Re-apply 70645, converting ScalarEvolution to use
[llvm/msp430.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
blob6d1180d0dd9a4ac7ef2213f6a5f17da2ec2046d7
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Constant.h"
20 #include "llvm/Type.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include <algorithm>
28 using namespace llvm;
30 /// DeleteDeadBlock - Delete the specified block, which must have no
31 /// predecessors.
32 void llvm::DeleteDeadBlock(BasicBlock *BB) {
33 assert((pred_begin(BB) == pred_end(BB) ||
34 // Can delete self loop.
35 BB->getSinglePredecessor() == BB) && "Block is not dead!");
36 TerminatorInst *BBTerm = BB->getTerminator();
38 // Loop through all of our successors and make sure they know that one
39 // of their predecessors is going away.
40 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
41 BBTerm->getSuccessor(i)->removePredecessor(BB);
43 // Zap all the instructions in the block.
44 while (!BB->empty()) {
45 Instruction &I = BB->back();
46 // If this instruction is used, replace uses with an arbitrary value.
47 // Because control flow can't get here, we don't care what we replace the
48 // value with. Note that since this block is unreachable, and all values
49 // contained within it must dominate their uses, that all uses will
50 // eventually be removed (they are themselves dead).
51 if (!I.use_empty())
52 I.replaceAllUsesWith(UndefValue::get(I.getType()));
53 BB->getInstList().pop_back();
56 // Zap the block!
57 BB->eraseFromParent();
60 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
61 /// any single-entry PHI nodes in it, fold them away. This handles the case
62 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
63 /// when the block has exactly one predecessor.
64 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
65 if (!isa<PHINode>(BB->begin()))
66 return;
68 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
69 if (PN->getIncomingValue(0) != PN)
70 PN->replaceAllUsesWith(PN->getIncomingValue(0));
71 else
72 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
73 PN->eraseFromParent();
78 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
79 /// is dead. Also recursively delete any operands that become dead as
80 /// a result. This includes tracing the def-use list from the PHI to see if
81 /// it is ultimately unused or if it reaches an unused cycle.
82 void llvm::DeleteDeadPHIs(BasicBlock *BB) {
83 // Recursively deleting a PHI may cause multiple PHIs to be deleted
84 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
85 SmallVector<WeakVH, 8> PHIs;
86 for (BasicBlock::iterator I = BB->begin();
87 PHINode *PN = dyn_cast<PHINode>(I); ++I)
88 PHIs.push_back(PN);
90 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
91 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
92 RecursivelyDeleteDeadPHINode(PN);
95 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
96 /// if possible. The return value indicates success or failure.
97 bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
98 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
99 // Can't merge the entry block.
100 if (pred_begin(BB) == pred_end(BB)) return false;
102 BasicBlock *PredBB = *PI++;
103 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
104 if (*PI != PredBB) {
105 PredBB = 0; // There are multiple different predecessors...
106 break;
109 // Can't merge if there are multiple predecessors.
110 if (!PredBB) return false;
111 // Don't break self-loops.
112 if (PredBB == BB) return false;
113 // Don't break invokes.
114 if (isa<InvokeInst>(PredBB->getTerminator())) return false;
116 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
117 BasicBlock* OnlySucc = BB;
118 for (; SI != SE; ++SI)
119 if (*SI != OnlySucc) {
120 OnlySucc = 0; // There are multiple distinct successors!
121 break;
124 // Can't merge if there are multiple successors.
125 if (!OnlySucc) return false;
127 // Can't merge if there is PHI loop.
128 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
129 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
130 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
131 if (PN->getIncomingValue(i) == PN)
132 return false;
133 } else
134 break;
137 // Begin by getting rid of unneeded PHIs.
138 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
139 PN->replaceAllUsesWith(PN->getIncomingValue(0));
140 BB->getInstList().pop_front(); // Delete the phi node...
143 // Delete the unconditional branch from the predecessor...
144 PredBB->getInstList().pop_back();
146 // Move all definitions in the successor to the predecessor...
147 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
149 // Make all PHI nodes that referred to BB now refer to Pred as their
150 // source...
151 BB->replaceAllUsesWith(PredBB);
153 // Inherit predecessors name if it exists.
154 if (!PredBB->hasName())
155 PredBB->takeName(BB);
157 // Finally, erase the old block and update dominator info.
158 if (P) {
159 if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
160 DomTreeNode* DTN = DT->getNode(BB);
161 DomTreeNode* PredDTN = DT->getNode(PredBB);
163 if (DTN) {
164 SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
165 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
166 DE = Children.end(); DI != DE; ++DI)
167 DT->changeImmediateDominator(*DI, PredDTN);
169 DT->eraseNode(BB);
174 BB->eraseFromParent();
177 return true;
180 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
181 /// with a value, then remove and delete the original instruction.
