 NewPred = CmpInst::ICMP_UGE;
1014 break;
1015 case CmpInst::FCMP_OLT:
1016 case CmpInst::FCMP_ULT:
1017 NewPred = CmpInst::ICMP_ULT;
1018 break;
1019 case CmpInst::FCMP_OLE:
1020 case CmpInst::FCMP_ULE:
1021 NewPred = CmpInst::ICMP_ULE;
1022 break;
1023 default:
1024 break;
1026 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
1028 // Insert new integer induction variable.
1029 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
1030 PH->getName()+".int", PH);
1031 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
1032 PH->getIncomingBlock(IncomingEdge));
1034 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
1035 ConstantInt::get(Type::Int32Ty,
1036 newIncrValue),
1037 Incr->getName()+".int", Incr);
1038 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
1040 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
1041 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
1042 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
1043 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
1044 EC->getParent()->getTerminator());
1046 // Delete old, floating point, exit comparision instruction.
1047 EC->replaceAllUsesWith(NewEC);
1048 DeadInsts.insert(EC);
1050 // Delete old, floating point, increment instruction.
1051 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1052 DeadInsts.insert(Incr);
1054 // Replace floating induction variable. Give SIToFPInst preference over
1055 // UIToFPInst because it is faster on platforms that are widely used.
1056 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
1057 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1058 PH->getParent()->getFirstNonPHI());
1059 PH->replaceAllUsesWith(Conv);
1060 } else {
1061 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1062 PH->getParent()->getFirstNonPHI());
1063 PH->replaceAllUsesWith(Conv);
1065 DeadInsts.insert(PH);