Teach getZeroExtendExpr and getSignExtendExpr to use trip-count
[llvm/msp430.git] / lib / Transforms / Utils / LCSSA.cpp
blob7d4f3a343e6253e6cd247c6a51863da31353e8d0
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/PredIteratorCache.h"
44 #include <algorithm>
45 #include <map>
46 using namespace llvm;
48 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
50 namespace {
51 struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
52 static char ID; // Pass identification, replacement for typeid
53 LCSSA() : LoopPass(&ID) {}
55 // Cached analysis information for the current function.
56 LoopInfo *LI;
57 DominatorTree *DT;
58 std::vector<BasicBlock*> LoopBlocks;
59 PredIteratorCache PredCache;
61 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
63 void ProcessInstruction(Instruction* Instr,
64 const SmallVector<BasicBlock*, 8>& exitBlocks);
66 /// This transformation requires natural loop information & requires that
67 /// loop preheaders be inserted into the CFG. It maintains both of these,
68 /// as well as the CFG. It also requires dominator information.
69 ///
70 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71 AU.setPreservesCFG();
72 AU.addRequiredID(LoopSimplifyID);
73 AU.addPreservedID(LoopSimplifyID);
74 AU.addRequired<LoopInfo>();
75 AU.addPreserved<LoopInfo>();
76 AU.addRequired<DominatorTree>();
77 AU.addPreserved<ScalarEvolution>();
78 AU.addPreserved<DominatorTree>();
80 // Request DominanceFrontier now, even though LCSSA does
81 // not use it. This allows Pass Manager to schedule Dominance
82 // Frontier early enough such that one LPPassManager can handle
83 // multiple loop transformation passes.
84 AU.addRequired<DominanceFrontier>();
85 AU.addPreserved<DominanceFrontier>();
87 private:
88 void getLoopValuesUsedOutsideLoop(Loop *L,
89 SetVector<Instruction*> &AffectedValues,
90 const SmallVector<BasicBlock*, 8>& exitBlocks);
92 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
93 DenseMap<DomTreeNode*, Value*> &Phis);
95 /// inLoop - returns true if the given block is within the current loop
96 bool inLoop(BasicBlock* B) {
97 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
102 char LCSSA::ID = 0;
103 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
105 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
106 const PassInfo *const llvm::LCSSAID = &X;
108 /// runOnFunction - Process all loops in the function, inner-most out.
109 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
110 PredCache.clear();
112 LI = &LPM.getAnalysis<LoopInfo>();
113 DT = &getAnalysis<DominatorTree>();
115 // Speed up queries by creating a sorted list of blocks
116 LoopBlocks.clear();
117 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
118 std::sort(LoopBlocks.begin(), LoopBlocks.end());
120 SmallVector<BasicBlock*, 8> exitBlocks;
121 L->getExitBlocks(exitBlocks);
123 SetVector<Instruction*> AffectedValues;
124 getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
126 // If no values are affected, we can save a lot of work, since we know that
127 // nothing will be changed.
128 if (AffectedValues.empty())
129 return false;
131 // Iterate over all affected values for this loop and insert Phi nodes
132 // for them in the appropriate exit blocks
134 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
135 E = AffectedValues.end(); I != E; ++I)
136 ProcessInstruction(*I, exitBlocks);
138 assert(L->isLCSSAForm());
140 return true;
143 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
144 /// eliminate all out-of-loop uses.
145 void LCSSA::ProcessInstruction(Instruction *Instr,
146 const SmallVector<BasicBlock*, 8>& exitBlocks) {
147 ++NumLCSSA; // We are applying the transformation
149 // Keep track of the blocks that have the value available already.
150 DenseMap<DomTreeNode*, Value*> Phis;
152 DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
154 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
155 // add them to the Phi's map.
156 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
157 BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
158 BasicBlock *BB = *BBI;
159 DomTreeNode *ExitBBNode = DT->getNode(BB);
160 Value *&Phi = Phis[ExitBBNode];
161 if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
162 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
163 BB->begin());
164 PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
166 // Remember that this phi makes the value alive in this block.
167 Phi = PN;
169 // Add inputs from inside the loop for this PHI.
170 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
171 PN->addIncoming(Instr, *PI);
176 // Record all uses of Instr outside the loop. We need to rewrite these. The
177 // LCSSA phis won't be included because they use the value in the loop.
178 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
179 UI != E;) {
180 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
181 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
182 UserBB = P->getIncomingBlock(UI);
185 // If the user is in the loop, don't rewrite it!
186 if (UserBB == Instr->getParent() || inLoop(UserBB)) {
187 ++UI;
188 continue;
191 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
192 // inserting PHI nodes into join points where needed.
193 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
195 // Preincrement the iterator to avoid invalidating it when we change the
196 // value.
197 Use &U = UI.getUse();
198 ++UI;
199 U.set(Val);
203 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
204 /// are used by instructions outside of it.
205 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
206 SetVector<Instruction*> &AffectedValues,
207 const SmallVector<BasicBlock*, 8>& exitBlocks) {
208 // FIXME: For large loops, we may be able to avoid a lot of use-scanning
209 // by using dominance information. In particular, if a block does not
210 // dominate any of the loop exits, then none of the values defined in the
211 // block could be used outside the loop.
212 for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
213 BB != BE; ++BB) {
214 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
215 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
216 ++UI) {
217 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
218 if (PHINode* p = dyn_cast<PHINode>(*UI)) {
219 UserBB = p->getIncomingBlock(UI);
222 if (*BB != UserBB && !inLoop(UserBB)) {
223 AffectedValues.insert(I);
224 break;
230 /// GetValueForBlock - Get the value to use within the specified basic block.
231 /// available values are in Phis.
232 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
233 DenseMap<DomTreeNode*, Value*> &Phis) {
234 // If there is no dominator info for this BB, it is unreachable.
235 if (BB == 0)
236 return UndefValue::get(OrigInst->getType());
238 // If we have already computed this value, return the previously computed val.
239 if (Phis.count(BB)) return Phis[BB];
241 DomTreeNode *IDom = BB->getIDom();
243 // Otherwise, there are two cases: we either have to insert a PHI node or we
244 // don't. We need to insert a PHI node if this block is not dominated by one
245 // of the exit nodes from the loop (the loop could have multiple exits, and
246 // though the value defined *inside* the loop dominated all its uses, each
247 // exit by itself may not dominate all the uses).
249 // The simplest way to check for this condition is by checking to see if the
250 // idom is in the loop. If so, we *know* that none of the exit blocks
251 // dominate this block. Note that we *know* that the block defining the
252 // original instruction is in the idom chain, because if it weren't, then the
253 // original value didn't dominate this use.
254 if (!inLoop(IDom->getBlock())) {
255 // Idom is not in the loop, we must still be "below" the exit block and must
256 // be fully dominated by the value live in the idom.
257 Value* val = GetValueForBlock(IDom, OrigInst, Phis);
258 Phis.insert(std::make_pair(BB, val));
259 return val;
262 BasicBlock *BBN = BB->getBlock();
264 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
265 // now, then get values to fill in the incoming values for the PHI.
266 PHINode *PN = PHINode::Create(OrigInst->getType(),
267 OrigInst->getName() + ".lcssa", BBN->begin());
268 PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
269 Phis.insert(std::make_pair(BB, PN));
271 // Fill in the incoming values for the block.
272 for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
273 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
274 return PN;