Add 8-bit regclass and pattern for sext_inreg
[llvm/msp430.git] / lib / Target / CBackend / CBackend.cpp
blob5b35580a7dba10a40d8d4793e13bace1c25e0ead
1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library converts LLVM code to C code, compilable by GCC and other C
11 // compilers.
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/Analysis/ConstantsScanner.h"
28 #include "llvm/Analysis/FindUsedTypes.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Target/TargetMachineRegistry.h"
34 #include "llvm/Target/TargetAsmInfo.h"
35 #include "llvm/Target/TargetData.h"
36 #include "llvm/Support/CallSite.h"
37 #include "llvm/Support/CFG.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/InstVisitor.h"
40 #include "llvm/Support/Mangler.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Config/config.h"
47 #include <algorithm>
48 #include <sstream>
49 using namespace llvm;
51 /// CBackendTargetMachineModule - Note that this is used on hosts that
52 /// cannot link in a library unless there are references into the
53 /// library. In particular, it seems that it is not possible to get
54 /// things to work on Win32 without this. Though it is unused, do not
55 /// remove it.
56 extern "C" int CBackendTargetMachineModule;
57 int CBackendTargetMachineModule = 0;
59 // Register the target.
60 static RegisterTarget<CTargetMachine> X("c", "C backend");
62 namespace {
63 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
64 /// any unnamed structure types that are used by the program, and merges
65 /// external functions with the same name.
66 ///
67 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
68 public:
69 static char ID;
70 CBackendNameAllUsedStructsAndMergeFunctions()
71 : ModulePass(&ID) {}
72 void getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.addRequired<FindUsedTypes>();
76 virtual const char *getPassName() const {
77 return "C backend type canonicalizer";
80 virtual bool runOnModule(Module &M);
83 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
85 /// CWriter - This class is the main chunk of code that converts an LLVM
86 /// module to a C translation unit.
87 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
88 raw_ostream &Out;
89 IntrinsicLowering *IL;
90 Mangler *Mang;
91 LoopInfo *LI;
92 const Module *TheModule;
93 const TargetAsmInfo* TAsm;
94 const TargetData* TD;
95 std::map<const Type *, std::string> TypeNames;
96 std::map<const ConstantFP *, unsigned> FPConstantMap;
97 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
98 std::set<const Argument*> ByValParams;
99 unsigned FPCounter;
101 public:
102 static char ID;
103 explicit CWriter(raw_ostream &o)
104 : FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
105 TheModule(0), TAsm(0), TD(0) {
106 FPCounter = 0;
109 virtual const char *getPassName() const { return "C backend"; }
111 void getAnalysisUsage(AnalysisUsage &AU) const {
112 AU.addRequired<LoopInfo>();
113 AU.setPreservesAll();
116 virtual bool doInitialization(Module &M);
118 bool runOnFunction(Function &F) {
119 // Do not codegen any 'available_externally' functions at all, they have
120 // definitions outside the translation unit.
121 if (F.hasAvailableExternallyLinkage())
122 return false;
124 LI = &getAnalysis<LoopInfo>();
126 // Get rid of intrinsics we can't handle.
127 lowerIntrinsics(F);
129 // Output all floating point constants that cannot be printed accurately.
130 printFloatingPointConstants(F);
132 printFunction(F);
133 return false;
136 virtual bool doFinalization(Module &M) {
137 // Free memory...
138 delete IL;
139 delete TD;
140 delete Mang;
141 FPConstantMap.clear();
142 TypeNames.clear();
143 ByValParams.clear();
144 intrinsicPrototypesAlreadyGenerated.clear();
145 return false;
148 raw_ostream &printType(raw_ostream &Out, const Type *Ty,
149 bool isSigned = false,
150 const std::string &VariableName = "",
151 bool IgnoreName = false,
152 const AttrListPtr &PAL = AttrListPtr());
153 std::ostream &printType(std::ostream &Out, const Type *Ty,
154 bool isSigned = false,
155 const std::string &VariableName = "",
156 bool IgnoreName = false,
157 const AttrListPtr &PAL = AttrListPtr());
158 raw_ostream &printSimpleType(raw_ostream &Out, const Type *Ty,
159 bool isSigned,
160 const std::string &NameSoFar = "");
161 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
162 bool isSigned,
163 const std::string &NameSoFar = "");
165 void printStructReturnPointerFunctionType(raw_ostream &Out,
166 const AttrListPtr &PAL,
167 const PointerType *Ty);
169 /// writeOperandDeref - Print the result of dereferencing the specified
170 /// operand with '*'. This is equivalent to printing '*' then using
171 /// writeOperand, but avoids excess syntax in some cases.
172 void writeOperandDeref(Value *Operand) {
173 if (isAddressExposed(Operand)) {
174 // Already something with an address exposed.
175 writeOperandInternal(Operand);
176 } else {
177 Out << "*(";
178 writeOperand(Operand);
179 Out << ")";
183 void writeOperand(Value *Operand, bool Static = false);
184 void writeInstComputationInline(Instruction &I);
185 void writeOperandInternal(Value *Operand, bool Static = false);
186 void writeOperandWithCast(Value* Operand, unsigned Opcode);
187 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
188 bool writeInstructionCast(const Instruction &I);
190 void writeMemoryAccess(Value *Operand, const Type *OperandType,
191 bool IsVolatile, unsigned Alignment);
193 private :
194 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
196 void lowerIntrinsics(Function &F);
198 void printModule(Module *M);
199 void printModuleTypes(const TypeSymbolTable &ST);
200 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
201 void printFloatingPointConstants(Function &F);
202 void printFloatingPointConstants(const Constant *C);
203 void printFunctionSignature(const Function *F, bool Prototype);
205 void printFunction(Function &);
206 void printBasicBlock(BasicBlock *BB);
207 void printLoop(Loop *L);
209 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
210 void printConstant(Constant *CPV, bool Static);
211 void printConstantWithCast(Constant *CPV, unsigned Opcode);
212 bool printConstExprCast(const ConstantExpr *CE, bool Static);
213 void printConstantArray(ConstantArray *CPA, bool Static);
214 void printConstantVector(ConstantVector *CV, bool Static);
216 /// isAddressExposed - Return true if the specified value's name needs to
217 /// have its address taken in order to get a C value of the correct type.
218 /// This happens for global variables, byval parameters, and direct allocas.
219 bool isAddressExposed(const Value *V) const {
220 if (const Argument *A = dyn_cast<Argument>(V))
221 return ByValParams.count(A);
222 return isa<GlobalVariable>(V) || isDirectAlloca(V);
225 // isInlinableInst - Attempt to inline instructions into their uses to build
226 // trees as much as possible. To do this, we have to consistently decide
227 // what is acceptable to inline, so that variable declarations don't get
228 // printed and an extra copy of the expr is not emitted.
230 static bool isInlinableInst(const Instruction &I) {
231 // Always inline cmp instructions, even if they are shared by multiple
232 // expressions. GCC generates horrible code if we don't.
233 if (isa<CmpInst>(I))
234 return true;
236 // Must be an expression, must be used exactly once. If it is dead, we
237 // emit it inline where it would go.
238 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
239 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
240 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
241 isa<InsertValueInst>(I))
242 // Don't inline a load across a store or other bad things!
243 return false;
245 // Must not be used in inline asm, extractelement, or shufflevector.
246 if (I.hasOneUse()) {
247 const Instruction &User = cast<Instruction>(*I.use_back());
248 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
249 isa<ShuffleVectorInst>(User))
250 return false;
253 // Only inline instruction it if it's use is in the same BB as the inst.
254 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
257 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
258 // variables which are accessed with the & operator. This causes GCC to
259 // generate significantly better code than to emit alloca calls directly.
261 static const AllocaInst *isDirectAlloca(const Value *V) {
262 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
263 if (!AI) return false;
264 if (AI->isArrayAllocation())
265 return 0; // FIXME: we can also inline fixed size array allocas!
266 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
267 return 0;
268 return AI;
271 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
272 static bool isInlineAsm(const Instruction& I) {
273 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
274 return true;
275 return false;
278 // Instruction visitation functions
279 friend class InstVisitor<CWriter>;
281 void visitReturnInst(ReturnInst &I);
282 void visitBranchInst(BranchInst &I);
283 void visitSwitchInst(SwitchInst &I);
284 void visitInvokeInst(InvokeInst &I) {
285 assert(0 && "Lowerinvoke pass didn't work!");
288 void visitUnwindInst(UnwindInst &I) {
289 assert(0 && "Lowerinvoke pass didn't work!");
291 void visitUnreachableInst(UnreachableInst &I);
293 void visitPHINode(PHINode &I);
294 void visitBinaryOperator(Instruction &I);
295 void visitICmpInst(ICmpInst &I);
296 void visitFCmpInst(FCmpInst &I);
298 void visitCastInst (CastInst &I);
299 void visitSelectInst(SelectInst &I);
300 void visitCallInst (CallInst &I);
301 void visitInlineAsm(CallInst &I);
302 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
304 void visitMallocInst(MallocInst &I);
305 void visitAllocaInst(AllocaInst &I);
306 void visitFreeInst (FreeInst &I);
307 void visitLoadInst (LoadInst &I);
308 void visitStoreInst (StoreInst &I);
309 void visitGetElementPtrInst(GetElementPtrInst &I);
310 void visitVAArgInst (VAArgInst &I);
312 void visitInsertElementInst(InsertElementInst &I);
313 void visitExtractElementInst(ExtractElementInst &I);
314 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
316 void visitInsertValueInst(InsertValueInst &I);
317 void visitExtractValueInst(ExtractValueInst &I);
319 void visitInstruction(Instruction &I) {
320 cerr << "C Writer does not know about " << I;
321 abort();
324 void outputLValue(Instruction *I) {
325 Out << " " << GetValueName(I) << " = ";
328 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
329 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
330 BasicBlock *Successor, unsigned Indent);
331 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
332 unsigned Indent);
333 void printGEPExpression(Value *Ptr, gep_type_iterator I,
334 gep_type_iterator E, bool Static);
336 std::string GetValueName(const Value *Operand);
340 char CWriter::ID = 0;
342 /// This method inserts names for any unnamed structure types that are used by
343 /// the program, and removes names from structure types that are not used by the
344 /// program.
346 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
347 // Get a set of types that are used by the program...
348 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
350 // Loop over the module symbol table, removing types from UT that are
351 // already named, and removing names for types that are not used.
353 TypeSymbolTable &TST = M.getTypeSymbolTable();
354 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
355 TI != TE; ) {
356 TypeSymbolTable::iterator I = TI++;
358 // If this isn't a struct or array type, remove it from our set of types
359 // to name. This simplifies emission later.
360 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
361 !isa<ArrayType>(I->second)) {
362 TST.remove(I);
363 } else {
364 // If this is not used, remove it from the symbol table.
365 std::set<const Type *>::iterator UTI = UT.find(I->second);
366 if (UTI == UT.end())
367 TST.remove(I);
368 else
369 UT.erase(UTI); // Only keep one name for this type.
373 // UT now contains types that are not named. Loop over it, naming
374 // structure types.
376 bool Changed = false;
377 unsigned RenameCounter = 0;
378 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
379 I != E; ++I)
380 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
381 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
382 ++RenameCounter;
383 Changed = true;
387 // Loop over all external functions and globals. If we have two with
388 // identical names, merge them.
389 // FIXME: This code should disappear when we don't allow values with the same
390 // names when they have different types!
391 std::map<std::string, GlobalValue*> ExtSymbols;
392 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
393 Function *GV = I++;
394 if (GV->isDeclaration() && GV->hasName()) {
395 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
396 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
397 if (!X.second) {
398 // Found a conflict, replace this global with the previous one.
399 GlobalValue *OldGV = X.first->second;
400 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
401 GV->eraseFromParent();
402 Changed = true;
406 // Do the same for globals.
407 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
408 I != E;) {
409 GlobalVariable *GV = I++;
410 if (GV->isDeclaration() && GV->hasName()) {
411 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
412 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
413 if (!X.second) {
414 // Found a conflict, replace this global with the previous one.
415 GlobalValue *OldGV = X.first->second;
416 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
417 GV->eraseFromParent();
418 Changed = true;
423 return Changed;
426 /// printStructReturnPointerFunctionType - This is like printType for a struct
427 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
428 /// print it as "Struct (*)(...)", for struct return functions.
429 void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
430 const AttrListPtr &PAL,
431 const PointerType *TheTy) {
432 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
433 std::stringstream FunctionInnards;
434 FunctionInnards << " (*) (";
435 bool PrintedType = false;
437 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
438 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
439 unsigned Idx = 1;
440 for (++I, ++Idx; I != E; ++I, ++Idx) {
441 if (PrintedType)
442 FunctionInnards << ", ";
443 const Type *ArgTy = *I;
444 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
445 assert(isa<PointerType>(ArgTy));
446 ArgTy = cast<PointerType>(ArgTy)->getElementType();
448 printType(FunctionInnards, ArgTy,
449 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
450 PrintedType = true;
452 if (FTy->isVarArg()) {
453 if (PrintedType)
454 FunctionInnards << ", ...";
455 } else if (!PrintedType) {
456 FunctionInnards << "void";
458 FunctionInnards << ')';
459 std::string tstr = FunctionInnards.str();
460 printType(Out, RetTy,
461 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
464 raw_ostream &
465 CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
466 const std::string &NameSoFar) {
467 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
468 "Invalid type for printSimpleType");
469 switch (Ty->getTypeID()) {
470 case Type::VoidTyID: return Out << "void " << NameSoFar;
471 case Type::IntegerTyID: {
472 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
473 if (NumBits == 1)
474 return Out << "bool " << NameSoFar;
475 else if (NumBits <= 8)
476 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
477 else if (NumBits <= 16)
478 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
479 else if (NumBits <= 32)
480 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
481 else if (NumBits <= 64)
482 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
483 else {
484 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
485 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
488 case Type::FloatTyID: return Out << "float " << NameSoFar;
489 case Type::DoubleTyID: return Out << "double " << NameSoFar;
490 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
491 // present matches host 'long double'.
