Add prologue/epilogue emission. Fix frame pointer handling.
[llvm/msp430.git] / lib / Target / CellSPU / SPUISelDAGToDAG.cpp
blobdd2ef6448ca6cede2815bc75f332fa0649c84984
1 //===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for the Cell SPU,
11 // converting from a legalized dag to a SPU-target dag.
13 //===----------------------------------------------------------------------===//
15 #include "SPU.h"
16 #include "SPUTargetMachine.h"
17 #include "SPUISelLowering.h"
18 #include "SPUHazardRecognizers.h"
19 #include "SPUFrameInfo.h"
20 #include "SPURegisterNames.h"
21 #include "SPUTargetMachine.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Constants.h"
31 #include "llvm/GlobalValue.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/Compiler.h"
37 using namespace llvm;
39 namespace {
40 //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
41 bool
42 isI64IntS10Immediate(ConstantSDNode *CN)
44 return isS10Constant(CN->getSExtValue());
47 //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
48 bool
49 isI32IntS10Immediate(ConstantSDNode *CN)
51 return isS10Constant(CN->getSExtValue());
54 //! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
55 bool
56 isI32IntU10Immediate(ConstantSDNode *CN)
58 return isU10Constant(CN->getSExtValue());
61 //! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
62 bool
63 isI16IntS10Immediate(ConstantSDNode *CN)
65 return isS10Constant(CN->getSExtValue());
68 //! SDNode predicate for i16 sign-extended, 10-bit immediate values
69 bool
70 isI16IntS10Immediate(SDNode *N)
72 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
73 return (CN != 0 && isI16IntS10Immediate(CN));
76 //! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
77 bool
78 isI16IntU10Immediate(ConstantSDNode *CN)
80 return isU10Constant((short) CN->getZExtValue());
83 //! SDNode predicate for i16 sign-extended, 10-bit immediate values
84 bool
85 isI16IntU10Immediate(SDNode *N)
87 return (N->getOpcode() == ISD::Constant
88 && isI16IntU10Immediate(cast<ConstantSDNode>(N)));
91 //! ConstantSDNode predicate for signed 16-bit values
92 /*!
93 \arg CN The constant SelectionDAG node holding the value
94 \arg Imm The returned 16-bit value, if returning true
96 This predicate tests the value in \a CN to see whether it can be
97 represented as a 16-bit, sign-extended quantity. Returns true if
98 this is the case.
100 bool
101 isIntS16Immediate(ConstantSDNode *CN, short &Imm)
103 MVT vt = CN->getValueType(0);
104 Imm = (short) CN->getZExtValue();
105 if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
106 return true;
107 } else if (vt == MVT::i32) {
108 int32_t i_val = (int32_t) CN->getZExtValue();
109 short s_val = (short) i_val;
110 return i_val == s_val;
111 } else {
112 int64_t i_val = (int64_t) CN->getZExtValue();
113 short s_val = (short) i_val;
114 return i_val == s_val;
117 return false;
120 //! SDNode predicate for signed 16-bit values.
121 bool
122 isIntS16Immediate(SDNode *N, short &Imm)
124 return (N->getOpcode() == ISD::Constant
125 && isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
128 //! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
129 static bool
130 isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
132 MVT vt = FPN->getValueType(0);
133 if (vt == MVT::f32) {
134 int val = FloatToBits(FPN->getValueAPF().convertToFloat());
135 int sval = (int) ((val << 16) >> 16);
136 Imm = (short) val;
137 return val == sval;
140 return false;
143 bool
144 isHighLow(const SDValue &Op)
146 return (Op.getOpcode() == SPUISD::IndirectAddr
147 && ((Op.getOperand(0).getOpcode() == SPUISD::Hi
148 && Op.getOperand(1).getOpcode() == SPUISD::Lo)
149 || (Op.getOperand(0).getOpcode() == SPUISD::Lo
150 && Op.getOperand(1).getOpcode() == SPUISD::Hi)));
153 //===------------------------------------------------------------------===//
154 //! MVT to "useful stuff" mapping structure:
156 struct valtype_map_s {
157 MVT VT;
158 unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
159 bool ldresult_imm; /// LDRESULT instruction requires immediate?
160 unsigned lrinst; /// LR instruction
163 const valtype_map_s valtype_map[] = {
164 { MVT::i8, SPU::ORBIr8, true, SPU::LRr8 },
165 { MVT::i16, SPU::ORHIr16, true, SPU::LRr16 },
166 { MVT::i32, SPU::ORIr32, true, SPU::LRr32 },
167 { MVT::i64, SPU::ORr64, false, SPU::LRr64 },
168 { MVT::f32, SPU::ORf32, false, SPU::LRf32 },
169 { MVT::f64, SPU::ORf64, false, SPU::LRf64 },
170 // vector types... (sigh!)
