Split out the Dwarf writer stuff into separate files. This is a much more
[llvm/msp430.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blob6282a4ab554f43ecc410025dd227257030e21d1a
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 using namespace llvm;
50 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55 STATISTIC(NumReMats, "Number of instructions re-materialized");
56 STATISTIC(NumDeletes, "Number of dead instructions deleted");
58 namespace {
59 class VISIBILITY_HIDDEN TwoAddressInstructionPass
60 : public MachineFunctionPass {
61 const TargetInstrInfo *TII;
62 const TargetRegisterInfo *TRI;
63 MachineRegisterInfo *MRI;
64 LiveVariables *LV;
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81 unsigned Reg,
82 MachineBasicBlock::iterator OldPos);
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89 unsigned &LastDef);
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92 unsigned Dist);
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
96 unsigned Dist);
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
102 bool isProfitableToConv3Addr(unsigned RegA);
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
109 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
110 SmallPtrSet<MachineInstr*, 8> &Processed);
111 public:
112 static char ID; // Pass identification, replacement for typeid
113 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
115 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
116 AU.addPreserved<LiveVariables>();
117 AU.addPreservedID(MachineLoopInfoID);
118 AU.addPreservedID(MachineDominatorsID);
119 if (StrongPHIElim)
120 AU.addPreservedID(StrongPHIEliminationID);
121 else
122 AU.addPreservedID(PHIEliminationID);
123 MachineFunctionPass::getAnalysisUsage(AU);
126 /// runOnMachineFunction - Pass entry point.
127 bool runOnMachineFunction(MachineFunction&);
131 char TwoAddressInstructionPass::ID = 0;
132 static RegisterPass<TwoAddressInstructionPass>
133 X("twoaddressinstruction", "Two-Address instruction pass");
135 const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
137 /// Sink3AddrInstruction - A two-address instruction has been converted to a
138 /// three-address instruction to avoid clobbering a register. Try to sink it
139 /// past the instruction that would kill the above mentioned register to reduce
140 /// register pressure.
141 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
142 MachineInstr *MI, unsigned SavedReg,
143 MachineBasicBlock::iterator OldPos) {
144 // Check if it's safe to move this instruction.
145 bool SeenStore = true; // Be conservative.
146 if (!MI->isSafeToMove(TII, SeenStore))
147 return false;
149 unsigned DefReg = 0;
150 SmallSet<unsigned, 4> UseRegs;
152 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
153 const MachineOperand &MO = MI->getOperand(i);
154 if (!MO.isReg())
155 continue;
156 unsigned MOReg = MO.getReg();
157 if (!MOReg)
158 continue;
159 if (MO.isUse() && MOReg != SavedReg)
160 UseRegs.insert(MO.getReg());
161 if (!MO.isDef())
162 continue;
163 if (MO.isImplicit())
164 // Don't try to move it if it implicitly defines a register.
165 return false;
166 if (DefReg)
167 // For now, don't move any instructions that define multiple registers.
168 return false;
169 DefReg = MO.getReg();
172 // Find the instruction that kills SavedReg.
173 MachineInstr *KillMI = NULL;
174 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
175 UE = MRI->use_end(); UI != UE; ++UI) {
176 MachineOperand &UseMO = UI.getOperand();
177 if (!UseMO.isKill())
178 continue;
179 KillMI = UseMO.getParent();
180 break;
183 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
184 return false;
186 // If any of the definitions are used by another instruction between the
187 // position and the kill use, then it's not safe to sink it.
189 // FIXME: This can be sped up if there is an easy way to query whether an
190 // instruction is before or after another instruction. Then we can use
191 // MachineRegisterInfo def / use instead.
