1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library converts LLVM code to C code, compilable by GCC and other C
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/Analysis/ConstantsScanner.h"
28 #include "llvm/Analysis/FindUsedTypes.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Target/TargetMachineRegistry.h"
34 #include "llvm/Target/TargetAsmInfo.h"
35 #include "llvm/Target/TargetData.h"
36 #include "llvm/Support/CallSite.h"
37 #include "llvm/Support/CFG.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/InstVisitor.h"
40 #include "llvm/Support/Mangler.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Config/config.h"
51 /// CBackendTargetMachineModule - Note that this is used on hosts that
52 /// cannot link in a library unless there are references into the
53 /// library. In particular, it seems that it is not possible to get
54 /// things to work on Win32 without this. Though it is unused, do not
56 extern "C" int CBackendTargetMachineModule
;
57 int CBackendTargetMachineModule
= 0;
59 // Register the target.
60 static RegisterTarget
<CTargetMachine
> X("c", "C backend");
63 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
64 /// any unnamed structure types that are used by the program, and merges
65 /// external functions with the same name.
67 class CBackendNameAllUsedStructsAndMergeFunctions
: public ModulePass
{
70 CBackendNameAllUsedStructsAndMergeFunctions()
72 void getAnalysisUsage(AnalysisUsage
&AU
) const {
73 AU
.addRequired
<FindUsedTypes
>();
76 virtual const char *getPassName() const {
77 return "C backend type canonicalizer";
80 virtual bool runOnModule(Module
&M
);
83 char CBackendNameAllUsedStructsAndMergeFunctions::ID
= 0;
85 /// CWriter - This class is the main chunk of code that converts an LLVM
86 /// module to a C translation unit.
87 class CWriter
: public FunctionPass
, public InstVisitor
<CWriter
> {
89 IntrinsicLowering
*IL
;
92 const Module
*TheModule
;
93 const TargetAsmInfo
* TAsm
;
95 std::map
<const Type
*, std::string
> TypeNames
;
96 std::map
<const ConstantFP
*, unsigned> FPConstantMap
;
97 std::set
<Function
*> intrinsicPrototypesAlreadyGenerated
;
98 std::set
<const Argument
*> ByValParams
;
103 explicit CWriter(raw_ostream
&o
)
104 : FunctionPass(&ID
), Out(o
), IL(0), Mang(0), LI(0),
105 TheModule(0), TAsm(0), TD(0) {
109 virtual const char *getPassName() const { return "C backend"; }
111 void getAnalysisUsage(AnalysisUsage
&AU
) const {
112 AU
.addRequired
<LoopInfo
>();
113 AU
.setPreservesAll();
116 virtual bool doInitialization(Module
&M
);
118 bool runOnFunction(Function
&F
) {
119 // Do not codegen any 'available_externally' functions at all, they have
120 // definitions outside the translation unit.
121 if (F
.hasAvailableExternallyLinkage())
124 LI
= &getAnalysis
<LoopInfo
>();
126 // Get rid of intrinsics we can't handle.
129 // Output all floating point constants that cannot be printed accurately.
130 printFloatingPointConstants(F
);
136 virtual bool doFinalization(Module
&M
) {
141 FPConstantMap
.clear();
144 intrinsicPrototypesAlreadyGenerated
.clear();
148 raw_ostream
&printType(raw_ostream
&Out
, const Type
*Ty
,
149 bool isSigned
= false,
150 const std::string
&VariableName
= "",
151 bool IgnoreName
= false,
152 const AttrListPtr
&PAL
= AttrListPtr());
153 std::ostream
&printType(std::ostream
&Out
, const Type
*Ty
,
154 bool isSigned
= false,
155 const std::string
&VariableName
= "",
156 bool IgnoreName
= false,
157 const AttrListPtr
&PAL
= AttrListPtr());
158 raw_ostream
&printSimpleType(raw_ostream
&Out
, const Type
*Ty
,
160 const std::string
&NameSoFar
= "");
161 std::ostream
&printSimpleType(std::ostream
&Out
, const Type
*Ty
,
163 const std::string
&NameSoFar
= "");
165 void printStructReturnPointerFunctionType(raw_ostream
&Out
,
166 const AttrListPtr
&PAL
,
167 const PointerType
*Ty
);
169 /// writeOperandDeref - Print the result of dereferencing the specified
170 /// operand with '*'. This is equivalent to printing '*' then using
171 /// writeOperand, but avoids excess syntax in some cases.
172 void writeOperandDeref(Value
*Operand
) {
173 if (isAddressExposed(Operand
)) {
174 // Already something with an address exposed.
175 writeOperandInternal(Operand
);
178 writeOperand(Operand
);
183 void writeOperand(Value
*Operand
, bool Static
= false);
184 void writeInstComputationInline(Instruction
&I
);
185 void writeOperandInternal(Value
*Operand
, bool Static
= false);
186 void writeOperandWithCast(Value
* Operand
, unsigned Opcode
);
187 void writeOperandWithCast(Value
* Operand
, const ICmpInst
&I
);
188 bool writeInstructionCast(const Instruction
&I
);
190 void writeMemoryAccess(Value
*Operand
, const Type
*OperandType
,
191 bool IsVolatile
, unsigned Alignment
);
194 std::string
InterpretASMConstraint(InlineAsm::ConstraintInfo
& c
);
196 void lowerIntrinsics(Function
&F
);
198 void printModule(Module
*M
);
199 void printModuleTypes(const TypeSymbolTable
&ST
);
200 void printContainedStructs(const Type
*Ty
, std::set
<const Type
*> &);
201 void printFloatingPointConstants(Function
&F
);
202 void printFloatingPointConstants(const Constant
*C
);
203 void printFunctionSignature(const Function
*F
, bool Prototype
);
205 void printFunction(Function
&);
206 void printBasicBlock(BasicBlock
*BB
);
207 void printLoop(Loop
*L
);
209 void printCast(unsigned opcode
, const Type
*SrcTy
, const Type
*DstTy
);
210 void printConstant(Constant
*CPV
, bool Static
);
211 void printConstantWithCast(Constant
*CPV
, unsigned Opcode
);
212 bool printConstExprCast(const ConstantExpr
*CE
, bool Static
);
213 void printConstantArray(ConstantArray
*CPA
, bool Static
);
214 void printConstantVector(ConstantVector
*CV
, bool Static
);
216 /// isAddressExposed - Return true if the specified value's name needs to
217 /// have its address taken in order to get a C value of the correct type.
218 /// This happens for global variables, byval parameters, and direct allocas.
219 bool isAddressExposed(const Value
*V
) const {
220 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
221 return ByValParams
.count(A
);
222 return isa
<GlobalVariable
>(V
) || isDirectAlloca(V
);
225 // isInlinableInst - Attempt to inline instructions into their uses to build
226 // trees as much as possible. To do this, we have to consistently decide
227 // what is acceptable to inline, so that variable declarations don't get
228 // printed and an extra copy of the expr is not emitted.
230 static bool isInlinableInst(const Instruction
&I
) {
231 // Always inline cmp instructions, even if they are shared by multiple
232 // expressions. GCC generates horrible code if we don't.
236 // Must be an expression, must be used exactly once. If it is dead, we
237 // emit it inline where it would go.
238 if (I
.getType() == Type::VoidTy
|| !I
.hasOneUse() ||
239 isa
<TerminatorInst
>(I
) || isa
<CallInst
>(I
) || isa
<PHINode
>(I
) ||
240 isa
<LoadInst
>(I
) || isa
<VAArgInst
>(I
) || isa
<InsertElementInst
>(I
) ||
241 isa
<InsertValueInst
>(I
))
242 // Don't inline a load across a store or other bad things!