171 { MVT::v16i8, 0, false, SPU::LRv16i8 },
172 { MVT::v8i16, 0, false, SPU::LRv8i16 },
173 { MVT::v4i32, 0, false, SPU::LRv4i32 },
174 { MVT::v2i64, 0, false, SPU::LRv2i64 },
175 { MVT::v4f32, 0, false, SPU::LRv4f32 },
176 { MVT::v2f64, 0, false, SPU::LRv2f64 }
179 const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
181 const valtype_map_s *getValueTypeMapEntry(MVT VT)
183 const valtype_map_s *retval = 0;
184 for (size_t i = 0; i < n_valtype_map; ++i) {
185 if (valtype_map[i].VT == VT) {
186 retval = valtype_map + i;
187 break;
192 #ifndef NDEBUG
193 if (retval == 0) {
194 cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
195 << VT.getMVTString()
196 << "\n";
197 abort();
199 #endif
201 return retval;
204 //! Generate the carry-generate shuffle mask.
205 SDValue getCarryGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
206 SmallVector<SDValue, 16 > ShufBytes;
208 // Create the shuffle mask for "rotating" the borrow up one register slot
209 // once the borrow is generated.
210 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
211 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
212 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
213 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
215 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
216 &ShufBytes[0], ShufBytes.size());
219 //! Generate the borrow-generate shuffle mask
220 SDValue getBorrowGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
221 SmallVector<SDValue, 16 > ShufBytes;
223 // Create the shuffle mask for "rotating" the borrow up one register slot
224 // once the borrow is generated.
225 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
226 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
227 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
228 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
230 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
231 &ShufBytes[0], ShufBytes.size());
234 //===------------------------------------------------------------------===//
235 /// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
236 /// instructions for SelectionDAG operations.
238 class SPUDAGToDAGISel :
239 public SelectionDAGISel
241 SPUTargetMachine &TM;
242 SPUTargetLowering &SPUtli;
243 unsigned GlobalBaseReg;
245 public:
246 explicit SPUDAGToDAGISel(SPUTargetMachine &tm) :
247 SelectionDAGISel(tm),
248 TM(tm),
249 SPUtli(*tm.getTargetLowering())
252 virtual bool runOnFunction(Function &Fn) {
253 // Make sure we re-emit a set of the global base reg if necessary
254 GlobalBaseReg = 0;
255 SelectionDAGISel::runOnFunction(Fn);
256 return true;
259 /// getI32Imm - Return a target constant with the specified value, of type
260 /// i32.
261 inline SDValue getI32Imm(uint32_t Imm) {
262 return CurDAG->getTargetConstant(Imm, MVT::i32);
265 /// getI64Imm - Return a target constant with the specified value, of type
266 /// i64.
267 inline SDValue getI64Imm(uint64_t Imm) {
268 return CurDAG->getTargetConstant(Imm, MVT::i64);
271 /// getSmallIPtrImm - Return a target constant of pointer type.
272 inline SDValue getSmallIPtrImm(unsigned Imm) {
273 return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
276 SDNode *emitBuildVector(SDValue build_vec) {
277 MVT vecVT = build_vec.getValueType();
278 MVT eltVT = vecVT.getVectorElementType();
279 SDNode *bvNode = build_vec.getNode();
280 DebugLoc dl = bvNode->getDebugLoc();
282 // Check to see if this vector can be represented as a CellSPU immediate
283 // constant by invoking all of the instruction selection predicates:
284 if (((vecVT == MVT::v8i16) &&
285 (SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i16).getNode() != 0)) ||
286 ((vecVT == MVT::v4i32) &&
287 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
288 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
289 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
290 (SPU::get_v4i32_imm(bvNode, *CurDAG).getNode() != 0))) ||
291 ((vecVT == MVT::v2i64) &&
292 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
293 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
294 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0))))
295 return Select(build_vec);
297 // No, need to emit a constant pool spill:
298 std::vector<Constant*> CV;
300 for (size_t i = 0; i < build_vec.getNumOperands(); ++i) {
301 ConstantSDNode *V = dyn_cast<ConstantSDNode > (build_vec.getOperand(i));
302 CV.push_back(const_cast<ConstantInt *> (V->getConstantIntValue()));
305 Constant *CP = ConstantVector::get(CV);
306 SDValue CPIdx = CurDAG->getConstantPool(CP, SPUtli.getPointerTy());
307 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
308 SDValue CGPoolOffset =
309 SPU::LowerConstantPool(CPIdx, *CurDAG,
310 SPUtli.getSPUTargetMachine());
311 return SelectCode(CurDAG->getLoad(build_vec.getValueType(), dl,
312 CurDAG->getEntryNode(), CGPoolOffset,
313 PseudoSourceValue::getConstantPool(), 0,
314 false, Alignment));
317 /// Select - Convert the specified operand from a target-independent to a
318 /// target-specific node if it hasn't already been changed.