183 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
184 BasicBlock::iterator &BI, Value *V) {
185 Instruction &I = *BI;
186 // Replaces all of the uses of the instruction with uses of the value
187 I.replaceAllUsesWith(V);
189 // Make sure to propagate a name if there is one already.
190 if (I.hasName() && !V->hasName())
191 V->takeName(&I);
193 // Delete the unnecessary instruction now...
194 BI = BIL.erase(BI);
198 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
199 /// instruction specified by I. The original instruction is deleted and BI is
200 /// updated to point to the new instruction.
202 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
203 BasicBlock::iterator &BI, Instruction *I) {
204 assert(I->getParent() == 0 &&
205 "ReplaceInstWithInst: Instruction already inserted into basic block!");
207 // Insert the new instruction into the basic block...
208 BasicBlock::iterator New = BIL.insert(BI, I);
210 // Replace all uses of the old instruction, and delete it.
211 ReplaceInstWithValue(BIL, BI, I);
213 // Move BI back to point to the newly inserted instruction
214 BI = New;
217 /// ReplaceInstWithInst - Replace the instruction specified by From with the
218 /// instruction specified by To.
220 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
221 BasicBlock::iterator BI(From);
222 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
225 /// RemoveSuccessor - Change the specified terminator instruction such that its
226 /// successor SuccNum no longer exists. Because this reduces the outgoing
227 /// degree of the current basic block, the actual terminator instruction itself
228 /// may have to be changed. In the case where the last successor of the block
229 /// is deleted, a return instruction is inserted in its place which can cause a
230 /// surprising change in program behavior if it is not expected.
232 void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
233 assert(SuccNum < TI->getNumSuccessors() &&
234 "Trying to remove a nonexistant successor!");
236 // If our old successor block contains any PHI nodes, remove the entry in the
237 // PHI nodes that comes from this branch...
239 BasicBlock *BB = TI->getParent();
240 TI->getSuccessor(SuccNum)->removePredecessor(BB);
242 TerminatorInst *NewTI = 0;
243 switch (TI->getOpcode()) {
244 case Instruction::Br:
245 // If this is a conditional branch... convert to unconditional branch.
246 if (TI->getNumSuccessors() == 2) {
247 cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
248 } else { // Otherwise convert to a return instruction...
249 Value *RetVal = 0;
251 // Create a value to return... if the function doesn't return null...
252 if (BB->getParent()->getReturnType() != Type::VoidTy)
253 RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
255 // Create the return...
256 NewTI = ReturnInst::Create(RetVal);
258 break;
260 case Instruction::Invoke: // Should convert to call
261 case Instruction::Switch: // Should remove entry
262 default:
263 case Instruction::Ret: // Cannot happen, has no successors!
264 assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
265 abort();
268 if (NewTI) // If it's a different instruction, replace.
269 ReplaceInstWithInst(TI, NewTI);
272 /// SplitEdge - Split the edge connecting specified block. Pass P must
273 /// not be NULL.
274 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
275 TerminatorInst *LatchTerm = BB->getTerminator();
276 unsigned SuccNum = 0;
277 #ifndef NDEBUG
278 unsigned e = LatchTerm->getNumSuccessors();
279 #endif
280 for (unsigned i = 0; ; ++i) {
281 assert(i != e && "Didn't find edge?");
282 if (LatchTerm->getSuccessor(i) == Succ) {
283 SuccNum = i;
284 break;
288 // If this is a critical edge, let SplitCriticalEdge do it.
289 if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
290 return LatchTerm->getSuccessor(SuccNum);
292 // If the edge isn't critical, then BB has a single successor or Succ has a
293 // single pred. Split the block.
294 BasicBlock::iterator SplitPoint;
295 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
296 // If the successor only has a single pred, split the top of the successor
297 // block.
298 assert(SP == BB && "CFG broken");
299 SP = NULL;
300 return SplitBlock(Succ, Succ->begin(), P);
301 } else {
302 // Otherwise, if BB has a single successor, split it at the bottom of the
303 // block.
304 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
305 "Should have a single succ!");
306 return SplitBlock(BB, BB->getTerminator(), P);
310 /// SplitBlock - Split the specified block at the specified instruction - every
311 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
312 /// to a new block. The two blocks are joined by an unconditional branch and
313 /// the loop info is updated.
315 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
316 BasicBlock::iterator SplitIt = SplitPt;
317 while (isa<PHINode>(SplitIt))
318 ++SplitIt;
319 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
321 // The new block lives in whichever loop the old one did.