245 // Must not be used in inline asm, extractelement, or shufflevector.
247 const Instruction
&User
= cast
<Instruction
>(*I
.use_back());
248 if (isInlineAsm(User
) || isa
<ExtractElementInst
>(User
) ||
249 isa
<ShuffleVectorInst
>(User
))
253 // Only inline instruction it if it's use is in the same BB as the inst.
254 return I
.getParent() == cast
<Instruction
>(I
.use_back())->getParent();
257 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
258 // variables which are accessed with the & operator. This causes GCC to
259 // generate significantly better code than to emit alloca calls directly.
261 static const AllocaInst
*isDirectAlloca(const Value
*V
) {
262 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
);
263 if (!AI
) return false;
264 if (AI
->isArrayAllocation())
265 return 0; // FIXME: we can also inline fixed size array allocas!
266 if (AI
->getParent() != &AI
->getParent()->getParent()->getEntryBlock())
271 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
272 static bool isInlineAsm(const Instruction
& I
) {
273 if (isa
<CallInst
>(&I
) && isa
<InlineAsm
>(I
.getOperand(0)))
278 // Instruction visitation functions
279 friend class InstVisitor
<CWriter
>;
281 void visitReturnInst(ReturnInst
&I
);
282 void visitBranchInst(BranchInst
&I
);
283 void visitSwitchInst(SwitchInst
&I
);
284 void visitInvokeInst(InvokeInst
&I
) {
285 assert(0 && "Lowerinvoke pass didn't work!");
288 void visitUnwindInst(UnwindInst
&I
) {
289 assert(0 && "Lowerinvoke pass didn't work!");
291 void visitUnreachableInst(UnreachableInst
&I
);
293 void visitPHINode(PHINode
&I
);
294 void visitBinaryOperator(Instruction
&I
);
295 void visitICmpInst(ICmpInst
&I
);
296 void visitFCmpInst(FCmpInst
&I
);
298 void visitCastInst (CastInst
&I
);
299 void visitSelectInst(SelectInst
&I
);
300 void visitCallInst (CallInst
&I
);
301 void visitInlineAsm(CallInst
&I
);
302 bool visitBuiltinCall(CallInst
&I
, Intrinsic::ID ID
, bool &WroteCallee
);
304 void visitMallocInst(MallocInst
&I
);
305 void visitAllocaInst(AllocaInst
&I
);
306 void visitFreeInst (FreeInst
&I
);
307 void visitLoadInst (LoadInst
&I
);
308 void visitStoreInst (StoreInst
&I
);
309 void visitGetElementPtrInst(GetElementPtrInst
&I
);
310 void visitVAArgInst (VAArgInst
&I
);
312 void visitInsertElementInst(InsertElementInst
&I
);
313 void visitExtractElementInst(ExtractElementInst
&I
);
314 void visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
316 void visitInsertValueInst(InsertValueInst
&I
);
317 void visitExtractValueInst(ExtractValueInst
&I
);
319 void visitInstruction(Instruction
&I
) {
320 cerr
<< "C Writer does not know about " << I
;
324 void outputLValue(Instruction
*I
) {
325 Out
<< " " << GetValueName(I
) << " = ";
328 bool isGotoCodeNecessary(BasicBlock
*From
, BasicBlock
*To
);
329 void printPHICopiesForSuccessor(BasicBlock
*CurBlock
,
330 BasicBlock
*Successor
, unsigned Indent
);
331 void printBranchToBlock(BasicBlock
*CurBlock
, BasicBlock
*SuccBlock
,
333 void printGEPExpression(Value
*Ptr
, gep_type_iterator I
,
334 gep_type_iterator E
, bool Static
);
336 std::string
GetValueName(const Value
*Operand
);
340 char CWriter::ID
= 0;
342 /// This method inserts names for any unnamed structure types that are used by
343 /// the program, and removes names from structure types that are not used by the
346 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module
&M
) {
347 // Get a set of types that are used by the program...
348 std::set
<const Type
*> UT
= getAnalysis
<FindUsedTypes
>().getTypes();
350 // Loop over the module symbol table, removing types from UT that are
351 // already named, and removing names for types that are not used.
353 TypeSymbolTable
&TST
= M
.getTypeSymbolTable();
354 for (TypeSymbolTable::iterator TI
= TST
.begin(), TE
= TST
.end();
356 TypeSymbolTable::iterator I
= TI
++;
358 // If this isn't a struct or array type, remove it from our set of types
359 // to name. This simplifies emission later.
360 if (!isa
<StructType
>(I
->second
) && !isa
<OpaqueType
>(I
->second
) &&
361 !isa
<ArrayType
>(I
->second
)) {
364 // If this is not used, remove it from the symbol table.
365 std::set
<const Type
*>::iterator UTI
= UT
.find(I
->second
);
369 UT
.erase(UTI
); // Only keep one name for this type.
373 // UT now contains types that are not named. Loop over it, naming
376 bool Changed
= false;
377 unsigned RenameCounter
= 0;
378 for (std::set
<const Type
*>::const_iterator I
= UT
.begin(), E
= UT
.end();
380 if (isa
<StructType
>(*I
) || isa
<ArrayType
>(*I
)) {
381 while (M
.addTypeName("unnamed"+utostr(RenameCounter
), *I
))
387 // Loop over all external functions and globals. If we have two with
388 // identical names, merge them.
389 // FIXME: This code should disappear when we don't allow values with the same
390 // names when they have different types!
391 std::map
<std::string
, GlobalValue
*> ExtSymbols
;
392 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
;) {
394 if (GV
->isDeclaration() && GV
->hasName()) {
395 std::pair
<std::map
<std::string
, GlobalValue
*>::iterator
, bool> X
396 = ExtSymbols
.insert(std::make_pair(GV
->getName(), GV
));
398 // Found a conflict, replace this global with the previous one.
399 GlobalValue
*OldGV
= X
.first
->second
;
400 GV
->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV
, GV
->getType()));
401 GV
->eraseFromParent();
406 // Do the same for globals.
407 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
409 GlobalVariable
*GV
= I
++;
410 if (GV
->isDeclaration() && GV
->hasName()) {
411 std::pair
<std::map
<std::string
, GlobalValue
*>::iterator
, bool> X
412 = ExtSymbols
.insert(std::make_pair(GV
->getName(), GV
));
414 // Found a conflict, replace this global with the previous one.
415 GlobalValue
*OldGV
= X
.first
->second
;
416 GV
->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV
, GV
->getType()));
417 GV
->eraseFromParent();
426 /// printStructReturnPointerFunctionType - This is like printType for a struct
427 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
428 /// print it as "Struct (*)(...)", for struct return functions.
