Teach getZeroExtendExpr and getSignExtendExpr to use trip-count
[llvm/msp430.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
blob97460bf1add465e3c6c6452e5118f64b306b38e7
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Target/TargetData.h"
25 #include <algorithm>
26 using namespace llvm;
28 /// DeleteDeadBlock - Delete the specified block, which must have no
29 /// predecessors.
30 void llvm::DeleteDeadBlock(BasicBlock *BB) {
31 assert((pred_begin(BB) == pred_end(BB) ||
32 // Can delete self loop.
33 BB->getSinglePredecessor() == BB) && "Block is not dead!");
34 TerminatorInst *BBTerm = BB->getTerminator();
36 // Loop through all of our successors and make sure they know that one
37 // of their predecessors is going away.
38 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
39 BBTerm->getSuccessor(i)->removePredecessor(BB);
41 // Zap all the instructions in the block.
42 while (!BB->empty()) {
43 Instruction &I = BB->back();
44 // If this instruction is used, replace uses with an arbitrary value.
45 // Because control flow can't get here, we don't care what we replace the
46 // value with. Note that since this block is unreachable, and all values
47 // contained within it must dominate their uses, that all uses will
48 // eventually be removed (they are themselves dead).
49 if (!I.use_empty())
50 I.replaceAllUsesWith(UndefValue::get(I.getType()));
51 BB->getInstList().pop_back();
54 // Zap the block!
55 BB->eraseFromParent();
58 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
59 /// any single-entry PHI nodes in it, fold them away. This handles the case
60 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
61 /// when the block has exactly one predecessor.
62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
63 if (!isa<PHINode>(BB->begin()))
64 return;
66 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
67 if (PN->getIncomingValue(0) != PN)
68 PN->replaceAllUsesWith(PN->getIncomingValue(0));
69 else
70 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
71 PN->eraseFromParent();
76 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
77 /// if possible. The return value indicates success or failure.
78 bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
79 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
80 // Can't merge the entry block.
81 if (pred_begin(BB) == pred_end(BB)) return false;
83 BasicBlock *PredBB = *PI++;
84 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
85 if (*PI != PredBB) {
86 PredBB = 0; // There are multiple different predecessors...
87 break;
90 // Can't merge if there are multiple predecessors.
91 if (!PredBB) return false;
92 // Don't break self-loops.
93 if (PredBB == BB) return false;
94 // Don't break invokes.
95 if (isa<InvokeInst>(PredBB->getTerminator())) return false;
97 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
98 BasicBlock* OnlySucc = BB;
99 for (; SI != SE; ++SI)
100 if (*SI != OnlySucc) {
101 OnlySucc = 0; // There are multiple distinct successors!
102 break;
105 // Can't merge if there are multiple successors.
106 if (!OnlySucc) return false;
108 // Can't merge if there is PHI loop.
109 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
110 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
111 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
112 if (PN->getIncomingValue(i) == PN)
113 return false;
114 } else
115 break;
118 // Begin by getting rid of unneeded PHIs.
119 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
120 PN->replaceAllUsesWith(PN->getIncomingValue(0));
121 BB->getInstList().pop_front(); // Delete the phi node...
124 // Delete the unconditional branch from the predecessor...
125 PredBB->getInstList().pop_back();
127 // Move all definitions in the successor to the predecessor...
128 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
130 // Make all PHI nodes that referred to BB now refer to Pred as their
131 // source...
132 BB->replaceAllUsesWith(PredBB);
134 // Inherit predecessors name if it exists.
135 if (!PredBB->hasName())
136 PredBB->takeName(BB);
138 // Finally, erase the old block and update dominator info.
139 if (P) {
140 if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
141 DomTreeNode* DTN = DT->getNode(BB);
142 DomTreeNode* PredDTN = DT->getNode(PredBB);
144 if (DTN) {
145 SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
146 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
147 DE = Children.end(); DI != DE; ++DI)
148 DT->changeImmediateDominator(*DI, PredDTN);
150 DT->eraseNode(BB);
155 BB->eraseFromParent();
158 return true;
161 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
162 /// with a value, then remove and delete the original instruction.