492 case Type::X86_FP80TyID:
493 case Type::PPC_FP128TyID:
494 case Type::FP128TyID: return Out << "long double " << NameSoFar;
496 case Type::VectorTyID: {
497 const VectorType *VTy = cast<VectorType>(Ty);
498 return printSimpleType(Out, VTy->getElementType(), isSigned,
499 " __attribute__((vector_size(" +
500 utostr(TD->getTypePaddedSize(VTy)) + " ))) " + NameSoFar);
503 default:
504 cerr << "Unknown primitive type: " << *Ty << "\n";
505 abort();
509 std::ostream &
510 CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
511 const std::string &NameSoFar) {
512 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
513 "Invalid type for printSimpleType");
514 switch (Ty->getTypeID()) {
515 case Type::VoidTyID: return Out << "void " << NameSoFar;
516 case Type::IntegerTyID: {
517 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
518 if (NumBits == 1)
519 return Out << "bool " << NameSoFar;
520 else if (NumBits <= 8)
521 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
522 else if (NumBits <= 16)
523 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
524 else if (NumBits <= 32)
525 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
526 else if (NumBits <= 64)
527 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
528 else {
529 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
530 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
533 case Type::FloatTyID: return Out << "float " << NameSoFar;
534 case Type::DoubleTyID: return Out << "double " << NameSoFar;
535 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
536 // present matches host 'long double'.
537 case Type::X86_FP80TyID:
538 case Type::PPC_FP128TyID:
539 case Type::FP128TyID: return Out << "long double " << NameSoFar;
541 case Type::VectorTyID: {
542 const VectorType *VTy = cast<VectorType>(Ty);
543 return printSimpleType(Out, VTy->getElementType(), isSigned,
544 " __attribute__((vector_size(" +
545 utostr(TD->getTypePaddedSize(VTy)) + " ))) " + NameSoFar);
548 default:
549 cerr << "Unknown primitive type: " << *Ty << "\n";
550 abort();
554 // Pass the Type* and the variable name and this prints out the variable
555 // declaration.
557 raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
558 bool isSigned, const std::string &NameSoFar,
559 bool IgnoreName, const AttrListPtr &PAL) {
560 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
561 printSimpleType(Out, Ty, isSigned, NameSoFar);
562 return Out;
565 // Check to see if the type is named.
566 if (!IgnoreName || isa<OpaqueType>(Ty)) {
567 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
568 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
571 switch (Ty->getTypeID()) {
572 case Type::FunctionTyID: {
573 const FunctionType *FTy = cast<FunctionType>(Ty);
574 std::stringstream FunctionInnards;
575 FunctionInnards << " (" << NameSoFar << ") (";
576 unsigned Idx = 1;
577 for (FunctionType::param_iterator I = FTy->param_begin(),
578 E = FTy->param_end(); I != E; ++I) {
579 const Type *ArgTy = *I;
580 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
581 assert(isa<PointerType>(ArgTy));
582 ArgTy = cast<PointerType>(ArgTy)->getElementType();
584 if (I != FTy->param_begin())
585 FunctionInnards << ", ";
586 printType(FunctionInnards, ArgTy,
587 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
588 ++Idx;
590 if (FTy->isVarArg()) {
591 if (FTy->getNumParams())
592 FunctionInnards << ", ...";
593 } else if (!FTy->getNumParams()) {
594 FunctionInnards << "void";
596 FunctionInnards << ')';
597 std::string tstr = FunctionInnards.str();
598 printType(Out, FTy->getReturnType(),
599 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
600 return Out;
602 case Type::StructTyID: {
603 const StructType *STy = cast<StructType>(Ty);
604 Out << NameSoFar + " {\n";
605 unsigned Idx = 0;
606 for (StructType::element_iterator I = STy->element_begin(),
607 E = STy->element_end(); I != E; ++I) {
608 Out << " ";
609 printType(Out, *I, false, "field" + utostr(Idx++));
610 Out << ";\n";
612 Out << '}';
613 if (STy->isPacked())
614 Out << " __attribute__ ((packed))";
615 return Out;
618 case Type::PointerTyID: {
619 const PointerType *PTy = cast<PointerType>(Ty);
620 std::string ptrName = "*" + NameSoFar;
622 if (isa<ArrayType>(PTy->getElementType()) ||
623 isa<VectorType>(PTy->getElementType()))
624 ptrName = "(" + ptrName + ")";
626 if (!PAL.isEmpty())
627 // Must be a function ptr cast!
628 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
629 return printType(Out, PTy->getElementType(), false, ptrName);
632 case Type::ArrayTyID: {
633 const ArrayType *ATy = cast<ArrayType>(Ty);
634 unsigned NumElements = ATy->getNumElements();
635 if (NumElements == 0) NumElements = 1;
636 // Arrays are wrapped in structs to allow them to have normal
637 // value semantics (avoiding the array "decay").
638 Out << NameSoFar << " { ";
639 printType(Out, ATy->getElementType(), false,
640 "array[" + utostr(NumElements) + "]");
641 return Out << "; }";
644 case Type::OpaqueTyID: {
645 static int Count = 0;
646 std::string TyName = "struct opaque_" + itostr(Count++);
647 assert(TypeNames.find(Ty) == TypeNames.end());
648 TypeNames[Ty] = TyName;
649 return Out << TyName << ' ' << NameSoFar;
651 default:
652 assert(0 && "Unhandled case in getTypeProps!");
653 abort();
656 return Out;
659 // Pass the Type* and the variable name and this prints out the variable
660 // declaration.
662 std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
663 bool isSigned, const std::string &NameSoFar,
664 bool IgnoreName, const AttrListPtr &PAL) {
665 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
666 printSimpleType(Out, Ty, isSigned, NameSoFar);
667 return Out;
670 // Check to see if the type is named.
671 if (!IgnoreName || isa<OpaqueType>(Ty)) {
672 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
673 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
676 switch (Ty->getTypeID()) {
677 case Type::FunctionTyID: {
678 const FunctionType *FTy = cast<FunctionType>(Ty);
679 std::stringstream FunctionInnards;
680 FunctionInnards << " (" << NameSoFar << ") (";
681 unsigned Idx = 1;
682 for (FunctionType::param_iterator I = FTy->param_begin(),
683 E = FTy->param_end(); I != E; ++I) {
684 const Type *ArgTy = *I;
685 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
686 assert(isa<PointerType>(ArgTy));
687 ArgTy = cast<PointerType>(ArgTy)->getElementType();
689 if (I != FTy->param_begin())
690 FunctionInnards << ", ";
691 printType(FunctionInnards, ArgTy,
692 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
693 ++Idx;
695 if (FTy->isVarArg()) {
696 if (FTy->getNumParams())
697 FunctionInnards << ", ...";
698 } else if (!FTy->getNumParams()) {
699 FunctionInnards << "void";
701 FunctionInnards << ')';
702 std::string tstr = FunctionInnards.str();
703 printType(Out, FTy->getReturnType(),
704 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
705 return Out;
707 case Type::StructTyID: {
708 const StructType *STy = cast<StructType>(Ty);
709 Out << NameSoFar + " {\n";
710 unsigned Idx = 0;
711 for (StructType::element_iterator I = STy->element_begin(),
712 E = STy->element_end(); I != E; ++I) {
713 Out << " ";
714 printType(Out, *I, false, "field" + utostr(Idx++));
715 Out << ";\n";
717 Out << '}';
718 if (STy->isPacked())
719 Out << " __attribute__ ((packed))";
720 return Out;
723 case Type::PointerTyID: {
724 const PointerType *PTy = cast<PointerType>(Ty);
725 std::string ptrName = "*" + NameSoFar;
727 if (isa<ArrayType>(PTy->getElementType()) ||
728 isa<VectorType>(PTy->getElementType()))
729 ptrName = "(" + ptrName + ")";
731 if (!PAL.isEmpty())
732 // Must be a function ptr cast!
733 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
734 return printType(Out, PTy->getElementType(), false, ptrName);
737 case Type::ArrayTyID: {
738 const ArrayType *ATy = cast<ArrayType>(Ty);
739 unsigned NumElements = ATy->getNumElements();
740 if (NumElements == 0) NumElements = 1;
741 // Arrays are wrapped in structs to allow them to have normal
742 // value semantics (avoiding the array "decay").
743 Out << NameSoFar << " { ";
744 printType(Out, ATy->getElementType(), false,
745 "array[" + utostr(NumElements) + "]");
746 return Out << "; }";
749 case Type::OpaqueTyID: {
750 static int Count = 0;
751 std::string TyName = "struct opaque_" + itostr(Count++);
752 assert(TypeNames.find(Ty) == TypeNames.end());
753 TypeNames[Ty] = TyName;
754 return Out << TyName << ' ' << NameSoFar;
756 default:
757 assert(0 && "Unhandled case in getTypeProps!");
758 abort();
761 return Out;
764 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
766 // As a special case, print the array as a string if it is an array of
767 // ubytes or an array of sbytes with positive values.
769 const Type *ETy = CPA->getType()->getElementType();
770 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
772 // Make sure the last character is a null char, as automatically added by C
773 if (isString && (CPA->getNumOperands() == 0 ||
774 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
775 isString = false;
777 if (isString) {
778 Out << '\"';
779 // Keep track of whether the last number was a hexadecimal escape
780 bool LastWasHex = false;
782 // Do not include the last character, which we know is null
783 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
784 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
786 // Print it out literally if it is a printable character. The only thing
787 // to be careful about is when the last letter output was a hex escape
788 // code, in which case we have to be careful not to print out hex digits
789 // explicitly (the C compiler thinks it is a continuation of the previous
790 // character, sheesh...)
792 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
793 LastWasHex = false;
794 if (C == '"' || C == '\\')
795 Out << "\\" << (char)C;
796 else
797 Out << (char)C;
798 } else {
799 LastWasHex = false;
800 switch (C) {
801 case '\n': Out << "\\n"; break;
802 case '\t': Out << "\\t"; break;
803 case '\r': Out << "\\r"; break;
804 case '\v': Out << "\\v"; break;
805 case '\a': Out << "\\a"; break;
806 case '\"': Out << "\\\""; break;
807 case '\'': Out << "\\\'"; break;
808 default:
809 Out << "\\x";
810 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
811 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
812 LastWasHex = true;
813 break;
817 Out << '\"';
818 } else {
819 Out << '{';
820 if (CPA->getNumOperands()) {
821 Out << ' ';
822 printConstant(cast<Constant>(CPA->getOperand(0)), Static);
823 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
824 Out << ", ";
825 printConstant(cast<Constant>(CPA->getOperand(i)), Static);
828 Out << " }";
832 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
833 Out << '{';
834 if (CP->getNumOperands()) {
835 Out << ' ';
836 printConstant(cast<Constant>(CP->getOperand(0)), Static);
837 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
838 Out << ", ";
839 printConstant(cast<Constant>(CP->getOperand(i)), Static);
842 Out << " }";
845 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
846 // textually as a double (rather than as a reference to a stack-allocated
847 // variable). We decide this by converting CFP to a string and back into a
848 // double, and then checking whether the conversion results in a bit-equal
849 // double to the original value of CFP. This depends on us and the target C
850 // compiler agreeing on the conversion process (which is pretty likely since we
851 // only deal in IEEE FP).
853 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
854 bool ignored;
855 // Do long doubles in hex for now.
856 if (CFP->getType() != Type::FloatTy && CFP->getType() != Type::DoubleTy)
857 return false;
858 APFloat APF = APFloat(CFP->getValueAPF()); // copy
859 if (CFP->getType() == Type::FloatTy)
860 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
861 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
862 char Buffer[100];
863 sprintf(Buffer, "%a", APF.convertToDouble());
864 if (!strncmp(Buffer, "0x", 2) ||
865 !strncmp(Buffer, "-0x", 3) ||
866 !strncmp(Buffer, "+0x", 3))
867 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
868 return false;
869 #else
870 std::string StrVal = ftostr(APF);
872 while (StrVal[0] == ' ')
873 StrVal.erase(StrVal.begin());
875 // Check to make sure that the stringized number is not some string like "Inf"
876 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
877 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
878 ((StrVal[0] == '-' || StrVal[0] == '+') &&
879 (StrVal[1] >= '0' && StrVal[1] <= '9')))
880 // Reparse stringized version!
881 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
882 return false;
883 #endif
886 /// Print out the casting for a cast operation. This does the double casting
887 /// necessary for conversion to the destination type, if necessary.
888 /// @brief Print a cast
889 void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
890 // Print the destination type cast
891 switch (opc) {
892 case Instruction::UIToFP:
893 case Instruction::SIToFP:
894 case Instruction::IntToPtr:
895 case Instruction::Trunc:
896 case Instruction::BitCast:
897 case Instruction::FPExt:
898 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
899 Out << '(';
900 printType(Out, DstTy);
901 Out << ')';
902 break;
903 case Instruction::ZExt:
904 case Instruction::PtrToInt:
905 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
906 Out << '(';
907 printSimpleType(Out, DstTy, false);
908 Out << ')';
909 break;
910 case Instruction::SExt:
911 case Instruction::FPToSI: // For these, make sure we get a signed dest
912 Out << '(';
913 printSimpleType(Out, DstTy, true);
914 Out << ')';
915 break;
916 default:
917 assert(0 && "Invalid cast opcode");
920 // Print the source type cast
921 switch (opc) {
922 case Instruction::UIToFP:
923 case Instruction::ZExt:
924 Out << '(';
925 printSimpleType(Out, SrcTy, false);
926 Out << ')';
927 break;
928 case Instruction::SIToFP:
929 case Instruction::SExt:
930 Out << '(';
931 printSimpleType(Out, SrcTy, true);
932 Out << ')';
933 break;
934 case Instruction::IntToPtr:
935 case Instruction::PtrToInt:
936 // Avoid "cast to pointer from integer of different size" warnings
937 Out << "(unsigned long)";
938 break;
939 case Instruction::Trunc:
940 case Instruction::BitCast:
941 case Instruction::FPExt:
942 case Instruction::FPTrunc:
943 case Instruction::FPToSI:
944 case Instruction::FPToUI:
945 break; // These don't need a source cast.