429 void CWriter::printStructReturnPointerFunctionType(raw_ostream
&Out
,
430 const AttrListPtr
&PAL
,
431 const PointerType
*TheTy
) {
432 const FunctionType
*FTy
= cast
<FunctionType
>(TheTy
->getElementType());
433 std::stringstream FunctionInnards
;
434 FunctionInnards
<< " (*) (";
435 bool PrintedType
= false;
437 FunctionType::param_iterator I
= FTy
->param_begin(), E
= FTy
->param_end();
438 const Type
*RetTy
= cast
<PointerType
>(I
->get())->getElementType();
440 for (++I
, ++Idx
; I
!= E
; ++I
, ++Idx
) {
442 FunctionInnards
<< ", ";
443 const Type
*ArgTy
= *I
;
444 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
445 assert(isa
<PointerType
>(ArgTy
));
446 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
448 printType(FunctionInnards
, ArgTy
,
449 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
452 if (FTy
->isVarArg()) {
454 FunctionInnards
<< ", ...";
455 } else if (!PrintedType
) {
456 FunctionInnards
<< "void";
458 FunctionInnards
<< ')';
459 std::string tstr
= FunctionInnards
.str();
460 printType(Out
, RetTy
,
461 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
465 CWriter::printSimpleType(raw_ostream
&Out
, const Type
*Ty
, bool isSigned
,
466 const std::string
&NameSoFar
) {
467 assert((Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) &&
468 "Invalid type for printSimpleType");
469 switch (Ty
->getTypeID()) {
470 case Type::VoidTyID
: return Out
<< "void " << NameSoFar
;
471 case Type::IntegerTyID
: {
472 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
474 return Out
<< "bool " << NameSoFar
;
475 else if (NumBits
<= 8)
476 return Out
<< (isSigned
?"signed":"unsigned") << " char " << NameSoFar
;
477 else if (NumBits
<= 16)
478 return Out
<< (isSigned
?"signed":"unsigned") << " short " << NameSoFar
;
479 else if (NumBits
<= 32)
480 return Out
<< (isSigned
?"signed":"unsigned") << " int " << NameSoFar
;
481 else if (NumBits
<= 64)
482 return Out
<< (isSigned
?"signed":"unsigned") << " long long "<< NameSoFar
;
484 assert(NumBits
<= 128 && "Bit widths > 128 not implemented yet");
485 return Out
<< (isSigned
?"llvmInt128":"llvmUInt128") << " " << NameSoFar
;
488 case Type::FloatTyID
: return Out
<< "float " << NameSoFar
;
489 case Type::DoubleTyID
: return Out
<< "double " << NameSoFar
;
490 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
491 // present matches host 'long double'.
492 case Type::X86_FP80TyID
:
493 case Type::PPC_FP128TyID
:
494 case Type::FP128TyID
: return Out
<< "long double " << NameSoFar
;
496 case Type::VectorTyID
: {
497 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
498 return printSimpleType(Out
, VTy
->getElementType(), isSigned
,
499 " __attribute__((vector_size(" +
500 utostr(TD
->getTypePaddedSize(VTy
)) + " ))) " + NameSoFar
);
504 cerr
<< "Unknown primitive type: " << *Ty
<< "\n";
510 CWriter::printSimpleType(std::ostream
&Out
, const Type
*Ty
, bool isSigned
,
511 const std::string
&NameSoFar
) {
512 assert((Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) &&
513 "Invalid type for printSimpleType");
514 switch (Ty
->getTypeID()) {
515 case Type::VoidTyID
: return Out
<< "void " << NameSoFar
;
516 case Type::IntegerTyID
: {
517 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
519 return Out
<< "bool " << NameSoFar
;
520 else if (NumBits
<= 8)
521 return Out
<< (isSigned
?"signed":"unsigned") << " char " << NameSoFar
;
522 else if (NumBits
<= 16)
523 return Out
<< (isSigned
?"signed":"unsigned") << " short " << NameSoFar
;
524 else if (NumBits
<= 32)
525 return Out
<< (isSigned
?"signed":"unsigned") << " int " << NameSoFar
;
526 else if (NumBits
<= 64)
527 return Out
<< (isSigned
?"signed":"unsigned") << " long long "<< NameSoFar
;
529 assert(NumBits
<= 128 && "Bit widths > 128 not implemented yet");
530 return Out
<< (isSigned
?"llvmInt128":"llvmUInt128") << " " << NameSoFar
;
533 case Type::FloatTyID
: return Out
<< "float " << NameSoFar
;
534 case Type::DoubleTyID
: return Out
<< "double " << NameSoFar
;
535 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
536 // present matches host 'long double'.
537 case Type::X86_FP80TyID
:
538 case Type::PPC_FP128TyID
:
539 case Type::FP128TyID
: return Out
<< "long double " << NameSoFar
;
541 case Type::VectorTyID
: {
542 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
543 return printSimpleType(Out
, VTy
->getElementType(), isSigned
,
544 " __attribute__((vector_size(" +
545 utostr(TD
->getTypePaddedSize(VTy
)) + " ))) " + NameSoFar
);
549 cerr
<< "Unknown primitive type: " << *Ty
<< "\n";
554 // Pass the Type* and the variable name and this prints out the variable
557 raw_ostream
&CWriter::printType(raw_ostream
&Out
, const Type
*Ty
,
558 bool isSigned
, const std::string
&NameSoFar
,
559 bool IgnoreName
, const AttrListPtr
&PAL
) {
560 if (Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) {
561 printSimpleType(Out
, Ty
, isSigned
, NameSoFar
);
565 // Check to see if the type is named.
566 if (!IgnoreName
|| isa
<OpaqueType
>(Ty
)) {
567 std::map
<const Type
*, std::string
>::iterator I
= TypeNames
.find(Ty
);
568 if (I
!= TypeNames
.end()) return Out
<< I
->second
<< ' ' << NameSoFar
;
571 switch (Ty
->getTypeID()) {
572 case Type::FunctionTyID
: {
573 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
574 std::stringstream FunctionInnards
;
575 FunctionInnards
<< " (" << NameSoFar
<< ") (";
577 for (FunctionType::param_iterator I
= FTy
->param_begin(),
578 E
= FTy
->param_end(); I
!= E
; ++I
) {
579 const Type
*ArgTy
= *I
;
580 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
581 assert(isa
<PointerType
>(ArgTy
));
582 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
584 if (I
!= FTy
->param_begin())
585 FunctionInnards
<< ", ";
586 printType(FunctionInnards
, ArgTy
,
587 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
590 if (FTy
->isVarArg()) {
591 if (FTy
->getNumParams())
592 FunctionInnards
<< ", ...";
593 } else if (!FTy
->getNumParams()) {
594 FunctionInnards
<< "void";
596 FunctionInnards
<< ')';
597 std::string tstr
= FunctionInnards
.str();
598 printType(Out
, FTy
->getReturnType(),
599 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
602 case Type::StructTyID
: {
603 const StructType
*STy
= cast
<StructType
>(Ty
);
604 Out
<< NameSoFar
+ " {\n";
606 for (StructType::element_iterator I
= STy
->element_begin(),
607 E
= STy
->element_end(); I
!= E
; ++I
) {
609 printType(Out
, *I
, false, "field" + utostr(Idx
++));
614 Out
<< " __attribute__ ((packed))";
618 case Type::PointerTyID
: {
619 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
620 std::string ptrName
= "*" + NameSoFar
;
622 if (isa
<ArrayType
>(PTy
->getElementType()) ||
623 isa
<VectorType
>(PTy
->getElementType()))
624 ptrName
= "(" + ptrName
+ ")";
627 // Must be a function ptr cast!
628 return printType(Out
, PTy
->getElementType(), false, ptrName
, true, PAL
);
629 return printType(Out
, PTy
->getElementType(), false, ptrName
);
632 case Type::ArrayTyID
: {
633 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
634 unsigned NumElements
= ATy
->getNumElements();
635 if (NumElements
== 0) NumElements
= 1;
636 // Arrays are wrapped in structs to allow them to have normal
637 // value semantics (avoiding the array "decay").
