1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Streams.h"
33 class MachineFunction
;
34 class TargetInstrInfo
;
35 class TargetRegisterInfo
;
37 class VirtRegMap
: public MachineFunctionPass
{
41 NO_STACK_SLOT
= (1L << 30)-1,
42 MAX_STACK_SLOT
= (1L << 18)-1
45 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
46 typedef std::multimap
<MachineInstr
*,
47 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
50 const TargetInstrInfo
*TII
;
51 const TargetRegisterInfo
*TRI
;
54 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
56 /// Virt2PhysMap - This is a virtual to physical register
57 /// mapping. Each virtual register is required to have an entry in
58 /// it; even spilled virtual registers (the register mapped to a
59 /// spilled register is the temporary used to load it from the
61 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
63 /// Virt2StackSlotMap - This is virtual register to stack slot
64 /// mapping. Each spilled virtual register has an entry in it
65 /// which corresponds to the stack slot this register is spilled
67 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
69 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
70 /// mapping. Each spilled virtual register that should be remat'd has an
71 /// entry in it which corresponds to the remat id.
72 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
74 /// Virt2SplitMap - This is virtual register to splitted virtual register
76 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
78 /// Virt2SplitKillMap - This is splitted virtual register to its last use
79 /// (kill) index mapping.
80 IndexedMap
<unsigned> Virt2SplitKillMap
;
82 /// ReMatMap - This is virtual register to re-materialized instruction
83 /// mapping. Each virtual register whose definition is going to be
84 /// re-materialized has an entry in it.
85 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
87 /// MI2VirtMap - This is MachineInstr to virtual register
88 /// mapping. In the case of memory spill code being folded into
89 /// instructions, we need to know which virtual register was
90 /// read/written by this instruction.
91 MI2VirtMapTy MI2VirtMap
;
93 /// SpillPt2VirtMap - This records the virtual registers which should
94 /// be spilled right after the MachineInstr due to live interval
96 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
99 /// RestorePt2VirtMap - This records the virtual registers which should
100 /// be restored right before the MachineInstr due to live interval
102 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
104 /// EmergencySpillMap - This records the physical registers that should
105 /// be spilled / restored around the MachineInstr since the register
106 /// allocator has run out of registers.
107 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
109 /// EmergencySpillSlots - This records emergency spill slots used to
110 /// spill physical registers when the register allocator runs out of
111 /// registers. Ideally only one stack slot is used per function per
113 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
115 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
116 /// virtual register, an unique id is being assigned. This keeps track of
117 /// the highest id used so far. Note, this starts at (1<<18) to avoid
118 /// conflicts with stack slot numbers.
121 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
122 int LowSpillSlot
, HighSpillSlot
;
124 /// SpillSlotToUsesMap - Records uses for each register spill slot.
125 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
127 /// ImplicitDefed - One bit for each virtual register. If set it indicates
128 /// the register is implicitly defined.
129 BitVector ImplicitDefed
;
131 /// UnusedRegs - A list of physical registers that have not been used.
132 BitVector UnusedRegs
;
134 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
135 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
139 VirtRegMap() : MachineFunctionPass(&ID
), Virt2PhysMap(NO_PHYS_REG
),
140 Virt2StackSlotMap(NO_STACK_SLOT
),
141 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
142 Virt2SplitKillMap(0), ReMatMap(NULL
),
143 ReMatId(MAX_STACK_SLOT
+1),
144 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
145 virtual bool runOnMachineFunction(MachineFunction
&MF
);
147 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
148 AU
.setPreservesAll();
149 MachineFunctionPass::getAnalysisUsage(AU
);
154 /// @brief returns true if the specified virtual register is
155 /// mapped to a physical register
156 bool hasPhys(unsigned virtReg
) const {
157 return getPhys(virtReg
) != NO_PHYS_REG
;
160 /// @brief returns the physical register mapped to the specified
162 unsigned getPhys(unsigned virtReg
) const {
163 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
164 return Virt2PhysMap
[virtReg
];
167 /// @brief creates a mapping for the specified virtual register to
168 /// the specified physical register
169 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
170 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
171 TargetRegisterInfo::isPhysicalRegister(physReg
));
172 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
173 "attempt to assign physical register to already mapped "
175 Virt2PhysMap
[virtReg
] = physReg
;
178 /// @brief clears the specified virtual register's, physical
180 void clearVirt(unsigned virtReg
) {
181 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
182 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
183 "attempt to clear a not assigned virtual register");
184 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
187 /// @brief clears all virtual to physical register mappings
188 void clearAllVirt() {
189 Virt2PhysMap
.clear();
193 /// @brief records virtReg is a split live interval from SReg.