946 default:
947 assert(0 && "Invalid cast opcode");
948 break;
952 // printConstant - The LLVM Constant to C Constant converter.
953 void CWriter::printConstant(Constant *CPV, bool Static) {
954 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
955 switch (CE->getOpcode()) {
956 case Instruction::Trunc:
957 case Instruction::ZExt:
958 case Instruction::SExt:
959 case Instruction::FPTrunc:
960 case Instruction::FPExt:
961 case Instruction::UIToFP:
962 case Instruction::SIToFP:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::PtrToInt:
966 case Instruction::IntToPtr:
967 case Instruction::BitCast:
968 Out << "(";
969 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
970 if (CE->getOpcode() == Instruction::SExt &&
971 CE->getOperand(0)->getType() == Type::Int1Ty) {
972 // Make sure we really sext from bool here by subtracting from 0
973 Out << "0-";
975 printConstant(CE->getOperand(0), Static);
976 if (CE->getType() == Type::Int1Ty &&
977 (CE->getOpcode() == Instruction::Trunc ||
978 CE->getOpcode() == Instruction::FPToUI ||
979 CE->getOpcode() == Instruction::FPToSI ||
980 CE->getOpcode() == Instruction::PtrToInt)) {
981 // Make sure we really truncate to bool here by anding with 1
982 Out << "&1u";
984 Out << ')';
985 return;
987 case Instruction::GetElementPtr:
988 Out << "(";
989 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
990 gep_type_end(CPV), Static);
991 Out << ")";
992 return;
993 case Instruction::Select:
994 Out << '(';
995 printConstant(CE->getOperand(0), Static);
996 Out << '?';
997 printConstant(CE->getOperand(1), Static);
998 Out << ':';
999 printConstant(CE->getOperand(2), Static);
1000 Out << ')';
1001 return;
1002 case Instruction::Add:
1003 case Instruction::Sub:
1004 case Instruction::Mul:
1005 case Instruction::SDiv:
1006 case Instruction::UDiv:
1007 case Instruction::FDiv:
1008 case Instruction::URem:
1009 case Instruction::SRem:
1010 case Instruction::FRem:
1011 case Instruction::And:
1012 case Instruction::Or:
1013 case Instruction::Xor:
1014 case Instruction::ICmp:
1015 case Instruction::Shl:
1016 case Instruction::LShr:
1017 case Instruction::AShr:
1019 Out << '(';
1020 bool NeedsClosingParens = printConstExprCast(CE, Static);
1021 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1022 switch (CE->getOpcode()) {
1023 case Instruction::Add: Out << " + "; break;
1024 case Instruction::Sub: Out << " - "; break;
1025 case Instruction::Mul: Out << " * "; break;
1026 case Instruction::URem:
1027 case Instruction::SRem:
1028 case Instruction::FRem: Out << " % "; break;
1029 case Instruction::UDiv:
1030 case Instruction::SDiv:
1031 case Instruction::FDiv: Out << " / "; break;
1032 case Instruction::And: Out << " & "; break;
1033 case Instruction::Or: Out << " | "; break;
1034 case Instruction::Xor: Out << " ^ "; break;
1035 case Instruction::Shl: Out << " << "; break;
1036 case Instruction::LShr:
1037 case Instruction::AShr: Out << " >> "; break;
1038 case Instruction::ICmp:
1039 switch (CE->getPredicate()) {
1040 case ICmpInst::ICMP_EQ: Out << " == "; break;
1041 case ICmpInst::ICMP_NE: Out << " != "; break;
1042 case ICmpInst::ICMP_SLT:
1043 case ICmpInst::ICMP_ULT: Out << " < "; break;
1044 case ICmpInst::ICMP_SLE:
1045 case ICmpInst::ICMP_ULE: Out << " <= "; break;
1046 case ICmpInst::ICMP_SGT:
1047 case ICmpInst::ICMP_UGT: Out << " > "; break;
1048 case ICmpInst::ICMP_SGE:
1049 case ICmpInst::ICMP_UGE: Out << " >= "; break;
1050 default: assert(0 && "Illegal ICmp predicate");
1052 break;
1053 default: assert(0 && "Illegal opcode here!");
1055 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1056 if (NeedsClosingParens)
1057 Out << "))";
1058 Out << ')';
1059 return;
1061 case Instruction::FCmp: {
1062 Out << '(';
1063 bool NeedsClosingParens = printConstExprCast(CE, Static);
1064 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
1065 Out << "0";
1066 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
1067 Out << "1";
1068 else {
1069 const char* op = 0;
1070 switch (CE->getPredicate()) {
1071 default: assert(0 && "Illegal FCmp predicate");
1072 case FCmpInst::FCMP_ORD: op = "ord"; break;
1073 case FCmpInst::FCMP_UNO: op = "uno"; break;
1074 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
1075 case FCmpInst::FCMP_UNE: op = "une"; break;
1076 case FCmpInst::FCMP_ULT: op = "ult"; break;
1077 case FCmpInst::FCMP_ULE: op = "ule"; break;
1078 case FCmpInst::FCMP_UGT: op = "ugt"; break;
1079 case FCmpInst::FCMP_UGE: op = "uge"; break;
1080 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
1081 case FCmpInst::FCMP_ONE: op = "one"; break;
1082 case FCmpInst::FCMP_OLT: op = "olt"; break;
1083 case FCmpInst::FCMP_OLE: op = "ole"; break;
1084 case FCmpInst::FCMP_OGT: op = "ogt"; break;
1085 case FCmpInst::FCMP_OGE: op = "oge"; break;
1087 Out << "llvm_fcmp_" << op << "(";
1088 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1089 Out << ", ";
1090 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1091 Out << ")";
1093 if (NeedsClosingParens)
1094 Out << "))";
1095 Out << ')';
1096 return;
1098 default:
1099 cerr << "CWriter Error: Unhandled constant expression: "
1100 << *CE << "\n";
1101 abort();
1103 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
1104 Out << "((";
1105 printType(Out, CPV->getType()); // sign doesn't matter
1106 Out << ")/*UNDEF*/";
1107 if (!isa<VectorType>(CPV->getType())) {
1108 Out << "0)";
1109 } else {
1110 Out << "{})";
1112 return;
1115 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1116 const Type* Ty = CI->getType();
1117 if (Ty == Type::Int1Ty)
1118 Out << (CI->getZExtValue() ? '1' : '0');
1119 else if (Ty == Type::Int32Ty)
1120 Out << CI->getZExtValue() << 'u';
1121 else if (Ty->getPrimitiveSizeInBits() > 32)
1122 Out << CI->getZExtValue() << "ull";
1123 else {
1124 Out << "((";
1125 printSimpleType(Out, Ty, false) << ')';
1126 if (CI->isMinValue(true))
1127 Out << CI->getZExtValue() << 'u';
1128 else
1129 Out << CI->getSExtValue();
1130 Out << ')';
1132 return;
1135 switch (CPV->getType()->getTypeID()) {
1136 case Type::FloatTyID:
1137 case Type::DoubleTyID:
1138 case Type::X86_FP80TyID:
1139 case Type::PPC_FP128TyID:
1140 case Type::FP128TyID: {
1141 ConstantFP *FPC = cast<ConstantFP>(CPV);
1142 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
1143 if (I != FPConstantMap.end()) {
1144 // Because of FP precision problems we must load from a stack allocated
1145 // value that holds the value in hex.
1146 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
1147 FPC->getType() == Type::DoubleTy ? "double" :
1148 "long double")
1149 << "*)&FPConstant" << I->second << ')';
1150 } else {
1151 double V;
1152 if (FPC->getType() == Type::FloatTy)
1153 V = FPC->getValueAPF().convertToFloat();
1154 else if (FPC->getType() == Type::DoubleTy)
1155 V = FPC->getValueAPF().convertToDouble();
1156 else {
1157 // Long double. Convert the number to double, discarding precision.
1158 // This is not awesome, but it at least makes the CBE output somewhat
1159 // useful.
1160 APFloat Tmp = FPC->getValueAPF();
1161 bool LosesInfo;
1162 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
1163 V = Tmp.convertToDouble();
1166 if (IsNAN(V)) {
1167 // The value is NaN
1169 // FIXME the actual NaN bits should be emitted.
1170 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1171 // it's 0x7ff4.
1172 const unsigned long QuietNaN = 0x7ff8UL;
1173 //const unsigned long SignalNaN = 0x7ff4UL;
1175 // We need to grab the first part of the FP #
1176 char Buffer[100];
1178 uint64_t ll = DoubleToBits(V);
1179 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
1181 std::string Num(&Buffer[0], &Buffer[6]);
1182 unsigned long Val = strtoul(Num.c_str(), 0, 16);
1184 if (FPC->getType() == Type::FloatTy)
1185 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
1186 << Buffer << "\") /*nan*/ ";
1187 else
1188 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1189 << Buffer << "\") /*nan*/ ";
1190 } else if (IsInf(V)) {
1191 // The value is Inf
1192 if (V < 0) Out << '-';
1193 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1194 << " /*inf*/ ";
1195 } else {
1196 std::string Num;
1197 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1198 // Print out the constant as a floating point number.
1199 char Buffer[100];
1200 sprintf(Buffer, "%a", V);
1201 Num = Buffer;
1202 #else
1203 Num = ftostr(FPC->getValueAPF());
1204 #endif
1205 Out << Num;
1208 break;
1211 case Type::ArrayTyID:
1212 // Use C99 compound expression literal initializer syntax.
1213 if (!Static) {
1214 Out << "(";
1215 printType(Out, CPV->getType());
1216 Out << ")";
1218 Out << "{ "; // Arrays are wrapped in struct types.
1219 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
1220 printConstantArray(CA, Static);
1221 } else {
1222 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1223 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1224 Out << '{';
1225 if (AT->getNumElements()) {
1226 Out << ' ';
1227 Constant *CZ = Constant::getNullValue(AT->getElementType());
1228 printConstant(CZ, Static);
1229 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1230 Out << ", ";
1231 printConstant(CZ, Static);
1234 Out << " }";
1236 Out << " }"; // Arrays are wrapped in struct types.
1237 break;
1239 case Type::VectorTyID:
1240 // Use C99 compound expression literal initializer syntax.
1241 if (!Static) {
1242 Out << "(";
1243 printType(Out, CPV->getType());
1244 Out << ")";
1246 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
1247 printConstantVector(CV, Static);
1248 } else {
1249 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1250 const VectorType *VT = cast<VectorType>(CPV->getType());
1251 Out << "{ ";
1252 Constant *CZ = Constant::getNullValue(VT->getElementType());
1253 printConstant(CZ, Static);
1254 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
1255 Out << ", ";
1256 printConstant(CZ, Static);
1258 Out << " }";
1260 break;
1262 case Type::StructTyID:
1263 // Use C99 compound expression literal initializer syntax.
1264 if (!Static) {
1265 Out << "(";
1266 printType(Out, CPV->getType());
1267 Out << ")";
1269 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1270 const StructType *ST = cast<StructType>(CPV->getType());
1271 Out << '{';
1272 if (ST->getNumElements()) {
1273 Out << ' ';
1274 printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
1275 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1276 Out << ", ";
1277 printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
1280 Out << " }";
1281 } else {
1282 Out << '{';
1283 if (CPV->getNumOperands()) {
1284 Out << ' ';
1285 printConstant(cast<Constant>(CPV->getOperand(0)), Static);
1286 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1287 Out << ", ";
1288 printConstant(cast<Constant>(CPV->getOperand(i)), Static);
1291 Out << " }";
1293 break;
1295 case Type::PointerTyID:
1296 if (isa<ConstantPointerNull>(CPV)) {
1297 Out << "((";
1298 printType(Out, CPV->getType()); // sign doesn't matter
1299 Out << ")/*NULL*/0)";
1300 break;
1301 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1302 writeOperand(GV, Static);
1303 break;
1305 // FALL THROUGH
1306 default:
1307 cerr << "Unknown constant type: " << *CPV << "\n";
1308 abort();
1312 // Some constant expressions need to be casted back to the original types
1313 // because their operands were casted to the expected type. This function takes
1314 // care of detecting that case and printing the cast for the ConstantExpr.
1315 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
1316 bool NeedsExplicitCast = false;
1317 const Type *Ty = CE->getOperand(0)->getType();
1318 bool TypeIsSigned = false;
1319 switch (CE->getOpcode()) {
1320 case Instruction::Add:
1321 case Instruction::Sub:
1322 case Instruction::Mul:
1323 // We need to cast integer arithmetic so that it is always performed
1324 // as unsigned, to avoid undefined behavior on overflow.
1325 if (!Ty->isIntOrIntVector()) break;
1326 // FALL THROUGH
1327 case Instruction::LShr:
1328 case Instruction::URem:
1329 case Instruction::UDiv: NeedsExplicitCast = true; break;
1330 case Instruction::AShr:
1331 case Instruction::SRem:
1332 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1333 case Instruction::SExt:
1334 Ty = CE->getType();
1335 NeedsExplicitCast = true;
1336 TypeIsSigned = true;
1337 break;
1338 case Instruction::ZExt:
1339 case Instruction::Trunc:
1340 case Instruction::FPTrunc:
1341 case Instruction::FPExt:
1342 case Instruction::UIToFP:
1343 case Instruction::SIToFP:
1344 case Instruction::FPToUI:
1345 case Instruction::FPToSI:
1346 case Instruction::PtrToInt:
1347 case Instruction::IntToPtr:
1348 case Instruction::BitCast:
1349 Ty = CE->getType();
1350 NeedsExplicitCast = true;
1351 break;
1352 default: break;
1354 if (NeedsExplicitCast) {
1355 Out << "((";
1356 if (Ty->isInteger() && Ty != Type::Int1Ty)
1357 printSimpleType(Out, Ty, TypeIsSigned);
1358 else
1359 printType(Out, Ty); // not integer, sign doesn't matter
1360 Out << ")(";
1362 return NeedsExplicitCast;
1365 // Print a constant assuming that it is the operand for a given Opcode. The
1366 // opcodes that care about sign need to cast their operands to the expected
1367 // type before the operation proceeds. This function does the casting.