638 Out
<< NameSoFar
<< " { ";
639 printType(Out
, ATy
->getElementType(), false,
640 "array[" + utostr(NumElements
) + "]");
644 case Type::OpaqueTyID
: {
645 static int Count
= 0;
646 std::string TyName
= "struct opaque_" + itostr(Count
++);
647 assert(TypeNames
.find(Ty
) == TypeNames
.end());
648 TypeNames
[Ty
] = TyName
;
649 return Out
<< TyName
<< ' ' << NameSoFar
;
652 assert(0 && "Unhandled case in getTypeProps!");
659 // Pass the Type* and the variable name and this prints out the variable
662 std::ostream
&CWriter::printType(std::ostream
&Out
, const Type
*Ty
,
663 bool isSigned
, const std::string
&NameSoFar
,
664 bool IgnoreName
, const AttrListPtr
&PAL
) {
665 if (Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) {
666 printSimpleType(Out
, Ty
, isSigned
, NameSoFar
);
670 // Check to see if the type is named.
671 if (!IgnoreName
|| isa
<OpaqueType
>(Ty
)) {
672 std::map
<const Type
*, std::string
>::iterator I
= TypeNames
.find(Ty
);
673 if (I
!= TypeNames
.end()) return Out
<< I
->second
<< ' ' << NameSoFar
;
676 switch (Ty
->getTypeID()) {
677 case Type::FunctionTyID
: {
678 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
679 std::stringstream FunctionInnards
;
680 FunctionInnards
<< " (" << NameSoFar
<< ") (";
682 for (FunctionType::param_iterator I
= FTy
->param_begin(),
683 E
= FTy
->param_end(); I
!= E
; ++I
) {
684 const Type
*ArgTy
= *I
;
685 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
686 assert(isa
<PointerType
>(ArgTy
));
687 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
689 if (I
!= FTy
->param_begin())
690 FunctionInnards
<< ", ";
691 printType(FunctionInnards
, ArgTy
,
692 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
695 if (FTy
->isVarArg()) {
696 if (FTy
->getNumParams())
697 FunctionInnards
<< ", ...";
698 } else if (!FTy
->getNumParams()) {
699 FunctionInnards
<< "void";
701 FunctionInnards
<< ')';
702 std::string tstr
= FunctionInnards
.str();
703 printType(Out
, FTy
->getReturnType(),
704 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
707 case Type::StructTyID
: {
708 const StructType
*STy
= cast
<StructType
>(Ty
);
709 Out
<< NameSoFar
+ " {\n";
711 for (StructType::element_iterator I
= STy
->element_begin(),
712 E
= STy
->element_end(); I
!= E
; ++I
) {
714 printType(Out
, *I
, false, "field" + utostr(Idx
++));
719 Out
<< " __attribute__ ((packed))";
723 case Type::PointerTyID
: {
724 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
725 std::string ptrName
= "*" + NameSoFar
;
727 if (isa
<ArrayType
>(PTy
->getElementType()) ||
728 isa
<VectorType
>(PTy
->getElementType()))
729 ptrName
= "(" + ptrName
+ ")";
732 // Must be a function ptr cast!
733 return printType(Out
, PTy
->getElementType(), false, ptrName
, true, PAL
);
734 return printType(Out
, PTy
->getElementType(), false, ptrName
);
737 case Type::ArrayTyID
: {
738 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
739 unsigned NumElements
= ATy
->getNumElements();
740 if (NumElements
== 0) NumElements
= 1;
741 // Arrays are wrapped in structs to allow them to have normal
742 // value semantics (avoiding the array "decay").
743 Out
<< NameSoFar
<< " { ";
744 printType(Out
, ATy
->getElementType(), false,
745 "array[" + utostr(NumElements
) + "]");
749 case Type::OpaqueTyID
: {
750 static int Count
= 0;
751 std::string TyName
= "struct opaque_" + itostr(Count
++);
752 assert(TypeNames
.find(Ty
) == TypeNames
.end());
753 TypeNames
[Ty
] = TyName
;
754 return Out
<< TyName
<< ' ' << NameSoFar
;
757 assert(0 && "Unhandled case in getTypeProps!");
764 void CWriter::printConstantArray(ConstantArray
*CPA
, bool Static
) {
766 // As a special case, print the array as a string if it is an array of
767 // ubytes or an array of sbytes with positive values.
769 const Type
*ETy
= CPA
->getType()->getElementType();
770 bool isString
= (ETy
== Type::Int8Ty
|| ETy
== Type::Int8Ty
);
772 // Make sure the last character is a null char, as automatically added by C
773 if (isString
&& (CPA
->getNumOperands() == 0 ||
774 !cast
<Constant
>(*(CPA
->op_end()-1))->isNullValue()))
779 // Keep track of whether the last number was a hexadecimal escape
780 bool LastWasHex
= false;
782 // Do not include the last character, which we know is null
783 for (unsigned i
= 0, e
= CPA
->getNumOperands()-1; i
!= e
; ++i
) {
784 unsigned char C
= cast
<ConstantInt
>(CPA
->getOperand(i
))->getZExtValue();
786 // Print it out literally if it is a printable character. The only thing
787 // to be careful about is when the last letter output was a hex escape
788 // code, in which case we have to be careful not to print out hex digits
789 // explicitly (the C compiler thinks it is a continuation of the previous
790 // character, sheesh...)
792 if (isprint(C
) && (!LastWasHex
|| !isxdigit(C
))) {
794 if (C
== '"' || C
== '\\')
795 Out
<< "\\" << (char)C
;
801 case '\n': Out
<< "\\n"; break;
802 case '\t': Out
<< "\\t"; break;
803 case '\r': Out
<< "\\r"; break;
804 case '\v': Out
<< "\\v"; break;
805 case '\a': Out
<< "\\a"; break;
806 case '\"': Out
<< "\\\""; break;
807 case '\'': Out
<< "\\\'"; break;
810 Out
<< (char)(( C
/16 < 10) ? ( C
/16 +'0') : ( C
/16 -10+'A'));
811 Out
<< (char)(((C
&15) < 10) ? ((C
&15)+'0') : ((C
&15)-10+'A'));
820 if (CPA
->getNumOperands()) {
822 printConstant(cast
<Constant
>(CPA
->getOperand(0)), Static
);
823 for (unsigned i
= 1, e
= CPA
->getNumOperands(); i
!= e
; ++i
) {
825 printConstant(cast
<Constant
>(CPA
->getOperand(i
)), Static
);
832 void CWriter::printConstantVector(ConstantVector
*CP
, bool Static
) {
834 if (CP
->getNumOperands()) {
836 printConstant(cast
<Constant
>(CP
->getOperand(0)), Static
);
837 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
839 printConstant(cast
<Constant
>(CP
->getOperand(i
)), Static
);
845 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
846 // textually as a double (rather than as a reference to a stack-allocated
847 // variable). We decide this by converting CFP to a string and back into a
848 // double, and then checking whether the conversion results in a bit-equal
849 // double to the original value of CFP. This depends on us and the target C
850 // compiler agreeing on the conversion process (which is pretty likely since we
851 // only deal in IEEE FP).
853 static bool isFPCSafeToPrint(const ConstantFP
*CFP
) {
855 // Do long doubles in hex for now.
856 if (CFP
->getType() != Type::FloatTy
&& CFP
->getType() != Type::DoubleTy
)
858 APFloat APF
= APFloat(CFP
->getValueAPF()); // copy
859 if (CFP
->getType() == Type::FloatTy
)
860 APF
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &ignored
);
861 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
863 sprintf(Buffer
, "%a", APF
.convertToDouble());
864 if (!strncmp(Buffer
, "0x", 2) ||
865 !strncmp(Buffer
, "-0x", 3) ||
866 !strncmp(Buffer
, "+0x", 3))
867 return APF
.bitwiseIsEqual(APFloat(atof(Buffer
)));
870 std::string StrVal
= ftostr(APF
);
872 while (StrVal
[0] == ' ')
873 StrVal
.erase(StrVal
.begin());
875 // Check to make sure that the stringized number is not some string like "Inf"
876 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
877 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
878 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
879 (StrVal
[1] >= '0' && StrVal
[1] <= '9')))
880 // Reparse stringized version!