164 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
165 BasicBlock::iterator &BI, Value *V) {
166 Instruction &I = *BI;
167 // Replaces all of the uses of the instruction with uses of the value
168 I.replaceAllUsesWith(V);
170 // Make sure to propagate a name if there is one already.
171 if (I.hasName() && !V->hasName())
172 V->takeName(&I);
174 // Delete the unnecessary instruction now...
175 BI = BIL.erase(BI);
179 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
180 /// instruction specified by I. The original instruction is deleted and BI is
181 /// updated to point to the new instruction.
183 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
184 BasicBlock::iterator &BI, Instruction *I) {
185 assert(I->getParent() == 0 &&
186 "ReplaceInstWithInst: Instruction already inserted into basic block!");
188 // Insert the new instruction into the basic block...
189 BasicBlock::iterator New = BIL.insert(BI, I);
191 // Replace all uses of the old instruction, and delete it.
192 ReplaceInstWithValue(BIL, BI, I);
194 // Move BI back to point to the newly inserted instruction
195 BI = New;
198 /// ReplaceInstWithInst - Replace the instruction specified by From with the
199 /// instruction specified by To.
201 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
202 BasicBlock::iterator BI(From);
203 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
206 /// RemoveSuccessor - Change the specified terminator instruction such that its
207 /// successor SuccNum no longer exists. Because this reduces the outgoing
208 /// degree of the current basic block, the actual terminator instruction itself
209 /// may have to be changed. In the case where the last successor of the block
210 /// is deleted, a return instruction is inserted in its place which can cause a
211 /// surprising change in program behavior if it is not expected.
213 void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
214 assert(SuccNum < TI->getNumSuccessors() &&
215 "Trying to remove a nonexistant successor!");
217 // If our old successor block contains any PHI nodes, remove the entry in the
218 // PHI nodes that comes from this branch...
220 BasicBlock *BB = TI->getParent();
221 TI->getSuccessor(SuccNum)->removePredecessor(BB);
223 TerminatorInst *NewTI = 0;
224 switch (TI->getOpcode()) {
225 case Instruction::Br:
226 // If this is a conditional branch... convert to unconditional branch.
227 if (TI->getNumSuccessors() == 2) {
228 cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
229 } else { // Otherwise convert to a return instruction...
230 Value *RetVal = 0;
232 // Create a value to return... if the function doesn't return null...
233 if (BB->getParent()->getReturnType() != Type::VoidTy)
234 RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
236 // Create the return...
237 NewTI = ReturnInst::Create(RetVal);
239 break;
241 case Instruction::Invoke: // Should convert to call
242 case Instruction::Switch: // Should remove entry
243 default:
244 case Instruction::Ret: // Cannot happen, has no successors!
245 assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
246 abort();
249 if (NewTI) // If it's a different instruction, replace.
250 ReplaceInstWithInst(TI, NewTI);
253 /// SplitEdge - Split the edge connecting specified block. Pass P must
254 /// not be NULL.
255 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
256 TerminatorInst *LatchTerm = BB->getTerminator();
257 unsigned SuccNum = 0;
258 #ifndef NDEBUG
259 unsigned e = LatchTerm->getNumSuccessors();
260 #endif
261 for (unsigned i = 0; ; ++i) {
262 assert(i != e && "Didn't find edge?");
263 if (LatchTerm->getSuccessor(i) == Succ) {
264 SuccNum = i;
265 break;
269 // If this is a critical edge, let SplitCriticalEdge do it.
270 if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
271 return LatchTerm->getSuccessor(SuccNum);
273 // If the edge isn't critical, then BB has a single successor or Succ has a
274 // single pred. Split the block.
275 BasicBlock::iterator SplitPoint;
276 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
277 // If the successor only has a single pred, split the top of the successor
278 // block.
279 assert(SP == BB && "CFG broken");
280 SP = NULL;
281 return SplitBlock(Succ, Succ->begin(), P);
282 } else {
283 // Otherwise, if BB has a single successor, split it at the bottom of the
284 // block.
