1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. These classes are reference counted, managed by the SCEVHandle
18 // class. We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression. These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
39 //===----------------------------------------------------------------------===//
41 // There are several good references for the techniques used in this analysis.
43 // Chains of recurrences -- a method to expedite the evaluation
44 // of closed-form functions
45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
47 // On computational properties of chains of recurrences
50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 // Robert A. van Engelen
53 // Efficient Symbolic Analysis for Optimizing Compilers
54 // Robert A. van Engelen
56 // Using the chains of recurrences algebra for data dependence testing and
57 // induction variable substitution
58 // MS Thesis, Johnie Birch
60 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Support/CFG.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/GetElementPtrTypeIterator.h"
79 #include "llvm/Support/InstIterator.h"
80 #include "llvm/Support/ManagedStatic.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
90 STATISTIC(NumArrayLenItCounts
,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed
,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed
,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed
,
97 "Number of loops with trip counts computed by force");
99 static cl::opt
<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
105 static RegisterPass
<ScalarEvolution
>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID
= 0;
109 //===----------------------------------------------------------------------===//
110 // SCEV class definitions
111 //===----------------------------------------------------------------------===//
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
117 void SCEV::dump() const {
122 void SCEV::print(std::ostream
&o
) const {
123 raw_os_ostream
OS(o
);
127 bool SCEV::isZero() const {
128 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
129 return SC
->getValue()->isZero();
134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute
) {}
135 SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
137 bool SCEVCouldNotCompute::isLoopInvariant(const Loop
*L
) const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142 const Type
*SCEVCouldNotCompute::getType() const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop
*L
) const {
148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152 SCEVHandle
SCEVCouldNotCompute::
153 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
154 const SCEVHandle
&Conc
,
155 ScalarEvolution
&SE
) const {
159 void SCEVCouldNotCompute::print(raw_ostream
&OS
) const {
160 OS
<< "***COULDNOTCOMPUTE***";
163 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
164 return S
->getSCEVType() == scCouldNotCompute
;
168 // SCEVConstants - Only allow the creation of one SCEVConstant for any
169 // particular value. Don't use a SCEVHandle here, or else the object will
171 static ManagedStatic
<std::map
<ConstantInt
*, SCEVConstant
*> > SCEVConstants
;
174 SCEVConstant::~SCEVConstant() {
175 SCEVConstants
->erase(V
);
178 SCEVHandle
ScalarEvolution::getConstant(ConstantInt
*V
) {
179 SCEVConstant
*&R
= (*SCEVConstants
)[V
];
180 if (R
== 0) R
= new SCEVConstant(V
);
184 SCEVHandle
ScalarEvolution::getConstant(const APInt
& Val
) {
185 return getConstant(ConstantInt::get(Val
));
188 const Type
*SCEVConstant::getType() const { return V
->getType(); }
190 void SCEVConstant::print(raw_ostream
&OS
) const {
191 WriteAsOperand(OS
, V
, false);
194 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy
,
195 const SCEVHandle
&op
, const Type
*ty
)
196 : SCEV(SCEVTy
), Op(op
), Ty(ty
) {}
198 SCEVCastExpr::~SCEVCastExpr() {}
200 bool SCEVCastExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
201 return Op
->dominates(BB
, DT
);
204 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205 // particular input. Don't use a SCEVHandle here, or else the object will
207 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
208 SCEVTruncateExpr
*> > SCEVTruncates
;
210 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle
&op
, const Type
*ty
)
211 : SCEVCastExpr(scTruncate
, op
, ty
) {
212 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
213 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
214 "Cannot truncate non-integer value!");
217 SCEVTruncateExpr::~SCEVTruncateExpr() {
218 SCEVTruncates
->erase(std::make_pair(Op
, Ty
));
221 void SCEVTruncateExpr::print(raw_ostream
&OS
) const {
222 OS
<< "(truncate " << *Op
<< " to " << *Ty
<< ")";
225 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226 // particular input. Don't use a SCEVHandle here, or else the object will never
228 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
229 SCEVZeroExtendExpr
*> > SCEVZeroExtends
;
231 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle
&op
, const Type
*ty
)
232 : SCEVCastExpr(scZeroExtend
, op
, ty
) {
233 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
234 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
235 "Cannot zero extend non-integer value!");
238 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239 SCEVZeroExtends
->erase(std::make_pair(Op
, Ty
));
242 void SCEVZeroExtendExpr::print(raw_ostream
&OS
) const {
243 OS
<< "(zeroextend " << *Op
<< " to " << *Ty
<< ")";
246 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247 // particular input. Don't use a SCEVHandle here, or else the object will never
249 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
250 SCEVSignExtendExpr
*> > SCEVSignExtends
;
252 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle
&op
, const Type
*ty
)
253 : SCEVCastExpr(scSignExtend
, op
, ty
) {
254 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
255 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
256 "Cannot sign extend non-integer value!");
259 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends
->erase(std::make_pair(Op
, Ty
));
263 void SCEVSignExtendExpr::print(raw_ostream
&OS
) const {
264 OS
<< "(signextend " << *Op
<< " to " << *Ty
<< ")";
267 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268 // particular input. Don't use a SCEVHandle here, or else the object will never
270 static ManagedStatic
<std::map
<std::pair
<unsigned, std::vector
<SCEV
*> >,
271 SCEVCommutativeExpr
*> > SCEVCommExprs
;
273 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274 SCEVCommExprs
->erase(std::make_pair(getSCEVType(),
275 std::vector
<SCEV
*>(Operands
.begin(),
279 void SCEVCommutativeExpr::print(raw_ostream
&OS
) const {
280 assert(Operands
.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr
= getOperationStr();
282 OS
<< "(" << *Operands
[0];
283 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
284 OS
<< OpStr
<< *Operands
[i
];
288 SCEVHandle
SCEVCommutativeExpr::
289 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
290 const SCEVHandle
&Conc
,
291 ScalarEvolution
&SE
) const {
292 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
294 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
295 if (H
!= getOperand(i
)) {
296 std::vector
<SCEVHandle
> NewOps
;
297 NewOps
.reserve(getNumOperands());
298 for (unsigned j
= 0; j
!= i
; ++j
)
299 NewOps
.push_back(getOperand(j
));
301 for (++i
; i
!= e
; ++i
)
302 NewOps
.push_back(getOperand(i
)->
303 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
305 if (isa
<SCEVAddExpr
>(this))
306 return SE
.getAddExpr(NewOps
);
307 else if (isa
<SCEVMulExpr
>(this))
308 return SE
.getMulExpr(NewOps
);
309 else if (isa
<SCEVSMaxExpr
>(this))
310 return SE
.getSMaxExpr(NewOps
);
311 else if (isa
<SCEVUMaxExpr
>(this))
312 return SE
.getUMaxExpr(NewOps
);
314 assert(0 && "Unknown commutative expr!");
320 bool SCEVCommutativeExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
321 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
322 if (!getOperand(i
)->dominates(BB
, DT
))
329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330 // input. Don't use a SCEVHandle here, or else the object will never be
332 static ManagedStatic
<std::map
<std::pair
<SCEV
*, SCEV
*>,
333 SCEVUDivExpr
*> > SCEVUDivs
;
335 SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs
->erase(std::make_pair(LHS
, RHS
));
339 bool SCEVUDivExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
340 return LHS
->dominates(BB
, DT
) && RHS
->dominates(BB
, DT
);
343 void SCEVUDivExpr::print(raw_ostream
&OS
) const {
344 OS
<< "(" << *LHS
<< " /u " << *RHS
<< ")";
347 const Type
*SCEVUDivExpr::getType() const {
348 return LHS
->getType();
351 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352 // particular input. Don't use a SCEVHandle here, or else the object will never
354 static ManagedStatic
<std::map
<std::pair
<const Loop
*, std::vector
<SCEV
*> >,
355 SCEVAddRecExpr
*> > SCEVAddRecExprs
;
357 SCEVAddRecExpr::~SCEVAddRecExpr() {
358 SCEVAddRecExprs
->erase(std::make_pair(L
,
359 std::vector
<SCEV
*>(Operands
.begin(),
363 bool SCEVAddRecExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
364 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
365 if (!getOperand(i
)->dominates(BB
, DT
))
372 SCEVHandle
SCEVAddRecExpr::
373 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
374 const SCEVHandle
&Conc
,
375 ScalarEvolution
&SE
) const {
376 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
378 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
379 if (H
!= getOperand(i
)) {
380 std::vector
<SCEVHandle
> NewOps
;
381 NewOps
.reserve(getNumOperands());
382 for (unsigned j
= 0; j
!= i
; ++j
)
383 NewOps
.push_back(getOperand(j
));
385 for (++i
; i
!= e
; ++i
)
386 NewOps
.push_back(getOperand(i
)->
387 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
389 return SE
.getAddRecExpr(NewOps
, L
);
396 bool SCEVAddRecExpr::isLoopInvariant(const Loop
*QueryLoop
) const {
397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398 // contain L and if the start is invariant.
399 return !QueryLoop
->contains(L
->getHeader()) &&
400 getOperand(0)->isLoopInvariant(QueryLoop
);
404 void SCEVAddRecExpr::print(raw_ostream
&OS
) const {
405 OS
<< "{" << *Operands
[0];
406 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
407 OS
<< ",+," << *Operands
[i
];
408 OS
<< "}<" << L
->getHeader()->getName() + ">";
411 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412 // value. Don't use a SCEVHandle here, or else the object will never be
414 static ManagedStatic
<std::map
<Value
*, SCEVUnknown
*> > SCEVUnknowns
;
416 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns
->erase(V
); }
418 bool SCEVUnknown::isLoopInvariant(const Loop
*L
) const {
419 // All non-instruction values are loop invariant. All instructions are loop
420 // invariant if they are not contained in the specified loop.
421 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
422 return !L
->contains(I
->getParent());
426 bool SCEVUnknown::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
427 if (Instruction
*I
= dyn_cast
<Instruction
>(getValue()))
428 return DT
->dominates(I
->getParent(), BB
);
432 const Type
*SCEVUnknown::getType() const {
436 void SCEVUnknown::print(raw_ostream
&OS
) const {
437 if (isa
<PointerType
>(V
->getType()))
438 OS
<< "(ptrtoint " << *V
->getType() << " ";
439 WriteAsOperand(OS
, V
, false);
440 if (isa
<PointerType
>(V
->getType()))
444 //===----------------------------------------------------------------------===//
446 //===----------------------------------------------------------------------===//
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
452 struct VISIBILITY_HIDDEN SCEVComplexityCompare
{
453 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
454 return LHS
->getSCEVType() < RHS
->getSCEVType();
459 /// GroupByComplexity - Given a list of SCEV objects, order them by their
460 /// complexity, and group objects of the same complexity together by value.
461 /// When this routine is finished, we know that any duplicates in the vector are
462 /// consecutive and that complexity is monotonically increasing.
464 /// Note that we go take special precautions to ensure that we get determinstic
465 /// results from this routine. In other words, we don't want the results of
466 /// this to depend on where the addresses of various SCEV objects happened to
469 static void GroupByComplexity(std::vector
<SCEVHandle
> &Ops
) {
470 if (Ops
.size() < 2) return; // Noop
471 if (Ops
.size() == 2) {
472 // This is the common case, which also happens to be trivially simple.
474 if (SCEVComplexityCompare()(Ops
[1], Ops
[0]))
475 std::swap(Ops
[0], Ops
[1]);
479 // Do the rough sort by complexity.
480 std::sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare());
482 // Now that we are sorted by complexity, group elements of the same
483 // complexity. Note that this is, at worst, N^2, but the vector is likely to
484 // be extremely short in practice. Note that we take this approach because we
485 // do not want to depend on the addresses of the objects we are grouping.
486 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
488 unsigned Complexity
= S
->getSCEVType();
490 // If there are any objects of the same complexity and same value as this
492 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
493 if (Ops
[j
] == S
) { // Found a duplicate.
494 // Move it to immediately after i'th element.
495 std::swap(Ops
[i
+1], Ops
[j
]);
496 ++i
; // no need to rescan it.
497 if (i
== e
-2) return; // Done!
505 //===----------------------------------------------------------------------===//
506 // Simple SCEV method implementations
507 //===----------------------------------------------------------------------===//
509 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
511 static SCEVHandle
BinomialCoefficient(SCEVHandle It
, unsigned K
,
513 const Type
* ResultTy
) {
514 // Handle the simplest case efficiently.
516 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
518 // We are using the following formula for BC(It, K):
520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
522 // Suppose, W is the bitwidth of the return value. We must be prepared for
523 // overflow. Hence, we must assure that the result of our computation is
524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
525 // safe in modular arithmetic.
527 // However, this code doesn't use exactly that formula; the formula it uses
528 // is something like the following, where T is the number of factors of 2 in
529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
534 // This formula is trivially equivalent to the previous formula. However,
535 // this formula can be implemented much more efficiently. The trick is that
536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
537 // arithmetic. To do exact division in modular arithmetic, all we have
538 // to do is multiply by the inverse. Therefore, this step can be done at
541 // The next issue is how to safely do the division by 2^T. The way this
542 // is done is by doing the multiplication step at a width of at least W + T
543 // bits. This way, the bottom W+T bits of the product are accurate. Then,
544 // when we perform the division by 2^T (which is equivalent to a right shift
545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
546 // truncated out after the division by 2^T.