881 return APF
.bitwiseIsEqual(APFloat(atof(StrVal
.c_str())));
886 /// Print out the casting for a cast operation. This does the double casting
887 /// necessary for conversion to the destination type, if necessary.
888 /// @brief Print a cast
889 void CWriter::printCast(unsigned opc
, const Type
*SrcTy
, const Type
*DstTy
) {
890 // Print the destination type cast
892 case Instruction::UIToFP
:
893 case Instruction::SIToFP
:
894 case Instruction::IntToPtr
:
895 case Instruction::Trunc
:
896 case Instruction::BitCast
:
897 case Instruction::FPExt
:
898 case Instruction::FPTrunc
: // For these the DstTy sign doesn't matter
900 printType(Out
, DstTy
);
903 case Instruction::ZExt
:
904 case Instruction::PtrToInt
:
905 case Instruction::FPToUI
: // For these, make sure we get an unsigned dest
907 printSimpleType(Out
, DstTy
, false);
910 case Instruction::SExt
:
911 case Instruction::FPToSI
: // For these, make sure we get a signed dest
913 printSimpleType(Out
, DstTy
, true);
917 assert(0 && "Invalid cast opcode");
920 // Print the source type cast
922 case Instruction::UIToFP
:
923 case Instruction::ZExt
:
925 printSimpleType(Out
, SrcTy
, false);
928 case Instruction::SIToFP
:
929 case Instruction::SExt
:
931 printSimpleType(Out
, SrcTy
, true);
934 case Instruction::IntToPtr
:
935 case Instruction::PtrToInt
:
936 // Avoid "cast to pointer from integer of different size" warnings
937 Out
<< "(unsigned long)";
939 case Instruction::Trunc
:
940 case Instruction::BitCast
:
941 case Instruction::FPExt
:
942 case Instruction::FPTrunc
:
943 case Instruction::FPToSI
:
944 case Instruction::FPToUI
:
945 break; // These don't need a source cast.
947 assert(0 && "Invalid cast opcode");
952 // printConstant - The LLVM Constant to C Constant converter.
953 void CWriter::printConstant(Constant
*CPV
, bool Static
) {
954 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
955 switch (CE
->getOpcode()) {
956 case Instruction::Trunc
:
957 case Instruction::ZExt
:
958 case Instruction::SExt
:
959 case Instruction::FPTrunc
:
960 case Instruction::FPExt
:
961 case Instruction::UIToFP
:
962 case Instruction::SIToFP
:
963 case Instruction::FPToUI
:
964 case Instruction::FPToSI
:
965 case Instruction::PtrToInt
:
966 case Instruction::IntToPtr
:
967 case Instruction::BitCast
:
969 printCast(CE
->getOpcode(), CE
->getOperand(0)->getType(), CE
->getType());
970 if (CE
->getOpcode() == Instruction::SExt
&&
971 CE
->getOperand(0)->getType() == Type::Int1Ty
) {
972 // Make sure we really sext from bool here by subtracting from 0
975 printConstant(CE
->getOperand(0), Static
);
976 if (CE
->getType() == Type::Int1Ty
&&
977 (CE
->getOpcode() == Instruction::Trunc
||
978 CE
->getOpcode() == Instruction::FPToUI
||
979 CE
->getOpcode() == Instruction::FPToSI
||
980 CE
->getOpcode() == Instruction::PtrToInt
)) {
981 // Make sure we really truncate to bool here by anding with 1
987 case Instruction::GetElementPtr
:
989 printGEPExpression(CE
->getOperand(0), gep_type_begin(CPV
),
990 gep_type_end(CPV
), Static
);
993 case Instruction::Select
:
995 printConstant(CE
->getOperand(0), Static
);
997 printConstant(CE
->getOperand(1), Static
);
999 printConstant(CE
->getOperand(2), Static
);
1002 case Instruction::Add
:
1003 case Instruction::Sub
:
1004 case Instruction::Mul
:
1005 case Instruction::SDiv
:
1006 case Instruction::UDiv
:
1007 case Instruction::FDiv
:
1008 case Instruction::URem
:
1009 case Instruction::SRem
:
1010 case Instruction::FRem
:
1011 case Instruction::And
:
1012 case Instruction::Or
:
1013 case Instruction::Xor
:
1014 case Instruction::ICmp
:
1015 case Instruction::Shl
:
1016 case Instruction::LShr
:
1017 case Instruction::AShr
:
1020 bool NeedsClosingParens
= printConstExprCast(CE
, Static
);
1021 printConstantWithCast(CE
->getOperand(0), CE
->getOpcode());
1022 switch (CE
->getOpcode()) {
1023 case Instruction::Add
: Out
<< " + "; break;
1024 case Instruction::Sub
: Out
<< " - "; break;
1025 case Instruction::Mul
: Out
<< " * "; break;
1026 case Instruction::URem
:
1027 case Instruction::SRem
:
1028 case Instruction::FRem
: Out
<< " % "; break;
1029 case Instruction::UDiv
:
1030 case Instruction::SDiv
:
1031 case Instruction::FDiv
: Out
<< " / "; break;
1032 case Instruction::And
: Out
<< " & "; break;
1033 case Instruction::Or
: Out
<< " | "; break;
1034 case Instruction::Xor
: Out
<< " ^ "; break;
1035 case Instruction::Shl
: Out
<< " << "; break;
1036 case Instruction::LShr
:
1037 case Instruction::AShr
: Out
<< " >> "; break;
1038 case Instruction::ICmp
:
1039 switch (CE
->getPredicate()) {
1040 case ICmpInst::ICMP_EQ
: Out
<< " == "; break;
1041 case ICmpInst::ICMP_NE
: Out
<< " != "; break;
1042 case ICmpInst::ICMP_SLT
:
1043 case ICmpInst::ICMP_ULT
: Out
<< " < "; break;
1044 case ICmpInst::ICMP_SLE
:
1045 case ICmpInst::ICMP_ULE
: Out
<< " <= "; break;
1046 case ICmpInst::ICMP_SGT
:
1047 case ICmpInst::ICMP_UGT
: Out
<< " > "; break;
1048 case ICmpInst::ICMP_SGE
:
1049 case ICmpInst::ICMP_UGE
: Out
<< " >= "; break;
1050 default: assert(0 && "Illegal ICmp predicate");
1053 default: assert(0 && "Illegal opcode here!");
1055 printConstantWithCast(CE
->getOperand(1), CE
->getOpcode());
1056 if (NeedsClosingParens
)
1061 case Instruction::FCmp
: {
1063 bool NeedsClosingParens
= printConstExprCast(CE
, Static
);
1064 if (CE
->getPredicate() == FCmpInst::FCMP_FALSE
)
1066 else if (CE
->getPredicate() == FCmpInst::FCMP_TRUE
)
1070 switch (CE
->getPredicate()) {
1071 default: assert(0 && "Illegal FCmp predicate");
1072 case FCmpInst::FCMP_ORD
: op
= "ord"; break;
1073 case FCmpInst::FCMP_UNO
: op
= "uno"; break;
1074 case FCmpInst::FCMP_UEQ
: op
= "ueq"; break;
1075 case FCmpInst::FCMP_UNE
: op
= "une"; break;
1076 case FCmpInst::FCMP_ULT
: op
= "ult"; break;
1077 case FCmpInst::FCMP_ULE
: op
= "ule"; break;
1078 case FCmpInst::FCMP_UGT
: op
= "ugt"; break;
1079 case FCmpInst::FCMP_UGE
: op
= "uge"; break;
1080 case FCmpInst::FCMP_OEQ
: op
= "oeq"; break;
1081 case FCmpInst::FCMP_ONE
: op
= "one"; break;
