1 //===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements target addressing mode matcher class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/GlobalValue.h"
17 #include "llvm/Instruction.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/Support/PatternMatch.h"
24 using namespace llvm::PatternMatch
;
26 void ExtAddrMode::print(OStream
&OS
) const {
27 bool NeedPlus
= false;
30 OS
<< (NeedPlus
? " + " : "")
32 WriteAsOperand(*OS
.stream(), BaseGV
, /*PrintType=*/false);
37 OS
<< (NeedPlus
? " + " : "") << BaseOffs
, NeedPlus
= true;
40 OS
<< (NeedPlus
? " + " : "")
42 WriteAsOperand(*OS
.stream(), BaseReg
, /*PrintType=*/false);
46 OS
<< (NeedPlus
? " + " : "")
48 WriteAsOperand(*OS
.stream(), ScaledReg
, /*PrintType=*/false);
55 void ExtAddrMode::dump() const {
61 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
62 /// Return true and update AddrMode if this addr mode is legal for the target,
64 bool AddressingModeMatcher::MatchScaledValue(Value
*ScaleReg
, int64_t Scale
,
66 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
67 // mode. Just process that directly.
69 return MatchAddr(ScaleReg
, Depth
);
71 // If the scale is 0, it takes nothing to add this.
75 // If we already have a scale of this value, we can add to it, otherwise, we
76 // need an available scale field.
77 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
80 ExtAddrMode TestAddrMode
= AddrMode
;
82 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
83 // [A+B + A*7] -> [B+A*8].
84 TestAddrMode
.Scale
+= Scale
;
85 TestAddrMode
.ScaledReg
= ScaleReg
;
87 // If the new address isn't legal, bail out.
88 if (!TLI
.isLegalAddressingMode(TestAddrMode
, AccessTy
))
91 // It was legal, so commit it.
92 AddrMode
= TestAddrMode
;
94 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
95 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
96 // X*Scale + C*Scale to addr mode.
97 ConstantInt
*CI
= 0; Value
*AddLHS
= 0;
98 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
99 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
)))) {
100 TestAddrMode
.ScaledReg
= AddLHS
;
101 TestAddrMode
.BaseOffs
+= CI
->getSExtValue()*TestAddrMode
.Scale
;
103 // If this addressing mode is legal, commit it and remember that we folded
105 if (TLI
.isLegalAddressingMode(TestAddrMode
, AccessTy
)) {
106 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
107 AddrMode
= TestAddrMode
;
112 // Otherwise, not (x+c)*scale, just return what we have.
116 /// MightBeFoldableInst - This is a little filter, which returns true if an
117 /// addressing computation involving I might be folded into a load/store
118 /// accessing it. This doesn't need to be perfect, but needs to accept at least
119 /// the set of instructions that MatchOperationAddr can.
120 static bool MightBeFoldableInst(Instruction
*I
) {
121 switch (I
->getOpcode()) {
122 case Instruction::BitCast
:
123 // Don't touch identity bitcasts.
124 if (I
->getType() == I
->getOperand(0)->getType())
126 return isa
<PointerType
>(I
->getType()) || isa
<IntegerType
>(I
->getType());
127 case Instruction::PtrToInt
:
128 // PtrToInt is always a noop, as we know that the int type is pointer sized.
130 case Instruction::IntToPtr
:
131 // We know the input is intptr_t, so this is foldable.
133 case Instruction::Add
:
135 case Instruction::Mul
:
136 case Instruction::Shl
:
137 // Can only handle X*C and X << C.
138 return isa
<ConstantInt
>(I
->getOperand(1));
139 case Instruction::GetElementPtr
:
147 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
148 /// fold the operation into the addressing mode. If so, update the addressing
149 /// mode and return true, otherwise return false without modifying AddrMode.
150 bool AddressingModeMatcher::MatchOperationAddr(User
*AddrInst
, unsigned Opcode
,
152 // Avoid exponential behavior on extremely deep expression trees.