192 MachineOperand *KillMO = NULL;
193 MachineBasicBlock::iterator KillPos = KillMI;
194 ++KillPos;
196 unsigned NumVisited = 0;
197 for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
198 MachineInstr *OtherMI = I;
199 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
200 return false;
201 ++NumVisited;
202 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
203 MachineOperand &MO = OtherMI->getOperand(i);
204 if (!MO.isReg())
205 continue;
206 unsigned MOReg = MO.getReg();
207 if (!MOReg)
208 continue;
209 if (DefReg == MOReg)
210 return false;
212 if (MO.isKill()) {
213 if (OtherMI == KillMI && MOReg == SavedReg)
214 // Save the operand that kills the register. We want to unset the kill
215 // marker if we can sink MI past it.
216 KillMO = &MO;
217 else if (UseRegs.count(MOReg))
218 // One of the uses is killed before the destination.
219 return false;
224 // Update kill and LV information.
225 KillMO->setIsKill(false);
226 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
227 KillMO->setIsKill(true);
229 if (LV)
230 LV->replaceKillInstruction(SavedReg, KillMI, MI);
232 // Move instruction to its destination.
233 MBB->remove(MI);
234 MBB->insert(KillPos, MI);
236 ++Num3AddrSunk;
237 return true;
240 /// isTwoAddrUse - Return true if the specified MI is using the specified
241 /// register as a two-address operand.
242 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
243 const TargetInstrDesc &TID = UseMI->getDesc();
244 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
245 MachineOperand &MO = UseMI->getOperand(i);
246 if (MO.isReg() && MO.getReg() == Reg &&
247 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
248 // Earlier use is a two-address one.
249 return true;
251 return false;
254 /// isProfitableToReMat - Return true if the heuristics determines it is likely
255 /// to be profitable to re-materialize the definition of Reg rather than copy
256 /// the register.
257 bool
258 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
259 const TargetRegisterClass *RC,
260 MachineInstr *MI, MachineInstr *DefMI,
261 MachineBasicBlock *MBB, unsigned Loc) {
262 bool OtherUse = false;
263 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
264 UE = MRI->use_end(); UI != UE; ++UI) {
265 MachineOperand &UseMO = UI.getOperand();
266 MachineInstr *UseMI = UseMO.getParent();
267 MachineBasicBlock *UseMBB = UseMI->getParent();
268 if (UseMBB == MBB) {
269 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
270 if (DI != DistanceMap.end() && DI->second == Loc)
271 continue; // Current use.
272 OtherUse = true;
273 // There is at least one other use in the MBB that will clobber the
274 // register.
275 if (isTwoAddrUse(UseMI, Reg))
276 return true;
280 // If other uses in MBB are not two-address uses, then don't remat.
281 if (OtherUse)
282 return false;
284 // No other uses in the same block, remat if it's defined in the same
285 // block so it does not unnecessarily extend the live range.
286 return MBB == DefMI->getParent();
289 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
290 /// last instruction in the MBB that defines the specified register and the
291 /// two-address instruction which is being processed. It also returns the last
292 /// def location by reference
293 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
294 MachineBasicBlock *MBB, unsigned Dist,
295 unsigned &LastDef) {
296 LastDef = 0;
297 unsigned LastUse = Dist;
298 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
299 E = MRI->reg_end(); I != E; ++I) {
300 MachineOperand &MO = I.getOperand();
301 MachineInstr *MI = MO.getParent();
302 if (MI->getParent() != MBB)
303 continue;
304 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
305 if (DI == DistanceMap.end())
306 continue;
307 if (MO.isUse() && DI->second < LastUse)
308 LastUse = DI->second;
309 if (MO.isDef() && DI->second > LastDef)
310 LastDef = DI->second;
313 return !(LastUse > LastDef && LastUse < Dist);
316 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
317 MachineBasicBlock *MBB,
318 unsigned Dist) {
319 unsigned LastUseDist = 0;
320 MachineInstr *LastUse = 0;
321 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
322 E = MRI->reg_end(); I != E; ++I) {
323 MachineOperand &MO = I.getOperand();
324 MachineInstr *MI = MO.getParent();
325 if (MI->getParent() != MBB)
326 continue;
327 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
328 if (DI == DistanceMap.end())
329 continue;
330 if (DI->second >= Dist)
331 continue;
333 if (MO.isUse() && DI->second > LastUseDist) {
334 LastUse = DI->first;
335 LastUseDist = DI->second;
338 return LastUse;
341 /// isCopyToReg - Return true if the specified MI is a copy instruction or
342 /// a extract_subreg instruction. It also returns the source and destination
343 /// registers and whether they are physical registers by reference.