548 // In comparison to just directly using the first formula, this technique
549 // is much more efficient; using the first formula requires W * K bits,
550 // but this formula less than W + K bits. Also, the first formula requires
551 // a division step, whereas this formula only requires multiplies and shifts.
553 // It doesn't matter whether the subtraction step is done in the calculation
554 // width or the input iteration count's width; if the subtraction overflows,
555 // the result must be zero anyway. We prefer here to do it in the width of
556 // the induction variable because it helps a lot for certain cases; CodeGen
557 // isn't smart enough to ignore the overflow, which leads to much less
558 // efficient code if the width of the subtraction is wider than the native
561 // (It's possible to not widen at all by pulling out factors of 2 before
562 // the multiplication; for example, K=2 can be calculated as
563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
564 // extra arithmetic, so it's not an obvious win, and it gets
565 // much more complicated for K > 3.)
567 // Protection from insane SCEVs; this bound is conservative,
568 // but it probably doesn't matter.
570 return SE
.getCouldNotCompute();
572 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
574 // Calculate K! / 2^T and T; we divide out the factors of two before
575 // multiplying for calculating K! / 2^T to avoid overflow.
576 // Other overflow doesn't matter because we only care about the bottom
577 // W bits of the result.
578 APInt
OddFactorial(W
, 1);
580 for (unsigned i
= 3; i
<= K
; ++i
) {
582 unsigned TwoFactors
= Mult
.countTrailingZeros();
584 Mult
= Mult
.lshr(TwoFactors
);
585 OddFactorial
*= Mult
;
588 // We need at least W + T bits for the multiplication step
589 unsigned CalculationBits
= W
+ T
;
591 // Calcuate 2^T, at width T+W.
592 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
594 // Calculate the multiplicative inverse of K! / 2^T;
595 // this multiplication factor will perform the exact division by
597 APInt Mod
= APInt::getSignedMinValue(W
+1);
598 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
599 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
600 MultiplyFactor
= MultiplyFactor
.trunc(W
);
602 // Calculate the product, at width T+W
603 const IntegerType
*CalculationTy
= IntegerType::get(CalculationBits
);
604 SCEVHandle Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
605 for (unsigned i
= 1; i
!= K
; ++i
) {
606 SCEVHandle S
= SE
.getMinusSCEV(It
, SE
.getIntegerSCEV(i
, It
->getType()));
607 Dividend
= SE
.getMulExpr(Dividend
,
608 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
612 SCEVHandle DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
614 // Truncate the result, and divide by K! / 2^T.
616 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
617 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
620 /// evaluateAtIteration - Return the value of this chain of recurrences at
621 /// the specified iteration number. We can evaluate this recurrence by
622 /// multiplying each element in the chain by the binomial coefficient
623 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
625 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
627 /// where BC(It, k) stands for binomial coefficient.
629 SCEVHandle
SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It
,
630 ScalarEvolution
&SE
) const {
631 SCEVHandle Result
= getStart();
632 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
633 // The computation is correct in the face of overflow provided that the
634 // multiplication is performed _after_ the evaluation of the binomial
636 SCEVHandle Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
637 if (isa
<SCEVCouldNotCompute
>(Coeff
))
640 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
645 //===----------------------------------------------------------------------===//
646 // SCEV Expression folder implementations
647 //===----------------------------------------------------------------------===//
649 SCEVHandle
ScalarEvolution::getTruncateExpr(const SCEVHandle
&Op
, const Type
*Ty
) {
650 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
651 "This is not a truncating conversion!");
653 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
655 ConstantExpr::getTrunc(SC
->getValue(), Ty
));
657 // trunc(trunc(x)) --> trunc(x)
658 if (SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
659 return getTruncateExpr(ST
->getOperand(), Ty
);
661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662 if (SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
663 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666 if (SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
667 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
669 // If the input value is a chrec scev made out of constants, truncate
670 // all of the constants.
671 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
672 std::vector
<SCEVHandle
> Operands
;
673 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
674 // FIXME: This should allow truncation of other expression types!
675 if (isa
<SCEVConstant
>(AddRec
->getOperand(i
)))
676 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
679 if (Operands
.size() == AddRec
->getNumOperands())
680 return getAddRecExpr(Operands
, AddRec
->getLoop());
683 SCEVTruncateExpr
*&Result
= (*SCEVTruncates
)[std::make_pair(Op
, Ty
)];
684 if (Result
== 0) Result
= new SCEVTruncateExpr(Op
, Ty
);
688 SCEVHandle
ScalarEvolution::getZeroExtendExpr(const SCEVHandle
&Op
,
690 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
691 "This is not an extending conversion!");
693 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
694 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
695 Constant
*C
= ConstantExpr::getZExt(SC
->getValue(), IntTy
);
696 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
697 return getUnknown(C
);
700 // zext(zext(x)) --> zext(x)
701 if (SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
702 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
704 // If the input value is a chrec scev, and we can prove that the value
705 // did not overflow the old, smaller, value, we can zero extend all of the
706 // operands (often constants). This allows analysis of something like
707 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
708 if (SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
709 if (AR
->isAffine()) {
710 // Check whether the backedge-taken count is SCEVCouldNotCompute.
711 // Note that this serves two purposes: It filters out loops that are
712 // simply not analyzable, and it covers the case where this code is
713 // being called from within backedge-taken count analysis, such that
714 // attempting to ask for the backedge-taken count would likely result
715 // in infinite recursion. In the later case, the analysis code will
716 // cope with a conservative value, and it will take care to purge
717 // that value once it has finished.
718 SCEVHandle BECount
= getBackedgeTakenCount(AR
->getLoop());
719 if (!isa
<SCEVCouldNotCompute
>(BECount
)) {
720 // Compute the extent of AR and divide it by the step value. This is
721 // used to determine if it's safe to extend the stride value.
722 SCEVHandle Start
= AR
->getStart();
723 SCEVHandle Step
= AR
->getStepRecurrence(*this);
725 // Check whether the backedge-taken count can be losslessly casted to
726 // the addrec's type. The count is always unsigned.
727 SCEVHandle CastedBECount
=
728 getTruncateOrZeroExtend(BECount
, Start
->getType());
730 getTruncateOrZeroExtend(CastedBECount
, BECount
->getType())) {
732 IntegerType::get(getTypeSizeInBits(Start
->getType()) * 2);
734 getMulExpr(CastedBECount
,
735 getTruncateOrZeroExtend(Step
, Start
->getType()));
736 // Check whether Start+Step*BECount has no unsigned overflow.
737 if (getZeroExtendExpr(ZMul
, WideTy
) ==
738 getMulExpr(getZeroExtendExpr(CastedBECount
, WideTy
),
739 getZeroExtendExpr(Step
, WideTy
))) {
740 SCEVHandle Add
= getAddExpr(Start
, ZMul
);
741 if (getZeroExtendExpr(Add
, WideTy
) ==
742 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
743 getZeroExtendExpr(ZMul
, WideTy
)))
744 // Return the expression with the addrec on the outside.
745 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
746 getZeroExtendExpr(Step
, Ty
),
750 // Similar to above, only this time treat the step value as signed.
751 // This covers loops that count down.
753 getMulExpr(CastedBECount
,
754 getTruncateOrSignExtend(Step
, Start
->getType()));
755 // Check whether Start+Step*BECount has no unsigned overflow.
756 if (getSignExtendExpr(SMul
, WideTy
) ==
757 getMulExpr(getZeroExtendExpr(CastedBECount
, WideTy
),
758 getSignExtendExpr(Step
, WideTy
))) {
759 SCEVHandle Add
= getAddExpr(Start
, SMul
);
760 if (getZeroExtendExpr(Add
, WideTy
) ==
761 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
762 getSignExtendExpr(SMul
, WideTy
)))
763 // Return the expression with the addrec on the outside.
764 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
765 getSignExtendExpr(Step
, Ty
),
772 SCEVZeroExtendExpr
*&Result
= (*SCEVZeroExtends
)[std::make_pair(Op
, Ty
)];
773 if (Result
== 0) Result
= new SCEVZeroExtendExpr(Op
, Ty
);
777 SCEVHandle
ScalarEvolution::getSignExtendExpr(const SCEVHandle
&Op
,
779 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
780 "This is not an extending conversion!");
782 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
783 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
784 Constant
*C
= ConstantExpr::getSExt(SC
->getValue(), IntTy
);
785 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
786 return getUnknown(C
);
789 // sext(sext(x)) --> sext(x)
790 if (SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
791 return getSignExtendExpr(SS
->getOperand(), Ty
);
793 // If the input value is a chrec scev, and we can prove that the value
794 // did not overflow the old, smaller, value, we can sign extend all of the
795 // operands (often constants). This allows analysis of something like
796 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
797 if (SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
798 if (AR
->isAffine()) {
799 // Check whether the backedge-taken count is SCEVCouldNotCompute.
800 // Note that this serves two purposes: It filters out loops that are
801 // simply not analyzable, and it covers the case where this code is
802 // being called from within backedge-taken count analysis, such that
803 // attempting to ask for the backedge-taken count would likely result
804 // in infinite recursion. In the later case, the analysis code will
805 // cope with a conservative value, and it will take care to purge
806 // that value once it has finished.
807 SCEVHandle BECount
= getBackedgeTakenCount(AR
->getLoop());
808 if (!isa
<SCEVCouldNotCompute
>(BECount
)) {
809 // Compute the extent of AR and divide it by the step value. This is
810 // used to determine if it's safe to extend the stride value.
811 SCEVHandle Start
= AR
->getStart();
812 SCEVHandle Step
= AR
->getStepRecurrence(*this);
814 // Check whether the backedge-taken count can be losslessly casted to
815 // the addrec's type. The count is always unsigned.
816 SCEVHandle CastedBECount
=
817 getTruncateOrZeroExtend(BECount
, Start
->getType());
819 getTruncateOrZeroExtend(CastedBECount
, BECount
->getType())) {
821 IntegerType::get(getTypeSizeInBits(Start
->getType()) * 2);
823 getMulExpr(CastedBECount
,
824 getTruncateOrSignExtend(Step
, Start
->getType()));
825 // Check whether Start+Step*BECount has no signed overflow.
826 if (getSignExtendExpr(SMul
, WideTy
) ==
827 getMulExpr(getSignExtendExpr(CastedBECount
, WideTy
),
828 getSignExtendExpr(Step
, WideTy
))) {
829 SCEVHandle Add
= getAddExpr(Start
, SMul
);
830 if (getSignExtendExpr(Add
, WideTy
) ==
831 getAddExpr(getSignExtendExpr(Start
, WideTy
),
832 getSignExtendExpr(SMul
, WideTy
)))
833 // Return the expression with the addrec on the outside.
834 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
835 getSignExtendExpr(Step
, Ty
),
842 SCEVSignExtendExpr
*&Result
= (*SCEVSignExtends
)[std::make_pair(Op
, Ty
)];
843 if (Result
== 0) Result
= new SCEVSignExtendExpr(Op
, Ty
);
847 // get - Get a canonical add expression, or something simpler if possible.
848 SCEVHandle
ScalarEvolution::getAddExpr(std::vector
<SCEVHandle
> &Ops
) {
849 assert(!Ops
.empty() && "Cannot get empty add!");
850 if (Ops
.size() == 1) return Ops
[0];
852 // Sort by complexity, this groups all similar expression types together.
853 GroupByComplexity(Ops
);
855 // If there are any constants, fold them together.
857 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
859 assert(Idx
< Ops
.size());
860 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
861 // We found two constants, fold them together!
862 ConstantInt
*Fold
= ConstantInt::get(LHSC
->getValue()->getValue() +
863 RHSC
->getValue()->getValue());
864 Ops
[0] = getConstant(Fold
);
865 Ops
.erase(Ops
.begin()+1); // Erase the folded element
866 if (Ops
.size() == 1) return Ops
[0];
867 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
870 // If we are left with a constant zero being added, strip it off.
871 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
872 Ops
.erase(Ops
.begin());
877 if (Ops
.size() == 1) return Ops
[0];
879 // Okay, check to see if the same value occurs in the operand list twice. If
880 // so, merge them together into an multiply expression. Since we sorted the
881 // list, these values are required to be adjacent.
882 const Type
*Ty
= Ops
[0]->getType();
883 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
884 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
885 // Found a match, merge the two values into a multiply, and add any
886 // remaining values to the result.
887 SCEVHandle Two
= getIntegerSCEV(2, Ty
);
888 SCEVHandle Mul
= getMulExpr(Ops
[i
], Two
);
891 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
893 return getAddExpr(Ops
);
896 // Now we know the first non-constant operand. Skip past any cast SCEVs.
897 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
900 // If there are add operands they would be next.
901 if (Idx
< Ops
.size()) {
902 bool DeletedAdd
= false;
903 while (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
904 // If we have an add, expand the add operands onto the end of the operands
906 Ops
.insert(Ops
.end(), Add
->op_begin(), Add
->op_end());
907 Ops
.erase(Ops
.begin()+Idx
);
911 // If we deleted at least one add, we added operands to the end of the list,
912 // and they are not necessarily sorted. Recurse to resort and resimplify
913 // any operands we just aquired.
915 return getAddExpr(Ops
);
918 // Skip over the add expression until we get to a multiply.