153 if (Depth
>= 5) return false;
156 case Instruction::PtrToInt
:
157 // PtrToInt is always a noop, as we know that the int type is pointer sized.
158 return MatchAddr(AddrInst
->getOperand(0), Depth
);
159 case Instruction::IntToPtr
:
160 // This inttoptr is a no-op if the integer type is pointer sized.
161 if (TLI
.getValueType(AddrInst
->getOperand(0)->getType()) ==
163 return MatchAddr(AddrInst
->getOperand(0), Depth
);
165 case Instruction::BitCast
:
166 // BitCast is always a noop, and we can handle it as long as it is
167 // int->int or pointer->pointer (we don't want int<->fp or something).
168 if ((isa
<PointerType
>(AddrInst
->getOperand(0)->getType()) ||
169 isa
<IntegerType
>(AddrInst
->getOperand(0)->getType())) &&
170 // Don't touch identity bitcasts. These were probably put here by LSR,
171 // and we don't want to mess around with them. Assume it knows what it
173 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
174 return MatchAddr(AddrInst
->getOperand(0), Depth
);
176 case Instruction::Add
: {
177 // Check to see if we can merge in the RHS then the LHS. If so, we win.
178 ExtAddrMode BackupAddrMode
= AddrMode
;
179 unsigned OldSize
= AddrModeInsts
.size();
180 if (MatchAddr(AddrInst
->getOperand(1), Depth
+1) &&
181 MatchAddr(AddrInst
->getOperand(0), Depth
+1))
184 // Restore the old addr mode info.
185 AddrMode
= BackupAddrMode
;
186 AddrModeInsts
.resize(OldSize
);
188 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
189 if (MatchAddr(AddrInst
->getOperand(0), Depth
+1) &&
190 MatchAddr(AddrInst
->getOperand(1), Depth
+1))
193 // Otherwise we definitely can't merge the ADD in.
194 AddrMode
= BackupAddrMode
;
195 AddrModeInsts
.resize(OldSize
);
198 //case Instruction::Or:
199 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
201 case Instruction::Mul
:
202 case Instruction::Shl
: {
203 // Can only handle X*C and X << C.
204 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
205 if (!RHS
) return false;
206 int64_t Scale
= RHS
->getSExtValue();
207 if (Opcode
== Instruction::Shl
)
210 return MatchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
212 case Instruction::GetElementPtr
: {
213 // Scan the GEP. We check it if it contains constant offsets and at most
214 // one variable offset.
215 int VariableOperand
= -1;
216 unsigned VariableScale
= 0;
218 int64_t ConstantOffset
= 0;
219 const TargetData
*TD
= TLI
.getTargetData();
220 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
221 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
222 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
223 const StructLayout
*SL
= TD
->getStructLayout(STy
);
225 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
226 ConstantOffset
+= SL
->getElementOffset(Idx
);
228 uint64_t TypeSize
= TD
->getTypePaddedSize(GTI
.getIndexedType());
229 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
230 ConstantOffset
+= CI
->getSExtValue()*TypeSize
;
231 } else if (TypeSize
) { // Scales of zero don't do anything.
232 // We only allow one variable index at the moment.
233 if (VariableOperand
!= -1)
236 // Remember the variable index.
238 VariableScale
= TypeSize
;
243 // A common case is for the GEP to only do a constant offset. In this case,
244 // just add it to the disp field and check validity.
245 if (VariableOperand
== -1) {
246 AddrMode
.BaseOffs
+= ConstantOffset
;
247 if (ConstantOffset
== 0 || TLI
.isLegalAddressingMode(AddrMode
, AccessTy
)){
248 // Check to see if we can fold the base pointer in too.
249 if (MatchAddr(AddrInst
->getOperand(0), Depth
+1))
252 AddrMode
.BaseOffs
-= ConstantOffset
;
256 // Save the valid addressing mode in case we can't match.