319 SDNode *Select(SDValue Op);
321 //! Emit the instruction sequence for i64 shl
322 SDNode *SelectSHLi64(SDValue &Op, MVT OpVT);
324 //! Emit the instruction sequence for i64 srl
325 SDNode *SelectSRLi64(SDValue &Op, MVT OpVT);
327 //! Emit the instruction sequence for i64 sra
328 SDNode *SelectSRAi64(SDValue &Op, MVT OpVT);
330 //! Emit the necessary sequence for loading i64 constants:
331 SDNode *SelectI64Constant(SDValue &Op, MVT OpVT, DebugLoc dl);
333 //! Alternate instruction emit sequence for loading i64 constants
334 SDNode *SelectI64Constant(uint64_t i64const, MVT OpVT, DebugLoc dl);
336 //! Returns true if the address N is an A-form (local store) address
337 bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
338 SDValue &Index);
340 //! D-form address predicate
341 bool SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
342 SDValue &Index);
344 /// Alternate D-form address using i7 offset predicate
345 bool SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
346 SDValue &Base);
348 /// D-form address selection workhorse
349 bool DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Disp,
350 SDValue &Base, int minOffset, int maxOffset);
352 //! Address predicate if N can be expressed as an indexed [r+r] operation.
353 bool SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
354 SDValue &Index);
356 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
357 /// inline asm expressions.
358 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
359 char ConstraintCode,
360 std::vector<SDValue> &OutOps) {
361 SDValue Op0, Op1;
362 switch (ConstraintCode) {
363 default: return true;
364 case 'm': // memory
365 if (!SelectDFormAddr(Op, Op, Op0, Op1)
366 && !SelectAFormAddr(Op, Op, Op0, Op1))
367 SelectXFormAddr(Op, Op, Op0, Op1);
368 break;
369 case 'o': // offsetable
370 if (!SelectDFormAddr(Op, Op, Op0, Op1)
371 && !SelectAFormAddr(Op, Op, Op0, Op1)) {
372 Op0 = Op;
373 Op1 = getSmallIPtrImm(0);
375 break;
376 case 'v': // not offsetable
377 #if 1
378 assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled.");
379 #else
380 SelectAddrIdxOnly(Op, Op, Op0, Op1);
381 #endif
382 break;
385 OutOps.push_back(Op0);
386 OutOps.push_back(Op1);
387 return false;
390 /// InstructionSelect - This callback is invoked by
391 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
392 virtual void InstructionSelect();
394 virtual const char *getPassName() const {
395 return "Cell SPU DAG->DAG Pattern Instruction Selection";
398 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
399 /// this target when scheduling the DAG.
400 virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
401 const TargetInstrInfo *II = TM.getInstrInfo();
402 assert(II && "No InstrInfo?");
403 return new SPUHazardRecognizer(*II);
406 // Include the pieces autogenerated from the target description.
407 #include "SPUGenDAGISel.inc"
411 /// InstructionSelect - This callback is invoked by
412 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
413 void
414 SPUDAGToDAGISel::InstructionSelect()
416 DEBUG(BB->dump());
418 // Select target instructions for the DAG.
419 SelectRoot(*CurDAG);
420 CurDAG->RemoveDeadNodes();
424 \arg Op The ISD instruction operand
425 \arg N The address to be tested
426 \arg Base The base address
427 \arg Index The base address index
429 bool
430 SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
431 SDValue &Index) {
432 // These match the addr256k operand type:
433 MVT OffsVT = MVT::i16;
434 SDValue Zero = CurDAG->getTargetConstant(0, OffsVT);
436 switch (N.getOpcode()) {
437 case ISD::Constant:
438 case ISD::ConstantPool:
439 case ISD::GlobalAddress:
440 cerr << "SPU SelectAFormAddr: Constant/Pool/Global not lowered.\n";
441 abort();
442 /*NOTREACHED*/
444 case ISD::TargetConstant:
445 case ISD::TargetGlobalAddress:
446 case ISD::TargetJumpTable:
447 cerr << "SPUSelectAFormAddr: Target Constant/Pool/Global not wrapped as "
448 << "A-form address.\n";
449 abort();
450 /*NOTREACHED*/
452 case SPUISD::AFormAddr:
453 // Just load from memory if there's only a single use of the location,
454 // otherwise, this will get handled below with D-form offset addresses
455 if (N.hasOneUse()) {
456 SDValue Op0 = N.getOperand(0);
457 switch (Op0.getOpcode()) {
458 case ISD::TargetConstantPool:
459 case ISD::TargetJumpTable:
460 Base = Op0;
461 Index = Zero;
462 return true;
464 case ISD::TargetGlobalAddress: {
465 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0);
466 GlobalValue *GV = GSDN->getGlobal();
467 if (GV->getAlignment() == 16) {
468 Base = Op0;
469 Index = Zero;
470 return true;
472 break;
476 break;
478 return false;
481 bool
482 SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
483 SDValue &Base) {
484 const int minDForm2Offset = -(1 << 7);
485 const int maxDForm2Offset = (1 << 7) - 1;
486 return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset,
487 maxDForm2Offset);
491 \arg Op The ISD instruction (ignored)
492 \arg N The address to be tested
493 \arg Base Base address register/pointer
494 \arg Index Base address index
496 Examine the input address by a base register plus a signed 10-bit
497 displacement, [r+I10] (D-form address).