344 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
345 unsigned &SrcReg, unsigned &DstReg,
346 bool &IsSrcPhys, bool &IsDstPhys) {
347 SrcReg = 0;
348 DstReg = 0;
349 unsigned SrcSubIdx, DstSubIdx;
350 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
351 if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
352 DstReg = MI.getOperand(0).getReg();
353 SrcReg = MI.getOperand(1).getReg();
354 } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
355 DstReg = MI.getOperand(0).getReg();
356 SrcReg = MI.getOperand(2).getReg();
357 } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
358 DstReg = MI.getOperand(0).getReg();
359 SrcReg = MI.getOperand(2).getReg();
363 if (DstReg) {
364 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
365 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
366 return true;
368 return false;
371 /// isKilled - Test if the given register value, which is used by the given
372 /// instruction, is killed by the given instruction. This looks through
373 /// coalescable copies to see if the original value is potentially not killed.
375 /// For example, in this code:
377 /// %reg1034 = copy %reg1024
378 /// %reg1035 = copy %reg1025<kill>
379 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
381 /// %reg1034 is not considered to be killed, since it is copied from a
382 /// register which is not killed. Treating it as not killed lets the
383 /// normal heuristics commute the (two-address) add, which lets
384 /// coalescing eliminate the extra copy.
386 static bool isKilled(MachineInstr &MI, unsigned Reg,
387 const MachineRegisterInfo *MRI,
388 const TargetInstrInfo *TII) {
389 MachineInstr *DefMI = &MI;
390 for (;;) {
391 if (!DefMI->killsRegister(Reg))
392 return false;
393 if (TargetRegisterInfo::isPhysicalRegister(Reg))
394 return true;
395 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
396 // If there are multiple defs, we can't do a simple analysis, so just
397 // go with what the kill flag says.
398 if (next(Begin) != MRI->def_end())
399 return true;
400 DefMI = &*Begin;
401 bool IsSrcPhys, IsDstPhys;
402 unsigned SrcReg, DstReg;
403 // If the def is something other than a copy, then it isn't going to
404 // be coalesced, so follow the kill flag.
405 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
406 return true;
407 Reg = SrcReg;
411 /// isTwoAddrUse - Return true if the specified MI uses the specified register
412 /// as a two-address use. If so, return the destination register by reference.
413 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
414 const TargetInstrDesc &TID = MI.getDesc();
415 unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
416 ? MI.getNumOperands() : TID.getNumOperands();
417 for (unsigned i = 0; i != NumOps; ++i) {
418 const MachineOperand &MO = MI.getOperand(i);
419 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
420 continue;
421 unsigned ti;
422 if (MI.isRegTiedToDefOperand(i, &ti)) {
423 DstReg = MI.getOperand(ti).getReg();
424 return true;
427 return false;
430 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
431 /// use, return the use instruction if it's a copy or a two-address use.
432 static
433 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
434 MachineRegisterInfo *MRI,
435 const TargetInstrInfo *TII,
436 bool &IsCopy,
437 unsigned &DstReg, bool &IsDstPhys) {
438 MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
439 if (UI == MRI->use_end())
440 return 0;
441 MachineInstr &UseMI = *UI;
442 if (++UI != MRI->use_end())
443 // More than one use.
444 return 0;
445 if (UseMI.getParent() != MBB)
446 return 0;
447 unsigned SrcReg;
448 bool IsSrcPhys;
449 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
450 IsCopy = true;
451 return &UseMI;
453 IsDstPhys = false;
454 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
455 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
456 return &UseMI;
458 return 0;
461 /// getMappedReg - Return the physical register the specified virtual register
462 /// might be mapped to.