257 ExtAddrMode BackupAddrMode
= AddrMode
;
259 // Check that this has no base reg yet. If so, we won't have a place to
260 // put the base of the GEP (assuming it is not a null ptr).
261 bool SetBaseReg
= true;
262 if (isa
<ConstantPointerNull
>(AddrInst
->getOperand(0)))
263 SetBaseReg
= false; // null pointer base doesn't need representation.
264 else if (AddrMode
.HasBaseReg
)
265 return false; // Base register already specified, can't match GEP.
267 // Otherwise, we'll use the GEP base as the BaseReg.
268 AddrMode
.HasBaseReg
= true;
269 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
272 // See if the scale and offset amount is valid for this target.
273 AddrMode
.BaseOffs
+= ConstantOffset
;
275 if (!MatchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
277 AddrMode
= BackupAddrMode
;
281 // If we have a null as the base of the GEP, folding in the constant offset
282 // plus variable scale is all we can do.
283 if (!SetBaseReg
) return true;
285 // If this match succeeded, we know that we can form an address with the
286 // GepBase as the basereg. Match the base pointer of the GEP more
287 // aggressively by zeroing out BaseReg and rematching. If the base is
288 // (for example) another GEP, this allows merging in that other GEP into
289 // the addressing mode we're forming.
290 AddrMode
.HasBaseReg
= false;
291 AddrMode
.BaseReg
= 0;
292 bool Success
= MatchAddr(AddrInst
->getOperand(0), Depth
+1);
293 assert(Success
&& "MatchAddr should be able to fill in BaseReg!");
301 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
302 /// addressing mode. If Addr can't be added to AddrMode this returns false and
303 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
304 /// or intptr_t for the target.
306 bool AddressingModeMatcher::MatchAddr(Value
*Addr
, unsigned Depth
) {
307 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
308 // Fold in immediates if legal for the target.
309 AddrMode
.BaseOffs
+= CI
->getSExtValue();
310 if (TLI
.isLegalAddressingMode(AddrMode
, AccessTy
))
312 AddrMode
.BaseOffs
-= CI
->getSExtValue();
313 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
314 // If this is a global variable, try to fold it into the addressing mode.
315 if (AddrMode
.BaseGV
== 0) {
316 AddrMode
.BaseGV
= GV
;
317 if (TLI
.isLegalAddressingMode(AddrMode
, AccessTy
))
321 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
322 ExtAddrMode BackupAddrMode
= AddrMode
;
323 unsigned OldSize
= AddrModeInsts
.size();
325 // Check to see if it is possible to fold this operation.
326 if (MatchOperationAddr(I
, I
->getOpcode(), Depth
)) {
327 // Okay, it's possible to fold this. Check to see if it is actually
328 // *profitable* to do so. We use a simple cost model to avoid increasing
329 // register pressure too much.
330 if (I
->hasOneUse() ||
331 IsProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
332 AddrModeInsts
.push_back(I
);
336 // It isn't profitable to do this, roll back.
337 //cerr << "NOT FOLDING: " << *I;
338 AddrMode
= BackupAddrMode
;
339 AddrModeInsts
.resize(OldSize
);
341 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
342 if (MatchOperationAddr(CE
, CE
->getOpcode(), Depth
))
344 } else if (isa
<ConstantPointerNull
>(Addr
)) {
345 // Null pointer gets folded without affecting the addressing mode.
349 // Worse case, the target should support [reg] addressing modes. :)
350 if (!AddrMode
.HasBaseReg
) {
351 AddrMode
.HasBaseReg
= true;
352 AddrMode
.BaseReg
= Addr
;
353 // Still check for legality in case the target supports [imm] but not [i+r].
354 if (TLI
.isLegalAddressingMode(AddrMode
, AccessTy
))
356 AddrMode
.HasBaseReg
= false;
357 AddrMode
.BaseReg
= 0;
360 // If the base register is already taken, see if we can do [r+r].