499 \return true if \a N is a D-form address with \a Base and \a Index set
500 to non-empty SDValue instances.
502 bool
503 SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
504 SDValue &Index) {
505 return DFormAddressPredicate(Op, N, Base, Index,
506 SPUFrameInfo::minFrameOffset(),
507 SPUFrameInfo::maxFrameOffset());
510 bool
511 SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
512 SDValue &Index, int minOffset,
513 int maxOffset) {
514 unsigned Opc = N.getOpcode();
515 MVT PtrTy = SPUtli.getPointerTy();
517 if (Opc == ISD::FrameIndex) {
518 // Stack frame index must be less than 512 (divided by 16):
519 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N);
520 int FI = int(FIN->getIndex());
521 DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
522 << FI << "\n");
523 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
524 Base = CurDAG->getTargetConstant(0, PtrTy);
525 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
526 return true;
528 } else if (Opc == ISD::ADD) {
529 // Generated by getelementptr
530 const SDValue Op0 = N.getOperand(0);
531 const SDValue Op1 = N.getOperand(1);
533 if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo)
534 || (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) {
535 Base = CurDAG->getTargetConstant(0, PtrTy);
536 Index = N;
537 return true;
538 } else if (Op1.getOpcode() == ISD::Constant
539 || Op1.getOpcode() == ISD::TargetConstant) {
540 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
541 int32_t offset = int32_t(CN->getSExtValue());
543 if (Op0.getOpcode() == ISD::FrameIndex) {
544 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0);
545 int FI = int(FIN->getIndex());
546 DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
547 << " frame index = " << FI << "\n");
549 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
550 Base = CurDAG->getTargetConstant(offset, PtrTy);
551 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
552 return true;
554 } else if (offset > minOffset && offset < maxOffset) {
555 Base = CurDAG->getTargetConstant(offset, PtrTy);
556 Index = Op0;
557 return true;
559 } else if (Op0.getOpcode() == ISD::Constant
560 || Op0.getOpcode() == ISD::TargetConstant) {
561 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0);
562 int32_t offset = int32_t(CN->getSExtValue());
564 if (Op1.getOpcode() == ISD::FrameIndex) {
565 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1);
566 int FI = int(FIN->getIndex());
567 DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
568 << " frame index = " << FI << "\n");
570 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
571 Base = CurDAG->getTargetConstant(offset, PtrTy);
572 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
573 return true;
575 } else if (offset > minOffset && offset < maxOffset) {
576 Base = CurDAG->getTargetConstant(offset, PtrTy);
577 Index = Op1;
578 return true;
581 } else if (Opc == SPUISD::IndirectAddr) {
582 // Indirect with constant offset -> D-Form address
583 const SDValue Op0 = N.getOperand(0);
584 const SDValue Op1 = N.getOperand(1);
586 if (Op0.getOpcode() == SPUISD::Hi
587 && Op1.getOpcode() == SPUISD::Lo) {
588 // (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0))
589 Base = CurDAG->getTargetConstant(0, PtrTy);
590 Index = N;
591 return true;
592 } else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) {
593 int32_t offset = 0;
594 SDValue idxOp;
596 if (isa<ConstantSDNode>(Op1)) {
597 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
598 offset = int32_t(CN->getSExtValue());
599 idxOp = Op0;
600 } else if (isa<ConstantSDNode>(Op0)) {
601 ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
602 offset = int32_t(CN->getSExtValue());
603 idxOp = Op1;
606 if (offset >= minOffset && offset <= maxOffset) {
607 Base = CurDAG->getTargetConstant(offset, PtrTy);
608 Index = idxOp;
609 return true;
612 } else if (Opc == SPUISD::AFormAddr) {
613 Base = CurDAG->getTargetConstant(0, N.getValueType());
614 Index = N;
615 return true;
616 } else if (Opc == SPUISD::LDRESULT) {
617 Base = CurDAG->getTargetConstant(0, N.getValueType());
618 Index = N;
619 return true;
620 } else if (Opc == ISD::Register || Opc == ISD::CopyFromReg) {
621 unsigned OpOpc = Op.getOpcode();
623 if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) {
624 // Direct load/store without getelementptr
625 SDValue Addr, Offs;
627 // Get the register from CopyFromReg
628 if (Opc == ISD::CopyFromReg)
629 Addr = N.getOperand(1);
630 else
631 Addr = N; // Register
633 Offs = ((OpOpc == ISD::STORE) ? Op.getOperand(3) : Op.getOperand(2));
635 if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) {
636 if (Offs.getOpcode() == ISD::UNDEF)
637 Offs = CurDAG->getTargetConstant(0, Offs.getValueType());
639 Base = Offs;
640 Index = Addr;
641 return true;
643 } else {
644 /* If otherwise unadorned, default to D-form address with 0 offset: */
645 if (Opc == ISD::CopyFromReg) {
646 Index = N.getOperand(1);
647 } else {
648 Index = N;
651 Base = CurDAG->getTargetConstant(0, Index.getValueType());
652 return true;
656 return false;
660 \arg Op The ISD instruction operand
661 \arg N The address operand
662 \arg Base The base pointer operand
663 \arg Index The offset/index operand
665 If the address \a N can be expressed as an A-form or D-form address, returns
666 false. Otherwise, creates two operands, Base and Index that will become the
667 (r)(r) X-form address.