1082 case FCmpInst::FCMP_OLT
: op
= "olt"; break;
1083 case FCmpInst::FCMP_OLE
: op
= "ole"; break;
1084 case FCmpInst::FCMP_OGT
: op
= "ogt"; break;
1085 case FCmpInst::FCMP_OGE
: op
= "oge"; break;
1087 Out
<< "llvm_fcmp_" << op
<< "(";
1088 printConstantWithCast(CE
->getOperand(0), CE
->getOpcode());
1090 printConstantWithCast(CE
->getOperand(1), CE
->getOpcode());
1093 if (NeedsClosingParens
)
1099 cerr
<< "CWriter Error: Unhandled constant expression: "
1103 } else if (isa
<UndefValue
>(CPV
) && CPV
->getType()->isSingleValueType()) {
1105 printType(Out
, CPV
->getType()); // sign doesn't matter
1106 Out
<< ")/*UNDEF*/";
1107 if (!isa
<VectorType
>(CPV
->getType())) {
1115 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CPV
)) {
1116 const Type
* Ty
= CI
->getType();
1117 if (Ty
== Type::Int1Ty
)
1118 Out
<< (CI
->getZExtValue() ? '1' : '0');
1119 else if (Ty
== Type::Int32Ty
)
1120 Out
<< CI
->getZExtValue() << 'u';
1121 else if (Ty
->getPrimitiveSizeInBits() > 32)
1122 Out
<< CI
->getZExtValue() << "ull";
1125 printSimpleType(Out
, Ty
, false) << ')';
1126 if (CI
->isMinValue(true))
1127 Out
<< CI
->getZExtValue() << 'u';
1129 Out
<< CI
->getSExtValue();
1135 switch (CPV
->getType()->getTypeID()) {
1136 case Type::FloatTyID
:
1137 case Type::DoubleTyID
:
1138 case Type::X86_FP80TyID
:
1139 case Type::PPC_FP128TyID
:
1140 case Type::FP128TyID
: {
1141 ConstantFP
*FPC
= cast
<ConstantFP
>(CPV
);
1142 std::map
<const ConstantFP
*, unsigned>::iterator I
= FPConstantMap
.find(FPC
);
1143 if (I
!= FPConstantMap
.end()) {
1144 // Because of FP precision problems we must load from a stack allocated
1145 // value that holds the value in hex.
1146 Out
<< "(*(" << (FPC
->getType() == Type::FloatTy
? "float" :
1147 FPC
->getType() == Type::DoubleTy
? "double" :
1149 << "*)&FPConstant" << I
->second
<< ')';
1152 if (FPC
->getType() == Type::FloatTy
)
1153 V
= FPC
->getValueAPF().convertToFloat();
1154 else if (FPC
->getType() == Type::DoubleTy
)
1155 V
= FPC
->getValueAPF().convertToDouble();
1157 // Long double. Convert the number to double, discarding precision.
1158 // This is not awesome, but it at least makes the CBE output somewhat
1160 APFloat Tmp
= FPC
->getValueAPF();
1162 Tmp
.convert(APFloat::IEEEdouble
, APFloat::rmTowardZero
, &LosesInfo
);
1163 V
= Tmp
.convertToDouble();
1169 // FIXME the actual NaN bits should be emitted.
1170 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1172 const unsigned long QuietNaN
= 0x7ff8UL
;
1173 //const unsigned long SignalNaN = 0x7ff4UL;
1175 // We need to grab the first part of the FP #
1178 uint64_t ll
= DoubleToBits(V
);
1179 sprintf(Buffer
, "0x%llx", static_cast<long long>(ll
));
1181 std::string
Num(&Buffer
[0], &Buffer
[6]);
1182 unsigned long Val
= strtoul(Num
.c_str(), 0, 16);
1184 if (FPC
->getType() == Type::FloatTy
)
1185 Out
<< "LLVM_NAN" << (Val
== QuietNaN
? "" : "S") << "F(\""
1186 << Buffer
<< "\") /*nan*/ ";
1188 Out
<< "LLVM_NAN" << (Val
== QuietNaN
? "" : "S") << "(\""
1189 << Buffer
<< "\") /*nan*/ ";
1190 } else if (IsInf(V
)) {
1192 if (V
< 0) Out
<< '-';
1193 Out
<< "LLVM_INF" << (FPC
->getType() == Type::FloatTy
? "F" : "")
1197 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1198 // Print out the constant as a floating point number.
1200 sprintf(Buffer
, "%a", V
);
1203 Num
= ftostr(FPC
->getValueAPF());
1211 case Type::ArrayTyID
:
1212 // Use C99 compound expression literal initializer syntax.
1215 printType(Out
, CPV
->getType());
1218 Out
<< "{ "; // Arrays are wrapped in struct types.
1219 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CPV
)) {
1220 printConstantArray(CA
, Static
);
1222 assert(isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
));
1223 const ArrayType
*AT
= cast
<ArrayType
>(CPV
->getType());
1225 if (AT
->getNumElements()) {
1227 Constant
*CZ
= Constant::getNullValue(AT
->getElementType());
1228 printConstant(CZ
, Static
);
1229 for (unsigned i
= 1, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1231 printConstant(CZ
, Static
);
1236 Out
<< " }"; // Arrays are wrapped in struct types.
1239 case Type::VectorTyID
:
1240 // Use C99 compound expression literal initializer syntax.
1243 printType(Out
, CPV
->getType());
1246 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(CPV
)) {
1247 printConstantVector(CV
, Static
);
1249 assert(isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
));
1250 const VectorType
*VT
= cast
<VectorType
>(CPV
->getType());
1252 Constant
*CZ
= Constant::getNullValue(VT
->getElementType());
1253 printConstant(CZ
, Static
);
1254 for (unsigned i
= 1, e
= VT
->getNumElements(); i
!= e
; ++i
) {
1256 printConstant(CZ
, Static
);
1262 case Type::StructTyID
:
1263 // Use C99 compound expression literal initializer syntax.
1266 printType(Out
, CPV
->getType());
1269 if (isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
)) {
1270 const StructType
*ST
= cast
<StructType
>(CPV
->getType());
1272 if (ST
->getNumElements()) {
1274 printConstant(Constant::getNullValue(ST
->getElementType(0)), Static
);
1275 for (unsigned i
= 1, e
= ST
->getNumElements(); i
!= e
; ++i
) {
1277 printConstant(Constant::getNullValue(ST
->getElementType(i
)), Static
);
1283 if (CPV
->getNumOperands()) {
1285 printConstant(cast
<Constant
>(CPV
->getOperand(0)), Static
);
1286 for (unsigned i
= 1, e
= CPV
->getNumOperands(); i
!= e
; ++i
) {
1288 printConstant(cast
<Constant
>(CPV
->getOperand(i
)), Static
);
1295 case Type::PointerTyID
:
1296 if (isa
<ConstantPointerNull
>(CPV
)) {
1298 printType(Out
, CPV
->getType()); // sign doesn't matter
1299 Out
<< ")/*NULL*/0)";
1301 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CPV
)) {
1302 writeOperand(GV
, Static
);
1307 cerr
<< "Unknown constant type: " << *CPV
<< "\n";
1312 // Some constant expressions need to be casted back to the original types
1313 // because their operands were casted to the expected type. This function takes
1314 // care of detecting that case and printing the cast for the ConstantExpr.