285 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
286 "Should have a single succ!");
287 return SplitBlock(BB, BB->getTerminator(), P);
291 /// SplitBlock - Split the specified block at the specified instruction - every
292 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
293 /// to a new block. The two blocks are joined by an unconditional branch and
294 /// the loop info is updated.
296 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
297 BasicBlock::iterator SplitIt = SplitPt;
298 while (isa<PHINode>(SplitIt))
299 ++SplitIt;
300 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
302 // The new block lives in whichever loop the old one did.
303 if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
304 if (Loop *L = LI->getLoopFor(Old))
305 L->addBasicBlockToLoop(New, LI->getBase());
307 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
309 // Old dominates New. New node domiantes all other nodes dominated by Old.
310 DomTreeNode *OldNode = DT->getNode(Old);
311 std::vector<DomTreeNode *> Children;
312 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
313 I != E; ++I)
314 Children.push_back(*I);
316 DomTreeNode *NewNode = DT->addNewBlock(New,Old);
318 for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
319 E = Children.end(); I != E; ++I)
320 DT->changeImmediateDominator(*I, NewNode);
323 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
324 DF->splitBlock(Old);
326 return New;
330 /// SplitBlockPredecessors - This method transforms BB by introducing a new
331 /// basic block into the function, and moving some of the predecessors of BB to
332 /// be predecessors of the new block. The new predecessors are indicated by the
333 /// Preds array, which has NumPreds elements in it. The new block is given a
334 /// suffix of 'Suffix'.
336 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
337 /// DominanceFrontier, but no other analyses.
338 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
339 BasicBlock *const *Preds,
340 unsigned NumPreds, const char *Suffix,
341 Pass *P) {
342 // Create new basic block, insert right before the original block.
343 BasicBlock *NewBB =
344 BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
346 // The new block unconditionally branches to the old block.
347 BranchInst *BI = BranchInst::Create(BB, NewBB);
349 // Move the edges from Preds to point to NewBB instead of BB.
350 for (unsigned i = 0; i != NumPreds; ++i)
351 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
353 // Update dominator tree and dominator frontier if available.
354 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
355 if (DT)
356 DT->splitBlock(NewBB);
357 if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
358 DF->splitBlock(NewBB);
359 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
362 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
363 // node becomes an incoming value for BB's phi node. However, if the Preds
364 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
365 // account for the newly created predecessor.
366 if (NumPreds == 0) {
367 // Insert dummy values as the incoming value.
368 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
369 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
370 return NewBB;
373 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
374 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
375 PHINode *PN = cast<PHINode>(I++);
377 // Check to see if all of the values coming in are the same. If so, we
378 // don't need to create a new PHI node.
379 Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
380 for (unsigned i = 1; i != NumPreds; ++i)
381 if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
382 InVal = 0;
383 break;
386 if (InVal) {
387 // If all incoming values for the new PHI would be the same, just don't
388 // make a new PHI. Instead, just remove the incoming values from the old
389 // PHI.
390 for (unsigned i = 0; i != NumPreds; ++i)
391 PN->removeIncomingValue(Preds[i], false);
392 } else {
393 // If the values coming into the block are not the same, we need a PHI.
394 // Create the new PHI node, insert it into NewBB at the end of the block
395 PHINode *NewPHI =
396 PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
397 if (AA) AA->copyValue(PN, NewPHI);
399 // Move all of the PHI values for 'Preds' to the new PHI.
400 for (unsigned i = 0; i != NumPreds; ++i) {
401 Value *V = PN->removeIncomingValue(Preds[i], false);
402 NewPHI->addIncoming(V, Preds[i]);
404 InVal = NewPHI;
407 // Add an incoming value to the PHI node in the loop for the preheader
408 // edge.
409 PN->addIncoming(InVal, NewBB);
411 // Check to see if we can eliminate this phi node.