463 static unsigned
464 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
465 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
466 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
467 if (SI == RegMap.end())
468 return 0;
469 Reg = SI->second;
471 if (TargetRegisterInfo::isPhysicalRegister(Reg))
472 return Reg;
473 return 0;
476 /// regsAreCompatible - Return true if the two registers are equal or aliased.
478 static bool
479 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
480 if (RegA == RegB)
481 return true;
482 if (!RegA || !RegB)
483 return false;
484 return TRI->regsOverlap(RegA, RegB);
488 /// isProfitableToReMat - Return true if it's potentially profitable to commute
489 /// the two-address instruction that's being processed.
490 bool
491 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
492 MachineInstr *MI, MachineBasicBlock *MBB,
493 unsigned Dist) {
494 // Determine if it's profitable to commute this two address instruction. In
495 // general, we want no uses between this instruction and the definition of
496 // the two-address register.
497 // e.g.
498 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
499 // %reg1029<def> = MOV8rr %reg1028
500 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
501 // insert => %reg1030<def> = MOV8rr %reg1028
502 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
503 // In this case, it might not be possible to coalesce the second MOV8rr
504 // instruction if the first one is coalesced. So it would be profitable to
505 // commute it:
506 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
507 // %reg1029<def> = MOV8rr %reg1028
508 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
509 // insert => %reg1030<def> = MOV8rr %reg1029
510 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
512 if (!MI->killsRegister(regC))
513 return false;
515 // Ok, we have something like:
516 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
517 // let's see if it's worth commuting it.
519 // Look for situations like this:
520 // %reg1024<def> = MOV r1
521 // %reg1025<def> = MOV r0
522 // %reg1026<def> = ADD %reg1024, %reg1025
523 // r0 = MOV %reg1026
524 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
525 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
526 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
527 unsigned ToRegB = getMappedReg(regB, DstRegMap);
528 unsigned ToRegC = getMappedReg(regC, DstRegMap);
529 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
530 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
531 regsAreCompatible(FromRegC, ToRegB, TRI)))
532 return true;
534 // If there is a use of regC between its last def (could be livein) and this
535 // instruction, then bail.
536 unsigned LastDefC = 0;
537 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
538 return false;
540 // If there is a use of regB between its last def (could be livein) and this
541 // instruction, then go ahead and make this transformation.
542 unsigned LastDefB = 0;
543 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
544 return true;
546 // Since there are no intervening uses for both registers, then commute
547 // if the def of regC is closer. Its live interval is shorter.
548 return LastDefB && LastDefC && LastDefC > LastDefB;
551 /// CommuteInstruction - Commute a two-address instruction and update the basic
552 /// block, distance map, and live variables if needed. Return true if it is
553 /// successful.
554 bool
555 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
556 MachineFunction::iterator &mbbi,
557 unsigned RegB, unsigned RegC, unsigned Dist) {
558 MachineInstr *MI = mi;
559 DOUT << "2addr: COMMUTING : " << *MI;
560 MachineInstr *NewMI = TII->commuteInstruction(MI);
562 if (NewMI == 0) {
563 DOUT << "2addr: COMMUTING FAILED!\n";
564 return false;
567 DOUT << "2addr: COMMUTED TO: " << *NewMI;
568 // If the instruction changed to commute it, update livevar.
569 if (NewMI != MI) {
570 if (LV)
571 // Update live variables
572 LV->replaceKillInstruction(RegC, MI, NewMI);
574 mbbi->insert(mi, NewMI); // Insert the new inst
575 mbbi->erase(mi); // Nuke the old inst.
576 mi = NewMI;
577 DistanceMap.insert(std::make_pair(NewMI, Dist));
580 // Update source register map.
581 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
582 if (FromRegC) {
583 unsigned RegA = MI->getOperand(0).getReg();
584 SrcRegMap[RegA] = FromRegC;
587 return true;
590 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
591 /// given 2-address instruction to a 3-address one.
592 bool
593 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
594 // Look for situations like this:
595 // %reg1024<def> = MOV r1
596 // %reg1025<def> = MOV r0
597 // %reg1026<def> = ADD %reg1024, %reg1025
598 // r2 = MOV %reg1026
599 // Turn ADD into a 3-address instruction to avoid a copy.