919 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
922 // If we are adding something to a multiply expression, make sure the
923 // something is not already an operand of the multiply. If so, merge it into
925 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
926 SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
927 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
928 SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
929 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
930 if (MulOpSCEV
== Ops
[AddOp
] && !isa
<SCEVConstant
>(MulOpSCEV
)) {
931 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
932 SCEVHandle InnerMul
= Mul
->getOperand(MulOp
== 0);
933 if (Mul
->getNumOperands() != 2) {
934 // If the multiply has more than two operands, we must get the
936 std::vector
<SCEVHandle
> MulOps(Mul
->op_begin(), Mul
->op_end());
937 MulOps
.erase(MulOps
.begin()+MulOp
);
938 InnerMul
= getMulExpr(MulOps
);
940 SCEVHandle One
= getIntegerSCEV(1, Ty
);
941 SCEVHandle AddOne
= getAddExpr(InnerMul
, One
);
942 SCEVHandle OuterMul
= getMulExpr(AddOne
, Ops
[AddOp
]);
943 if (Ops
.size() == 2) return OuterMul
;
945 Ops
.erase(Ops
.begin()+AddOp
);
946 Ops
.erase(Ops
.begin()+Idx
-1);
948 Ops
.erase(Ops
.begin()+Idx
);
949 Ops
.erase(Ops
.begin()+AddOp
-1);
951 Ops
.push_back(OuterMul
);
952 return getAddExpr(Ops
);
955 // Check this multiply against other multiplies being added together.
956 for (unsigned OtherMulIdx
= Idx
+1;
957 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
959 SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
960 // If MulOp occurs in OtherMul, we can fold the two multiplies
962 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
963 OMulOp
!= e
; ++OMulOp
)
964 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
965 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
966 SCEVHandle InnerMul1
= Mul
->getOperand(MulOp
== 0);
967 if (Mul
->getNumOperands() != 2) {
968 std::vector
<SCEVHandle
> MulOps(Mul
->op_begin(), Mul
->op_end());
969 MulOps
.erase(MulOps
.begin()+MulOp
);
970 InnerMul1
= getMulExpr(MulOps
);
972 SCEVHandle InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
973 if (OtherMul
->getNumOperands() != 2) {
974 std::vector
<SCEVHandle
> MulOps(OtherMul
->op_begin(),
976 MulOps
.erase(MulOps
.begin()+OMulOp
);
977 InnerMul2
= getMulExpr(MulOps
);
979 SCEVHandle InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
980 SCEVHandle OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
981 if (Ops
.size() == 2) return OuterMul
;
982 Ops
.erase(Ops
.begin()+Idx
);
983 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
984 Ops
.push_back(OuterMul
);
985 return getAddExpr(Ops
);
991 // If there are any add recurrences in the operands list, see if any other
992 // added values are loop invariant. If so, we can fold them into the
994 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
997 // Scan over all recurrences, trying to fold loop invariants into them.
998 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
999 // Scan all of the other operands to this add and add them to the vector if
1000 // they are loop invariant w.r.t. the recurrence.
1001 std::vector
<SCEVHandle
> LIOps
;
1002 SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1003 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1004 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1005 LIOps
.push_back(Ops
[i
]);
1006 Ops
.erase(Ops
.begin()+i
);
1010 // If we found some loop invariants, fold them into the recurrence.
1011 if (!LIOps
.empty()) {
1012 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1013 LIOps
.push_back(AddRec
->getStart());
1015 std::vector
<SCEVHandle
> AddRecOps(AddRec
->op_begin(), AddRec
->op_end());
1016 AddRecOps
[0] = getAddExpr(LIOps
);
1018 SCEVHandle NewRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop());
1019 // If all of the other operands were loop invariant, we are done.
1020 if (Ops
.size() == 1) return NewRec
;
1022 // Otherwise, add the folded AddRec by the non-liv parts.
1023 for (unsigned i
= 0;; ++i
)
1024 if (Ops
[i
] == AddRec
) {
1028 return getAddExpr(Ops
);
1031 // Okay, if there weren't any loop invariants to be folded, check to see if
1032 // there are multiple AddRec's with the same loop induction variable being
1033 // added together. If so, we can fold them.
1034 for (unsigned OtherIdx
= Idx
+1;
1035 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1036 if (OtherIdx
!= Idx
) {
1037 SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1038 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1039 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1040 std::vector
<SCEVHandle
> NewOps(AddRec
->op_begin(), AddRec
->op_end());
1041 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands(); i
!= e
; ++i
) {
1042 if (i
>= NewOps
.size()) {
1043 NewOps
.insert(NewOps
.end(), OtherAddRec
->op_begin()+i
,
1044 OtherAddRec
->op_end());
1047 NewOps
[i
] = getAddExpr(NewOps
[i
], OtherAddRec
->getOperand(i
));
1049 SCEVHandle NewAddRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1051 if (Ops
.size() == 2) return NewAddRec
;
1053 Ops
.erase(Ops
.begin()+Idx
);
1054 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1055 Ops
.push_back(NewAddRec
);
1056 return getAddExpr(Ops
);
1060 // Otherwise couldn't fold anything into this recurrence. Move onto the
1064 // Okay, it looks like we really DO need an add expr. Check to see if we
1065 // already have one, otherwise create a new one.
1066 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1067 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scAddExpr
,
1069 if (Result
== 0) Result
= new SCEVAddExpr(Ops
);
1074 SCEVHandle
ScalarEvolution::getMulExpr(std::vector
<SCEVHandle
> &Ops
) {
1075 assert(!Ops
.empty() && "Cannot get empty mul!");
1077 // Sort by complexity, this groups all similar expression types together.
1078 GroupByComplexity(Ops
);
1080 // If there are any constants, fold them together.
1082 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1084 // C1*(C2+V) -> C1*C2 + C1*V
1085 if (Ops
.size() == 2)
1086 if (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1087 if (Add
->getNumOperands() == 2 &&
1088 isa
<SCEVConstant
>(Add
->getOperand(0)))
1089 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1090 getMulExpr(LHSC
, Add
->getOperand(1)));
1094 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1095 // We found two constants, fold them together!
1096 ConstantInt
*Fold
= ConstantInt::get(LHSC
->getValue()->getValue() *
1097 RHSC
->getValue()->getValue());
1098 Ops
[0] = getConstant(Fold
);
1099 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1100 if (Ops
.size() == 1) return Ops
[0];
1101 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1104 // If we are left with a constant one being multiplied, strip it off.
1105 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1106 Ops
.erase(Ops
.begin());
1108 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1109 // If we have a multiply of zero, it will always be zero.
1114 // Skip over the add expression until we get to a multiply.
1115 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1118 if (Ops
.size() == 1)
1121 // If there are mul operands inline them all into this expression.
1122 if (Idx
< Ops
.size()) {
1123 bool DeletedMul
= false;
1124 while (SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1125 // If we have an mul, expand the mul operands onto the end of the operands
1127 Ops
.insert(Ops
.end(), Mul
->op_begin(), Mul
->op_end());
1128 Ops
.erase(Ops
.begin()+Idx
);
1132 // If we deleted at least one mul, we added operands to the end of the list,
1133 // and they are not necessarily sorted. Recurse to resort and resimplify
1134 // any operands we just aquired.
1136 return getMulExpr(Ops
);
1139 // If there are any add recurrences in the operands list, see if any other
1140 // added values are loop invariant. If so, we can fold them into the
1142 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1145 // Scan over all recurrences, trying to fold loop invariants into them.
1146 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1147 // Scan all of the other operands to this mul and add them to the vector if
1148 // they are loop invariant w.r.t. the recurrence.
1149 std::vector
<SCEVHandle
> LIOps
;
1150 SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1151 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1152 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1153 LIOps
.push_back(Ops
[i
]);
1154 Ops
.erase(Ops
.begin()+i
);
1158 // If we found some loop invariants, fold them into the recurrence.
1159 if (!LIOps
.empty()) {
1160 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1161 std::vector
<SCEVHandle
> NewOps
;
1162 NewOps
.reserve(AddRec
->getNumOperands());
1163 if (LIOps
.size() == 1) {
1164 SCEV
*Scale
= LIOps
[0];
1165 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1166 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1168 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
1169 std::vector
<SCEVHandle
> MulOps(LIOps
);
1170 MulOps
.push_back(AddRec
->getOperand(i
));
1171 NewOps
.push_back(getMulExpr(MulOps
));
1175 SCEVHandle NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1177 // If all of the other operands were loop invariant, we are done.
1178 if (Ops
.size() == 1) return NewRec
;
1180 // Otherwise, multiply the folded AddRec by the non-liv parts.
1181 for (unsigned i
= 0;; ++i
)
1182 if (Ops
[i
] == AddRec
) {
1186 return getMulExpr(Ops
);
1189 // Okay, if there weren't any loop invariants to be folded, check to see if
1190 // there are multiple AddRec's with the same loop induction variable being
1191 // multiplied together. If so, we can fold them.
1192 for (unsigned OtherIdx
= Idx
+1;
1193 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1194 if (OtherIdx
!= Idx
) {
1195 SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1196 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1197 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1198 SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1199 SCEVHandle NewStart
= getMulExpr(F
->getStart(),
1201 SCEVHandle B
= F
->getStepRecurrence(*this);
1202 SCEVHandle D
= G
->getStepRecurrence(*this);
1203 SCEVHandle NewStep
= getAddExpr(getMulExpr(F
, D
),
1206 SCEVHandle NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1208 if (Ops
.size() == 2) return NewAddRec
;
1210 Ops
.erase(Ops
.begin()+Idx
);
1211 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1212 Ops
.push_back(NewAddRec
);
1213 return getMulExpr(Ops
);
1217 // Otherwise couldn't fold anything into this recurrence. Move onto the
1221 // Okay, it looks like we really DO need an mul expr. Check to see if we
1222 // already have one, otherwise create a new one.
1223 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1224 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scMulExpr
,
1227 Result
= new SCEVMulExpr(Ops
);
1231 SCEVHandle
ScalarEvolution::getUDivExpr(const SCEVHandle
&LHS
, const SCEVHandle
&RHS
) {
1232 if (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
1233 if (RHSC
->getValue()->equalsInt(1))
1234 return LHS
; // X udiv 1 --> x
1236 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
1237 Constant
*LHSCV
= LHSC
->getValue();
1238 Constant
*RHSCV
= RHSC
->getValue();
1239 return getUnknown(ConstantExpr::getUDiv(LHSCV
, RHSCV
));
1243 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1245 SCEVUDivExpr
*&Result
= (*SCEVUDivs
)[std::make_pair(LHS
, RHS
)];
1246 if (Result
== 0) Result
= new SCEVUDivExpr(LHS
, RHS
);
1251 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1252 /// specified loop. Simplify the expression as much as possible.
1253 SCEVHandle
ScalarEvolution::getAddRecExpr(const SCEVHandle
&Start
,
1254 const SCEVHandle
&Step
, const Loop
*L
) {
1255 std::vector
<SCEVHandle
> Operands
;
1256 Operands
.push_back(Start
);
1257 if (SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
1258 if (StepChrec
->getLoop() == L
) {
1259 Operands
.insert(Operands
.end(), StepChrec
->op_begin(),
1260 StepChrec
->op_end());
1261 return getAddRecExpr(Operands
, L
);
1264 Operands
.push_back(Step
);
1265 return getAddRecExpr(Operands
, L
);
1268 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1269 /// specified loop. Simplify the expression as much as possible.
1270 SCEVHandle
ScalarEvolution::getAddRecExpr(std::vector
<SCEVHandle
> &Operands
,
1272 if (Operands
.size() == 1) return Operands
[0];
1274 if (Operands
.back()->isZero()) {
1275 Operands
.pop_back();
1276 return getAddRecExpr(Operands
, L
); // {X,+,0} --> X
1279 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1280 if (SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
1281 const Loop
* NestedLoop
= NestedAR
->getLoop();
1282 if (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) {
1283 std::vector
<SCEVHandle
> NestedOperands(NestedAR
->op_begin(),
1284 NestedAR
->op_end());
1285 SCEVHandle
NestedARHandle(NestedAR
);
1286 Operands
[0] = NestedAR
->getStart();
1287 NestedOperands
[0] = getAddRecExpr(Operands
, L
);
1288 return getAddRecExpr(NestedOperands
, NestedLoop
);
1292 SCEVAddRecExpr
*&Result
=
1293 (*SCEVAddRecExprs
)[std::make_pair(L
, std::vector
<SCEV
*>(Operands
.begin(),
1295 if (Result
== 0) Result
= new SCEVAddRecExpr(Operands
, L
);
1299 SCEVHandle
ScalarEvolution::getSMaxExpr(const SCEVHandle
&LHS
,
1300 const SCEVHandle
&RHS
) {
1301 std::vector
<SCEVHandle
> Ops
;
1304 return getSMaxExpr(Ops
);
1307 SCEVHandle
ScalarEvolution::getSMaxExpr(std::vector
<SCEVHandle
> Ops
) {
1308 assert(!Ops
.empty() && "Cannot get empty smax!");
1309 if (Ops
.size() == 1) return Ops
[0];
1311 // Sort by complexity, this groups all similar expression types together.
1312 GroupByComplexity(Ops
);
1314 // If there are any constants, fold them together.
1316 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1318 assert(Idx
< Ops
.size());
1319 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1320 // We found two constants, fold them together!
1321 ConstantInt
*Fold
= ConstantInt::get(
1322 APIntOps::smax(LHSC
->getValue()->getValue(),
1323 RHSC
->getValue()->getValue()));
1324 Ops
[0] = getConstant(Fold
);
1325 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1326 if (Ops
.size() == 1) return Ops
[0];
1327 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1330 // If we are left with a constant -inf, strip it off.