361 if (AddrMode
.Scale
== 0) {
363 AddrMode
.ScaledReg
= Addr
;
364 if (TLI
.isLegalAddressingMode(AddrMode
, AccessTy
))
367 AddrMode
.ScaledReg
= 0;
374 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
375 /// inline asm call are due to memory operands. If so, return true, otherwise
377 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
378 const TargetLowering
&TLI
) {
379 std::vector
<InlineAsm::ConstraintInfo
>
380 Constraints
= IA
->ParseConstraints();
382 unsigned ArgNo
= 1; // ArgNo - The operand of the CallInst.
383 for (unsigned i
= 0, e
= Constraints
.size(); i
!= e
; ++i
) {
384 TargetLowering::AsmOperandInfo
OpInfo(Constraints
[i
]);
386 // Compute the value type for each operand.
387 switch (OpInfo
.Type
) {
388 case InlineAsm::isOutput
:
389 if (OpInfo
.isIndirect
)
390 OpInfo
.CallOperandVal
= CI
->getOperand(ArgNo
++);
392 case InlineAsm::isInput
:
393 OpInfo
.CallOperandVal
= CI
->getOperand(ArgNo
++);
395 case InlineAsm::isClobber
:
400 // Compute the constraint code and ConstraintType to use.
401 TLI
.ComputeConstraintToUse(OpInfo
, SDValue(),
402 OpInfo
.ConstraintType
== TargetLowering::C_Memory
);
404 // If this asm operand is our Value*, and if it isn't an indirect memory
405 // operand, we can't fold it!
406 if (OpInfo
.CallOperandVal
== OpVal
&&
407 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
416 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
417 /// memory use. If we find an obviously non-foldable instruction, return true.
418 /// Add the ultimately found memory instructions to MemoryUses.
419 static bool FindAllMemoryUses(Instruction
*I
,
420 SmallVectorImpl
<std::pair
<Instruction
*,unsigned> > &MemoryUses
,
421 SmallPtrSet
<Instruction
*, 16> &ConsideredInsts
,
422 const TargetLowering
&TLI
) {
423 // If we already considered this instruction, we're done.
424 if (!ConsideredInsts
.insert(I
))
427 // If this is an obviously unfoldable instruction, bail out.
428 if (!MightBeFoldableInst(I
))
431 // Loop over all the uses, recursively processing them.
432 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
434 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
435 MemoryUses
.push_back(std::make_pair(LI
, UI
.getOperandNo()));
439 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
440 if (UI
.getOperandNo() == 0) return true; // Storing addr, not into addr.
441 MemoryUses
.push_back(std::make_pair(SI
, UI
.getOperandNo()));
445 if (CallInst
*CI
= dyn_cast
<CallInst
>(*UI
)) {
446 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledValue());
447 if (IA
== 0) return true;
449 // If this is a memory operand, we're cool, otherwise bail out.
450 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
))
455 if (FindAllMemoryUses(cast
<Instruction
>(*UI
), MemoryUses
, ConsideredInsts
,
464 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
465 /// the use site that we're folding it into. If so, there is no cost to
466 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
467 /// that we know are live at the instruction already.
468 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value
*Val
,Value
*KnownLive1
,
470 // If Val is either of the known-live values, we know it is live!
471 if (Val
== 0 || Val
== KnownLive1
|| Val
== KnownLive2
)
474 // All values other than instructions and arguments (e.g. constants) are live.
475 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
)) return true;
477 // If Val is a constant sized alloca in the entry block, it is live, this is
478 // true because it is just a reference to the stack/frame pointer, which is
479 // live for the whole function.
480 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
481 if (AI
->isStaticAlloca())
484 // Check to see if this value is already used in the memory instruction's
485 // block. If so, it's already live into the block at the very least, so we
486 // can reasonably fold it.