600 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
601 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
602 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
605 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
606 /// three address one. Return true if this transformation was successful.
607 bool
608 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
609 MachineBasicBlock::iterator &nmi,
610 MachineFunction::iterator &mbbi,
611 unsigned RegB, unsigned Dist) {
612 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
613 if (NewMI) {
614 DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
615 DOUT << "2addr: TO 3-ADDR: " << *NewMI;
616 bool Sunk = false;
618 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
619 // FIXME: Temporary workaround. If the new instruction doesn't
620 // uses RegB, convertToThreeAddress must have created more
621 // then one instruction.
622 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
624 mbbi->erase(mi); // Nuke the old inst.
626 if (!Sunk) {
627 DistanceMap.insert(std::make_pair(NewMI, Dist));
628 mi = NewMI;
629 nmi = next(mi);
631 return true;
634 return false;
637 /// ProcessCopy - If the specified instruction is not yet processed, process it
638 /// if it's a copy. For a copy instruction, we find the physical registers the
639 /// source and destination registers might be mapped to. These are kept in
640 /// point-to maps used to determine future optimizations. e.g.
641 /// v1024 = mov r0
642 /// v1025 = mov r1
643 /// v1026 = add v1024, v1025
644 /// r1 = mov r1026
645 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
646 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
647 /// potentially joined with r1 on the output side. It's worthwhile to commute
648 /// 'add' to eliminate a copy.
649 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
650 MachineBasicBlock *MBB,
651 SmallPtrSet<MachineInstr*, 8> &Processed) {
652 if (Processed.count(MI))
653 return;
655 bool IsSrcPhys, IsDstPhys;
656 unsigned SrcReg, DstReg;
657 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
658 return;
660 if (IsDstPhys && !IsSrcPhys)
661 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
662 else if (!IsDstPhys && IsSrcPhys) {
663 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
664 if (!isNew)
665 assert(SrcRegMap[DstReg] == SrcReg &&
666 "Can't map to two src physical registers!");
668 SmallVector<unsigned, 4> VirtRegPairs;
669 bool IsCopy = false;
670 unsigned NewReg = 0;
671 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
672 IsCopy, NewReg, IsDstPhys)) {
673 if (IsCopy) {
674 if (!Processed.insert(UseMI))
675 break;
678 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
679 if (DI != DistanceMap.end())
680 // Earlier in the same MBB.Reached via a back edge.
681 break;
683 if (IsDstPhys) {
684 VirtRegPairs.push_back(NewReg);
685 break;
687 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
688 if (!isNew)
689 assert(SrcRegMap[NewReg] == DstReg &&
690 "Can't map to two src physical registers!");
691 VirtRegPairs.push_back(NewReg);
692 DstReg = NewReg;
695 if (!VirtRegPairs.empty()) {
696 unsigned ToReg = VirtRegPairs.back();
697 VirtRegPairs.pop_back();
698 while (!VirtRegPairs.empty()) {
699 unsigned FromReg = VirtRegPairs.back();
700 VirtRegPairs.pop_back();
701 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
702 if (!isNew)
703 assert(DstRegMap[FromReg] == ToReg &&
704 "Can't map to two dst physical registers!");
705 ToReg = FromReg;
710 Processed.insert(MI);
713 /// isSafeToDelete - If the specified instruction does not produce any side
714 /// effects and all of its defs are dead, then it's safe to delete.
715 static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
716 const TargetInstrInfo *TII,
717 SmallVector<unsigned, 4> &Kills) {
718 const TargetInstrDesc &TID = MI->getDesc();
719 if (TID.mayStore() || TID.isCall())
720 return false;
721 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
722 return false;
724 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
725 MachineOperand &MO = MI->getOperand(i);
726 if (!MO.isReg())
727 continue;
728 if (MO.isDef() && !MO.isDead())
729 return false;
730 if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
731 Kills.push_back(MO.getReg());
734 return true;
737 /// runOnMachineFunction - Reduce two-address instructions to two operands.