322 if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
323 if (Loop *L = LI->getLoopFor(Old))
324 L->addBasicBlockToLoop(New, LI->getBase());
326 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
328 // Old dominates New. New node domiantes all other nodes dominated by Old.
329 DomTreeNode *OldNode = DT->getNode(Old);
330 std::vector<DomTreeNode *> Children;
331 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
332 I != E; ++I)
333 Children.push_back(*I);
335 DomTreeNode *NewNode = DT->addNewBlock(New,Old);
337 for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
338 E = Children.end(); I != E; ++I)
339 DT->changeImmediateDominator(*I, NewNode);
342 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
343 DF->splitBlock(Old);
345 return New;
349 /// SplitBlockPredecessors - This method transforms BB by introducing a new
350 /// basic block into the function, and moving some of the predecessors of BB to
351 /// be predecessors of the new block. The new predecessors are indicated by the
352 /// Preds array, which has NumPreds elements in it. The new block is given a
353 /// suffix of 'Suffix'.
355 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
356 /// DominanceFrontier, but no other analyses.
357 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
358 BasicBlock *const *Preds,
359 unsigned NumPreds, const char *Suffix,
360 Pass *P) {
361 // Create new basic block, insert right before the original block.
362 BasicBlock *NewBB =
363 BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
365 // The new block unconditionally branches to the old block.
366 BranchInst *BI = BranchInst::Create(BB, NewBB);
368 // Move the edges from Preds to point to NewBB instead of BB.
369 for (unsigned i = 0; i != NumPreds; ++i)
370 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
372 // Update dominator tree and dominator frontier if available.
373 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
374 if (DT)
375 DT->splitBlock(NewBB);
376 if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
377 DF->splitBlock(NewBB);
378 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
381 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
382 // node becomes an incoming value for BB's phi node. However, if the Preds
383 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
384 // account for the newly created predecessor.
385 if (NumPreds == 0) {
386 // Insert dummy values as the incoming value.
387 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
388 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
389 return NewBB;
392 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
393 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
394 PHINode *PN = cast<PHINode>(I++);
396 // Check to see if all of the values coming in are the same. If so, we
397 // don't need to create a new PHI node.
398 Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
399 for (unsigned i = 1; i != NumPreds; ++i)
400 if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
401 InVal = 0;
402 break;
405 if (InVal) {
406 // If all incoming values for the new PHI would be the same, just don't
407 // make a new PHI. Instead, just remove the incoming values from the old
408 // PHI.
409 for (unsigned i = 0; i != NumPreds; ++i)
410 PN->removeIncomingValue(Preds[i], false);
411 } else {
412 // If the values coming into the block are not the same, we need a PHI.
413 // Create the new PHI node, insert it into NewBB at the end of the block
414 PHINode *NewPHI =
415 PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
416 if (AA) AA->copyValue(PN, NewPHI);
418 // Move all of the PHI values for 'Preds' to the new PHI.
419 for (unsigned i = 0; i != NumPreds; ++i) {
420 Value *V = PN->removeIncomingValue(Preds[i], false);
421 NewPHI->addIncoming(V, Preds[i]);
423 InVal = NewPHI;
426 // Add an incoming value to the PHI node in the loop for the preheader
427 // edge.
428 PN->addIncoming(InVal, NewBB);
430 // Check to see if we can eliminate this phi node.
431 if (Value *V = PN->hasConstantValue(DT != 0)) {
432 Instruction *I = dyn_cast<Instruction>(V);
433 if (!I || DT == 0 || DT->dominates(I, PN)) {
434 PN->replaceAllUsesWith(V);
435 if (AA) AA->deleteValue(PN);
436 PN->eraseFromParent();
441 return NewBB;
444 /// FindFunctionBackedges - Analyze the specified function to find all of the
445 /// loop backedges in the function and return them. This is a relatively cheap
446 /// (compared to computing dominators and loop info) analysis.
448 /// The output is added to Result, as pairs of <from,to> edge info.
449 void llvm::FindFunctionBackedges(const Function &F,
450 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
451 const BasicBlock *BB = &F.getEntryBlock();
452 if (succ_begin(BB) == succ_end(BB))
453 return;
455 SmallPtrSet<const BasicBlock*, 8> Visited;
456 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
457 SmallPtrSet<const BasicBlock*, 8> InStack;
459 Visited.insert(BB);
460 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
461 InStack.insert(BB);
462 do {
463 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
464 const BasicBlock *ParentBB = Top.first;
465 succ_const_iterator &I = Top.second;
467 bool FoundNew = false;
468 while (I != succ_end(ParentBB)) {
469 BB = *I++;
470 if (Visited.insert(BB)) {
471 FoundNew = true;
472 break;
474 // Successor is in VisitStack, it's a back edge.