669 bool
670 SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
671 SDValue &Index) {
672 if (!SelectAFormAddr(Op, N, Base, Index)
673 && !SelectDFormAddr(Op, N, Base, Index)) {
674 // If the address is neither A-form or D-form, punt and use an X-form
675 // address:
676 Base = N.getOperand(1);
677 Index = N.getOperand(0);
678 return true;
681 return false;
684 //! Convert the operand from a target-independent to a target-specific node
687 SDNode *
688 SPUDAGToDAGISel::Select(SDValue Op) {
689 SDNode *N = Op.getNode();
690 unsigned Opc = N->getOpcode();
691 int n_ops = -1;
692 unsigned NewOpc;
693 MVT OpVT = Op.getValueType();
694 SDValue Ops[8];
695 DebugLoc dl = N->getDebugLoc();
697 if (N->isMachineOpcode()) {
698 return NULL; // Already selected.
701 if (Opc == ISD::FrameIndex) {
702 int FI = cast<FrameIndexSDNode>(N)->getIndex();
703 SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
704 SDValue Imm0 = CurDAG->getTargetConstant(0, Op.getValueType());
706 if (FI < 128) {
707 NewOpc = SPU::AIr32;
708 Ops[0] = TFI;
709 Ops[1] = Imm0;
710 n_ops = 2;
711 } else {
712 NewOpc = SPU::Ar32;
713 Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType());
714 Ops[1] = SDValue(CurDAG->getTargetNode(SPU::ILAr32, dl, Op.getValueType(),
715 TFI, Imm0), 0);
716 n_ops = 2;
718 } else if (Opc == ISD::Constant && OpVT == MVT::i64) {
719 // Catch the i64 constants that end up here. Note: The backend doesn't
720 // attempt to legalize the constant (it's useless because DAGCombiner
721 // will insert 64-bit constants and we can't stop it).
722 return SelectI64Constant(Op, OpVT, Op.getDebugLoc());
723 } else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
724 && OpVT == MVT::i64) {
725 SDValue Op0 = Op.getOperand(0);
726 MVT Op0VT = Op0.getValueType();
727 MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits()));
728 MVT OpVecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
729 SDValue shufMask;
731 switch (Op0VT.getSimpleVT()) {
732 default:
733 cerr << "CellSPU Select: Unhandled zero/any extend MVT\n";
734 abort();
735 /*NOTREACHED*/
736 break;
737 case MVT::i32:
738 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
739 CurDAG->getConstant(0x80808080, MVT::i32),
740 CurDAG->getConstant(0x00010203, MVT::i32),
741 CurDAG->getConstant(0x80808080, MVT::i32),
742 CurDAG->getConstant(0x08090a0b, MVT::i32));
743 break;
745 case MVT::i16:
746 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
747 CurDAG->getConstant(0x80808080, MVT::i32),
748 CurDAG->getConstant(0x80800203, MVT::i32),
749 CurDAG->getConstant(0x80808080, MVT::i32),
750 CurDAG->getConstant(0x80800a0b, MVT::i32));
751 break;
753 case MVT::i8:
754 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
755 CurDAG->getConstant(0x80808080, MVT::i32),
756 CurDAG->getConstant(0x80808003, MVT::i32),
757 CurDAG->getConstant(0x80808080, MVT::i32),
758 CurDAG->getConstant(0x8080800b, MVT::i32));
759 break;
762 SDNode *shufMaskLoad = emitBuildVector(shufMask);
763 SDNode *PromoteScalar =
764 SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl, Op0VecVT, Op0));
766 SDValue zextShuffle =
767 CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
768 SDValue(PromoteScalar, 0),
769 SDValue(PromoteScalar, 0),
770 SDValue(shufMaskLoad, 0));
772 // N.B.: BIT_CONVERT replaces and updates the zextShuffle node, so we
773 // re-use it in the VEC2PREFSLOT selection without needing to explicitly
774 // call SelectCode (it's already done for us.)