739 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
740 DOUT << "Machine Function\n";
741 const TargetMachine &TM = MF.getTarget();
742 MRI = &MF.getRegInfo();
743 TII = TM.getInstrInfo();
744 TRI = TM.getRegisterInfo();
745 LV = getAnalysisIfAvailable<LiveVariables>();
747 bool MadeChange = false;
749 DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
750 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
752 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
753 BitVector ReMatRegs;
754 ReMatRegs.resize(MRI->getLastVirtReg()+1);
756 SmallPtrSet<MachineInstr*, 8> Processed;
757 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
758 mbbi != mbbe; ++mbbi) {
759 unsigned Dist = 0;
760 DistanceMap.clear();
761 SrcRegMap.clear();
762 DstRegMap.clear();
763 Processed.clear();
764 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
765 mi != me; ) {
766 MachineBasicBlock::iterator nmi = next(mi);
767 const TargetInstrDesc &TID = mi->getDesc();
768 bool FirstTied = true;
770 DistanceMap.insert(std::make_pair(mi, ++Dist));
772 ProcessCopy(&*mi, &*mbbi, Processed);
774 unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
775 ? mi->getNumOperands() : TID.getNumOperands();
776 for (unsigned si = 0; si < NumOps; ++si) {
777 unsigned ti = 0;
778 if (!mi->isRegTiedToDefOperand(si, &ti))
779 continue;
781 if (FirstTied) {
782 ++NumTwoAddressInstrs;
783 DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
786 FirstTied = false;
788 assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
789 mi->getOperand(si).isUse() && "two address instruction invalid");
791 // If the two operands are the same we just remove the use
792 // and mark the def as def&use, otherwise we have to insert a copy.
793 if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
794 // Rewrite:
795 // a = b op c
796 // to:
797 // a = b
798 // a = a op c
799 unsigned regA = mi->getOperand(ti).getReg();
800 unsigned regB = mi->getOperand(si).getReg();
802 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
803 "cannot update physical register live information");
805 #ifndef NDEBUG
806 // First, verify that we don't have a use of a in the instruction (a =
807 // b + a for example) because our transformation will not work. This
808 // should never occur because we are in SSA form.
809 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
810 assert(i == ti ||
811 !mi->getOperand(i).isReg() ||
812 mi->getOperand(i).getReg() != regA);
813 #endif
815 // If this instruction is not the killing user of B, see if we can
816 // rearrange the code to make it so. Making it the killing user will
817 // allow us to coalesce A and B together, eliminating the copy we are
818 // about to insert.
819 if (!isKilled(*mi, regB, MRI, TII)) {
820 // If regA is dead and the instruction can be deleted, just delete
821 // it so it doesn't clobber regB.
822 SmallVector<unsigned, 4> Kills;
823 if (mi->getOperand(ti).isDead() &&
824 isSafeToDelete(mi, regB, TII, Kills)) {
825 SmallVector<std::pair<std::pair<unsigned, bool>
826 ,MachineInstr*>, 4> NewKills;
827 bool ReallySafe = true;
828 // If this instruction kills some virtual registers, we need
829 // update the kill information. If it's not possible to do so,
830 // then bail out.
831 while (!Kills.empty()) {
832 unsigned Kill = Kills.back();
833 Kills.pop_back();
834 if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
835 ReallySafe = false;
836 break;
838 MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
839 if (LastKill) {
840 bool isModRef = LastKill->modifiesRegister(Kill);
841 NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
842 LastKill));
843 } else {
844 ReallySafe = false;
845 break;
849 if (ReallySafe) {
850 if (LV) {
851 while (!NewKills.empty()) {
852 MachineInstr *NewKill = NewKills.back().second;
853 unsigned Kill = NewKills.back().first.first;
854 bool isDead = NewKills.back().first.second;
855 NewKills.pop_back();
856 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
857 if (isDead)
858 LV->addVirtualRegisterDead(Kill, NewKill);
859 else
860 LV->addVirtualRegisterKilled(Kill, NewKill);
865 // We're really going to nuke the old inst. If regB was marked
866 // as a kill we need to update its Kills list.