1368 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1370 // Extract the operand's type, we'll need it.
1371 const Type* OpTy = CPV->getType();
1373 // Indicate whether to do the cast or not.
1374 bool shouldCast = false;
1375 bool typeIsSigned = false;
1377 // Based on the Opcode for which this Constant is being written, determine
1378 // the new type to which the operand should be casted by setting the value
1379 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1380 // casted below.
1381 switch (Opcode) {
1382 default:
1383 // for most instructions, it doesn't matter
1384 break;
1385 case Instruction::Add:
1386 case Instruction::Sub:
1387 case Instruction::Mul:
1388 // We need to cast integer arithmetic so that it is always performed
1389 // as unsigned, to avoid undefined behavior on overflow.
1390 if (!OpTy->isIntOrIntVector()) break;
1391 // FALL THROUGH
1392 case Instruction::LShr:
1393 case Instruction::UDiv:
1394 case Instruction::URem:
1395 shouldCast = true;
1396 break;
1397 case Instruction::AShr:
1398 case Instruction::SDiv:
1399 case Instruction::SRem:
1400 shouldCast = true;
1401 typeIsSigned = true;
1402 break;
1405 // Write out the casted constant if we should, otherwise just write the
1406 // operand.
1407 if (shouldCast) {
1408 Out << "((";
1409 printSimpleType(Out, OpTy, typeIsSigned);
1410 Out << ")";
1411 printConstant(CPV, false);
1412 Out << ")";
1413 } else
1414 printConstant(CPV, false);
1417 std::string CWriter::GetValueName(const Value *Operand) {
1418 std::string Name;
1420 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1421 std::string VarName;
1423 Name = Operand->getName();
1424 VarName.reserve(Name.capacity());
1426 for (std::string::iterator I = Name.begin(), E = Name.end();
1427 I != E; ++I) {
1428 char ch = *I;
1430 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1431 (ch >= '0' && ch <= '9') || ch == '_')) {
1432 char buffer[5];
1433 sprintf(buffer, "_%x_", ch);
1434 VarName += buffer;
1435 } else
1436 VarName += ch;
1439 Name = "llvm_cbe_" + VarName;
1440 } else {
1441 Name = Mang->getValueName(Operand);
1444 return Name;
1447 /// writeInstComputationInline - Emit the computation for the specified
1448 /// instruction inline, with no destination provided.
1449 void CWriter::writeInstComputationInline(Instruction &I) {
1450 // If this is a non-trivial bool computation, make sure to truncate down to
1451 // a 1 bit value. This is important because we want "add i1 x, y" to return
1452 // "0" when x and y are true, not "2" for example.
1453 bool NeedBoolTrunc = false;
1454 if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1455 NeedBoolTrunc = true;
1457 if (NeedBoolTrunc)
1458 Out << "((";
1460 visit(I);
1462 if (NeedBoolTrunc)
1463 Out << ")&1)";
1467 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
1468 if (Instruction *I = dyn_cast<Instruction>(Operand))
1469 // Should we inline this instruction to build a tree?
1470 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1471 Out << '(';
1472 writeInstComputationInline(*I);
1473 Out << ')';
1474 return;
1477 Constant* CPV = dyn_cast<Constant>(Operand);
1479 if (CPV && !isa<GlobalValue>(CPV))
1480 printConstant(CPV, Static);
1481 else
1482 Out << GetValueName(Operand);
1485 void CWriter::writeOperand(Value *Operand, bool Static) {
1486 bool isAddressImplicit = isAddressExposed(Operand);
1487 if (isAddressImplicit)
1488 Out << "(&"; // Global variables are referenced as their addresses by llvm
1490 writeOperandInternal(Operand, Static);
1492 if (isAddressImplicit)
1493 Out << ')';
1496 // Some instructions need to have their result value casted back to the
1497 // original types because their operands were casted to the expected type.
1498 // This function takes care of detecting that case and printing the cast
1499 // for the Instruction.
1500 bool CWriter::writeInstructionCast(const Instruction &I) {
1501 const Type *Ty = I.getOperand(0)->getType();
1502 switch (I.getOpcode()) {
1503 case Instruction::Add:
1504 case Instruction::Sub:
1505 case Instruction::Mul:
1506 // We need to cast integer arithmetic so that it is always performed
1507 // as unsigned, to avoid undefined behavior on overflow.
1508 if (!Ty->isIntOrIntVector()) break;
1509 // FALL THROUGH
1510 case Instruction::LShr:
1511 case Instruction::URem:
1512 case Instruction::UDiv:
1513 Out << "((";
1514 printSimpleType(Out, Ty, false);
1515 Out << ")(";
1516 return true;
1517 case Instruction::AShr:
1518 case Instruction::SRem:
1519 case Instruction::SDiv:
1520 Out << "((";
1521 printSimpleType(Out, Ty, true);
1522 Out << ")(";
1523 return true;
1524 default: break;
1526 return false;
1529 // Write the operand with a cast to another type based on the Opcode being used.
1530 // This will be used in cases where an instruction has specific type
1531 // requirements (usually signedness) for its operands.
1532 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1534 // Extract the operand's type, we'll need it.
1535 const Type* OpTy = Operand->getType();
1537 // Indicate whether to do the cast or not.
1538 bool shouldCast = false;
1540 // Indicate whether the cast should be to a signed type or not.
1541 bool castIsSigned = false;
1543 // Based on the Opcode for which this Operand is being written, determine
1544 // the new type to which the operand should be casted by setting the value
1545 // of OpTy. If we change OpTy, also set shouldCast to true.
1546 switch (Opcode) {
1547 default:
1548 // for most instructions, it doesn't matter
1549 break;
1550 case Instruction::Add:
1551 case Instruction::Sub:
1552 case Instruction::Mul:
1553 // We need to cast integer arithmetic so that it is always performed
1554 // as unsigned, to avoid undefined behavior on overflow.
1555 if (!OpTy->isIntOrIntVector()) break;
1556 // FALL THROUGH
1557 case Instruction::LShr:
1558 case Instruction::UDiv:
1559 case Instruction::URem: // Cast to unsigned first
1560 shouldCast = true;
1561 castIsSigned = false;
1562 break;
1563 case Instruction::GetElementPtr:
1564 case Instruction::AShr:
1565 case Instruction::SDiv:
1566 case Instruction::SRem: // Cast to signed first
1567 shouldCast = true;
1568 castIsSigned = true;
1569 break;
1572 // Write out the casted operand if we should, otherwise just write the
1573 // operand.
1574 if (shouldCast) {
1575 Out << "((";
1576 printSimpleType(Out, OpTy, castIsSigned);
1577 Out << ")";
1578 writeOperand(Operand);
1579 Out << ")";
1580 } else
1581 writeOperand(Operand);
1584 // Write the operand with a cast to another type based on the icmp predicate
1585 // being used.
1586 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1587 // This has to do a cast to ensure the operand has the right signedness.
1588 // Also, if the operand is a pointer, we make sure to cast to an integer when
1589 // doing the comparison both for signedness and so that the C compiler doesn't
1590 // optimize things like "p < NULL" to false (p may contain an integer value
1591 // f.e.).
1592 bool shouldCast = Cmp.isRelational();
1594 // Write out the casted operand if we should, otherwise just write the
1595 // operand.
1596 if (!shouldCast) {
1597 writeOperand(Operand);
1598 return;
1601 // Should this be a signed comparison? If so, convert to signed.
1602 bool castIsSigned = Cmp.isSignedPredicate();
1604 // If the operand was a pointer, convert to a large integer type.
1605 const Type* OpTy = Operand->getType();
1606 if (isa<PointerType>(OpTy))
1607 OpTy = TD->getIntPtrType();
1609 Out << "((";
1610 printSimpleType(Out, OpTy, castIsSigned);
1611 Out << ")";
1612 writeOperand(Operand);
1613 Out << ")";
1616 // generateCompilerSpecificCode - This is where we add conditional compilation
1617 // directives to cater to specific compilers as need be.
1619 static void generateCompilerSpecificCode(raw_ostream& Out,
1620 const TargetData *TD) {
1621 // Alloca is hard to get, and we don't want to include stdlib.h here.
1622 Out << "/* get a declaration for alloca */\n"
1623 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1624 << "#define alloca(x) __builtin_alloca((x))\n"
1625 << "#define _alloca(x) __builtin_alloca((x))\n"
1626 << "#elif defined(__APPLE__)\n"
1627 << "extern void *__builtin_alloca(unsigned long);\n"
1628 << "#define alloca(x) __builtin_alloca(x)\n"
1629 << "#define longjmp _longjmp\n"
1630 << "#define setjmp _setjmp\n"
1631 << "#elif defined(__sun__)\n"
1632 << "#if defined(__sparcv9)\n"
1633 << "extern void *__builtin_alloca(unsigned long);\n"
1634 << "#else\n"
1635 << "extern void *__builtin_alloca(unsigned int);\n"
1636 << "#endif\n"
1637 << "#define alloca(x) __builtin_alloca(x)\n"
1638 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
1639 << "#define alloca(x) __builtin_alloca(x)\n"
1640 << "#elif defined(_MSC_VER)\n"
1641 << "#define inline _inline\n"
1642 << "#define alloca(x) _alloca(x)\n"
1643 << "#else\n"
1644 << "#include <alloca.h>\n"
1645 << "#endif\n\n";
1647 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1648 // If we aren't being compiled with GCC, just drop these attributes.
1649 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1650 << "#define __attribute__(X)\n"
1651 << "#endif\n\n";
1653 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1654 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1655 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1656 << "#elif defined(__GNUC__)\n"
1657 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1658 << "#else\n"
1659 << "#define __EXTERNAL_WEAK__\n"
1660 << "#endif\n\n";
1662 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1663 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1664 << "#define __ATTRIBUTE_WEAK__\n"
1665 << "#elif defined(__GNUC__)\n"
1666 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1667 << "#else\n"
1668 << "#define __ATTRIBUTE_WEAK__\n"
1669 << "#endif\n\n";
1671 // Add hidden visibility support. FIXME: APPLE_CC?
1672 Out << "#if defined(__GNUC__)\n"
1673 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1674 << "#endif\n\n";
1676 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1677 // From the GCC documentation:
1679 // double __builtin_nan (const char *str)
1681 // This is an implementation of the ISO C99 function nan.
1683 // Since ISO C99 defines this function in terms of strtod, which we do
1684 // not implement, a description of the parsing is in order. The string is
1685 // parsed as by strtol; that is, the base is recognized by leading 0 or
1686 // 0x prefixes. The number parsed is placed in the significand such that
1687 // the least significant bit of the number is at the least significant
1688 // bit of the significand. The number is truncated to fit the significand
1689 // field provided. The significand is forced to be a quiet NaN.
1691 // This function, if given a string literal, is evaluated early enough
1692 // that it is considered a compile-time constant.
1694 // float __builtin_nanf (const char *str)
1696 // Similar to __builtin_nan, except the return type is float.
1698 // double __builtin_inf (void)
1700 // Similar to __builtin_huge_val, except a warning is generated if the
1701 // target floating-point format does not support infinities. This
1702 // function is suitable for implementing the ISO C99 macro INFINITY.
1704 // float __builtin_inff (void)
1706 // Similar to __builtin_inf, except the return type is float.
1707 Out << "#ifdef __GNUC__\n"
1708 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1709 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1710 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1711 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1712 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1713 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1714 << "#define LLVM_PREFETCH(addr,rw,locality) "
1715 "__builtin_prefetch(addr,rw,locality)\n"
1716 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1717 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1718 << "#define LLVM_ASM __asm__\n"
1719 << "#else\n"
1720 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1721 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1722 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1723 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1724 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1725 << "#define LLVM_INFF 0.0F /* Float */\n"
1726 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1727 << "#define __ATTRIBUTE_CTOR__\n"
1728 << "#define __ATTRIBUTE_DTOR__\n"
1729 << "#define LLVM_ASM(X)\n"
1730 << "#endif\n\n";
1732 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1733 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1734 << "#define __builtin_stack_restore(X) /* noop */\n"
1735 << "#endif\n\n";
1737 // Output typedefs for 128-bit integers. If these are needed with a
1738 // 32-bit target or with a C compiler that doesn't support mode(TI),
1739 // more drastic measures will be needed.
1740 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1741 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1742 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1743 << "#endif\n\n";
1745 // Output target-specific code that should be inserted into main.
1746 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1749 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1750 /// the StaticTors set.
1751 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1752 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1753 if (!InitList) return;
1755 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1756 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1757 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1759 if (CS->getOperand(1)->isNullValue())
1760 return; // Found a null terminator, exit printing.
1761 Constant *FP = CS->getOperand(1);
1762 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1763 if (CE->isCast())
1764 FP = CE->getOperand(0);
1765 if (Function *F = dyn_cast<Function>(FP))
1766 StaticTors.insert(F);
1770 enum SpecialGlobalClass {
1771 NotSpecial = 0,
1772 GlobalCtors, GlobalDtors,
1773 NotPrinted
1776 /// getGlobalVariableClass - If this is a global that is specially recognized
1777 /// by LLVM, return a code that indicates how we should handle it.
1778 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1779 // If this is a global ctors/dtors list, handle it now.
1780 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1781 if (GV->getName() == "llvm.global_ctors")
1782 return GlobalCtors;
1783 else if (GV->getName() == "llvm.global_dtors")
1784 return GlobalDtors;
1787 // Otherwise, it it is other metadata, don't print it. This catches things
1788 // like debug information.