475 if (InStack.count(BB))
476 Result.push_back(std::make_pair(ParentBB, BB));
479 if (FoundNew) {
480 // Go down one level if there is a unvisited successor.
481 InStack.insert(BB);
482 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
483 } else {
484 // Go up one level.
485 InStack.erase(VisitStack.pop_back_val().first);
487 } while (!VisitStack.empty());
494 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
495 /// value. This includes recognizing that %t0 and %t1 will have the same
496 /// value in code like this:
497 /// %t0 = getelementptr \@a, 0, 3
498 /// store i32 0, i32* %t0
499 /// %t1 = getelementptr \@a, 0, 3
500 /// %t2 = load i32* %t1
502 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
503 // Test if the values are trivially equivalent.
504 if (A == B) return true;
506 // Test if the values come form identical arithmetic instructions.
507 if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
508 isa<PHINode>(A) || isa<GetElementPtrInst>(A))
509 if (const Instruction *BI = dyn_cast<Instruction>(B))
510 if (cast<Instruction>(A)->isIdenticalTo(BI))
511 return true;
513 // Otherwise they may not be equivalent.
514 return false;
517 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
518 /// instruction before ScanFrom) checking to see if we have the value at the
519 /// memory address *Ptr locally available within a small number of instructions.
520 /// If the value is available, return it.
522 /// If not, return the iterator for the last validated instruction that the
523 /// value would be live through. If we scanned the entire block and didn't find
524 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
525 /// begin() and this returns null. ScanFrom could also be left
527 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
528 /// it is set to 0, it will scan the whole block. You can also optionally
529 /// specify an alias analysis implementation, which makes this more precise.
530 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
531 BasicBlock::iterator &ScanFrom,
532 unsigned MaxInstsToScan,
533 AliasAnalysis *AA) {
534 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
536 // If we're using alias analysis to disambiguate get the size of *Ptr.
537 unsigned AccessSize = 0;
538 if (AA) {
539 const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
540 AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
543 while (ScanFrom != ScanBB->begin()) {
544 // We must ignore debug info directives when counting (otherwise they
545 // would affect codegen).
546 Instruction *Inst = --ScanFrom;
547 if (isa<DbgInfoIntrinsic>(Inst))
548 continue;
549 // We skip pointer-to-pointer bitcasts, which are NOPs.
550 // It is necessary for correctness to skip those that feed into a
551 // llvm.dbg.declare, as these are not present when debugging is off.
552 if (isa<BitCastInst>(Inst) && isa<PointerType>(Inst->getType()))
553 continue;
555 // Restore ScanFrom to expected value in case next test succeeds
556 ScanFrom++;
558 // Don't scan huge blocks.
559 if (MaxInstsToScan-- == 0) return 0;
561 --ScanFrom;
562 // If this is a load of Ptr, the loaded value is available.
563 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
564 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
565 return LI;
567 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
568 // If this is a store through Ptr, the value is available!
569 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
570 return SI->getOperand(0);
572 // If Ptr is an alloca and this is a store to a different alloca, ignore
573 // the store. This is a trivial form of alias analysis that is important
574 // for reg2mem'd code.
575 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
576 (isa<AllocaInst>(SI->getOperand(1)) ||
577 isa<GlobalVariable>(SI->getOperand(1))))
578 continue;
580 // If we have alias analysis and it says the store won't modify the loaded
581 // value, ignore the store.
582 if (AA &&
583 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
584 continue;
586 // Otherwise the store that may or may not alias the pointer, bail out.
587 ++ScanFrom;
588 return 0;
591 // If this is some other instruction that may clobber Ptr, bail out.
592 if (Inst->mayWriteToMemory()) {
593 // If alias analysis claims that it really won't modify the load,
594 // ignore it.
595 if (AA &&
596 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
597 continue;
599 // May modify the pointer, bail out.
600 ++ScanFrom;
601 return 0;
605 // Got to the start of the block, we didn't find it, but are done for this
606 // block.
607 return 0;
610 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
611 /// make a copy of the stoppoint before InsertPos (presumably before copying
612 /// or moving I).
613 void llvm::CopyPrecedingStopPoint(Instruction *I,
614 BasicBlock::iterator InsertPos) {
615 if (I != I->getParent()->begin()) {
616 BasicBlock::iterator BBI = I; --BBI;
617 if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
618 CallInst *newDSPI = DSPI->clone();
619 newDSPI->insertBefore(InsertPos);