1331 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
1332 Ops
.erase(Ops
.begin());
1337 if (Ops
.size() == 1) return Ops
[0];
1339 // Find the first SMax
1340 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
1343 // Check to see if one of the operands is an SMax. If so, expand its operands
1344 // onto our operand list, and recurse to simplify.
1345 if (Idx
< Ops
.size()) {
1346 bool DeletedSMax
= false;
1347 while (SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
1348 Ops
.insert(Ops
.end(), SMax
->op_begin(), SMax
->op_end());
1349 Ops
.erase(Ops
.begin()+Idx
);
1354 return getSMaxExpr(Ops
);
1357 // Okay, check to see if the same value occurs in the operand list twice. If
1358 // so, delete one. Since we sorted the list, these values are required to
1360 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1361 if (Ops
[i
] == Ops
[i
+1]) { // X smax Y smax Y --> X smax Y
1362 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1366 if (Ops
.size() == 1) return Ops
[0];
1368 assert(!Ops
.empty() && "Reduced smax down to nothing!");
1370 // Okay, it looks like we really DO need an smax expr. Check to see if we
1371 // already have one, otherwise create a new one.
1372 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1373 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scSMaxExpr
,
1375 if (Result
== 0) Result
= new SCEVSMaxExpr(Ops
);
1379 SCEVHandle
ScalarEvolution::getUMaxExpr(const SCEVHandle
&LHS
,
1380 const SCEVHandle
&RHS
) {
1381 std::vector
<SCEVHandle
> Ops
;
1384 return getUMaxExpr(Ops
);
1387 SCEVHandle
ScalarEvolution::getUMaxExpr(std::vector
<SCEVHandle
> Ops
) {
1388 assert(!Ops
.empty() && "Cannot get empty umax!");
1389 if (Ops
.size() == 1) return Ops
[0];
1391 // Sort by complexity, this groups all similar expression types together.
1392 GroupByComplexity(Ops
);
1394 // If there are any constants, fold them together.
1396 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1398 assert(Idx
< Ops
.size());
1399 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1400 // We found two constants, fold them together!
1401 ConstantInt
*Fold
= ConstantInt::get(
1402 APIntOps::umax(LHSC
->getValue()->getValue(),
1403 RHSC
->getValue()->getValue()));
1404 Ops
[0] = getConstant(Fold
);
1405 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1406 if (Ops
.size() == 1) return Ops
[0];
1407 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1410 // If we are left with a constant zero, strip it off.
1411 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
1412 Ops
.erase(Ops
.begin());
1417 if (Ops
.size() == 1) return Ops
[0];
1419 // Find the first UMax
1420 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
1423 // Check to see if one of the operands is a UMax. If so, expand its operands
1424 // onto our operand list, and recurse to simplify.
1425 if (Idx
< Ops
.size()) {
1426 bool DeletedUMax
= false;
1427 while (SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
1428 Ops
.insert(Ops
.end(), UMax
->op_begin(), UMax
->op_end());
1429 Ops
.erase(Ops
.begin()+Idx
);
1434 return getUMaxExpr(Ops
);
1437 // Okay, check to see if the same value occurs in the operand list twice. If
1438 // so, delete one. Since we sorted the list, these values are required to
1440 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1441 if (Ops
[i
] == Ops
[i
+1]) { // X umax Y umax Y --> X umax Y
1442 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1446 if (Ops
.size() == 1) return Ops
[0];
1448 assert(!Ops
.empty() && "Reduced umax down to nothing!");
1450 // Okay, it looks like we really DO need a umax expr. Check to see if we
1451 // already have one, otherwise create a new one.
1452 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1453 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scUMaxExpr
,
1455 if (Result
== 0) Result
= new SCEVUMaxExpr(Ops
);
1459 SCEVHandle
ScalarEvolution::getUnknown(Value
*V
) {
1460 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1461 return getConstant(CI
);
1462 if (isa
<ConstantPointerNull
>(V
))
1463 return getIntegerSCEV(0, V
->getType());
1464 SCEVUnknown
*&Result
= (*SCEVUnknowns
)[V
];
1465 if (Result
== 0) Result
= new SCEVUnknown(V
);
1469 //===----------------------------------------------------------------------===//
1470 // Basic SCEV Analysis and PHI Idiom Recognition Code
1473 /// deleteValueFromRecords - This method should be called by the
1474 /// client before it removes an instruction from the program, to make sure
1475 /// that no dangling references are left around.
1476 void ScalarEvolution::deleteValueFromRecords(Value
*V
) {
1477 SmallVector
<Value
*, 16> Worklist
;
1479 if (Scalars
.erase(V
)) {
1480 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
))
1481 ConstantEvolutionLoopExitValue
.erase(PN
);
1482 Worklist
.push_back(V
);
1485 while (!Worklist
.empty()) {
1486 Value
*VV
= Worklist
.back();
1487 Worklist
.pop_back();
1489 for (Instruction::use_iterator UI
= VV
->use_begin(), UE
= VV
->use_end();
1491 Instruction
*Inst
= cast
<Instruction
>(*UI
);
1492 if (Scalars
.erase(Inst
)) {
1493 if (PHINode
*PN
= dyn_cast
<PHINode
>(VV
))
1494 ConstantEvolutionLoopExitValue
.erase(PN
);
1495 Worklist
.push_back(Inst
);
1501 /// isSCEVable - Test if values of the given type are analyzable within
1502 /// the SCEV framework. This primarily includes integer types, and it
1503 /// can optionally include pointer types if the ScalarEvolution class
1504 /// has access to target-specific information.
1505 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
1506 // Integers are always SCEVable.
1507 if (Ty
->isInteger())
1510 // Pointers are SCEVable if TargetData information is available
1511 // to provide pointer size information.
1512 if (isa
<PointerType
>(Ty
))
1515 // Otherwise it's not SCEVable.
1519 /// getTypeSizeInBits - Return the size in bits of the specified type,
1520 /// for which isSCEVable must return true.
1521 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
1522 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
1524 // If we have a TargetData, use it!
1526 return TD
->getTypeSizeInBits(Ty
);
1528 // Otherwise, we support only integer types.
1529 assert(Ty
->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1530 return Ty
->getPrimitiveSizeInBits();
1533 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1534 /// the given type and which represents how SCEV will treat the given
1535 /// type, for which isSCEVable must return true. For pointer types,
1536 /// this is the pointer-sized integer type.
1537 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
1538 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
1540 if (Ty
->isInteger())
1543 assert(isa
<PointerType
>(Ty
) && "Unexpected non-pointer non-integer type!");
1544 return TD
->getIntPtrType();
1547 SCEVHandle
ScalarEvolution::getCouldNotCompute() {
1548 return UnknownValue
;
1551 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1552 /// expression and create a new one.
1553 SCEVHandle
ScalarEvolution::getSCEV(Value
*V
) {
1554 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
1556 std::map
<Value
*, SCEVHandle
>::iterator I
= Scalars
.find(V
);
1557 if (I
!= Scalars
.end()) return I
->second
;
1558 SCEVHandle S
= createSCEV(V
);
1559 Scalars
.insert(std::make_pair(V
, S
));
1563 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1564 /// specified signed integer value and return a SCEV for the constant.
1565 SCEVHandle
ScalarEvolution::getIntegerSCEV(int Val
, const Type
*Ty
) {
1566 Ty
= getEffectiveSCEVType(Ty
);
1569 C
= Constant::getNullValue(Ty
);
1570 else if (Ty
->isFloatingPoint())
1571 C
= ConstantFP::get(APFloat(Ty
==Type::FloatTy
? APFloat::IEEEsingle
:
1572 APFloat::IEEEdouble
, Val
));
1574 C
= ConstantInt::get(Ty
, Val
);
1575 return getUnknown(C
);
1578 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1580 SCEVHandle
ScalarEvolution::getNegativeSCEV(const SCEVHandle
&V
) {
1581 if (SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
1582 return getUnknown(ConstantExpr::getNeg(VC
->getValue()));
1584 const Type
*Ty
= V
->getType();
1585 Ty
= getEffectiveSCEVType(Ty
);
1586 return getMulExpr(V
, getConstant(ConstantInt::getAllOnesValue(Ty
)));
1589 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1590 SCEVHandle
ScalarEvolution::getNotSCEV(const SCEVHandle
&V
) {
1591 if (SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
1592 return getUnknown(ConstantExpr::getNot(VC
->getValue()));
1594 const Type
*Ty
= V
->getType();
1595 Ty
= getEffectiveSCEVType(Ty
);
1596 SCEVHandle AllOnes
= getConstant(ConstantInt::getAllOnesValue(Ty
));
1597 return getMinusSCEV(AllOnes
, V
);
1600 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1602 SCEVHandle
ScalarEvolution::getMinusSCEV(const SCEVHandle
&LHS
,
1603 const SCEVHandle
&RHS
) {
1605 return getAddExpr(LHS
, getNegativeSCEV(RHS
));
1608 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1609 /// input value to the specified type. If the type must be extended, it is zero
1612 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle
&V
,
1614 const Type
*SrcTy
= V
->getType();
1615 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
1616 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
1617 "Cannot truncate or zero extend with non-integer arguments!");
1618 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
1619 return V
; // No conversion
1620 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
1621 return getTruncateExpr(V
, Ty
);
1622 return getZeroExtendExpr(V
, Ty
);
1625 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1626 /// input value to the specified type. If the type must be extended, it is sign
1629 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle
&V
,
1631 const Type
*SrcTy
= V
->getType();
1632 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
1633 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
1634 "Cannot truncate or zero extend with non-integer arguments!");
1635 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
1636 return V
; // No conversion
1637 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
1638 return getTruncateExpr(V
, Ty
);
1639 return getSignExtendExpr(V
, Ty
);
1642 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1643 /// the specified instruction and replaces any references to the symbolic value
1644 /// SymName with the specified value. This is used during PHI resolution.
1645 void ScalarEvolution::
1646 ReplaceSymbolicValueWithConcrete(Instruction
*I
, const SCEVHandle
&SymName
,
1647 const SCEVHandle
&NewVal
) {
1648 std::map
<Value
*, SCEVHandle
>::iterator SI
= Scalars
.find(I
);
1649 if (SI
== Scalars
.end()) return;
1652 SI
->second
->replaceSymbolicValuesWithConcrete(SymName
, NewVal
, *this);
1653 if (NV
== SI
->second
) return; // No change.
1655 SI
->second
= NV
; // Update the scalars map!
1657 // Any instruction values that use this instruction might also need to be
1659 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1661 ReplaceSymbolicValueWithConcrete(cast
<Instruction
>(*UI
), SymName
, NewVal
);
1664 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1665 /// a loop header, making it a potential recurrence, or it doesn't.
1667 SCEVHandle
ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
1668 if (PN
->getNumIncomingValues() == 2) // The loops have been canonicalized.
1669 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
1670 if (L
->getHeader() == PN
->getParent()) {
1671 // If it lives in the loop header, it has two incoming values, one
1672 // from outside the loop, and one from inside.
1673 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
1674 unsigned BackEdge
= IncomingEdge
^1;
1676 // While we are analyzing this PHI node, handle its value symbolically.
1677 SCEVHandle SymbolicName
= getUnknown(PN
);
1678 assert(Scalars
.find(PN
) == Scalars
.end() &&
1679 "PHI node already processed?");
1680 Scalars
.insert(std::make_pair(PN
, SymbolicName
));
1682 // Using this symbolic name for the PHI, analyze the value coming around
1684 SCEVHandle BEValue
= getSCEV(PN
->getIncomingValue(BackEdge
));
1686 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1687 // has a special value for the first iteration of the loop.
1689 // If the value coming around the backedge is an add with the symbolic
1690 // value we just inserted, then we found a simple induction variable!
1691 if (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
1692 // If there is a single occurrence of the symbolic value, replace it
1693 // with a recurrence.
1694 unsigned FoundIndex
= Add
->getNumOperands();
1695 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
1696 if (Add
->getOperand(i
) == SymbolicName
)
1697 if (FoundIndex
== e
) {
1702 if (FoundIndex
!= Add
->getNumOperands()) {
1703 // Create an add with everything but the specified operand.
1704 std::vector
<SCEVHandle
> Ops
;
1705 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
1706 if (i
!= FoundIndex
)
1707 Ops
.push_back(Add
->getOperand(i
));
1708 SCEVHandle Accum
= getAddExpr(Ops
);
1710 // This is not a valid addrec if the step amount is varying each
1711 // loop iteration, but is not itself an addrec in this loop.
1712 if (Accum
->isLoopInvariant(L
) ||
1713 (isa
<SCEVAddRecExpr
>(Accum
) &&
1714 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
1715 SCEVHandle StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
1716 SCEVHandle PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
);
1718 // Okay, for the entire analysis of this edge we assumed the PHI
1719 // to be symbolic. We now need to go back and update all of the
1720 // entries for the scalars that use the PHI (except for the PHI
1721 // itself) to use the new analyzed value instead of the "symbolic"
1723 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
1727 } else if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
1728 // Otherwise, this could be a loop like this:
1729 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1730 // In this case, j = {1,+,1} and BEValue is j.
1731 // Because the other in-value of i (0) fits the evolution of BEValue
1732 // i really is an addrec evolution.
1733 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
1734 SCEVHandle StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
1736 // If StartVal = j.start - j.stride, we can use StartVal as the
1737 // initial step of the addrec evolution.