194 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
195 Virt2SplitMap
[virtReg
] = SReg
;
198 /// @brief returns the live interval virtReg is split from.
199 unsigned getPreSplitReg(unsigned virtReg
) {
200 return Virt2SplitMap
[virtReg
];
203 /// @brief returns true if the specified virtual register is not
204 /// mapped to a stack slot or rematerialized.
205 bool isAssignedReg(unsigned virtReg
) const {
206 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
207 getReMatId(virtReg
) == NO_STACK_SLOT
)
209 // Split register can be assigned a physical register as well as a
210 // stack slot or remat id.
211 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
214 /// @brief returns the stack slot mapped to the specified virtual
216 int getStackSlot(unsigned virtReg
) const {
217 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
218 return Virt2StackSlotMap
[virtReg
];
221 /// @brief returns the rematerialization id mapped to the specified virtual
223 int getReMatId(unsigned virtReg
) const {
224 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
225 return Virt2ReMatIdMap
[virtReg
];
228 /// @brief create a mapping for the specifed virtual register to
229 /// the next available stack slot
230 int assignVirt2StackSlot(unsigned virtReg
);
231 /// @brief create a mapping for the specified virtual register to
232 /// the specified stack slot
233 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
235 /// @brief assign an unique re-materialization id to the specified
236 /// virtual register.
237 int assignVirtReMatId(unsigned virtReg
);
238 /// @brief assign an unique re-materialization id to the specified
239 /// virtual register.
240 void assignVirtReMatId(unsigned virtReg
, int id
);
242 /// @brief returns true if the specified virtual register is being
244 bool isReMaterialized(unsigned virtReg
) const {
245 return ReMatMap
[virtReg
] != NULL
;
248 /// @brief returns the original machine instruction being re-issued
249 /// to re-materialize the specified virtual register.
250 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
251 return ReMatMap
[virtReg
];
254 /// @brief records the specified virtual register will be
255 /// re-materialized and the original instruction which will be re-issed
256 /// for this purpose. If parameter all is true, then all uses of the
257 /// registers are rematerialized and it's safe to delete the definition.
258 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
259 ReMatMap
[virtReg
] = def
;
262 /// @brief record the last use (kill) of a split virtual register.
263 void addKillPoint(unsigned virtReg
, unsigned index
) {
264 Virt2SplitKillMap
[virtReg
] = index
;
267 unsigned getKillPoint(unsigned virtReg
) const {
268 return Virt2SplitKillMap
[virtReg
];
271 /// @brief remove the last use (kill) of a split virtual register.
272 void removeKillPoint(unsigned virtReg
) {
273 Virt2SplitKillMap
[virtReg
] = 0;
276 /// @brief returns true if the specified MachineInstr is a spill point.
277 bool isSpillPt(MachineInstr
*Pt
) const {
278 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
281 /// @brief returns the virtual registers that should be spilled due to
282 /// splitting right after the specified MachineInstr.
283 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
284 return SpillPt2VirtMap
[Pt
];
287 /// @brief records the specified MachineInstr as a spill point for virtReg.
288 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
289 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
290 I
= SpillPt2VirtMap
.find(Pt
);
291 if (I
!= SpillPt2VirtMap
.end())
292 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
294 std::vector
<std::pair
<unsigned,bool> > Virts
;
295 Virts
.push_back(std::make_pair(virtReg
, isKill
));
296 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
300 /// @brief - transfer spill point information from one instruction to
302 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
303 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
304 I
= SpillPt2VirtMap
.find(Old
);
305 if (I
== SpillPt2VirtMap
.end())
307 while (!I
->second
.empty()) {
308 unsigned virtReg
= I
->second
.back().first
;
309 bool isKill
= I
->second
.back().second
;
310 I
->second
.pop_back();
311 addSpillPoint(virtReg
, isKill
, New
);
313 SpillPt2VirtMap
.erase(I
);
316 /// @brief returns true if the specified MachineInstr is a restore point.
317 bool isRestorePt(MachineInstr
*Pt
) const {
318 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
321 /// @brief returns the virtual registers that should be restoreed due to
322 /// splitting right after the specified MachineInstr.
323 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
324 return RestorePt2VirtMap
[Pt
];
327 /// @brief records the specified MachineInstr as a restore point for virtReg.