867 if (mi->getOperand(si).isKill())
868 LV->removeVirtualRegisterKilled(regB, mi);
870 mbbi->erase(mi); // Nuke the old inst.
871 mi = nmi;
872 ++NumDeletes;
873 break; // Done with this instruction.
877 // If this instruction is commutative, check to see if C dies. If
878 // so, swap the B and C operands. This makes the live ranges of A
879 // and C joinable.
880 // FIXME: This code also works for A := B op C instructions.
881 if (TID.isCommutable() && mi->getNumOperands() >= 3) {
882 assert(mi->getOperand(3-si).isReg() &&
883 "Not a proper commutative instruction!");
884 unsigned regC = mi->getOperand(3-si).getReg();
885 if (isKilled(*mi, regC, MRI, TII)) {
886 if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
887 ++NumCommuted;
888 regB = regC;
889 goto InstructionRearranged;
894 // If this instruction is potentially convertible to a true
895 // three-address instruction,
896 if (TID.isConvertibleTo3Addr()) {
897 // FIXME: This assumes there are no more operands which are tied
898 // to another register.
899 #ifndef NDEBUG
900 for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
901 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
902 #endif
904 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
905 ++NumConvertedTo3Addr;
906 break; // Done with this instruction.
911 // If it's profitable to commute the instruction, do so.
912 if (TID.isCommutable() && mi->getNumOperands() >= 3) {
913 unsigned regC = mi->getOperand(3-si).getReg();
914 if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
915 if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
916 ++NumAggrCommuted;
917 ++NumCommuted;
918 regB = regC;
919 goto InstructionRearranged;
923 // If it's profitable to convert the 2-address instruction to a
924 // 3-address one, do so.
925 if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
926 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
927 ++NumConvertedTo3Addr;
928 break; // Done with this instruction.
932 InstructionRearranged:
933 const TargetRegisterClass* rc = MRI->getRegClass(regB);
934 MachineInstr *DefMI = MRI->getVRegDef(regB);
935 // If it's safe and profitable, remat the definition instead of
936 // copying it.
937 if (DefMI &&
938 DefMI->getDesc().isAsCheapAsAMove() &&
939 DefMI->isSafeToReMat(TII, regB) &&
940 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
941 DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
942 TII->reMaterialize(*mbbi, mi, regA, DefMI);
943 ReMatRegs.set(regB);
944 ++NumReMats;
945 } else {
946 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
947 (void)Emitted;
948 assert(Emitted && "Unable to issue a copy instruction!\n");
951 MachineBasicBlock::iterator prevMI = prior(mi);
952 // Update DistanceMap.
953 DistanceMap.insert(std::make_pair(prevMI, Dist));
954 DistanceMap[mi] = ++Dist;
956 // Update live variables for regB.
957 if (LV) {
958 LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
960 // regB is used in this BB.
961 varInfoB.UsedBlocks[mbbi->getNumber()] = true;
963 if (LV->removeVirtualRegisterKilled(regB, mi))
964 LV->addVirtualRegisterKilled(regB, prevMI);
966 if (LV->removeVirtualRegisterDead(regB, mi))
967 LV->addVirtualRegisterDead(regB, prevMI);
970 DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
972 // Replace all occurences of regB with regA.
973 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
974 if (mi->getOperand(i).isReg() &&
975 mi->getOperand(i).getReg() == regB)
976 mi->getOperand(i).setReg(regA);
980 assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
981 mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
982 MadeChange = true;
984 DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
987 mi = nmi;
991 // Some remat'ed instructions are dead.
992 int VReg = ReMatRegs.find_first();
993 while (VReg != -1) {
994 if (MRI->use_empty(VReg)) {
995 MachineInstr *DefMI = MRI->getVRegDef(VReg);
996 DefMI->eraseFromParent();
998 VReg = ReMatRegs.find_next(VReg);
1001 return MadeChange;