1789 if (GV->getSection() == "llvm.metadata")
1790 return NotPrinted;
1792 return NotSpecial;
1796 bool CWriter::doInitialization(Module &M) {
1797 // Initialize
1798 TheModule = &M;
1800 TD = new TargetData(&M);
1801 IL = new IntrinsicLowering(*TD);
1802 IL->AddPrototypes(M);
1804 // Ensure that all structure types have names...
1805 Mang = new Mangler(M);
1806 Mang->markCharUnacceptable('.');
1808 // Keep track of which functions are static ctors/dtors so they can have
1809 // an attribute added to their prototypes.
1810 std::set<Function*> StaticCtors, StaticDtors;
1811 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1812 I != E; ++I) {
1813 switch (getGlobalVariableClass(I)) {
1814 default: break;
1815 case GlobalCtors:
1816 FindStaticTors(I, StaticCtors);
1817 break;
1818 case GlobalDtors:
1819 FindStaticTors(I, StaticDtors);
1820 break;
1824 // get declaration for alloca
1825 Out << "/* Provide Declarations */\n";
1826 Out << "#include <stdarg.h>\n"; // Varargs support
1827 Out << "#include <setjmp.h>\n"; // Unwind support
1828 generateCompilerSpecificCode(Out, TD);
1830 // Provide a definition for `bool' if not compiling with a C++ compiler.
1831 Out << "\n"
1832 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1834 << "\n\n/* Support for floating point constants */\n"
1835 << "typedef unsigned long long ConstantDoubleTy;\n"
1836 << "typedef unsigned int ConstantFloatTy;\n"
1837 << "typedef struct { unsigned long long f1; unsigned short f2; "
1838 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1839 // This is used for both kinds of 128-bit long double; meaning differs.
1840 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1841 " ConstantFP128Ty;\n"
1842 << "\n\n/* Global Declarations */\n";
1844 // First output all the declarations for the program, because C requires
1845 // Functions & globals to be declared before they are used.
1848 // Loop over the symbol table, emitting all named constants...
1849 printModuleTypes(M.getTypeSymbolTable());
1851 // Global variable declarations...
1852 if (!M.global_empty()) {
1853 Out << "\n/* External Global Variable Declarations */\n";
1854 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1855 I != E; ++I) {
1857 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1858 I->hasCommonLinkage())
1859 Out << "extern ";
1860 else if (I->hasDLLImportLinkage())
1861 Out << "__declspec(dllimport) ";
1862 else
1863 continue; // Internal Global
1865 // Thread Local Storage
1866 if (I->isThreadLocal())
1867 Out << "__thread ";
1869 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1871 if (I->hasExternalWeakLinkage())
1872 Out << " __EXTERNAL_WEAK__";
1873 Out << ";\n";
1877 // Function declarations
1878 Out << "\n/* Function Declarations */\n";
1879 Out << "double fmod(double, double);\n"; // Support for FP rem
1880 Out << "float fmodf(float, float);\n";
1881 Out << "long double fmodl(long double, long double);\n";
1883 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1884 // Don't print declarations for intrinsic functions.
1885 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
1886 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1887 if (I->hasExternalWeakLinkage())
1888 Out << "extern ";
1889 printFunctionSignature(I, true);
1890 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1891 Out << " __ATTRIBUTE_WEAK__";
1892 if (I->hasExternalWeakLinkage())
1893 Out << " __EXTERNAL_WEAK__";
1894 if (StaticCtors.count(I))
1895 Out << " __ATTRIBUTE_CTOR__";
1896 if (StaticDtors.count(I))
1897 Out << " __ATTRIBUTE_DTOR__";
1898 if (I->hasHiddenVisibility())
1899 Out << " __HIDDEN__";
1901 if (I->hasName() && I->getName()[0] == 1)
1902 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1904 Out << ";\n";
1908 // Output the global variable declarations
1909 if (!M.global_empty()) {
1910 Out << "\n\n/* Global Variable Declarations */\n";
1911 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1912 I != E; ++I)
1913 if (!I->isDeclaration()) {
1914 // Ignore special globals, such as debug info.
1915 if (getGlobalVariableClass(I))
1916 continue;
1918 if (I->hasLocalLinkage())
1919 Out << "static ";
1920 else
1921 Out << "extern ";
1923 // Thread Local Storage
1924 if (I->isThreadLocal())
1925 Out << "__thread ";
1927 printType(Out, I->getType()->getElementType(), false,
1928 GetValueName(I));
1930 if (I->hasLinkOnceLinkage())
1931 Out << " __attribute__((common))";
1932 else if (I->hasCommonLinkage()) // FIXME is this right?
1933 Out << " __ATTRIBUTE_WEAK__";
1934 else if (I->hasWeakLinkage())
1935 Out << " __ATTRIBUTE_WEAK__";
1936 else if (I->hasExternalWeakLinkage())
1937 Out << " __EXTERNAL_WEAK__";
1938 if (I->hasHiddenVisibility())
1939 Out << " __HIDDEN__";
1940 Out << ";\n";
1944 // Output the global variable definitions and contents...
1945 if (!M.global_empty()) {
1946 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1947 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1948 I != E; ++I)
1949 if (!I->isDeclaration()) {
1950 // Ignore special globals, such as debug info.
1951 if (getGlobalVariableClass(I))
1952 continue;
1954 if (I->hasLocalLinkage())
1955 Out << "static ";
1956 else if (I->hasDLLImportLinkage())
1957 Out << "__declspec(dllimport) ";
1958 else if (I->hasDLLExportLinkage())
1959 Out << "__declspec(dllexport) ";
1961 // Thread Local Storage
1962 if (I->isThreadLocal())
1963 Out << "__thread ";
1965 printType(Out, I->getType()->getElementType(), false,
1966 GetValueName(I));
1967 if (I->hasLinkOnceLinkage())
1968 Out << " __attribute__((common))";
1969 else if (I->hasWeakLinkage())
1970 Out << " __ATTRIBUTE_WEAK__";
1971 else if (I->hasCommonLinkage())
1972 Out << " __ATTRIBUTE_WEAK__";
1974 if (I->hasHiddenVisibility())
1975 Out << " __HIDDEN__";
1977 // If the initializer is not null, emit the initializer. If it is null,
1978 // we try to avoid emitting large amounts of zeros. The problem with
1979 // this, however, occurs when the variable has weak linkage. In this
1980 // case, the assembler will complain about the variable being both weak
1981 // and common, so we disable this optimization.
1982 // FIXME common linkage should avoid this problem.
1983 if (!I->getInitializer()->isNullValue()) {
1984 Out << " = " ;
1985 writeOperand(I->getInitializer(), true);
1986 } else if (I->hasWeakLinkage()) {
1987 // We have to specify an initializer, but it doesn't have to be
1988 // complete. If the value is an aggregate, print out { 0 }, and let
1989 // the compiler figure out the rest of the zeros.
1990 Out << " = " ;
1991 if (isa<StructType>(I->getInitializer()->getType()) ||
1992 isa<VectorType>(I->getInitializer()->getType())) {
1993 Out << "{ 0 }";
1994 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
1995 // As with structs and vectors, but with an extra set of braces
1996 // because arrays are wrapped in structs.
1997 Out << "{ { 0 } }";
1998 } else {
1999 // Just print it out normally.
2000 writeOperand(I->getInitializer(), true);
2003 Out << ";\n";
2007 if (!M.empty())
2008 Out << "\n\n/* Function Bodies */\n";
2010 // Emit some helper functions for dealing with FCMP instruction's
2011 // predicates
2012 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
2013 Out << "return X == X && Y == Y; }\n";
2014 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
2015 Out << "return X != X || Y != Y; }\n";
2016 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2017 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2018 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
2019 Out << "return X != Y; }\n";
2020 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
2021 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2022 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2023 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2024 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
2025 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2026 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
2027 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2028 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2029 Out << "return X == Y ; }\n";
2030 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
2031 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2032 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
2033 Out << "return X < Y ; }\n";
2034 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2035 Out << "return X > Y ; }\n";
2036 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
2037 Out << "return X <= Y ; }\n";
2038 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
2039 Out << "return X >= Y ; }\n";
2040 return false;
2044 /// Output all floating point constants that cannot be printed accurately...
2045 void CWriter::printFloatingPointConstants(Function &F) {
2046 // Scan the module for floating point constants. If any FP constant is used
2047 // in the function, we want to redirect it here so that we do not depend on
2048 // the precision of the printed form, unless the printed form preserves
2049 // precision.
2051 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
2052 I != E; ++I)
2053 printFloatingPointConstants(*I);
2055 Out << '\n';
2058 void CWriter::printFloatingPointConstants(const Constant *C) {
2059 // If this is a constant expression, recursively check for constant fp values.
2060 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2061 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
2062 printFloatingPointConstants(CE->getOperand(i));
2063 return;
2066 // Otherwise, check for a FP constant that we need to print.
2067 const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
2068 if (FPC == 0 ||
2069 // Do not put in FPConstantMap if safe.
2070 isFPCSafeToPrint(FPC) ||
2071 // Already printed this constant?
2072 FPConstantMap.count(FPC))
2073 return;
2075 FPConstantMap[FPC] = FPCounter; // Number the FP constants
2077 if (FPC->getType() == Type::DoubleTy) {
2078 double Val = FPC->getValueAPF().convertToDouble();
2079 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2080 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
2081 << " = 0x" << utohexstr(i)
2082 << "ULL; /* " << Val << " */\n";
2083 } else if (FPC->getType() == Type::FloatTy) {
2084 float Val = FPC->getValueAPF().convertToFloat();
2085 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
2086 getZExtValue();
2087 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
2088 << " = 0x" << utohexstr(i)
2089 << "U; /* " << Val << " */\n";
2090 } else if (FPC->getType() == Type::X86_FP80Ty) {
2091 // api needed to prevent premature destruction
2092 APInt api = FPC->getValueAPF().bitcastToAPInt();
2093 const uint64_t *p = api.getRawData();
2094 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
2095 << " = { 0x" << utohexstr(p[0])
2096 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
2097 << "}; /* Long double constant */\n";
2098 } else if (FPC->getType() == Type::PPC_FP128Ty) {
2099 APInt api = FPC->getValueAPF().bitcastToAPInt();
2100 const uint64_t *p = api.getRawData();
2101 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
2102 << " = { 0x"
2103 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
2104 << "}; /* Long double constant */\n";
2106 } else {
2107 assert(0 && "Unknown float type!");
2113 /// printSymbolTable - Run through symbol table looking for type names. If a
2114 /// type name is found, emit its declaration...
2116 void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
2117 Out << "/* Helper union for bitcasts */\n";
2118 Out << "typedef union {\n";
2119 Out << " unsigned int Int32;\n";
2120 Out << " unsigned long long Int64;\n";
2121 Out << " float Float;\n";
2122 Out << " double Double;\n";
2123 Out << "} llvmBitCastUnion;\n";
2125 // We are only interested in the type plane of the symbol table.
2126 TypeSymbolTable::const_iterator I = TST.begin();
2127 TypeSymbolTable::const_iterator End = TST.end();
2129 // If there are no type names, exit early.
2130 if (I == End) return;
2132 // Print out forward declarations for structure types before anything else!
2133 Out << "/* Structure forward decls */\n";
2134 for (; I != End; ++I) {
2135 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
2136 Out << Name << ";\n";
2137 TypeNames.insert(std::make_pair(I->second, Name));
2140 Out << '\n';
2142 // Now we can print out typedefs. Above, we guaranteed that this can only be
2143 // for struct or opaque types.
2144 Out << "/* Typedefs */\n";
2145 for (I = TST.begin(); I != End; ++I) {
2146 std::string Name = "l_" + Mang->makeNameProper(I->first);
2147 Out << "typedef ";
2148 printType(Out, I->second, false, Name);
2149 Out << ";\n";
2152 Out << '\n';
2154 // Keep track of which structures have been printed so far...
2155 std::set<const Type *> StructPrinted;
2157 // Loop over all structures then push them into the stack so they are
2158 // printed in the correct order.
2160 Out << "/* Structure contents */\n";
2161 for (I = TST.begin(); I != End; ++I)
2162 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
2163 // Only print out used types!
2164 printContainedStructs(I->second, StructPrinted);
2167 // Push the struct onto the stack and recursively push all structs
2168 // this one depends on.
2170 // TODO: Make this work properly with vector types
2172 void CWriter::printContainedStructs(const Type *Ty,
2173 std::set<const Type*> &StructPrinted) {
2174 // Don't walk through pointers.
2175 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
2177 // Print all contained types first.
2178 for (Type::subtype_iterator I = Ty->subtype_begin(),
2179 E = Ty->subtype_end(); I != E; ++I)
2180 printContainedStructs(*I, StructPrinted);
2182 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
2183 // Check to see if we have already printed this struct.
2184 if (StructPrinted.insert(Ty).second) {
2185 // Print structure type out.
2186 std::string Name = TypeNames[Ty];
2187 printType(Out, Ty, false, Name, true);
2188 Out << ";\n\n";
2193 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
2194 /// isStructReturn - Should this function actually return a struct by-value?
2195 bool isStructReturn = F->hasStructRetAttr();
2197 if (F->hasLocalLinkage()) Out << "static ";
2198 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
2199 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
2200 switch (F->getCallingConv()) {
2201 case CallingConv::X86_StdCall:
2202 Out << "__attribute__((stdcall)) ";
2203 break;
2204 case CallingConv::X86_FastCall:
2205 Out << "__attribute__((fastcall)) ";
2206 break;
2209 // Loop over the arguments, printing them...
2210 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
2211 const AttrListPtr &PAL = F->getAttributes();
2213 std::stringstream FunctionInnards;
2215 // Print out the name...
2216 FunctionInnards << GetValueName(F) << '(';
2218 bool PrintedArg = false;
2219 if (!F->isDeclaration()) {
2220 if (!F->arg_empty()) {
2221 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2222 unsigned Idx = 1;
2224 // If this is a struct-return function, don't print the hidden
2225 // struct-return argument.