1738 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
1739 AddRec
->getOperand(1))) {
1740 SCEVHandle PHISCEV
=
1741 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
);
1743 // Okay, for the entire analysis of this edge we assumed the PHI
1744 // to be symbolic. We now need to go back and update all of the
1745 // entries for the scalars that use the PHI (except for the PHI
1746 // itself) to use the new analyzed value instead of the "symbolic"
1748 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
1754 return SymbolicName
;
1757 // If it's not a loop phi, we can't handle it yet.
1758 return getUnknown(PN
);
1761 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1762 /// guaranteed to end in (at every loop iteration). It is, at the same time,
1763 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1764 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
1765 static uint32_t GetMinTrailingZeros(SCEVHandle S
, const ScalarEvolution
&SE
) {
1766 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
1767 return C
->getValue()->getValue().countTrailingZeros();
1769 if (SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
1770 return std::min(GetMinTrailingZeros(T
->getOperand(), SE
),
1771 (uint32_t)SE
.getTypeSizeInBits(T
->getType()));
1773 if (SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
1774 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand(), SE
);
1775 return OpRes
== SE
.getTypeSizeInBits(E
->getOperand()->getType()) ?
1776 SE
.getTypeSizeInBits(E
->getOperand()->getType()) : OpRes
;
1779 if (SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
1780 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand(), SE
);
1781 return OpRes
== SE
.getTypeSizeInBits(E
->getOperand()->getType()) ?
1782 SE
.getTypeSizeInBits(E
->getOperand()->getType()) : OpRes
;
1785 if (SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
1786 // The result is the min of all operands results.
1787 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0), SE
);
1788 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1789 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
), SE
));
1793 if (SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
1794 // The result is the sum of all operands results.
1795 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1796 uint32_t BitWidth
= SE
.getTypeSizeInBits(M
->getType());
1797 for (unsigned i
= 1, e
= M
->getNumOperands();
1798 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
1799 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
), SE
),
1804 if (SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1805 // The result is the min of all operands results.
1806 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0), SE
);
1807 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1808 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
), SE
));
1812 if (SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
1813 // The result is the min of all operands results.
1814 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1815 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1816 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
), SE
));
1820 if (SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
1821 // The result is the min of all operands results.
1822 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1823 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1824 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
), SE
));
1828 // SCEVUDivExpr, SCEVUnknown
1832 /// createSCEV - We know that there is no SCEV for the specified value.
1833 /// Analyze the expression.
1835 SCEVHandle
ScalarEvolution::createSCEV(Value
*V
) {
1836 if (!isSCEVable(V
->getType()))
1837 return getUnknown(V
);
1839 unsigned Opcode
= Instruction::UserOp1
;
1840 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1841 Opcode
= I
->getOpcode();
1842 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
1843 Opcode
= CE
->getOpcode();
1845 return getUnknown(V
);
1847 User
*U
= cast
<User
>(V
);
1849 case Instruction::Add
:
1850 return getAddExpr(getSCEV(U
->getOperand(0)),
1851 getSCEV(U
->getOperand(1)));
1852 case Instruction::Mul
:
1853 return getMulExpr(getSCEV(U
->getOperand(0)),
1854 getSCEV(U
->getOperand(1)));
1855 case Instruction::UDiv
:
1856 return getUDivExpr(getSCEV(U
->getOperand(0)),
1857 getSCEV(U
->getOperand(1)));
1858 case Instruction::Sub
:
1859 return getMinusSCEV(getSCEV(U
->getOperand(0)),
1860 getSCEV(U
->getOperand(1)));
1861 case Instruction::And
:
1862 // For an expression like x&255 that merely masks off the high bits,
1863 // use zext(trunc(x)) as the SCEV expression.
1864 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1865 if (CI
->isNullValue())
1866 return getSCEV(U
->getOperand(1));
1867 if (CI
->isAllOnesValue())
1868 return getSCEV(U
->getOperand(0));
1869 const APInt
&A
= CI
->getValue();
1870 unsigned Ones
= A
.countTrailingOnes();
1871 if (APIntOps::isMask(Ones
, A
))
1873 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
1874 IntegerType::get(Ones
)),
1878 case Instruction::Or
:
1879 // If the RHS of the Or is a constant, we may have something like:
1880 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1881 // optimizations will transparently handle this case.
1883 // In order for this transformation to be safe, the LHS must be of the
1884 // form X*(2^n) and the Or constant must be less than 2^n.
1885 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1886 SCEVHandle LHS
= getSCEV(U
->getOperand(0));
1887 const APInt
&CIVal
= CI
->getValue();
1888 if (GetMinTrailingZeros(LHS
, *this) >=
1889 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros()))
1890 return getAddExpr(LHS
, getSCEV(U
->getOperand(1)));
1893 case Instruction::Xor
:
1894 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1895 // If the RHS of the xor is a signbit, then this is just an add.
1896 // Instcombine turns add of signbit into xor as a strength reduction step.
1897 if (CI
->getValue().isSignBit())
1898 return getAddExpr(getSCEV(U
->getOperand(0)),
1899 getSCEV(U
->getOperand(1)));
1901 // If the RHS of xor is -1, then this is a not operation.
1902 else if (CI
->isAllOnesValue())
1903 return getNotSCEV(getSCEV(U
->getOperand(0)));
1907 case Instruction::Shl
:
1908 // Turn shift left of a constant amount into a multiply.
1909 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1910 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
1911 Constant
*X
= ConstantInt::get(
1912 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
1913 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
1917 case Instruction::LShr
:
1918 // Turn logical shift right of a constant into a unsigned divide.
1919 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1920 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
1921 Constant
*X
= ConstantInt::get(
1922 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
1923 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
1927 case Instruction::AShr
:
1928 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1929 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
1930 if (Instruction
*L
= dyn_cast
<Instruction
>(U
->getOperand(0)))
1931 if (L
->getOpcode() == Instruction::Shl
&&
1932 L
->getOperand(1) == U
->getOperand(1)) {
1933 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
1934 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
1935 if (Amt
== BitWidth
)
1936 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
1938 return getIntegerSCEV(0, U
->getType()); // value is undefined
1940 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
1941 IntegerType::get(Amt
)),
1946 case Instruction::Trunc
:
1947 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
1949 case Instruction::ZExt
:
1950 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
1952 case Instruction::SExt
:
1953 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
1955 case Instruction::BitCast
:
1956 // BitCasts are no-op casts so we just eliminate the cast.
1957 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
1958 return getSCEV(U
->getOperand(0));
1961 case Instruction::IntToPtr
:
1962 if (!TD
) break; // Without TD we can't analyze pointers.
1963 return getTruncateOrZeroExtend(getSCEV(U
->getOperand(0)),
1964 TD
->getIntPtrType());
1966 case Instruction::PtrToInt
:
1967 if (!TD
) break; // Without TD we can't analyze pointers.
1968 return getTruncateOrZeroExtend(getSCEV(U
->getOperand(0)),
1971 case Instruction::GetElementPtr
: {
1972 if (!TD
) break; // Without TD we can't analyze pointers.
1973 const Type
*IntPtrTy
= TD
->getIntPtrType();
1974 Value
*Base
= U
->getOperand(0);
1975 SCEVHandle TotalOffset
= getIntegerSCEV(0, IntPtrTy
);
1976 gep_type_iterator GTI
= gep_type_begin(U
);
1977 for (GetElementPtrInst::op_iterator I
= next(U
->op_begin()),
1981 // Compute the (potentially symbolic) offset in bytes for this index.
1982 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
1983 // For a struct, add the member offset.
1984 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
1985 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
1986 uint64_t Offset
= SL
.getElementOffset(FieldNo
);
1987 TotalOffset
= getAddExpr(TotalOffset
,
1988 getIntegerSCEV(Offset
, IntPtrTy
));
1990 // For an array, add the element offset, explicitly scaled.
1991 SCEVHandle LocalOffset
= getSCEV(Index
);
1992 if (!isa
<PointerType
>(LocalOffset
->getType()))
1993 // Getelementptr indicies are signed.
1994 LocalOffset
= getTruncateOrSignExtend(LocalOffset
,
1997 getMulExpr(LocalOffset
,
1998 getIntegerSCEV(TD
->getTypePaddedSize(*GTI
),
2000 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
2003 return getAddExpr(getSCEV(Base
), TotalOffset
);
2006 case Instruction::PHI
:
2007 return createNodeForPHI(cast
<PHINode
>(U
));
2009 case Instruction::Select
:
2010 // This could be a smax or umax that was lowered earlier.
2011 // Try to recover it.
2012 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
2013 Value
*LHS
= ICI
->getOperand(0);
2014 Value
*RHS
= ICI
->getOperand(1);
2015 switch (ICI
->getPredicate()) {
2016 case ICmpInst::ICMP_SLT
:
2017 case ICmpInst::ICMP_SLE
:
2018 std::swap(LHS
, RHS
);
2020 case ICmpInst::ICMP_SGT
:
2021 case ICmpInst::ICMP_SGE
:
2022 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2023 return getSMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2024 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2025 // ~smax(~x, ~y) == smin(x, y).
2026 return getNotSCEV(getSMaxExpr(
2027 getNotSCEV(getSCEV(LHS
)),
2028 getNotSCEV(getSCEV(RHS
))));
2030 case ICmpInst::ICMP_ULT
:
2031 case ICmpInst::ICMP_ULE
:
2032 std::swap(LHS
, RHS
);
2034 case ICmpInst::ICMP_UGT
:
2035 case ICmpInst::ICMP_UGE
:
2036 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2037 return getUMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2038 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2039 // ~umax(~x, ~y) == umin(x, y)
2040 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS
)),
2041 getNotSCEV(getSCEV(RHS
))));
2048 default: // We cannot analyze this expression.
2052 return getUnknown(V
);
2057 //===----------------------------------------------------------------------===//
2058 // Iteration Count Computation Code
2061 /// getBackedgeTakenCount - If the specified loop has a predictable
2062 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2063 /// object. The backedge-taken count is the number of times the loop header
2064 /// will be branched to from within the loop. This is one less than the
2065 /// trip count of the loop, since it doesn't count the first iteration,
2066 /// when the header is branched to from outside the loop.
2068 /// Note that it is not valid to call this method on a loop without a
2069 /// loop-invariant backedge-taken count (see
2070 /// hasLoopInvariantBackedgeTakenCount).
2072 SCEVHandle
ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
2073 // Initially insert a CouldNotCompute for this loop. If the insertion
2074 // succeeds, procede to actually compute a backedge-taken count and
2075 // update the value. The temporary CouldNotCompute value tells SCEV
2076 // code elsewhere that it shouldn't attempt to request a new
2077 // backedge-taken count, which could result in infinite recursion.
2078 std::pair
<std::map
<const Loop
*, SCEVHandle
>::iterator
, bool> Pair
=
2079 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
2081 SCEVHandle ItCount
= ComputeBackedgeTakenCount(L
);
2082 if (ItCount
!= UnknownValue
) {
2083 assert(ItCount
->isLoopInvariant(L
) &&
2084 "Computed trip count isn't loop invariant for loop!");
2085 ++NumTripCountsComputed
;
2087 // Now that we know the trip count for this loop, forget any
2088 // existing SCEV values for PHI nodes in this loop since they
2089 // are only conservative estimates made without the benefit
2090 // of trip count information.
2091 for (BasicBlock::iterator I
= L
->getHeader()->begin();
2092 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
2093 deleteValueFromRecords(PN
);
2095 // Update the value in the map.
2096 Pair
.first
->second
= ItCount
;
2097 } else if (isa
<PHINode
>(L
->getHeader()->begin())) {
2098 // Only count loops that have phi nodes as not being computable.
2099 ++NumTripCountsNotComputed
;
2102 return Pair
.first
->second
;
2105 /// forgetLoopBackedgeTakenCount - This method should be called by the
2106 /// client when it has changed a loop in a way that may effect
2107 /// ScalarEvolution's ability to compute a trip count, or if the loop
2109 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop
*L
) {
2110 BackedgeTakenCounts
.erase(L
);
2113 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2114 /// of the specified loop will execute.
2115 SCEVHandle
ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
2116 // If the loop has a non-one exit block count, we can't analyze it.
2117 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
2118 L
->getExitBlocks(ExitBlocks
);
2119 if (ExitBlocks
.size() != 1) return UnknownValue
;
2121 // Okay, there is one exit block. Try to find the condition that causes the
2122 // loop to be exited.
2123 BasicBlock
*ExitBlock
= ExitBlocks
[0];
2125 BasicBlock
*ExitingBlock
= 0;
2126 for (pred_iterator PI
= pred_begin(ExitBlock
), E
= pred_end(ExitBlock
);
2128 if (L
->contains(*PI
)) {
2129 if (ExitingBlock
== 0)
2132 return UnknownValue
; // More than one block exiting!
2134 assert(ExitingBlock
&& "No exits from loop, something is broken!");
2136 // Okay, we've computed the exiting block. See what condition causes us to
2139 // FIXME: we should be able to handle switch instructions (with a single exit)
2140 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2141 if (ExitBr
== 0) return UnknownValue
;
2142 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
2144 // At this point, we know we have a conditional branch that determines whether
2145 // the loop is exited. However, we don't know if the branch is executed each
2146 // time through the loop. If not, then the execution count of the branch will
2147 // not be equal to the trip count of the loop.