1315 bool CWriter::printConstExprCast(const ConstantExpr
* CE
, bool Static
) {
1316 bool NeedsExplicitCast
= false;
1317 const Type
*Ty
= CE
->getOperand(0)->getType();
1318 bool TypeIsSigned
= false;
1319 switch (CE
->getOpcode()) {
1320 case Instruction::Add
:
1321 case Instruction::Sub
:
1322 case Instruction::Mul
:
1323 // We need to cast integer arithmetic so that it is always performed
1324 // as unsigned, to avoid undefined behavior on overflow.
1325 if (!Ty
->isIntOrIntVector()) break;
1327 case Instruction::LShr
:
1328 case Instruction::URem
:
1329 case Instruction::UDiv
: NeedsExplicitCast
= true; break;
1330 case Instruction::AShr
:
1331 case Instruction::SRem
:
1332 case Instruction::SDiv
: NeedsExplicitCast
= true; TypeIsSigned
= true; break;
1333 case Instruction::SExt
:
1335 NeedsExplicitCast
= true;
1336 TypeIsSigned
= true;
1338 case Instruction::ZExt
:
1339 case Instruction::Trunc
:
1340 case Instruction::FPTrunc
:
1341 case Instruction::FPExt
:
1342 case Instruction::UIToFP
:
1343 case Instruction::SIToFP
:
1344 case Instruction::FPToUI
:
1345 case Instruction::FPToSI
:
1346 case Instruction::PtrToInt
:
1347 case Instruction::IntToPtr
:
1348 case Instruction::BitCast
:
1350 NeedsExplicitCast
= true;
1354 if (NeedsExplicitCast
) {
1356 if (Ty
->isInteger() && Ty
!= Type::Int1Ty
)
1357 printSimpleType(Out
, Ty
, TypeIsSigned
);
1359 printType(Out
, Ty
); // not integer, sign doesn't matter
1362 return NeedsExplicitCast
;
1365 // Print a constant assuming that it is the operand for a given Opcode. The
1366 // opcodes that care about sign need to cast their operands to the expected
1367 // type before the operation proceeds. This function does the casting.
1368 void CWriter::printConstantWithCast(Constant
* CPV
, unsigned Opcode
) {
1370 // Extract the operand's type, we'll need it.
1371 const Type
* OpTy
= CPV
->getType();
1373 // Indicate whether to do the cast or not.
1374 bool shouldCast
= false;
1375 bool typeIsSigned
= false;
1377 // Based on the Opcode for which this Constant is being written, determine
1378 // the new type to which the operand should be casted by setting the value
1379 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1383 // for most instructions, it doesn't matter
1385 case Instruction::Add
:
1386 case Instruction::Sub
:
1387 case Instruction::Mul
:
1388 // We need to cast integer arithmetic so that it is always performed
1389 // as unsigned, to avoid undefined behavior on overflow.
1390 if (!OpTy
->isIntOrIntVector()) break;
1392 case Instruction::LShr
:
1393 case Instruction::UDiv
:
1394 case Instruction::URem
:
1397 case Instruction::AShr
:
1398 case Instruction::SDiv
:
1399 case Instruction::SRem
:
1401 typeIsSigned
= true;
1405 // Write out the casted constant if we should, otherwise just write the
1409 printSimpleType(Out
, OpTy
, typeIsSigned
);
1411 printConstant(CPV
, false);
1414 printConstant(CPV
, false);
1417 std::string
CWriter::GetValueName(const Value
*Operand
) {
1420 if (!isa
<GlobalValue
>(Operand
) && Operand
->getName() != "") {
1421 std::string VarName
;
1423 Name
= Operand
->getName();
1424 VarName
.reserve(Name
.capacity());
1426 for (std::string::iterator I
= Name
.begin(), E
= Name
.end();
1430 if (!((ch
>= 'a' && ch
<= 'z') || (ch
>= 'A' && ch
<= 'Z') ||
1431 (ch
>= '0' && ch
<= '9') || ch
== '_')) {
1433 sprintf(buffer
, "_%x_", ch
);
1439 Name
= "llvm_cbe_" + VarName
;
1441 Name
= Mang
->getValueName(Operand
);
1447 /// writeInstComputationInline - Emit the computation for the specified
1448 /// instruction inline, with no destination provided.
1449 void CWriter::writeInstComputationInline(Instruction
&I
) {
1450 // If this is a non-trivial bool computation, make sure to truncate down to
1451 // a 1 bit value. This is important because we want "add i1 x, y" to return
1452 // "0" when x and y are true, not "2" for example.
1453 bool NeedBoolTrunc
= false;
1454 if (I
.getType() == Type::Int1Ty
&& !isa
<ICmpInst
>(I
) && !isa
<FCmpInst
>(I
))
1455 NeedBoolTrunc
= true;
1467 void CWriter::writeOperandInternal(Value
*Operand
, bool Static
) {
1468 if (Instruction
*I
= dyn_cast
<Instruction
>(Operand
))
1469 // Should we inline this instruction to build a tree?
1470 if (isInlinableInst(*I
) && !isDirectAlloca(I
)) {
1472 writeInstComputationInline(*I
);
1477 Constant
* CPV
= dyn_cast
<Constant
>(Operand
);
1479 if (CPV
&& !isa
<GlobalValue
>(CPV
))
1480 printConstant(CPV
, Static
);
1482 Out
<< GetValueName(Operand
);
1485 void CWriter::writeOperand(Value
*Operand
, bool Static
) {
1486 bool isAddressImplicit
= isAddressExposed(Operand
);
1487 if (isAddressImplicit
)
1488 Out
<< "(&"; // Global variables are referenced as their addresses by llvm
1490 writeOperandInternal(Operand
, Static
);
1492 if (isAddressImplicit
)
1496 // Some instructions need to have their result value casted back to the
1497 // original types because their operands were casted to the expected type.
1498 // This function takes care of detecting that case and printing the cast
1499 // for the Instruction.
1500 bool CWriter::writeInstructionCast(const Instruction
&I
) {
1501 const Type
*Ty
= I
.getOperand(0)->getType();
1502 switch (I
.getOpcode()) {
1503 case Instruction::Add
:
1504 case Instruction::Sub
:
1505 case Instruction::Mul
:
1506 // We need to cast integer arithmetic so that it is always performed
1507 // as unsigned, to avoid undefined behavior on overflow.
1508 if (!Ty
->isIntOrIntVector()) break;
1510 case Instruction::LShr
:
1511 case Instruction::URem
:
1512 case Instruction::UDiv
:
1514 printSimpleType(Out
, Ty
, false);
1517 case Instruction::AShr
:
1518 case Instruction::SRem
:
1519 case Instruction::SDiv
:
1521 printSimpleType(Out
, Ty
, true);
1529 // Write the operand with a cast to another type based on the Opcode being used.
1530 // This will be used in cases where an instruction has specific type
1531 // requirements (usually signedness) for its operands.
1532 void CWriter::writeOperandWithCast(Value
* Operand
, unsigned Opcode
) {
1534 // Extract the operand's type, we'll need it.
1535 const Type
* OpTy
= Operand
->getType();
1537 // Indicate whether to do the cast or not.