2226 if (isStructReturn) {
2227 assert(I != E && "Invalid struct return function!");
2228 ++I;
2229 ++Idx;
2232 std::string ArgName;
2233 for (; I != E; ++I) {
2234 if (PrintedArg) FunctionInnards << ", ";
2235 if (I->hasName() || !Prototype)
2236 ArgName = GetValueName(I);
2237 else
2238 ArgName = "";
2239 const Type *ArgTy = I->getType();
2240 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2241 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2242 ByValParams.insert(I);
2244 printType(FunctionInnards, ArgTy,
2245 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
2246 ArgName);
2247 PrintedArg = true;
2248 ++Idx;
2251 } else {
2252 // Loop over the arguments, printing them.
2253 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
2254 unsigned Idx = 1;
2256 // If this is a struct-return function, don't print the hidden
2257 // struct-return argument.
2258 if (isStructReturn) {
2259 assert(I != E && "Invalid struct return function!");
2260 ++I;
2261 ++Idx;
2264 for (; I != E; ++I) {
2265 if (PrintedArg) FunctionInnards << ", ";
2266 const Type *ArgTy = *I;
2267 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2268 assert(isa<PointerType>(ArgTy));
2269 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2271 printType(FunctionInnards, ArgTy,
2272 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
2273 PrintedArg = true;
2274 ++Idx;
2278 // Finish printing arguments... if this is a vararg function, print the ...,
2279 // unless there are no known types, in which case, we just emit ().
2281 if (FT->isVarArg() && PrintedArg) {
2282 if (PrintedArg) FunctionInnards << ", ";
2283 FunctionInnards << "..."; // Output varargs portion of signature!
2284 } else if (!FT->isVarArg() && !PrintedArg) {
2285 FunctionInnards << "void"; // ret() -> ret(void) in C.
2287 FunctionInnards << ')';
2289 // Get the return tpe for the function.
2290 const Type *RetTy;
2291 if (!isStructReturn)
2292 RetTy = F->getReturnType();
2293 else {
2294 // If this is a struct-return function, print the struct-return type.
2295 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2298 // Print out the return type and the signature built above.
2299 printType(Out, RetTy,
2300 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
2301 FunctionInnards.str());
2304 static inline bool isFPIntBitCast(const Instruction &I) {
2305 if (!isa<BitCastInst>(I))
2306 return false;
2307 const Type *SrcTy = I.getOperand(0)->getType();
2308 const Type *DstTy = I.getType();
2309 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2310 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2313 void CWriter::printFunction(Function &F) {
2314 /// isStructReturn - Should this function actually return a struct by-value?
2315 bool isStructReturn = F.hasStructRetAttr();
2317 printFunctionSignature(&F, false);
2318 Out << " {\n";
2320 // If this is a struct return function, handle the result with magic.
2321 if (isStructReturn) {
2322 const Type *StructTy =
2323 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2324 Out << " ";
2325 printType(Out, StructTy, false, "StructReturn");
2326 Out << "; /* Struct return temporary */\n";
2328 Out << " ";
2329 printType(Out, F.arg_begin()->getType(), false,
2330 GetValueName(F.arg_begin()));
2331 Out << " = &StructReturn;\n";
2334 bool PrintedVar = false;
2336 // print local variable information for the function
2337 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2338 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2339 Out << " ";
2340 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2341 Out << "; /* Address-exposed local */\n";
2342 PrintedVar = true;
2343 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2344 Out << " ";
2345 printType(Out, I->getType(), false, GetValueName(&*I));
2346 Out << ";\n";
2348 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2349 Out << " ";
2350 printType(Out, I->getType(), false,
2351 GetValueName(&*I)+"__PHI_TEMPORARY");
2352 Out << ";\n";
2354 PrintedVar = true;
2356 // We need a temporary for the BitCast to use so it can pluck a value out
2357 // of a union to do the BitCast. This is separate from the need for a
2358 // variable to hold the result of the BitCast.
2359 if (isFPIntBitCast(*I)) {
2360 Out << " llvmBitCastUnion " << GetValueName(&*I)
2361 << "__BITCAST_TEMPORARY;\n";
2362 PrintedVar = true;
2366 if (PrintedVar)
2367 Out << '\n';
2369 if (F.hasExternalLinkage() && F.getName() == "main")
2370 Out << " CODE_FOR_MAIN();\n";
2372 // print the basic blocks
2373 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2374 if (Loop *L = LI->getLoopFor(BB)) {
2375 if (L->getHeader() == BB && L->getParentLoop() == 0)
2376 printLoop(L);
2377 } else {
2378 printBasicBlock(BB);
2382 Out << "}\n\n";
2385 void CWriter::printLoop(Loop *L) {
2386 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2387 << "' to make GCC happy */\n";
2388 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2389 BasicBlock *BB = L->getBlocks()[i];
2390 Loop *BBLoop = LI->getLoopFor(BB);
2391 if (BBLoop == L)
2392 printBasicBlock(BB);
2393 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2394 printLoop(BBLoop);
2396 Out << " } while (1); /* end of syntactic loop '"
2397 << L->getHeader()->getName() << "' */\n";
2400 void CWriter::printBasicBlock(BasicBlock *BB) {
2402 // Don't print the label for the basic block if there are no uses, or if
2403 // the only terminator use is the predecessor basic block's terminator.
2404 // We have to scan the use list because PHI nodes use basic blocks too but
2405 // do not require a label to be generated.
2407 bool NeedsLabel = false;
2408 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2409 if (isGotoCodeNecessary(*PI, BB)) {
2410 NeedsLabel = true;
2411 break;
2414 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2416 // Output all of the instructions in the basic block...
2417 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2418 ++II) {
2419 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2420 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2421 outputLValue(II);
2422 else
2423 Out << " ";
2424 writeInstComputationInline(*II);
2425 Out << ";\n";
2429 // Don't emit prefix or suffix for the terminator.
2430 visit(*BB->getTerminator());
2434 // Specific Instruction type classes... note that all of the casts are
2435 // necessary because we use the instruction classes as opaque types...
2437 void CWriter::visitReturnInst(ReturnInst &I) {
2438 // If this is a struct return function, return the temporary struct.
2439 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
2441 if (isStructReturn) {
2442 Out << " return StructReturn;\n";
2443 return;
2446 // Don't output a void return if this is the last basic block in the function
2447 if (I.getNumOperands() == 0 &&
2448 &*--I.getParent()->getParent()->end() == I.getParent() &&
2449 !I.getParent()->size() == 1) {
2450 return;
2453 if (I.getNumOperands() > 1) {
2454 Out << " {\n";
2455 Out << " ";
2456 printType(Out, I.getParent()->getParent()->getReturnType());
2457 Out << " llvm_cbe_mrv_temp = {\n";
2458 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2459 Out << " ";
2460 writeOperand(I.getOperand(i));
2461 if (i != e - 1)
2462 Out << ",";
2463 Out << "\n";
2465 Out << " };\n";
2466 Out << " return llvm_cbe_mrv_temp;\n";
2467 Out << " }\n";
2468 return;
2471 Out << " return";
2472 if (I.getNumOperands()) {
2473 Out << ' ';
2474 writeOperand(I.getOperand(0));
2476 Out << ";\n";
2479 void CWriter::visitSwitchInst(SwitchInst &SI) {
2481 Out << " switch (";
2482 writeOperand(SI.getOperand(0));
2483 Out << ") {\n default:\n";
2484 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2485 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2486 Out << ";\n";
2487 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2488 Out << " case ";
2489 writeOperand(SI.getOperand(i));
2490 Out << ":\n";
2491 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2492 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2493 printBranchToBlock(SI.getParent(), Succ, 2);
2494 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2495 Out << " break;\n";
2497 Out << " }\n";
2500 void CWriter::visitUnreachableInst(UnreachableInst &I) {
2501 Out << " /*UNREACHABLE*/;\n";
2504 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2505 /// FIXME: This should be reenabled, but loop reordering safe!!
2506 return true;
2508 if (next(Function::iterator(From)) != Function::iterator(To))
2509 return true; // Not the direct successor, we need a goto.
2511 //isa<SwitchInst>(From->getTerminator())
2513 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2514 return true;
2515 return false;
2518 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2519 BasicBlock *Successor,
2520 unsigned Indent) {
2521 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2522 PHINode *PN = cast<PHINode>(I);
2523 // Now we have to do the printing.
2524 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2525 if (!isa<UndefValue>(IV)) {
2526 Out << std::string(Indent, ' ');
2527 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2528 writeOperand(IV);
2529 Out << "; /* for PHI node */\n";
2534 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2535 unsigned Indent) {
2536 if (isGotoCodeNecessary(CurBB, Succ)) {
2537 Out << std::string(Indent, ' ') << " goto ";
2538 writeOperand(Succ);
2539 Out << ";\n";
2543 // Branch instruction printing - Avoid printing out a branch to a basic block
2544 // that immediately succeeds the current one.
2546 void CWriter::visitBranchInst(BranchInst &I) {
2548 if (I.isConditional()) {
2549 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2550 Out << " if (";
2551 writeOperand(I.getCondition());
2552 Out << ") {\n";
2554 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2555 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2557 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2558 Out << " } else {\n";
2559 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2560 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2562 } else {
2563 // First goto not necessary, assume second one is...
2564 Out << " if (!";
2565 writeOperand(I.getCondition());
2566 Out << ") {\n";
2568 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2569 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2572 Out << " }\n";
2573 } else {
2574 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2575 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2577 Out << "\n";
2580 // PHI nodes get copied into temporary values at the end of predecessor basic
2581 // blocks. We now need to copy these temporary values into the REAL value for
2582 // the PHI.
2583 void CWriter::visitPHINode(PHINode &I) {
2584 writeOperand(&I);
2585 Out << "__PHI_TEMPORARY";
2589 void CWriter::visitBinaryOperator(Instruction &I) {
2590 // binary instructions, shift instructions, setCond instructions.
2591 assert(!isa<PointerType>(I.getType()));
2593 // We must cast the results of binary operations which might be promoted.
2594 bool needsCast = false;
2595 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2596 || (I.getType() == Type::FloatTy)) {
2597 needsCast = true;
2598 Out << "((";
2599 printType(Out, I.getType(), false);
2600 Out << ")(";
2603 // If this is a negation operation, print it out as such. For FP, we don't
2604 // want to print "-0.0 - X".
2605 if (BinaryOperator::isNeg(&I)) {
2606 Out << "-(";
2607 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2608 Out << ")";
2609 } else if (I.getOpcode() == Instruction::FRem) {
2610 // Output a call to fmod/fmodf instead of emitting a%b
2611 if (I.getType() == Type::FloatTy)
2612 Out << "fmodf(";
2613 else if (I.getType() == Type::DoubleTy)
2614 Out << "fmod(";
2615 else // all 3 flavors of long double
2616 Out << "fmodl(";
2617 writeOperand(I.getOperand(0));
2618 Out << ", ";
2619 writeOperand(I.getOperand(1));
2620 Out << ")";
2621 } else {
2623 // Write out the cast of the instruction's value back to the proper type
2624 // if necessary.
2625 bool NeedsClosingParens = writeInstructionCast(I);
2627 // Certain instructions require the operand to be forced to a specific type
2628 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2629 // below for operand 1
2630 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2632 switch (I.getOpcode()) {
2633 case Instruction::Add: Out << " + "; break;
2634 case Instruction::Sub: Out << " - "; break;
2635 case Instruction::Mul: Out << " * "; break;
2636 case Instruction::URem:
2637 case Instruction::SRem:
2638 case Instruction::FRem: Out << " % "; break;
2639 case Instruction::UDiv:
2640 case Instruction::SDiv:
2641 case Instruction::FDiv: Out << " / "; break;
2642 case Instruction::And: Out << " & "; break;
2643 case Instruction::Or: Out << " | "; break;
2644 case Instruction::Xor: Out << " ^ "; break;
2645 case Instruction::Shl : Out << " << "; break;
2646 case Instruction::LShr:
2647 case Instruction::AShr: Out << " >> "; break;
2648 default: cerr << "Invalid operator type!" << I; abort();
2651 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2652 if (NeedsClosingParens)
2653 Out << "))";
2656 if (needsCast) {
2657 Out << "))";
2661 void CWriter::visitICmpInst(ICmpInst &I) {
2662 // We must cast the results of icmp which might be promoted.
2663 bool needsCast = false;
2665 // Write out the cast of the instruction's value back to the proper type
2666 // if necessary.