2149 // Currently we check for this by checking to see if the Exit branch goes to
2150 // the loop header. If so, we know it will always execute the same number of
2151 // times as the loop. We also handle the case where the exit block *is* the
2152 // loop header. This is common for un-rotated loops. More extensive analysis
2153 // could be done to handle more cases here.
2154 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
2155 ExitBr
->getSuccessor(1) != L
->getHeader() &&
2156 ExitBr
->getParent() != L
->getHeader())
2157 return UnknownValue
;
2159 ICmpInst
*ExitCond
= dyn_cast
<ICmpInst
>(ExitBr
->getCondition());
2161 // If it's not an integer comparison then compute it the hard way.
2162 // Note that ICmpInst deals with pointer comparisons too so we must check
2163 // the type of the operand.
2164 if (ExitCond
== 0 || isa
<PointerType
>(ExitCond
->getOperand(0)->getType()))
2165 return ComputeBackedgeTakenCountExhaustively(L
, ExitBr
->getCondition(),
2166 ExitBr
->getSuccessor(0) == ExitBlock
);
2168 // If the condition was exit on true, convert the condition to exit on false
2169 ICmpInst::Predicate Cond
;
2170 if (ExitBr
->getSuccessor(1) == ExitBlock
)
2171 Cond
= ExitCond
->getPredicate();
2173 Cond
= ExitCond
->getInversePredicate();
2175 // Handle common loops like: for (X = "string"; *X; ++X)
2176 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
2177 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
2179 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
2180 if (!isa
<SCEVCouldNotCompute
>(ItCnt
)) return ItCnt
;
2183 SCEVHandle LHS
= getSCEV(ExitCond
->getOperand(0));
2184 SCEVHandle RHS
= getSCEV(ExitCond
->getOperand(1));
2186 // Try to evaluate any dependencies out of the loop.
2187 SCEVHandle Tmp
= getSCEVAtScope(LHS
, L
);
2188 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) LHS
= Tmp
;
2189 Tmp
= getSCEVAtScope(RHS
, L
);
2190 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) RHS
= Tmp
;
2192 // At this point, we would like to compute how many iterations of the
2193 // loop the predicate will return true for these inputs.
2194 if (LHS
->isLoopInvariant(L
) && !RHS
->isLoopInvariant(L
)) {
2195 // If there is a loop-invariant, force it into the RHS.
2196 std::swap(LHS
, RHS
);
2197 Cond
= ICmpInst::getSwappedPredicate(Cond
);
2200 // If we have a comparison of a chrec against a constant, try to use value
2201 // ranges to answer this query.
2202 if (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
2203 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
2204 if (AddRec
->getLoop() == L
) {
2205 // Form the comparison range using the constant of the correct type so
2206 // that the ConstantRange class knows to do a signed or unsigned
2208 ConstantInt
*CompVal
= RHSC
->getValue();
2209 const Type
*RealTy
= ExitCond
->getOperand(0)->getType();
2210 CompVal
= dyn_cast
<ConstantInt
>(
2211 ConstantExpr::getBitCast(CompVal
, RealTy
));
2213 // Form the constant range.
2214 ConstantRange
CompRange(
2215 ICmpInst::makeConstantRange(Cond
, CompVal
->getValue()));
2217 SCEVHandle Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
2218 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
2223 case ICmpInst::ICMP_NE
: { // while (X != Y)
2224 // Convert to: while (X-Y != 0)
2225 SCEVHandle TC
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
2226 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2229 case ICmpInst::ICMP_EQ
: {
2230 // Convert to: while (X-Y == 0) // while (X == Y)
2231 SCEVHandle TC
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
2232 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2235 case ICmpInst::ICMP_SLT
: {
2236 SCEVHandle TC
= HowManyLessThans(LHS
, RHS
, L
, true);
2237 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2240 case ICmpInst::ICMP_SGT
: {
2241 SCEVHandle TC
= HowManyLessThans(getNotSCEV(LHS
),
2242 getNotSCEV(RHS
), L
, true);
2243 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2246 case ICmpInst::ICMP_ULT
: {
2247 SCEVHandle TC
= HowManyLessThans(LHS
, RHS
, L
, false);
2248 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2251 case ICmpInst::ICMP_UGT
: {
2252 SCEVHandle TC
= HowManyLessThans(getNotSCEV(LHS
),
2253 getNotSCEV(RHS
), L
, false);
2254 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2259 errs() << "ComputeBackedgeTakenCount ";
2260 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
2261 errs() << "[unsigned] ";
2262 errs() << *LHS
<< " "
2263 << Instruction::getOpcodeName(Instruction::ICmp
)
2264 << " " << *RHS
<< "\n";
2269 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
,
2270 ExitBr
->getSuccessor(0) == ExitBlock
);
2273 static ConstantInt
*
2274 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
2275 ScalarEvolution
&SE
) {
2276 SCEVHandle InVal
= SE
.getConstant(C
);
2277 SCEVHandle Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
2278 assert(isa
<SCEVConstant
>(Val
) &&
2279 "Evaluation of SCEV at constant didn't fold correctly?");
2280 return cast
<SCEVConstant
>(Val
)->getValue();
2283 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2284 /// and a GEP expression (missing the pointer index) indexing into it, return
2285 /// the addressed element of the initializer or null if the index expression is
2288 GetAddressedElementFromGlobal(GlobalVariable
*GV
,
2289 const std::vector
<ConstantInt
*> &Indices
) {
2290 Constant
*Init
= GV
->getInitializer();
2291 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
2292 uint64_t Idx
= Indices
[i
]->getZExtValue();
2293 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
2294 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
2295 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
2296 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
2297 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
2298 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
2299 } else if (isa
<ConstantAggregateZero
>(Init
)) {
2300 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2301 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
2302 Init
= Constant::getNullValue(STy
->getElementType(Idx
));
2303 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
2304 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
2305 Init
= Constant::getNullValue(ATy
->getElementType());
2307 assert(0 && "Unknown constant aggregate type!");
2311 return 0; // Unknown initializer type
2317 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2318 /// 'icmp op load X, cst', try to see if we can compute the backedge
2319 /// execution count.
2320 SCEVHandle
ScalarEvolution::
2321 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst
*LI
, Constant
*RHS
,
2323 ICmpInst::Predicate predicate
) {
2324 if (LI
->isVolatile()) return UnknownValue
;
2326 // Check to see if the loaded pointer is a getelementptr of a global.
2327 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
2328 if (!GEP
) return UnknownValue
;
2330 // Make sure that it is really a constant global we are gepping, with an
2331 // initializer, and make sure the first IDX is really 0.
2332 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
2333 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
2334 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
2335 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
2336 return UnknownValue
;
2338 // Okay, we allow one non-constant index into the GEP instruction.
2340 std::vector
<ConstantInt
*> Indexes
;
2341 unsigned VarIdxNum
= 0;
2342 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
2343 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
2344 Indexes
.push_back(CI
);
2345 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
2346 if (VarIdx
) return UnknownValue
; // Multiple non-constant idx's.
2347 VarIdx
= GEP
->getOperand(i
);
2349 Indexes
.push_back(0);
2352 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2353 // Check to see if X is a loop variant variable value now.
2354 SCEVHandle Idx
= getSCEV(VarIdx
);
2355 SCEVHandle Tmp
= getSCEVAtScope(Idx
, L
);
2356 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) Idx
= Tmp
;
2358 // We can only recognize very limited forms of loop index expressions, in
2359 // particular, only affine AddRec's like {C1,+,C2}.
2360 SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
2361 if (!IdxExpr
|| !IdxExpr
->isAffine() || IdxExpr
->isLoopInvariant(L
) ||
2362 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
2363 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
2364 return UnknownValue
;
2366 unsigned MaxSteps
= MaxBruteForceIterations
;
2367 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
2368 ConstantInt
*ItCst
=
2369 ConstantInt::get(IdxExpr
->getType(), IterationNum
);
2370 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
2372 // Form the GEP offset.
2373 Indexes
[VarIdxNum
] = Val
;
2375 Constant
*Result
= GetAddressedElementFromGlobal(GV
, Indexes
);
2376 if (Result
== 0) break; // Cannot compute!
2378 // Evaluate the condition for this iteration.
2379 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
2380 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
2381 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
2383 errs() << "\n***\n*** Computed loop count " << *ItCst
2384 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
2387 ++NumArrayLenItCounts
;
2388 return getConstant(ItCst
); // Found terminating iteration!
2391 return UnknownValue
;
2395 /// CanConstantFold - Return true if we can constant fold an instruction of the
2396 /// specified type, assuming that all operands were constants.
2397 static bool CanConstantFold(const Instruction
*I
) {
2398 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
2399 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
2402 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
2403 if (const Function
*F
= CI
->getCalledFunction())
2404 return canConstantFoldCallTo(F
);
2408 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2409 /// in the loop that V is derived from. We allow arbitrary operations along the
2410 /// way, but the operands of an operation must either be constants or a value
2411 /// derived from a constant PHI. If this expression does not fit with these
2412 /// constraints, return null.
2413 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
2414 // If this is not an instruction, or if this is an instruction outside of the
2415 // loop, it can't be derived from a loop PHI.
2416 Instruction
*I
= dyn_cast
<Instruction
>(V
);
2417 if (I
== 0 || !L
->contains(I
->getParent())) return 0;
2419 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
2420 if (L
->getHeader() == I
->getParent())
2423 // We don't currently keep track of the control flow needed to evaluate
2424 // PHIs, so we cannot handle PHIs inside of loops.
2428 // If we won't be able to constant fold this expression even if the operands
2429 // are constants, return early.
2430 if (!CanConstantFold(I
)) return 0;
2432 // Otherwise, we can evaluate this instruction if all of its operands are
2433 // constant or derived from a PHI node themselves.
2435 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
2436 if (!(isa
<Constant
>(I
->getOperand(Op
)) ||
2437 isa
<GlobalValue
>(I
->getOperand(Op
)))) {
2438 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
2439 if (P
== 0) return 0; // Not evolving from PHI
2443 return 0; // Evolving from multiple different PHIs.
2446 // This is a expression evolving from a constant PHI!
2450 /// EvaluateExpression - Given an expression that passes the
2451 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2452 /// in the loop has the value PHIVal. If we can't fold this expression for some
2453 /// reason, return null.
2454 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
) {
2455 if (isa
<PHINode
>(V
)) return PHIVal
;
2456 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
2457 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) return GV
;
2458 Instruction
*I
= cast
<Instruction
>(V
);
2460 std::vector
<Constant
*> Operands
;
2461 Operands
.resize(I
->getNumOperands());
2463 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
2464 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
);
2465 if (Operands
[i
] == 0) return 0;
2468 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
2469 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
2470 &Operands
[0], Operands
.size());
2472 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
2473 &Operands
[0], Operands
.size());
2476 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2477 /// in the header of its containing loop, we know the loop executes a
2478 /// constant number of times, and the PHI node is just a recurrence
2479 /// involving constants, fold it.
2480 Constant
*ScalarEvolution::
2481 getConstantEvolutionLoopExitValue(PHINode
*PN
, const APInt
& BEs
, const Loop
*L
){
2482 std::map
<PHINode
*, Constant
*>::iterator I
=
2483 ConstantEvolutionLoopExitValue
.find(PN
);
2484 if (I
!= ConstantEvolutionLoopExitValue
.end())
2487 if (BEs
.ugt(APInt(BEs
.getBitWidth(),MaxBruteForceIterations
)))
2488 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
2490 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
2492 // Since the loop is canonicalized, the PHI node must have two entries. One
2493 // entry must be a constant (coming in from outside of the loop), and the
2494 // second must be derived from the same PHI.
2495 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
2496 Constant
*StartCST
=
2497 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
2499 return RetVal
= 0; // Must be a constant.
2501 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
2502 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
2504 return RetVal
= 0; // Not derived from same PHI.
2506 // Execute the loop symbolically to determine the exit value.
2507 if (BEs
.getActiveBits() >= 32)
2508 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
2510 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
2511 unsigned IterationNum
= 0;
2512 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
2513 if (IterationNum
== NumIterations
)
2514 return RetVal
= PHIVal
; // Got exit value!
2516 // Compute the value of the PHI node for the next iteration.
2517 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
2518 if (NextPHI
== PHIVal
)
2519 return RetVal
= NextPHI
; // Stopped evolving!
2521 return 0; // Couldn't evaluate!
2526 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2527 /// constant number of times (the condition evolves only from constants),
2528 /// try to evaluate a few iterations of the loop until we get the exit
2529 /// condition gets a value of ExitWhen (true or false). If we cannot
2530 /// evaluate the trip count of the loop, return UnknownValue.
2531 SCEVHandle
ScalarEvolution::
2532 ComputeBackedgeTakenCountExhaustively(const Loop
*L
, Value
*Cond
, bool ExitWhen
) {
2533 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
2534 if (PN
== 0) return UnknownValue
;
2536 // Since the loop is canonicalized, the PHI node must have two entries. One
2537 // entry must be a constant (coming in from outside of the loop), and the
2538 // second must be derived from the same PHI.
2539 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
2540 Constant
*StartCST
=
2541 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
2542 if (StartCST
== 0) return UnknownValue
; // Must be a constant.
2544 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
2545 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
2546 if (PN2
!= PN
) return UnknownValue
; // Not derived from same PHI.