328 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
329 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
330 RestorePt2VirtMap
.find(Pt
);
331 if (I
!= RestorePt2VirtMap
.end())
332 I
->second
.push_back(virtReg
);
334 std::vector
<unsigned> Virts
;
335 Virts
.push_back(virtReg
);
336 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
340 /// @brief - transfer restore point information from one instruction to
342 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
343 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
344 RestorePt2VirtMap
.find(Old
);
345 if (I
== RestorePt2VirtMap
.end())
347 while (!I
->second
.empty()) {
348 unsigned virtReg
= I
->second
.back();
349 I
->second
.pop_back();
350 addRestorePoint(virtReg
, New
);
352 RestorePt2VirtMap
.erase(I
);
355 /// @brief records that the specified physical register must be spilled
356 /// around the specified machine instr.
357 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
358 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
359 EmergencySpillMap
[MI
].push_back(PhysReg
);
361 std::vector
<unsigned> PhysRegs
;
362 PhysRegs
.push_back(PhysReg
);
363 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
367 /// @brief returns true if one or more physical registers must be spilled
368 /// around the specified instruction.
369 bool hasEmergencySpills(MachineInstr
*MI
) const {
370 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
373 /// @brief returns the physical registers to be spilled and restored around
375 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
376 return EmergencySpillMap
[MI
];
379 /// @brief - transfer emergency spill information from one instruction to
381 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
382 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
383 EmergencySpillMap
.find(Old
);
384 if (I
== EmergencySpillMap
.end())
386 while (!I
->second
.empty()) {
387 unsigned virtReg
= I
->second
.back();
388 I
->second
.pop_back();
389 addEmergencySpill(virtReg
, New
);
391 EmergencySpillMap
.erase(I
);
394 /// @brief return or get a emergency spill slot for the register class.
395 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
397 /// @brief Return lowest spill slot index.
398 int getLowSpillSlot() const {
402 /// @brief Return highest spill slot index.
403 int getHighSpillSlot() const {
404 return HighSpillSlot
;
407 /// @brief Records a spill slot use.
408 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
410 /// @brief Returns true if spill slot has been used.
411 bool isSpillSlotUsed(int FrameIndex
) const {
412 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
413 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
416 /// @brief Mark the specified register as being implicitly defined.
417 void setIsImplicitlyDefined(unsigned VirtReg
) {
418 ImplicitDefed
.set(VirtReg
-TargetRegisterInfo::FirstVirtualRegister
);
421 /// @brief Returns true if the virtual register is implicitly defined.
422 bool isImplicitlyDefined(unsigned VirtReg
) const {
423 return ImplicitDefed
[VirtReg
-TargetRegisterInfo::FirstVirtualRegister
];
426 /// @brief Updates information about the specified virtual register's value
427 /// folded into newMI machine instruction.
428 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
431 /// @brief Updates information about the specified virtual register's value
432 /// folded into the specified machine instruction.
433 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
435 /// @brief returns the virtual registers' values folded in memory
436 /// operands of this instruction
437 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
438 getFoldedVirts(MachineInstr
* MI
) const {
439 return MI2VirtMap
.equal_range(MI
);
442 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
443 /// the folded instruction map and spill point map.
444 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
446 /// FindUnusedRegisters - Gather a list of allocatable registers that
447 /// have not been allocated to any virtual register.
448 bool FindUnusedRegisters(const TargetRegisterInfo
*TRI
,
451 /// HasUnusedRegisters - Return true if there are any allocatable registers
452 /// that have not been allocated to any virtual register.
453 bool HasUnusedRegisters() const {
454 return !UnusedRegs
.none();
457 /// setRegisterUsed - Remember the physical register is now used.
458 void setRegisterUsed(unsigned Reg
) {
459 UnusedRegs
.reset(Reg
);
462 /// isRegisterUnused - Return true if the physical register has not been
464 bool isRegisterUnused(unsigned Reg
) const {
465 return UnusedRegs
[Reg
];
468 /// getFirstUnusedRegister - Return the first physical register that has not
470 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
471 int Reg
= UnusedRegs
.find_first();
473 if (allocatableRCRegs
[RC
][Reg
])
474 return (unsigned)Reg
;
475 Reg
= UnusedRegs
.find_next(Reg
);
480 void print(std::ostream
&OS
, const Module
* M
= 0) const;
481 void print(std::ostream
*OS
) const { if (OS
) print(*OS
); }
485 inline std::ostream
*operator<<(std::ostream
*OS
, const VirtRegMap
&VRM
) {
489 inline std::ostream
&operator<<(std::ostream
&OS
, const VirtRegMap
&VRM
) {
493 } // End llvm namespace