2667 bool NeedsClosingParens = writeInstructionCast(I);
2669 // Certain icmp predicate require the operand to be forced to a specific type
2670 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2671 // below for operand 1
2672 writeOperandWithCast(I.getOperand(0), I);
2674 switch (I.getPredicate()) {
2675 case ICmpInst::ICMP_EQ: Out << " == "; break;
2676 case ICmpInst::ICMP_NE: Out << " != "; break;
2677 case ICmpInst::ICMP_ULE:
2678 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2679 case ICmpInst::ICMP_UGE:
2680 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2681 case ICmpInst::ICMP_ULT:
2682 case ICmpInst::ICMP_SLT: Out << " < "; break;
2683 case ICmpInst::ICMP_UGT:
2684 case ICmpInst::ICMP_SGT: Out << " > "; break;
2685 default: cerr << "Invalid icmp predicate!" << I; abort();
2688 writeOperandWithCast(I.getOperand(1), I);
2689 if (NeedsClosingParens)
2690 Out << "))";
2692 if (needsCast) {
2693 Out << "))";
2697 void CWriter::visitFCmpInst(FCmpInst &I) {
2698 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2699 Out << "0";
2700 return;
2702 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2703 Out << "1";
2704 return;
2707 const char* op = 0;
2708 switch (I.getPredicate()) {
2709 default: assert(0 && "Illegal FCmp predicate");
2710 case FCmpInst::FCMP_ORD: op = "ord"; break;
2711 case FCmpInst::FCMP_UNO: op = "uno"; break;
2712 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2713 case FCmpInst::FCMP_UNE: op = "une"; break;
2714 case FCmpInst::FCMP_ULT: op = "ult"; break;
2715 case FCmpInst::FCMP_ULE: op = "ule"; break;
2716 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2717 case FCmpInst::FCMP_UGE: op = "uge"; break;
2718 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2719 case FCmpInst::FCMP_ONE: op = "one"; break;
2720 case FCmpInst::FCMP_OLT: op = "olt"; break;
2721 case FCmpInst::FCMP_OLE: op = "ole"; break;
2722 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2723 case FCmpInst::FCMP_OGE: op = "oge"; break;
2726 Out << "llvm_fcmp_" << op << "(";
2727 // Write the first operand
2728 writeOperand(I.getOperand(0));
2729 Out << ", ";
2730 // Write the second operand
2731 writeOperand(I.getOperand(1));
2732 Out << ")";
2735 static const char * getFloatBitCastField(const Type *Ty) {
2736 switch (Ty->getTypeID()) {
2737 default: assert(0 && "Invalid Type");
2738 case Type::FloatTyID: return "Float";
2739 case Type::DoubleTyID: return "Double";
2740 case Type::IntegerTyID: {
2741 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2742 if (NumBits <= 32)
2743 return "Int32";
2744 else
2745 return "Int64";
2750 void CWriter::visitCastInst(CastInst &I) {
2751 const Type *DstTy = I.getType();
2752 const Type *SrcTy = I.getOperand(0)->getType();
2753 if (isFPIntBitCast(I)) {
2754 Out << '(';
2755 // These int<->float and long<->double casts need to be handled specially
2756 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2757 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2758 writeOperand(I.getOperand(0));
2759 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2760 << getFloatBitCastField(I.getType());
2761 Out << ')';
2762 return;
2765 Out << '(';
2766 printCast(I.getOpcode(), SrcTy, DstTy);
2768 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2769 if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
2770 Out << "0-";
2772 writeOperand(I.getOperand(0));
2774 if (DstTy == Type::Int1Ty &&
2775 (I.getOpcode() == Instruction::Trunc ||
2776 I.getOpcode() == Instruction::FPToUI ||
2777 I.getOpcode() == Instruction::FPToSI ||
2778 I.getOpcode() == Instruction::PtrToInt)) {
2779 // Make sure we really get a trunc to bool by anding the operand with 1
2780 Out << "&1u";
2782 Out << ')';
2785 void CWriter::visitSelectInst(SelectInst &I) {
2786 Out << "((";
2787 writeOperand(I.getCondition());
2788 Out << ") ? (";
2789 writeOperand(I.getTrueValue());
2790 Out << ") : (";
2791 writeOperand(I.getFalseValue());
2792 Out << "))";
2796 void CWriter::lowerIntrinsics(Function &F) {
2797 // This is used to keep track of intrinsics that get generated to a lowered
2798 // function. We must generate the prototypes before the function body which
2799 // will only be expanded on first use (by the loop below).
2800 std::vector<Function*> prototypesToGen;
2802 // Examine all the instructions in this function to find the intrinsics that
2803 // need to be lowered.
2804 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2805 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2806 if (CallInst *CI = dyn_cast<CallInst>(I++))
2807 if (Function *F = CI->getCalledFunction())
2808 switch (F->getIntrinsicID()) {
2809 case Intrinsic::not_intrinsic:
2810 case Intrinsic::memory_barrier:
2811 case Intrinsic::vastart:
2812 case Intrinsic::vacopy:
2813 case Intrinsic::vaend:
2814 case Intrinsic::returnaddress:
2815 case Intrinsic::frameaddress:
2816 case Intrinsic::setjmp:
2817 case Intrinsic::longjmp:
2818 case Intrinsic::prefetch:
2819 case Intrinsic::dbg_stoppoint:
2820 case Intrinsic::powi:
2821 case Intrinsic::x86_sse_cmp_ss:
2822 case Intrinsic::x86_sse_cmp_ps:
2823 case Intrinsic::x86_sse2_cmp_sd:
2824 case Intrinsic::x86_sse2_cmp_pd:
2825 case Intrinsic::ppc_altivec_lvsl:
2826 // We directly implement these intrinsics
2827 break;
2828 default:
2829 // If this is an intrinsic that directly corresponds to a GCC
2830 // builtin, we handle it.
2831 const char *BuiltinName = "";
2832 #define GET_GCC_BUILTIN_NAME
2833 #include "llvm/Intrinsics.gen"
2834 #undef GET_GCC_BUILTIN_NAME
2835 // If we handle it, don't lower it.
2836 if (BuiltinName[0]) break;
2838 // All other intrinsic calls we must lower.
2839 Instruction *Before = 0;
2840 if (CI != &BB->front())
2841 Before = prior(BasicBlock::iterator(CI));
2843 IL->LowerIntrinsicCall(CI);
2844 if (Before) { // Move iterator to instruction after call
2845 I = Before; ++I;
2846 } else {
2847 I = BB->begin();
2849 // If the intrinsic got lowered to another call, and that call has
2850 // a definition then we need to make sure its prototype is emitted
2851 // before any calls to it.
2852 if (CallInst *Call = dyn_cast<CallInst>(I))
2853 if (Function *NewF = Call->getCalledFunction())
2854 if (!NewF->isDeclaration())
2855 prototypesToGen.push_back(NewF);
2857 break;
2860 // We may have collected some prototypes to emit in the loop above.
2861 // Emit them now, before the function that uses them is emitted. But,
2862 // be careful not to emit them twice.
2863 std::vector<Function*>::iterator I = prototypesToGen.begin();
2864 std::vector<Function*>::iterator E = prototypesToGen.end();
2865 for ( ; I != E; ++I) {
2866 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2867 Out << '\n';
2868 printFunctionSignature(*I, true);
2869 Out << ";\n";
2874 void CWriter::visitCallInst(CallInst &I) {
2875 if (isa<InlineAsm>(I.getOperand(0)))
2876 return visitInlineAsm(I);
2878 bool WroteCallee = false;
2880 // Handle intrinsic function calls first...
2881 if (Function *F = I.getCalledFunction())
2882 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2883 if (visitBuiltinCall(I, ID, WroteCallee))
2884 return;
2886 Value *Callee = I.getCalledValue();
2888 const PointerType *PTy = cast<PointerType>(Callee->getType());
2889 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2891 // If this is a call to a struct-return function, assign to the first
2892 // parameter instead of passing it to the call.
2893 const AttrListPtr &PAL = I.getAttributes();
2894 bool hasByVal = I.hasByValArgument();
2895 bool isStructRet = I.hasStructRetAttr();
2896 if (isStructRet) {
2897 writeOperandDeref(I.getOperand(1));
2898 Out << " = ";
2901 if (I.isTailCall()) Out << " /*tail*/ ";
2903 if (!WroteCallee) {
2904 // If this is an indirect call to a struct return function, we need to cast
2905 // the pointer. Ditto for indirect calls with byval arguments.
2906 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
2908 // GCC is a real PITA. It does not permit codegening casts of functions to
2909 // function pointers if they are in a call (it generates a trap instruction
2910 // instead!). We work around this by inserting a cast to void* in between
2911 // the function and the function pointer cast. Unfortunately, we can't just
2912 // form the constant expression here, because the folder will immediately
2913 // nuke it.
2915 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2916 // that void* and function pointers have the same size. :( To deal with this
2917 // in the common case, we handle casts where the number of arguments passed
2918 // match exactly.
2920 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2921 if (CE->isCast())
2922 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2923 NeedsCast = true;
2924 Callee = RF;
2927 if (NeedsCast) {
2928 // Ok, just cast the pointer type.
2929 Out << "((";
2930 if (isStructRet)
2931 printStructReturnPointerFunctionType(Out, PAL,
2932 cast<PointerType>(I.getCalledValue()->getType()));
2933 else if (hasByVal)
2934 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2935 else
2936 printType(Out, I.getCalledValue()->getType());
2937 Out << ")(void*)";
2939 writeOperand(Callee);
2940 if (NeedsCast) Out << ')';
2943 Out << '(';
2945 unsigned NumDeclaredParams = FTy->getNumParams();
2947 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2948 unsigned ArgNo = 0;
2949 if (isStructRet) { // Skip struct return argument.
2950 ++AI;
2951 ++ArgNo;
2954 bool PrintedArg = false;
2955 for (; AI != AE; ++AI, ++ArgNo) {
2956 if (PrintedArg) Out << ", ";
2957 if (ArgNo < NumDeclaredParams &&
2958 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2959 Out << '(';
2960 printType(Out, FTy->getParamType(ArgNo),
2961 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
2962 Out << ')';
2964 // Check if the argument is expected to be passed by value.
2965 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
2966 writeOperandDeref(*AI);
2967 else
2968 writeOperand(*AI);
2969 PrintedArg = true;
2971 Out << ')';
2974 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2975 /// if the entire call is handled, return false it it wasn't handled, and
2976 /// optionally set 'WroteCallee' if the callee has already been printed out.
2977 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2978 bool &WroteCallee) {
2979 switch (ID) {
2980 default: {
2981 // If this is an intrinsic that directly corresponds to a GCC
2982 // builtin, we emit it here.
2983 const char *BuiltinName = "";
2984 Function *F = I.getCalledFunction();
2985 #define GET_GCC_BUILTIN_NAME
2986 #include "llvm/Intrinsics.gen"
2987 #undef GET_GCC_BUILTIN_NAME
2988 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2990 Out << BuiltinName;
2991 WroteCallee = true;
2992 return false;
2994 case Intrinsic::memory_barrier:
2995 Out << "__sync_synchronize()";
2996 return true;
2997 case Intrinsic::vastart:
2998 Out << "0; ";
3000 Out << "va_start(*(va_list*)";
3001 writeOperand(I.getOperand(1));
3002 Out << ", ";
3003 // Output the last argument to the enclosing function.
3004 if (I.getParent()->getParent()->arg_empty()) {
3005 cerr << "The C backend does not currently support zero "
3006 << "argument varargs functions, such as '"
3007 << I.getParent()->getParent()->getName() << "'!\n";
3008 abort();
3010 writeOperand(--I.getParent()->getParent()->arg_end());
3011 Out << ')';
3012 return true;
3013 case Intrinsic::vaend:
3014 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
3015 Out << "0; va_end(*(va_list*)";
3016 writeOperand(I.getOperand(1));
3017 Out << ')';
3018 } else {
3019 Out << "va_end(*(va_list*)0)";
3021 return true;
3022 case Intrinsic::vacopy:
3023 Out << "0; ";
3024 Out << "va_copy(*(va_list*)";
3025 writeOperand(I.getOperand(1));
3026 Out << ", *(va_list*)";
3027 writeOperand(I.getOperand(2));
3028 Out << ')';
3029 return true;
3030 case Intrinsic::returnaddress:
3031 Out << "__builtin_return_address(";
3032 writeOperand(I.getOperand(1));
3033 Out << ')';
3034 return true;
3035 case Intrinsic::frameaddress:
3036 Out << "__builtin_frame_address(";
3037 writeOperand(I.getOperand(1));
3038 Out << ')';
3039 return true;
3040 case Intrinsic::powi:
3041 Out << "__builtin_powi(";
3042 writeOperand(I.getOperand(1));
3043 Out << ", ";
3044 writeOperand(I.getOperand(2));
3045 Out << ')';
3046 return true;
3047 case Intrinsic::setjmp:
3048 Out << "setjmp(*(jmp_buf*)";
3049 writeOperand(I.getOperand(1));
3050 Out << ')';
3051 return true;
3052 case Intrinsic::longjmp:
3053 Out << "longjmp(*(jmp_buf*)";
3054 writeOperand(I.getOperand(1));
3055 Out << ", ";
3056 writeOperand(I.getOperand(2));
3057 Out << ')';
3058 return true;
3059 case Intrinsic::prefetch:
3060 Out << "LLVM_PREFETCH((const void *)";
3061 writeOperand(I.getOperand(1));
3062 Out << ", ";
3063 writeOperand(I.getOperand(2));
3064 Out << ", ";
3065 writeOperand(I.getOperand(3));
3066 Out << ")";
3067 return true;
3068 case Intrinsic::stacksave:
3069 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3070 // to work around GCC bugs (see PR1809).
3071 Out << "0; *((void**)&" << GetValueName(&I)
3072 << ") = __builtin_stack_save()";
3073 return true;
3074 case Intrinsic::dbg_stoppoint: {
3075 // If we use writeOperand directly we get a "u" suffix which is rejected
3076 // by gcc.
3077 std::stringstream SPIStr;
3078 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3079 SPI.getDirectory()->print(SPIStr);
3080 Out << "\n#line "
3081 << SPI.getLine()
3082 << " \"";
3083 Out << SPIStr.str();
3084 SPIStr.clear();
3085 SPI.getFileName()->print(SPIStr);
3086 Out << SPIStr.str() << "\"\n";
3087 return true;
3089 case Intrinsic::x86_sse_cmp_ss:
3090 case Intrinsic::x86_sse_cmp_ps:
3091 case Intrinsic::x86_sse2_cmp_sd:
3092 case Intrinsic::x86_sse2_cmp_pd:
3093 Out << '(';
3094 printType(Out, I.getType());
3095 Out << ')';
3096 // Multiple GCC builtins multiplex onto this intrinsic.