775 SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle));
776 return SelectCode(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
777 zextShuffle));
778 } else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
779 SDNode *CGLoad =
780 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
782 return SelectCode(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
783 Op.getOperand(0), Op.getOperand(1),
784 SDValue(CGLoad, 0)));
785 } else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
786 SDNode *CGLoad =
787 emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl));
789 return SelectCode(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
790 Op.getOperand(0), Op.getOperand(1),
791 SDValue(CGLoad, 0)));
792 } else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
793 SDNode *CGLoad =
794 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
796 return SelectCode(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
797 Op.getOperand(0), Op.getOperand(1),
798 SDValue(CGLoad, 0)));
799 } else if (Opc == ISD::TRUNCATE) {
800 SDValue Op0 = Op.getOperand(0);
801 if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
802 && OpVT == MVT::i32
803 && Op0.getValueType() == MVT::i64) {
804 // Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32
806 // Take advantage of the fact that the upper 32 bits are in the
807 // i32 preferred slot and avoid shuffle gymnastics:
808 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
809 if (CN != 0) {
810 unsigned shift_amt = unsigned(CN->getZExtValue());
812 if (shift_amt >= 32) {
813 SDNode *hi32 =
814 CurDAG->getTargetNode(SPU::ORr32_r64, dl, OpVT,
815 Op0.getOperand(0));
817 shift_amt -= 32;
818 if (shift_amt > 0) {
819 // Take care of the additional shift, if present:
820 SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32);
821 unsigned Opc = SPU::ROTMAIr32_i32;
823 if (Op0.getOpcode() == ISD::SRL)
824 Opc = SPU::ROTMr32;
826 hi32 = CurDAG->getTargetNode(Opc, dl, OpVT, SDValue(hi32, 0),
827 shift);
830 return hi32;
834 } else if (Opc == ISD::SHL) {
835 if (OpVT == MVT::i64) {
836 return SelectSHLi64(Op, OpVT);
838 } else if (Opc == ISD::SRL) {
839 if (OpVT == MVT::i64) {
840 return SelectSRLi64(Op, OpVT);
842 } else if (Opc == ISD::SRA) {
843 if (OpVT == MVT::i64) {
844 return SelectSRAi64(Op, OpVT);
846 } else if (Opc == ISD::FNEG
847 && (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
848 DebugLoc dl = Op.getDebugLoc();
849 // Check if the pattern is a special form of DFNMS:
850 // (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
851 SDValue Op0 = Op.getOperand(0);
852 if (Op0.getOpcode() == ISD::FSUB) {
853 SDValue Op00 = Op0.getOperand(0);
854 if (Op00.getOpcode() == ISD::FMUL) {
855 unsigned Opc = SPU::DFNMSf64;
856 if (OpVT == MVT::v2f64)
857 Opc = SPU::DFNMSv2f64;
859 return CurDAG->getTargetNode(Opc, dl, OpVT,
860 Op00.getOperand(0),
861 Op00.getOperand(1),
862 Op0.getOperand(1));
866 SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64);
867 SDNode *signMask = 0;
868 unsigned Opc = SPU::XORfneg64;
870 if (OpVT == MVT::f64) {
871 signMask = SelectI64Constant(negConst, MVT::i64, dl);
872 } else if (OpVT == MVT::v2f64) {
873 Opc = SPU::XORfnegvec;
874 signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
875 MVT::v2i64,
876 negConst, negConst));
879 return CurDAG->getTargetNode(Opc, dl, OpVT,
880 Op.getOperand(0), SDValue(signMask, 0));
881 } else if (Opc == ISD::FABS) {
882 if (OpVT == MVT::f64) {
883 SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
884 return CurDAG->getTargetNode(SPU::ANDfabs64, dl, OpVT,
885 Op.getOperand(0), SDValue(signMask, 0));
886 } else if (OpVT == MVT::v2f64) {
887 SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
888 SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
889 absConst, absConst);
890 SDNode *signMask = emitBuildVector(absVec);
891 return CurDAG->getTargetNode(SPU::ANDfabsvec, dl, OpVT,
892 Op.getOperand(0), SDValue(signMask, 0));
894 } else if (Opc == SPUISD::LDRESULT) {
895 // Custom select instructions for LDRESULT
896 MVT VT = N->getValueType(0);
897 SDValue Arg = N->getOperand(0);
898 SDValue Chain = N->getOperand(1);
899 SDNode *Result;
900 const valtype_map_s *vtm = getValueTypeMapEntry(VT);
902 if (vtm->ldresult_ins == 0) {
903 cerr << "LDRESULT for unsupported type: "
904 << VT.getMVTString()
905 << "\n";
906 abort();
909 Opc = vtm->ldresult_ins;
910 if (vtm->ldresult_imm) {
911 SDValue Zero = CurDAG->getTargetConstant(0, VT);
913 Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain);
914 } else {
915 Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain);
918 return Result;
919 } else if (Opc == SPUISD::IndirectAddr) {
920 // Look at the operands: SelectCode() will catch the cases that aren't
921 // specifically handled here.
923 // SPUInstrInfo catches the following patterns:
924 // (SPUindirect (SPUhi ...), (SPUlo ...))
925 // (SPUindirect $sp, imm)
926 MVT VT = Op.getValueType();
927 SDValue Op0 = N->getOperand(0);
928 SDValue Op1 = N->getOperand(1);
929 RegisterSDNode *RN;
931 if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo)
932 || (Op0.getOpcode() == ISD::Register
933 && ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0
934 && RN->getReg() != SPU::R1))) {
935 NewOpc = SPU::Ar32;
936 if (Op1.getOpcode() == ISD::Constant) {
937 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
938 Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT);
939 NewOpc = (isI32IntS10Immediate(CN) ? SPU::AIr32 : SPU::Ar32);
941 Ops[0] = Op0;
942 Ops[1] = Op1;
943 n_ops = 2;
947 if (n_ops > 0) {
948 if (N->hasOneUse())
949 return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
950 else
951 return CurDAG->getTargetNode(NewOpc, dl, OpVT, Ops, n_ops);
952 } else
953 return SelectCode(Op);
957 * Emit the instruction sequence for i64 left shifts. The basic algorithm
958 * is to fill the bottom two word slots with zeros so that zeros are shifted
959 * in as the entire quadword is shifted left.