2548 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2549 // the loop symbolically to determine when the condition gets a value of
2551 unsigned IterationNum
= 0;
2552 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
2553 for (Constant
*PHIVal
= StartCST
;
2554 IterationNum
!= MaxIterations
; ++IterationNum
) {
2555 ConstantInt
*CondVal
=
2556 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
));
2558 // Couldn't symbolically evaluate.
2559 if (!CondVal
) return UnknownValue
;
2561 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
2562 ConstantEvolutionLoopExitValue
[PN
] = PHIVal
;
2563 ++NumBruteForceTripCountsComputed
;
2564 return getConstant(ConstantInt::get(Type::Int32Ty
, IterationNum
));
2567 // Compute the value of the PHI node for the next iteration.
2568 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
2569 if (NextPHI
== 0 || NextPHI
== PHIVal
)
2570 return UnknownValue
; // Couldn't evaluate or not making progress...
2574 // Too many iterations were needed to evaluate.
2575 return UnknownValue
;
2578 /// getSCEVAtScope - Compute the value of the specified expression within the
2579 /// indicated loop (which may be null to indicate in no loop). If the
2580 /// expression cannot be evaluated, return UnknownValue.
2581 SCEVHandle
ScalarEvolution::getSCEVAtScope(SCEV
*V
, const Loop
*L
) {
2582 // FIXME: this should be turned into a virtual method on SCEV!
2584 if (isa
<SCEVConstant
>(V
)) return V
;
2586 // If this instruction is evolved from a constant-evolving PHI, compute the
2587 // exit value from the loop without using SCEVs.
2588 if (SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
2589 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
2590 const Loop
*LI
= (*this->LI
)[I
->getParent()];
2591 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
2592 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
2593 if (PN
->getParent() == LI
->getHeader()) {
2594 // Okay, there is no closed form solution for the PHI node. Check
2595 // to see if the loop that contains it has a known backedge-taken
2596 // count. If so, we may be able to force computation of the exit
2598 SCEVHandle BackedgeTakenCount
= getBackedgeTakenCount(LI
);
2599 if (SCEVConstant
*BTCC
=
2600 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
2601 // Okay, we know how many times the containing loop executes. If
2602 // this is a constant evolving PHI node, get the final value at
2603 // the specified iteration number.
2604 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
2605 BTCC
->getValue()->getValue(),
2607 if (RV
) return getUnknown(RV
);
2611 // Okay, this is an expression that we cannot symbolically evaluate
2612 // into a SCEV. Check to see if it's possible to symbolically evaluate
2613 // the arguments into constants, and if so, try to constant propagate the
2614 // result. This is particularly useful for computing loop exit values.
2615 if (CanConstantFold(I
)) {
2616 std::vector
<Constant
*> Operands
;
2617 Operands
.reserve(I
->getNumOperands());
2618 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
2619 Value
*Op
= I
->getOperand(i
);
2620 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
2621 Operands
.push_back(C
);
2623 // If any of the operands is non-constant and if they are
2624 // non-integer and non-pointer, don't even try to analyze them
2625 // with scev techniques.
2626 if (!isa
<IntegerType
>(Op
->getType()) &&
2627 !isa
<PointerType
>(Op
->getType()))
2630 SCEVHandle OpV
= getSCEVAtScope(getSCEV(Op
), L
);
2631 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
))
2632 Operands
.push_back(ConstantExpr::getIntegerCast(SC
->getValue(),
2635 else if (SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
)) {
2636 if (Constant
*C
= dyn_cast
<Constant
>(SU
->getValue()))
2637 Operands
.push_back(ConstantExpr::getIntegerCast(C
,
2649 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
2650 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
2651 &Operands
[0], Operands
.size());
2653 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
2654 &Operands
[0], Operands
.size());
2655 return getUnknown(C
);
2659 // This is some other type of SCEVUnknown, just return it.
2663 if (SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
2664 // Avoid performing the look-up in the common case where the specified
2665 // expression has no loop-variant portions.
2666 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
2667 SCEVHandle OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
2668 if (OpAtScope
!= Comm
->getOperand(i
)) {
2669 if (OpAtScope
== UnknownValue
) return UnknownValue
;
2670 // Okay, at least one of these operands is loop variant but might be
2671 // foldable. Build a new instance of the folded commutative expression.
2672 std::vector
<SCEVHandle
> NewOps(Comm
->op_begin(), Comm
->op_begin()+i
);
2673 NewOps
.push_back(OpAtScope
);
2675 for (++i
; i
!= e
; ++i
) {
2676 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
2677 if (OpAtScope
== UnknownValue
) return UnknownValue
;
2678 NewOps
.push_back(OpAtScope
);
2680 if (isa
<SCEVAddExpr
>(Comm
))
2681 return getAddExpr(NewOps
);
2682 if (isa
<SCEVMulExpr
>(Comm
))
2683 return getMulExpr(NewOps
);
2684 if (isa
<SCEVSMaxExpr
>(Comm
))
2685 return getSMaxExpr(NewOps
);
2686 if (isa
<SCEVUMaxExpr
>(Comm
))
2687 return getUMaxExpr(NewOps
);
2688 assert(0 && "Unknown commutative SCEV type!");
2691 // If we got here, all operands are loop invariant.
2695 if (SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
2696 SCEVHandle LHS
= getSCEVAtScope(Div
->getLHS(), L
);
2697 if (LHS
== UnknownValue
) return LHS
;
2698 SCEVHandle RHS
= getSCEVAtScope(Div
->getRHS(), L
);
2699 if (RHS
== UnknownValue
) return RHS
;
2700 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
2701 return Div
; // must be loop invariant
2702 return getUDivExpr(LHS
, RHS
);
2705 // If this is a loop recurrence for a loop that does not contain L, then we
2706 // are dealing with the final value computed by the loop.
2707 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
2708 if (!L
|| !AddRec
->getLoop()->contains(L
->getHeader())) {
2709 // To evaluate this recurrence, we need to know how many times the AddRec
2710 // loop iterates. Compute this now.
2711 SCEVHandle BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
2712 if (BackedgeTakenCount
== UnknownValue
) return UnknownValue
;
2714 // Then, evaluate the AddRec.
2715 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
2717 return UnknownValue
;
2720 //assert(0 && "Unknown SCEV type!");
2721 return UnknownValue
;
2724 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
2725 /// at the specified scope in the program. The L value specifies a loop
2726 /// nest to evaluate the expression at, where null is the top-level or a
2727 /// specified loop is immediately inside of the loop.
2729 /// This method can be used to compute the exit value for a variable defined
2730 /// in a loop by querying what the value will hold in the parent loop.
2732 /// If this value is not computable at this scope, a SCEVCouldNotCompute
2733 /// object is returned.
2734 SCEVHandle
ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
2735 return getSCEVAtScope(getSCEV(V
), L
);
2738 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2739 /// following equation:
2741 /// A * X = B (mod N)
2743 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2744 /// A and B isn't important.
2746 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2747 static SCEVHandle
SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
2748 ScalarEvolution
&SE
) {
2749 uint32_t BW
= A
.getBitWidth();
2750 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
2751 assert(A
!= 0 && "A must be non-zero.");
2755 // The gcd of A and N may have only one prime factor: 2. The number of
2756 // trailing zeros in A is its multiplicity
2757 uint32_t Mult2
= A
.countTrailingZeros();
2760 // 2. Check if B is divisible by D.
2762 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2763 // is not less than multiplicity of this prime factor for D.
2764 if (B
.countTrailingZeros() < Mult2
)
2765 return SE
.getCouldNotCompute();
2767 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2770 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2771 // bit width during computations.
2772 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
2773 APInt
Mod(BW
+ 1, 0);
2774 Mod
.set(BW
- Mult2
); // Mod = N / D
2775 APInt I
= AD
.multiplicativeInverse(Mod
);
2777 // 4. Compute the minimum unsigned root of the equation:
2778 // I * (B / D) mod (N / D)
2779 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
2781 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2783 return SE
.getConstant(Result
.trunc(BW
));
2786 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2787 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2788 /// might be the same) or two SCEVCouldNotCompute objects.
2790 static std::pair
<SCEVHandle
,SCEVHandle
>
2791 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
2792 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
2793 SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
2794 SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
2795 SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
2797 // We currently can only solve this if the coefficients are constants.
2798 if (!LC
|| !MC
|| !NC
) {
2799 SCEV
*CNC
= SE
.getCouldNotCompute();
2800 return std::make_pair(CNC
, CNC
);
2803 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
2804 const APInt
&L
= LC
->getValue()->getValue();
2805 const APInt
&M
= MC
->getValue()->getValue();
2806 const APInt
&N
= NC
->getValue()->getValue();
2807 APInt
Two(BitWidth
, 2);
2808 APInt
Four(BitWidth
, 4);
2811 using namespace APIntOps
;
2813 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2814 // The B coefficient is M-N/2
2818 // The A coefficient is N/2
2819 APInt
A(N
.sdiv(Two
));
2821 // Compute the B^2-4ac term.
2824 SqrtTerm
-= Four
* (A
* C
);
2826 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2827 // integer value or else APInt::sqrt() will assert.
2828 APInt
SqrtVal(SqrtTerm
.sqrt());
2830 // Compute the two solutions for the quadratic formula.
2831 // The divisions must be performed as signed divisions.
2833 APInt
TwoA( A
<< 1 );
2834 if (TwoA
.isMinValue()) {
2835 SCEV
*CNC
= SE
.getCouldNotCompute();
2836 return std::make_pair(CNC
, CNC
);
2839 ConstantInt
*Solution1
= ConstantInt::get((NegB
+ SqrtVal
).sdiv(TwoA
));
2840 ConstantInt
*Solution2
= ConstantInt::get((NegB
- SqrtVal
).sdiv(TwoA
));
2842 return std::make_pair(SE
.getConstant(Solution1
),
2843 SE
.getConstant(Solution2
));
2844 } // end APIntOps namespace
2847 /// HowFarToZero - Return the number of times a backedge comparing the specified
2848 /// value to zero will execute. If not computable, return UnknownValue
2849 SCEVHandle
ScalarEvolution::HowFarToZero(SCEV
*V
, const Loop
*L
) {
2850 // If the value is a constant
2851 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
2852 // If the value is already zero, the branch will execute zero times.
2853 if (C
->getValue()->isZero()) return C
;
2854 return UnknownValue
; // Otherwise it will loop infinitely.
2857 SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
2858 if (!AddRec
|| AddRec
->getLoop() != L
)
2859 return UnknownValue
;
2861 if (AddRec
->isAffine()) {
2862 // If this is an affine expression, the execution count of this branch is
2863 // the minimum unsigned root of the following equation:
2865 // Start + Step*N = 0 (mod 2^BW)
2869 // Step*N = -Start (mod 2^BW)
2871 // where BW is the common bit width of Start and Step.
2873 // Get the initial value for the loop.
2874 SCEVHandle Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
2875 if (isa
<SCEVCouldNotCompute
>(Start
)) return UnknownValue
;
2877 SCEVHandle Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
2879 if (SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
)) {
2880 // For now we handle only constant steps.
2882 // First, handle unitary steps.
2883 if (StepC
->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2884 return getNegativeSCEV(Start
); // N = -Start (as unsigned)
2885 if (StepC
->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2886 return Start
; // N = Start (as unsigned)
2888 // Then, try to solve the above equation provided that Start is constant.
2889 if (SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
2890 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
2891 -StartC
->getValue()->getValue(),
2894 } else if (AddRec
->isQuadratic() && AddRec
->getType()->isInteger()) {
2895 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2896 // the quadratic equation to solve it.
2897 std::pair
<SCEVHandle
,SCEVHandle
> Roots
= SolveQuadraticEquation(AddRec
,
2899 SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
2900 SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
2903 errs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
2904 << " sol#2: " << *R2
<< "\n";
2906 // Pick the smallest positive root value.
2907 if (ConstantInt
*CB
=
2908 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
2909 R1
->getValue(), R2
->getValue()))) {
2910 if (CB
->getZExtValue() == false)
2911 std::swap(R1
, R2
); // R1 is the minimum root now.
2913 // We can only use this value if the chrec ends up with an exact zero
2914 // value at this index. When solving for "X*X != 5", for example, we
2915 // should not accept a root of 2.
2916 SCEVHandle Val
= AddRec
->evaluateAtIteration(R1
, *this);
2918 return R1
; // We found a quadratic root!
2923 return UnknownValue
;
2926 /// HowFarToNonZero - Return the number of times a backedge checking the
2927 /// specified value for nonzero will execute. If not computable, return
2929 SCEVHandle
ScalarEvolution::HowFarToNonZero(SCEV
*V
, const Loop
*L
) {
2930 // Loops that look like: while (X == 0) are very strange indeed. We don't
2931 // handle them yet except for the trivial case. This could be expanded in the
2932 // future as needed.
2934 // If the value is a constant, check to see if it is known to be non-zero
2935 // already. If so, the backedge will execute zero times.
2936 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
2937 if (!C
->getValue()->isNullValue())
2938 return getIntegerSCEV(0, C
->getType());
2939 return UnknownValue
; // Otherwise it will loop infinitely.
2942 // We could implement others, but I really doubt anyone writes loops like
2943 // this, and if they did, they would already be constant folded.
2944 return UnknownValue
;
2947 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2948 /// (which may not be an immediate predecessor) which has exactly one
2949 /// successor from which BB is reachable, or null if no such block is
2953 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
2954 // If the block has a unique predecessor, the predecessor must have
2955 // no other successors from which BB is reachable.
2956 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
2959 // A loop's header is defined to be a block that dominates the loop.