3097 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
3098 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
3099 case 0: Out << "__builtin_ia32_cmpeq"; break;
3100 case 1: Out << "__builtin_ia32_cmplt"; break;
3101 case 2: Out << "__builtin_ia32_cmple"; break;
3102 case 3: Out << "__builtin_ia32_cmpunord"; break;
3103 case 4: Out << "__builtin_ia32_cmpneq"; break;
3104 case 5: Out << "__builtin_ia32_cmpnlt"; break;
3105 case 6: Out << "__builtin_ia32_cmpnle"; break;
3106 case 7: Out << "__builtin_ia32_cmpord"; break;
3108 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
3109 Out << 'p';
3110 else
3111 Out << 's';
3112 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
3113 Out << 's';
3114 else
3115 Out << 'd';
3117 Out << "(";
3118 writeOperand(I.getOperand(1));
3119 Out << ", ";
3120 writeOperand(I.getOperand(2));
3121 Out << ")";
3122 return true;
3123 case Intrinsic::ppc_altivec_lvsl:
3124 Out << '(';
3125 printType(Out, I.getType());
3126 Out << ')';
3127 Out << "__builtin_altivec_lvsl(0, (void*)";
3128 writeOperand(I.getOperand(1));
3129 Out << ")";
3130 return true;
3134 //This converts the llvm constraint string to something gcc is expecting.
3135 //TODO: work out platform independent constraints and factor those out
3136 // of the per target tables
3137 // handle multiple constraint codes
3138 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
3140 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
3142 const char *const *table = 0;
3144 //Grab the translation table from TargetAsmInfo if it exists
3145 if (!TAsm) {
3146 std::string E;
3147 const TargetMachineRegistry::entry* Match =
3148 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
3149 if (Match) {
3150 //Per platform Target Machines don't exist, so create it
3151 // this must be done only once
3152 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
3153 TAsm = TM->getTargetAsmInfo();
3156 if (TAsm)
3157 table = TAsm->getAsmCBE();
3159 //Search the translation table if it exists
3160 for (int i = 0; table && table[i]; i += 2)
3161 if (c.Codes[0] == table[i])
3162 return table[i+1];
3164 //default is identity
3165 return c.Codes[0];
3168 //TODO: import logic from AsmPrinter.cpp
3169 static std::string gccifyAsm(std::string asmstr) {
3170 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
3171 if (asmstr[i] == '\n')
3172 asmstr.replace(i, 1, "\\n");
3173 else if (asmstr[i] == '\t')
3174 asmstr.replace(i, 1, "\\t");
3175 else if (asmstr[i] == '$') {
3176 if (asmstr[i + 1] == '{') {
3177 std::string::size_type a = asmstr.find_first_of(':', i + 1);
3178 std::string::size_type b = asmstr.find_first_of('}', i + 1);
3179 std::string n = "%" +
3180 asmstr.substr(a + 1, b - a - 1) +
3181 asmstr.substr(i + 2, a - i - 2);
3182 asmstr.replace(i, b - i + 1, n);
3183 i += n.size() - 1;
3184 } else
3185 asmstr.replace(i, 1, "%");
3187 else if (asmstr[i] == '%')//grr
3188 { asmstr.replace(i, 1, "%%"); ++i;}
3190 return asmstr;
3193 //TODO: assumptions about what consume arguments from the call are likely wrong
3194 // handle communitivity
3195 void CWriter::visitInlineAsm(CallInst &CI) {
3196 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
3197 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
3199 std::vector<std::pair<Value*, int> > ResultVals;
3200 if (CI.getType() == Type::VoidTy)
3202 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
3203 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
3204 ResultVals.push_back(std::make_pair(&CI, (int)i));
3205 } else {
3206 ResultVals.push_back(std::make_pair(&CI, -1));
3209 // Fix up the asm string for gcc and emit it.
3210 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
3211 Out << " :";
3213 unsigned ValueCount = 0;
3214 bool IsFirst = true;
3216 // Convert over all the output constraints.
3217 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3218 E = Constraints.end(); I != E; ++I) {
3220 if (I->Type != InlineAsm::isOutput) {
3221 ++ValueCount;
3222 continue; // Ignore non-output constraints.
3225 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3226 std::string C = InterpretASMConstraint(*I);
3227 if (C.empty()) continue;
3229 if (!IsFirst) {
3230 Out << ", ";
3231 IsFirst = false;
3234 // Unpack the dest.
3235 Value *DestVal;
3236 int DestValNo = -1;
3238 if (ValueCount < ResultVals.size()) {
3239 DestVal = ResultVals[ValueCount].first;
3240 DestValNo = ResultVals[ValueCount].second;
3241 } else
3242 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3244 if (I->isEarlyClobber)
3245 C = "&"+C;
3247 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3248 if (DestValNo != -1)
3249 Out << ".field" << DestValNo; // Multiple retvals.
3250 Out << ")";
3251 ++ValueCount;
3255 // Convert over all the input constraints.
3256 Out << "\n :";
3257 IsFirst = true;
3258 ValueCount = 0;
3259 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3260 E = Constraints.end(); I != E; ++I) {
3261 if (I->Type != InlineAsm::isInput) {
3262 ++ValueCount;
3263 continue; // Ignore non-input constraints.
3266 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3267 std::string C = InterpretASMConstraint(*I);
3268 if (C.empty()) continue;
3270 if (!IsFirst) {
3271 Out << ", ";
3272 IsFirst = false;
3275 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3276 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3278 Out << "\"" << C << "\"(";
3279 if (!I->isIndirect)
3280 writeOperand(SrcVal);
3281 else
3282 writeOperandDeref(SrcVal);
3283 Out << ")";
3286 // Convert over the clobber constraints.
3287 IsFirst = true;
3288 ValueCount = 0;
3289 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3290 E = Constraints.end(); I != E; ++I) {
3291 if (I->Type != InlineAsm::isClobber)
3292 continue; // Ignore non-input constraints.
3294 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3295 std::string C = InterpretASMConstraint(*I);
3296 if (C.empty()) continue;
3298 if (!IsFirst) {
3299 Out << ", ";
3300 IsFirst = false;
3303 Out << '\"' << C << '"';
3306 Out << ")";
3309 void CWriter::visitMallocInst(MallocInst &I) {
3310 assert(0 && "lowerallocations pass didn't work!");
3313 void CWriter::visitAllocaInst(AllocaInst &I) {
3314 Out << '(';
3315 printType(Out, I.getType());
3316 Out << ") alloca(sizeof(";
3317 printType(Out, I.getType()->getElementType());
3318 Out << ')';
3319 if (I.isArrayAllocation()) {
3320 Out << " * " ;
3321 writeOperand(I.getOperand(0));
3323 Out << ')';
3326 void CWriter::visitFreeInst(FreeInst &I) {
3327 assert(0 && "lowerallocations pass didn't work!");
3330 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3331 gep_type_iterator E, bool Static) {
3333 // If there are no indices, just print out the pointer.
3334 if (I == E) {
3335 writeOperand(Ptr);
3336 return;
3339 // Find out if the last index is into a vector. If so, we have to print this
3340 // specially. Since vectors can't have elements of indexable type, only the
3341 // last index could possibly be of a vector element.
3342 const VectorType *LastIndexIsVector = 0;
3344 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3345 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
3348 Out << "(";
3350 // If the last index is into a vector, we can't print it as &a[i][j] because
3351 // we can't index into a vector with j in GCC. Instead, emit this as
3352 // (((float*)&a[i])+j)
3353 if (LastIndexIsVector) {
3354 Out << "((";
3355 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3356 Out << ")(";
3359 Out << '&';
3361 // If the first index is 0 (very typical) we can do a number of
3362 // simplifications to clean up the code.
3363 Value *FirstOp = I.getOperand();
3364 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3365 // First index isn't simple, print it the hard way.
3366 writeOperand(Ptr);
3367 } else {
3368 ++I; // Skip the zero index.
3370 // Okay, emit the first operand. If Ptr is something that is already address
3371 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3372 if (isAddressExposed(Ptr)) {
3373 writeOperandInternal(Ptr, Static);
3374 } else if (I != E && isa<StructType>(*I)) {
3375 // If we didn't already emit the first operand, see if we can print it as
3376 // P->f instead of "P[0].f"
3377 writeOperand(Ptr);
3378 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3379 ++I; // eat the struct index as well.
3380 } else {
3381 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3382 Out << "(*";
3383 writeOperand(Ptr);
3384 Out << ")";
3388 for (; I != E; ++I) {
3389 if (isa<StructType>(*I)) {
3390 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3391 } else if (isa<ArrayType>(*I)) {
3392 Out << ".array[";
3393 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3394 Out << ']';
3395 } else if (!isa<VectorType>(*I)) {
3396 Out << '[';
3397 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3398 Out << ']';
3399 } else {
3400 // If the last index is into a vector, then print it out as "+j)". This
3401 // works with the 'LastIndexIsVector' code above.
3402 if (isa<Constant>(I.getOperand()) &&
3403 cast<Constant>(I.getOperand())->isNullValue()) {
3404 Out << "))"; // avoid "+0".
3405 } else {
3406 Out << ")+(";
3407 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3408 Out << "))";
3412 Out << ")";
3415 void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3416 bool IsVolatile, unsigned Alignment) {
3418 bool IsUnaligned = Alignment &&
3419 Alignment < TD->getABITypeAlignment(OperandType);
3421 if (!IsUnaligned)
3422 Out << '*';
3423 if (IsVolatile || IsUnaligned) {
3424 Out << "((";
3425 if (IsUnaligned)
3426 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3427 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3428 if (IsUnaligned) {
3429 Out << "; } ";
3430 if (IsVolatile) Out << "volatile ";
3431 Out << "*";
3433 Out << ")";
3436 writeOperand(Operand);
3438 if (IsVolatile || IsUnaligned) {
3439 Out << ')';
3440 if (IsUnaligned)
3441 Out << "->data";
3445 void CWriter::visitLoadInst(LoadInst &I) {
3446 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3447 I.getAlignment());
3451 void CWriter::visitStoreInst(StoreInst &I) {
3452 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3453 I.isVolatile(), I.getAlignment());
3454 Out << " = ";
3455 Value *Operand = I.getOperand(0);
3456 Constant *BitMask = 0;
3457 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3458 if (!ITy->isPowerOf2ByteWidth())
3459 // We have a bit width that doesn't match an even power-of-2 byte
3460 // size. Consequently we must & the value with the type's bit mask
3461 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3462 if (BitMask)
3463 Out << "((";
3464 writeOperand(Operand);
3465 if (BitMask) {
3466 Out << ") & ";
3467 printConstant(BitMask, false);
3468 Out << ")";
3472 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3473 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3474 gep_type_end(I), false);
3477 void CWriter::visitVAArgInst(VAArgInst &I) {
3478 Out << "va_arg(*(va_list*)";
3479 writeOperand(I.getOperand(0));
3480 Out << ", ";
3481 printType(Out, I.getType());
3482 Out << ");\n ";
3485 void CWriter::visitInsertElementInst(InsertElementInst &I) {
3486 const Type *EltTy = I.getType()->getElementType();
3487 writeOperand(I.getOperand(0));
3488 Out << ";\n ";
3489 Out << "((";
3490 printType(Out, PointerType::getUnqual(EltTy));
3491 Out << ")(&" << GetValueName(&I) << "))[";
3492 writeOperand(I.getOperand(2));
3493 Out << "] = (";
3494 writeOperand(I.getOperand(1));
3495 Out << ")";
3498 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3499 // We know that our operand is not inlined.
3500 Out << "((";
3501 const Type *EltTy =
3502 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3503 printType(Out, PointerType::getUnqual(EltTy));
3504 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3505 writeOperand(I.getOperand(1));
3506 Out << "]";
3509 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3510 Out << "(";
3511 printType(Out, SVI.getType());
3512 Out << "){ ";
3513 const VectorType *VT = SVI.getType();
3514 unsigned NumElts = VT->getNumElements();
3515 const Type *EltTy = VT->getElementType();
3517 for (unsigned i = 0; i != NumElts; ++i) {
3518 if (i) Out << ", ";
3519 int SrcVal = SVI.getMaskValue(i);
3520 if ((unsigned)SrcVal >= NumElts*2) {
3521 Out << " 0/*undef*/ ";
3522 } else {
3523 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3524 if (isa<Instruction>(Op)) {
3525 // Do an extractelement of this value from the appropriate input.
3526 Out << "((";
3527 printType(Out, PointerType::getUnqual(EltTy));
3528 Out << ")(&" << GetValueName(Op)
3529 << "))[" << (SrcVal & (NumElts-1)) << "]";
3530 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3531 Out << "0";
3532 } else {
3533 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3534 (NumElts-1)),
3535 false);
3539 Out << "}";
3542 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3543 // Start by copying the entire aggregate value into the result variable.
3544 writeOperand(IVI.getOperand(0));
3545 Out << ";\n ";
3547 // Then do the insert to update the field.
3548 Out << GetValueName(&IVI);
3549 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3550 i != e; ++i) {
3551 const Type *IndexedTy =
3552 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3553 if (isa<ArrayType>(IndexedTy))
3554 Out << ".array[" << *i << "]";
3555 else
3556 Out << ".field" << *i;
3558 Out << " = ";
3559 writeOperand(IVI.getOperand(1));
3562 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3563 Out << "(";
3564 if (isa<UndefValue>(EVI.getOperand(0))) {
3565 Out << "(";
3566 printType(Out, EVI.getType());
3567 Out << ") 0/*UNDEF*/";
3568 } else {
3569 Out << GetValueName(EVI.getOperand(0));
3570 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3571 i != e; ++i) {
3572 const Type *IndexedTy =
3573 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3574 if (isa<ArrayType>(IndexedTy))
3575 Out << ".array[" << *i << "]";
3576 else
3577 Out << ".field" << *i;
3580 Out << ")";
3583 //===----------------------------------------------------------------------===//
3584 // External Interface declaration
3585 //===----------------------------------------------------------------------===//
3587 bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3588 raw_ostream &o,
3589 CodeGenFileType FileType,
3590 CodeGenOpt::Level OptLevel) {
3591 if (FileType != TargetMachine::AssemblyFile) return true;
3593 PM.add(createGCLoweringPass());
3594 PM.add(createLowerAllocationsPass(true));
3595 PM.add(createLowerInvokePass());
3596 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3597 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3598 PM.add(new CWriter(o));
3599 PM.add(createGCInfoDeleter());
3600 return false;