961 * \note This code could also be used to implement v2i64 shl.
963 * @param Op The shl operand
964 * @param OpVT Op's machine value value type (doesn't need to be passed, but
965 * makes life easier.)
966 * @return The SDNode with the entire instruction sequence
968 SDNode *
969 SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) {
970 SDValue Op0 = Op.getOperand(0);
971 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
972 SDValue ShiftAmt = Op.getOperand(1);
973 MVT ShiftAmtVT = ShiftAmt.getValueType();
974 SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
975 SDValue SelMaskVal;
976 DebugLoc dl = Op.getDebugLoc();
978 VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
979 SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
980 SelMask = CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
981 ZeroFill = CurDAG->getTargetNode(SPU::ILv2i64, dl, VecVT,
982 CurDAG->getTargetConstant(0, OpVT));
983 VecOp0 = CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
984 SDValue(ZeroFill, 0),
985 SDValue(VecOp0, 0),
986 SDValue(SelMask, 0));
988 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
989 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
990 unsigned bits = unsigned(CN->getZExtValue()) & 7;
992 if (bytes > 0) {
993 Shift =
994 CurDAG->getTargetNode(SPU::SHLQBYIv2i64, dl, VecVT,
995 SDValue(VecOp0, 0),
996 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
999 if (bits > 0) {
1000 Shift =
1001 CurDAG->getTargetNode(SPU::SHLQBIIv2i64, dl, VecVT,
1002 SDValue((Shift != 0 ? Shift : VecOp0), 0),
1003 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1005 } else {
1006 SDNode *Bytes =
1007 CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
1008 ShiftAmt,
1009 CurDAG->getTargetConstant(3, ShiftAmtVT));
1010 SDNode *Bits =
1011 CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
1012 ShiftAmt,
1013 CurDAG->getTargetConstant(7, ShiftAmtVT));
1014 Shift =
1015 CurDAG->getTargetNode(SPU::SHLQBYv2i64, dl, VecVT,
1016 SDValue(VecOp0, 0), SDValue(Bytes, 0));
1017 Shift =
1018 CurDAG->getTargetNode(SPU::SHLQBIv2i64, dl, VecVT,
1019 SDValue(Shift, 0), SDValue(Bits, 0));
1022 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1026 * Emit the instruction sequence for i64 logical right shifts.
1028 * @param Op The shl operand
1029 * @param OpVT Op's machine value value type (doesn't need to be passed, but
1030 * makes life easier.)
1031 * @return The SDNode with the entire instruction sequence
1033 SDNode *
1034 SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) {
1035 SDValue Op0 = Op.getOperand(0);
1036 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
1037 SDValue ShiftAmt = Op.getOperand(1);
1038 MVT ShiftAmtVT = ShiftAmt.getValueType();
1039 SDNode *VecOp0, *Shift = 0;
1040 DebugLoc dl = Op.getDebugLoc();
1042 VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
1044 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
1045 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
1046 unsigned bits = unsigned(CN->getZExtValue()) & 7;
1048 if (bytes > 0) {
1049 Shift =
1050 CurDAG->getTargetNode(SPU::ROTQMBYIv2i64, dl, VecVT,
1051 SDValue(VecOp0, 0),
1052 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1055 if (bits > 0) {
1056 Shift =
1057 CurDAG->getTargetNode(SPU::ROTQMBIIv2i64, dl, VecVT,
1058 SDValue((Shift != 0 ? Shift : VecOp0), 0),
1059 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1061 } else {
1062 SDNode *Bytes =
1063 CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
1064 ShiftAmt,
1065 CurDAG->getTargetConstant(3, ShiftAmtVT));
1066 SDNode *Bits =
1067 CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
1068 ShiftAmt,
1069 CurDAG->getTargetConstant(7, ShiftAmtVT));
1071 // Ensure that the shift amounts are negated!
1072 Bytes = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1073 SDValue(Bytes, 0),
1074 CurDAG->getTargetConstant(0, ShiftAmtVT));
1076 Bits = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1077 SDValue(Bits, 0),
1078 CurDAG->getTargetConstant(0, ShiftAmtVT));
1080 Shift =
1081 CurDAG->getTargetNode(SPU::ROTQMBYv2i64, dl, VecVT,
1082 SDValue(VecOp0, 0), SDValue(Bytes, 0));
1083 Shift =
1084 CurDAG->getTargetNode(SPU::ROTQMBIv2i64, dl, VecVT,
1085 SDValue(Shift, 0), SDValue(Bits, 0));
1088 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1092 * Emit the instruction sequence for i64 arithmetic right shifts.