412 if (Value *V = PN->hasConstantValue(DT != 0)) {
413 Instruction *I = dyn_cast<Instruction>(V);
414 if (!I || DT == 0 || DT->dominates(I, PN)) {
415 PN->replaceAllUsesWith(V);
416 if (AA) AA->deleteValue(PN);
417 PN->eraseFromParent();
422 return NewBB;
425 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
426 /// value. This includes recognizing that %t0 and %t1 will have the same
427 /// value in code like this:
428 /// %t0 = getelementptr \@a, 0, 3
429 /// store i32 0, i32* %t0
430 /// %t1 = getelementptr \@a, 0, 3
431 /// %t2 = load i32* %t1
433 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
434 // Test if the values are trivially equivalent.
435 if (A == B) return true;
437 // Test if the values come form identical arithmetic instructions.
438 if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
439 isa<PHINode>(A) || isa<GetElementPtrInst>(A))
440 if (const Instruction *BI = dyn_cast<Instruction>(B))
441 if (cast<Instruction>(A)->isIdenticalTo(BI))
442 return true;
444 // Otherwise they may not be equivalent.
445 return false;
448 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
449 /// instruction before ScanFrom) checking to see if we have the value at the
450 /// memory address *Ptr locally available within a small number of instructions.
451 /// If the value is available, return it.
453 /// If not, return the iterator for the last validated instruction that the
454 /// value would be live through. If we scanned the entire block and didn't find
455 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
456 /// begin() and this returns null. ScanFrom could also be left
458 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
459 /// it is set to 0, it will scan the whole block. You can also optionally
460 /// specify an alias analysis implementation, which makes this more precise.
461 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
462 BasicBlock::iterator &ScanFrom,
463 unsigned MaxInstsToScan,
464 AliasAnalysis *AA) {
465 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
467 // If we're using alias analysis to disambiguate get the size of *Ptr.
468 unsigned AccessSize = 0;
469 if (AA) {
470 const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
471 AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
474 while (ScanFrom != ScanBB->begin()) {
475 // We must ignore debug info directives when counting (otherwise they
476 // would affect codegen).
477 Instruction *Inst = --ScanFrom;
478 if (isa<DbgInfoIntrinsic>(Inst))
479 continue;
480 // We skip pointer-to-pointer bitcasts, which are NOPs.
481 // It is necessary for correctness to skip those that feed into a
482 // llvm.dbg.declare, as these are not present when debugging is off.
483 if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
484 continue;
486 // Restore ScanFrom to expected value in case next test succeeds
487 ScanFrom++;
489 // Don't scan huge blocks.
490 if (MaxInstsToScan-- == 0) return 0;
492 --ScanFrom;
493 // If this is a load of Ptr, the loaded value is available.
494 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
495 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
496 return LI;
498 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
499 // If this is a store through Ptr, the value is available!
500 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
501 return SI->getOperand(0);
503 // If Ptr is an alloca and this is a store to a different alloca, ignore
504 // the store. This is a trivial form of alias analysis that is important
505 // for reg2mem'd code.
506 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
507 (isa<AllocaInst>(SI->getOperand(1)) ||
508 isa<GlobalVariable>(SI->getOperand(1))))
509 continue;
511 // If we have alias analysis and it says the store won't modify the loaded
512 // value, ignore the store.
513 if (AA &&
514 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
515 continue;
517 // Otherwise the store that may or may not alias the pointer, bail out.
518 ++ScanFrom;
519 return 0;
522 // If this is some other instruction that may clobber Ptr, bail out.
523 if (Inst->mayWriteToMemory()) {
524 // If alias analysis claims that it really won't modify the load,
525 // ignore it.
526 if (AA &&
527 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
528 continue;
530 // May modify the pointer, bail out.
531 ++ScanFrom;
532 return 0;
536 // Got to the start of the block, we didn't find it, but are done for this
537 // block.
538 return 0;
541 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
542 /// make a copy of the stoppoint before InsertPos (presumably before copying
543 /// or moving I).
544 void llvm::CopyPrecedingStopPoint(Instruction *I,
545 BasicBlock::iterator InsertPos) {
546 if (I != I->getParent()->begin()) {
547 BasicBlock::iterator BBI = I; --BBI;
548 if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
549 CallInst *newDSPI = DSPI->clone();
550 newDSPI->insertBefore(InsertPos);