2960 // If the loop has a preheader, it must be a block that has exactly
2961 // one successor that can reach BB. This is slightly more strict
2962 // than necessary, but works if critical edges are split.
2963 if (Loop
*L
= LI
->getLoopFor(BB
))
2964 return L
->getLoopPreheader();
2969 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
2970 /// a conditional between LHS and RHS.
2971 bool ScalarEvolution::isLoopGuardedByCond(const Loop
*L
,
2972 ICmpInst::Predicate Pred
,
2973 SCEV
*LHS
, SCEV
*RHS
) {
2974 BasicBlock
*Preheader
= L
->getLoopPreheader();
2975 BasicBlock
*PreheaderDest
= L
->getHeader();
2977 // Starting at the preheader, climb up the predecessor chain, as long as
2978 // there are predecessors that can be found that have unique successors
2979 // leading to the original header.
2981 PreheaderDest
= Preheader
,
2982 Preheader
= getPredecessorWithUniqueSuccessorForBB(Preheader
)) {
2984 BranchInst
*LoopEntryPredicate
=
2985 dyn_cast
<BranchInst
>(Preheader
->getTerminator());
2986 if (!LoopEntryPredicate
||
2987 LoopEntryPredicate
->isUnconditional())
2990 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(LoopEntryPredicate
->getCondition());
2993 // Now that we found a conditional branch that dominates the loop, check to
2994 // see if it is the comparison we are looking for.
2995 Value
*PreCondLHS
= ICI
->getOperand(0);
2996 Value
*PreCondRHS
= ICI
->getOperand(1);
2997 ICmpInst::Predicate Cond
;
2998 if (LoopEntryPredicate
->getSuccessor(0) == PreheaderDest
)
2999 Cond
= ICI
->getPredicate();
3001 Cond
= ICI
->getInversePredicate();
3004 ; // An exact match.
3005 else if (!ICmpInst::isTrueWhenEqual(Cond
) && Pred
== ICmpInst::ICMP_NE
)
3006 ; // The actual condition is beyond sufficient.
3008 // Check a few special cases.
3010 case ICmpInst::ICMP_UGT
:
3011 if (Pred
== ICmpInst::ICMP_ULT
) {
3012 std::swap(PreCondLHS
, PreCondRHS
);
3013 Cond
= ICmpInst::ICMP_ULT
;
3017 case ICmpInst::ICMP_SGT
:
3018 if (Pred
== ICmpInst::ICMP_SLT
) {
3019 std::swap(PreCondLHS
, PreCondRHS
);
3020 Cond
= ICmpInst::ICMP_SLT
;
3024 case ICmpInst::ICMP_NE
:
3025 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3026 // so check for this case by checking if the NE is comparing against
3027 // a minimum or maximum constant.
3028 if (!ICmpInst::isTrueWhenEqual(Pred
))
3029 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PreCondRHS
)) {
3030 const APInt
&A
= CI
->getValue();
3032 case ICmpInst::ICMP_SLT
:
3033 if (A
.isMaxSignedValue()) break;
3035 case ICmpInst::ICMP_SGT
:
3036 if (A
.isMinSignedValue()) break;
3038 case ICmpInst::ICMP_ULT
:
3039 if (A
.isMaxValue()) break;
3041 case ICmpInst::ICMP_UGT
:
3042 if (A
.isMinValue()) break;
3047 Cond
= ICmpInst::ICMP_NE
;
3048 // NE is symmetric but the original comparison may not be. Swap
3049 // the operands if necessary so that they match below.
3050 if (isa
<SCEVConstant
>(LHS
))
3051 std::swap(PreCondLHS
, PreCondRHS
);
3056 // We weren't able to reconcile the condition.
3060 if (!PreCondLHS
->getType()->isInteger()) continue;
3062 SCEVHandle PreCondLHSSCEV
= getSCEV(PreCondLHS
);
3063 SCEVHandle PreCondRHSSCEV
= getSCEV(PreCondRHS
);
3064 if ((LHS
== PreCondLHSSCEV
&& RHS
== PreCondRHSSCEV
) ||
3065 (LHS
== getNotSCEV(PreCondRHSSCEV
) &&
3066 RHS
== getNotSCEV(PreCondLHSSCEV
)))
3073 /// HowManyLessThans - Return the number of times a backedge containing the
3074 /// specified less-than comparison will execute. If not computable, return
3076 SCEVHandle
ScalarEvolution::
3077 HowManyLessThans(SCEV
*LHS
, SCEV
*RHS
, const Loop
*L
, bool isSigned
) {
3078 // Only handle: "ADDREC < LoopInvariant".
3079 if (!RHS
->isLoopInvariant(L
)) return UnknownValue
;
3081 SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
3082 if (!AddRec
|| AddRec
->getLoop() != L
)
3083 return UnknownValue
;
3085 if (AddRec
->isAffine()) {
3086 // FORNOW: We only support unit strides.
3087 SCEVHandle One
= getIntegerSCEV(1, RHS
->getType());
3088 if (AddRec
->getOperand(1) != One
)
3089 return UnknownValue
;
3091 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
3092 // m. So, we count the number of iterations in which {n,+,1} < m is true.
3093 // Note that we cannot simply return max(m-n,0) because it's not safe to
3094 // treat m-n as signed nor unsigned due to overflow possibility.
3096 // First, we get the value of the LHS in the first iteration: n
3097 SCEVHandle Start
= AddRec
->getOperand(0);
3099 if (isLoopGuardedByCond(L
,
3100 isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
3101 getMinusSCEV(AddRec
->getOperand(0), One
), RHS
)) {
3102 // Since we know that the condition is true in order to enter the loop,
3103 // we know that it will run exactly m-n times.
3104 return getMinusSCEV(RHS
, Start
);
3106 // Then, we get the value of the LHS in the first iteration in which the
3107 // above condition doesn't hold. This equals to max(m,n).
3108 SCEVHandle End
= isSigned
? getSMaxExpr(RHS
, Start
)
3109 : getUMaxExpr(RHS
, Start
);
3111 // Finally, we subtract these two values to get the number of times the
3112 // backedge is executed: max(m,n)-n.
3113 return getMinusSCEV(End
, Start
);
3117 return UnknownValue
;
3120 /// getNumIterationsInRange - Return the number of iterations of this loop that
3121 /// produce values in the specified constant range. Another way of looking at
3122 /// this is that it returns the first iteration number where the value is not in
3123 /// the condition, thus computing the exit count. If the iteration count can't
3124 /// be computed, an instance of SCEVCouldNotCompute is returned.
3125 SCEVHandle
SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
3126 ScalarEvolution
&SE
) const {
3127 if (Range
.isFullSet()) // Infinite loop.
3128 return SE
.getCouldNotCompute();
3130 // If the start is a non-zero constant, shift the range to simplify things.
3131 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
3132 if (!SC
->getValue()->isZero()) {
3133 std::vector
<SCEVHandle
> Operands(op_begin(), op_end());
3134 Operands
[0] = SE
.getIntegerSCEV(0, SC
->getType());
3135 SCEVHandle Shifted
= SE
.getAddRecExpr(Operands
, getLoop());
3136 if (SCEVAddRecExpr
*ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
3137 return ShiftedAddRec
->getNumIterationsInRange(
3138 Range
.subtract(SC
->getValue()->getValue()), SE
);
3139 // This is strange and shouldn't happen.
3140 return SE
.getCouldNotCompute();
3143 // The only time we can solve this is when we have all constant indices.
3144 // Otherwise, we cannot determine the overflow conditions.
3145 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
3146 if (!isa
<SCEVConstant
>(getOperand(i
)))
3147 return SE
.getCouldNotCompute();
3150 // Okay at this point we know that all elements of the chrec are constants and
3151 // that the start element is zero.
3153 // First check to see if the range contains zero. If not, the first
3155 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
3156 if (!Range
.contains(APInt(BitWidth
, 0)))
3157 return SE
.getConstant(ConstantInt::get(getType(),0));
3160 // If this is an affine expression then we have this situation:
3161 // Solve {0,+,A} in Range === Ax in Range
3163 // We know that zero is in the range. If A is positive then we know that
3164 // the upper value of the range must be the first possible exit value.
3165 // If A is negative then the lower of the range is the last possible loop
3166 // value. Also note that we already checked for a full range.
3167 APInt
One(BitWidth
,1);
3168 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
3169 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
3171 // The exit value should be (End+A)/A.
3172 APInt ExitVal
= (End
+ A
).udiv(A
);
3173 ConstantInt
*ExitValue
= ConstantInt::get(ExitVal
);
3175 // Evaluate at the exit value. If we really did fall out of the valid
3176 // range, then we computed our trip count, otherwise wrap around or other
3177 // things must have happened.
3178 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
3179 if (Range
.contains(Val
->getValue()))
3180 return SE
.getCouldNotCompute(); // Something strange happened
3182 // Ensure that the previous value is in the range. This is a sanity check.
3183 assert(Range
.contains(
3184 EvaluateConstantChrecAtConstant(this,
3185 ConstantInt::get(ExitVal
- One
), SE
)->getValue()) &&
3186 "Linear scev computation is off in a bad way!");
3187 return SE
.getConstant(ExitValue
);
3188 } else if (isQuadratic()) {
3189 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3190 // quadratic equation to solve it. To do this, we must frame our problem in
3191 // terms of figuring out when zero is crossed, instead of when
3192 // Range.getUpper() is crossed.
3193 std::vector
<SCEVHandle
> NewOps(op_begin(), op_end());
3194 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
3195 SCEVHandle NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop());
3197 // Next, solve the constructed addrec
3198 std::pair
<SCEVHandle
,SCEVHandle
> Roots
=
3199 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
3200 SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
3201 SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
3203 // Pick the smallest positive root value.
3204 if (ConstantInt
*CB
=
3205 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
3206 R1
->getValue(), R2
->getValue()))) {
3207 if (CB
->getZExtValue() == false)
3208 std::swap(R1
, R2
); // R1 is the minimum root now.
3210 // Make sure the root is not off by one. The returned iteration should
3211 // not be in the range, but the previous one should be. When solving
3212 // for "X*X < 5", for example, we should not return a root of 2.
3213 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
3216 if (Range
.contains(R1Val
->getValue())) {
3217 // The next iteration must be out of the range...
3218 ConstantInt
*NextVal
= ConstantInt::get(R1
->getValue()->getValue()+1);
3220 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
3221 if (!Range
.contains(R1Val
->getValue()))
3222 return SE
.getConstant(NextVal
);
3223 return SE
.getCouldNotCompute(); // Something strange happened
3226 // If R1 was not in the range, then it is a good return value. Make
3227 // sure that R1-1 WAS in the range though, just in case.
3228 ConstantInt
*NextVal
= ConstantInt::get(R1
->getValue()->getValue()-1);
3229 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
3230 if (Range
.contains(R1Val
->getValue()))
3232 return SE
.getCouldNotCompute(); // Something strange happened
3237 return SE
.getCouldNotCompute();
3242 //===----------------------------------------------------------------------===//
3243 // ScalarEvolution Class Implementation
3244 //===----------------------------------------------------------------------===//
3246 ScalarEvolution::ScalarEvolution()
3247 : FunctionPass(&ID
), UnknownValue(new SCEVCouldNotCompute()) {
3250 bool ScalarEvolution::runOnFunction(Function
&F
) {
3252 LI
= &getAnalysis
<LoopInfo
>();
3253 TD
= getAnalysisIfAvailable
<TargetData
>();
3257 void ScalarEvolution::releaseMemory() {
3259 BackedgeTakenCounts
.clear();
3260 ConstantEvolutionLoopExitValue
.clear();
3263 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
3264 AU
.setPreservesAll();
3265 AU
.addRequiredTransitive
<LoopInfo
>();
3268 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
3269 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
3272 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
3274 // Print all inner loops first
3275 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
3276 PrintLoopInfo(OS
, SE
, *I
);
3278 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
3280 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
3281 L
->getExitBlocks(ExitBlocks
);
3282 if (ExitBlocks
.size() != 1)
3283 OS
<< "<multiple exits> ";
3285 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
3286 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
3288 OS
<< "Unpredictable backedge-taken count. ";
3294 void ScalarEvolution::print(raw_ostream
&OS
, const Module
* ) const {
3295 // ScalarEvolution's implementaiton of the print method is to print
3296 // out SCEV values of all instructions that are interesting. Doing
3297 // this potentially causes it to create new SCEV objects though,
3298 // which technically conflicts with the const qualifier. This isn't
3299 // observable from outside the class though (the hasSCEV function
3300 // notwithstanding), so casting away the const isn't dangerous.
3301 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
3303 OS
<< "Classifying expressions for: " << F
->getName() << "\n";
3304 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
3305 if (I
->getType()->isInteger()) {
3308 SCEVHandle SV
= SE
.getSCEV(&*I
);
3312 if (const Loop
*L
= LI
->getLoopFor((*I
).getParent())) {
3314 SCEVHandle ExitValue
= SE
.getSCEVAtScope(&*I
, L
->getParentLoop());
3315 if (isa
<SCEVCouldNotCompute
>(ExitValue
)) {
3316 OS
<< "<<Unknown>>";
3326 OS
<< "Determining loop execution counts for: " << F
->getName() << "\n";
3327 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
3328 PrintLoopInfo(OS
, &SE
, *I
);
3331 void ScalarEvolution::print(std::ostream
&o
, const Module
*M
) const {
3332 raw_os_ostream
OS(o
);