1094 * @param Op The shl operand
1095 * @param OpVT Op's machine value value type (doesn't need to be passed, but
1096 * makes life easier.)
1097 * @return The SDNode with the entire instruction sequence
1099 SDNode *
1100 SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, MVT OpVT) {
1101 // Promote Op0 to vector
1102 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
1103 SDValue ShiftAmt = Op.getOperand(1);
1104 MVT ShiftAmtVT = ShiftAmt.getValueType();
1105 DebugLoc dl = Op.getDebugLoc();
1107 SDNode *VecOp0 =
1108 CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
1110 SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
1111 SDNode *SignRot =
1112 CurDAG->getTargetNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
1113 SDValue(VecOp0, 0), SignRotAmt);
1114 SDNode *UpperHalfSign =
1115 CurDAG->getTargetNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0));
1117 SDNode *UpperHalfSignMask =
1118 CurDAG->getTargetNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
1119 SDNode *UpperLowerMask =
1120 CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT,
1121 CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
1122 SDNode *UpperLowerSelect =
1123 CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
1124 SDValue(UpperHalfSignMask, 0),
1125 SDValue(VecOp0, 0),
1126 SDValue(UpperLowerMask, 0));
1128 SDNode *Shift = 0;
1130 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
1131 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
1132 unsigned bits = unsigned(CN->getZExtValue()) & 7;
1134 if (bytes > 0) {
1135 bytes = 31 - bytes;
1136 Shift =
1137 CurDAG->getTargetNode(SPU::ROTQBYIv2i64, dl, VecVT,
1138 SDValue(UpperLowerSelect, 0),
1139 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1142 if (bits > 0) {
1143 bits = 8 - bits;
1144 Shift =
1145 CurDAG->getTargetNode(SPU::ROTQBIIv2i64, dl, VecVT,
1146 SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
1147 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1149 } else {
1150 SDNode *NegShift =
1151 CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1152 ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
1154 Shift =
1155 CurDAG->getTargetNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
1156 SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
1157 Shift =
1158 CurDAG->getTargetNode(SPU::ROTQBIv2i64, dl, VecVT,
1159 SDValue(Shift, 0), SDValue(NegShift, 0));
1162 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1166 Do the necessary magic necessary to load a i64 constant
1168 SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, MVT OpVT,
1169 DebugLoc dl) {
1170 ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
1171 return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
1174 SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT,
1175 DebugLoc dl) {
1176 MVT OpVecVT = MVT::getVectorVT(OpVT, 2);
1177 SDValue i64vec =
1178 SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl);
1180 // Here's where it gets interesting, because we have to parse out the
1181 // subtree handed back in i64vec:
1183 if (i64vec.getOpcode() == ISD::BIT_CONVERT) {
1184 // The degenerate case where the upper and lower bits in the splat are
1185 // identical:
1186 SDValue Op0 = i64vec.getOperand(0);
1188 ReplaceUses(i64vec, Op0);
1189 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1190 SDValue(emitBuildVector(Op0), 0));
1191 } else if (i64vec.getOpcode() == SPUISD::SHUFB) {
1192 SDValue lhs = i64vec.getOperand(0);
1193 SDValue rhs = i64vec.getOperand(1);
1194 SDValue shufmask = i64vec.getOperand(2);
1196 if (lhs.getOpcode() == ISD::BIT_CONVERT) {
1197 ReplaceUses(lhs, lhs.getOperand(0));
1198 lhs = lhs.getOperand(0);
1201 SDNode *lhsNode = (lhs.getNode()->isMachineOpcode()
1202 ? lhs.getNode()
1203 : emitBuildVector(lhs));
1205 if (rhs.getOpcode() == ISD::BIT_CONVERT) {
1206 ReplaceUses(rhs, rhs.getOperand(0));
1207 rhs = rhs.getOperand(0);
1210 SDNode *rhsNode = (rhs.getNode()->isMachineOpcode()
1211 ? rhs.getNode()
1212 : emitBuildVector(rhs));
1214 if (shufmask.getOpcode() == ISD::BIT_CONVERT) {
1215 ReplaceUses(shufmask, shufmask.getOperand(0));
1216 shufmask = shufmask.getOperand(0);
1219 SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode()
1220 ? shufmask.getNode()
1221 : emitBuildVector(shufmask));
1223 SDNode *shufNode =
1224 Select(CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
1225 SDValue(lhsNode, 0), SDValue(rhsNode, 0),
1226 SDValue(shufMaskNode, 0)));
1228 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1229 SDValue(shufNode, 0));
1230 } else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
1231 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1232 SDValue(emitBuildVector(i64vec), 0));
1233 } else {
1234 cerr << "SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec condition\n";
1235 abort();
1239 /// createSPUISelDag - This pass converts a legalized DAG into a
1240 /// SPU-specific DAG, ready for instruction scheduling.
1242 FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
1243 return new SPUDAGToDAGISel(TM);