487 BasicBlock
*MemBB
= MemoryInst
->getParent();
488 for (Value::use_iterator UI
= Val
->use_begin(), E
= Val
->use_end();
490 // We know that uses of arguments and instructions have to be instructions.
491 if (cast
<Instruction
>(*UI
)->getParent() == MemBB
)
499 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
500 /// mode of the machine to fold the specified instruction into a load or store
501 /// that ultimately uses it. However, the specified instruction has multiple
502 /// uses. Given this, it may actually increase register pressure to fold it
503 /// into the load. For example, consider this code:
507 /// use(Y) -> nonload/store
511 /// In this case, Y has multiple uses, and can be folded into the load of Z
512 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
513 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
514 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
515 /// number of computations either.
517 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
518 /// X was live across 'load Z' for other reasons, we actually *would* want to
519 /// fold the addressing mode in the Z case. This would make Y die earlier.
520 bool AddressingModeMatcher::
521 IsProfitableToFoldIntoAddressingMode(Instruction
*I
, ExtAddrMode
&AMBefore
,
522 ExtAddrMode
&AMAfter
) {
523 if (IgnoreProfitability
) return true;
525 // AMBefore is the addressing mode before this instruction was folded into it,
526 // and AMAfter is the addressing mode after the instruction was folded. Get
527 // the set of registers referenced by AMAfter and subtract out those
528 // referenced by AMBefore: this is the set of values which folding in this
529 // address extends the lifetime of.
531 // Note that there are only two potential values being referenced here,
532 // BaseReg and ScaleReg (global addresses are always available, as are any
533 // folded immediates).
534 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
536 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
537 // lifetime wasn't extended by adding this instruction.
538 if (ValueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
540 if (ValueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
543 // If folding this instruction (and it's subexprs) didn't extend any live
544 // ranges, we're ok with it.
545 if (BaseReg
== 0 && ScaledReg
== 0)
548 // If all uses of this instruction are ultimately load/store/inlineasm's,
549 // check to see if their addressing modes will include this instruction. If
550 // so, we can fold it into all uses, so it doesn't matter if it has multiple
552 SmallVector
<std::pair
<Instruction
*,unsigned>, 16> MemoryUses
;
553 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
554 if (FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
))
555 return false; // Has a non-memory, non-foldable use!
557 // Now that we know that all uses of this instruction are part of a chain of
558 // computation involving only operations that could theoretically be folded
559 // into a memory use, loop over each of these uses and see if they could
560 // *actually* fold the instruction.
561 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
562 for (unsigned i
= 0, e
= MemoryUses
.size(); i
!= e
; ++i
) {
563 Instruction
*User
= MemoryUses
[i
].first
;
564 unsigned OpNo
= MemoryUses
[i
].second
;
566 // Get the access type of this use. If the use isn't a pointer, we don't
567 // know what it accesses.
568 Value
*Address
= User
->getOperand(OpNo
);
569 if (!isa
<PointerType
>(Address
->getType()))
571 const Type
*AddressAccessTy
=
572 cast
<PointerType
>(Address
->getType())->getElementType();
574 // Do a match against the root of this address, ignoring profitability. This
575 // will tell us if the addressing mode for the memory operation will
576 // *actually* cover the shared instruction.
578 AddressingModeMatcher
Matcher(MatchedAddrModeInsts
, TLI
, AddressAccessTy
,
580 Matcher
.IgnoreProfitability
= true;
581 bool Success
= Matcher
.MatchAddr(Address
, 0);
582 Success
= Success
; assert(Success
&& "Couldn't select *anything*?");
584 // If the match didn't cover I, then it won't be shared by it.
585 if (std::find(MatchedAddrModeInsts
.begin(), MatchedAddrModeInsts
.end(),
586 I
) == MatchedAddrModeInsts
.end())
589 MatchedAddrModeInsts
.clear();