1538 bool shouldCast
= false;
1540 // Indicate whether the cast should be to a signed type or not.
1541 bool castIsSigned
= false;
1543 // Based on the Opcode for which this Operand is being written, determine
1544 // the new type to which the operand should be casted by setting the value
1545 // of OpTy. If we change OpTy, also set shouldCast to true.
1548 // for most instructions, it doesn't matter
1550 case Instruction::Add
:
1551 case Instruction::Sub
:
1552 case Instruction::Mul
:
1553 // We need to cast integer arithmetic so that it is always performed
1554 // as unsigned, to avoid undefined behavior on overflow.
1555 if (!OpTy
->isIntOrIntVector()) break;
1557 case Instruction::LShr
:
1558 case Instruction::UDiv
:
1559 case Instruction::URem
: // Cast to unsigned first
1561 castIsSigned
= false;
1563 case Instruction::GetElementPtr
:
1564 case Instruction::AShr
:
1565 case Instruction::SDiv
:
1566 case Instruction::SRem
: // Cast to signed first
1568 castIsSigned
= true;
1572 // Write out the casted operand if we should, otherwise just write the
1576 printSimpleType(Out
, OpTy
, castIsSigned
);
1578 writeOperand(Operand
);
1581 writeOperand(Operand
);
1584 // Write the operand with a cast to another type based on the icmp predicate
1586 void CWriter::writeOperandWithCast(Value
* Operand
, const ICmpInst
&Cmp
) {
1587 // This has to do a cast to ensure the operand has the right signedness.
1588 // Also, if the operand is a pointer, we make sure to cast to an integer when
1589 // doing the comparison both for signedness and so that the C compiler doesn't
1590 // optimize things like "p < NULL" to false (p may contain an integer value
1592 bool shouldCast
= Cmp
.isRelational();
1594 // Write out the casted operand if we should, otherwise just write the
1597 writeOperand(Operand
);
1601 // Should this be a signed comparison? If so, convert to signed.
1602 bool castIsSigned
= Cmp
.isSignedPredicate();
1604 // If the operand was a pointer, convert to a large integer type.
1605 const Type
* OpTy
= Operand
->getType();
1606 if (isa
<PointerType
>(OpTy
))
1607 OpTy
= TD
->getIntPtrType();
1610 printSimpleType(Out
, OpTy
, castIsSigned
);
1612 writeOperand(Operand
);
1616 // generateCompilerSpecificCode - This is where we add conditional compilation
1617 // directives to cater to specific compilers as need be.
1619 static void generateCompilerSpecificCode(raw_ostream
& Out
,
1620 const TargetData
*TD
) {
1621 // Alloca is hard to get, and we don't want to include stdlib.h here.
1622 Out
<< "/* get a declaration for alloca */\n"
1623 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1624 << "#define alloca(x) __builtin_alloca((x))\n"
1625 << "#define _alloca(x) __builtin_alloca((x))\n"
1626 << "#elif defined(__APPLE__)\n"
1627 << "extern void *__builtin_alloca(unsigned long);\n"
1628 << "#define alloca(x) __builtin_alloca(x)\n"
1629 << "#define longjmp _longjmp\n"
1630 << "#define setjmp _setjmp\n"
1631 << "#elif defined(__sun__)\n"
1632 << "#if defined(__sparcv9)\n"
1633 << "extern void *__builtin_alloca(unsigned long);\n"
1635 << "extern void *__builtin_alloca(unsigned int);\n"
1637 << "#define alloca(x) __builtin_alloca(x)\n"
1638 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
1639 << "#define alloca(x) __builtin_alloca(x)\n"
1640 << "#elif defined(_MSC_VER)\n"
1641 << "#define inline _inline\n"
1642 << "#define alloca(x) _alloca(x)\n"
1644 << "#include <alloca.h>\n"
1647 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1648 // If we aren't being compiled with GCC, just drop these attributes.
1649 Out
<< "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1650 << "#define __attribute__(X)\n"
1653 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1654 Out
<< "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1655 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1656 << "#elif defined(__GNUC__)\n"
1657 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1659 << "#define __EXTERNAL_WEAK__\n"
1662 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1663 Out
<< "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1664 << "#define __ATTRIBUTE_WEAK__\n"
1665 << "#elif defined(__GNUC__)\n"
1666 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1668 << "#define __ATTRIBUTE_WEAK__\n"
1671 // Add hidden visibility support. FIXME: APPLE_CC?
1672 Out
<< "#if defined(__GNUC__)\n"
1673 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1676 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1677 // From the GCC documentation:
1679 // double __builtin_nan (const char *str)
1681 // This is an implementation of the ISO C99 function nan.
1683 // Since ISO C99 defines this function in terms of strtod, which we do
1684 // not implement, a description of the parsing is in order. The string is
1685 // parsed as by strtol; that is, the base is recognized by leading 0 or
1686 // 0x prefixes. The number parsed is placed in the significand such that
1687 // the least significant bit of the number is at the least significant
1688 // bit of the significand. The number is truncated to fit the significand
1689 // field provided. The significand is forced to be a quiet NaN.
1691 // This function, if given a string literal, is evaluated early enough
1692 // that it is considered a compile-time constant.
1694 // float __builtin_nanf (const char *str)
1696 // Similar to __builtin_nan, except the return type is float.
1698 // double __builtin_inf (void)
1700 // Similar to __builtin_huge_val, except a warning is generated if the
1701 // target floating-point format does not support infinities. This
1702 // function is suitable for implementing the ISO C99 macro INFINITY.
1704 // float __builtin_inff (void)
1706 // Similar to __builtin_inf, except the return type is float.
1707 Out
<< "#ifdef __GNUC__\n"
1708 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1709 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1710 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1711 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1712 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1713 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1714 << "#define LLVM_PREFETCH(addr,rw,locality) "
1715 "__builtin_prefetch(addr,rw,locality)\n"
1716 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1717 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1718 << "#define LLVM_ASM __asm__\n"
1720 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1721 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1722 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1723 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1724 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1725 << "#define LLVM_INFF 0.0F /* Float */\n"
1726 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1727 << "#define __ATTRIBUTE_CTOR__\n"
1728 << "#define __ATTRIBUTE_DTOR__\n"
1729 << "#define LLVM_ASM(X)\n"
1732 Out
<< "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1733 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1734 << "#define __builtin_stack_restore(X) /* noop */\n"
1737 // Output typedefs for 128-bit integers. If these are needed with a
1738 // 32-bit target or with a C compiler that doesn't support mode(TI),
1739 // more drastic measures will be needed.
1740 Out
<< "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1741 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1742 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1745 // Output target-specific code that should be inserted into main.
1746 Out
<< "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1749 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1750 /// the StaticTors set.
1751 static void FindStaticTors(GlobalVariable
*GV
, std::set
<Function
*> &StaticTors
){
1752 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1753 if (!InitList
) return;
1755 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
1756 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
1757 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
1759 if (CS
->getOperand(1)->isNullValue())
1760 return; // Found a null terminator, exit printing.
1761 Constant
*FP
= CS
->getOperand(1);
1762 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
1764 FP
= CE
->getOperand(0);
1765 if (Function
*F
= dyn_cast
<Function
>(FP
))
1766 StaticTors
.insert(F
);
1770 enum SpecialGlobalClass
{
1772 GlobalCtors
, GlobalDtors
,
1776 /// getGlobalVariableClass - If this is a global that is specially recognized
1777 /// by LLVM, return a code that indicates how we should handle it.
1778 static SpecialGlobalClass
getGlobalVariableClass(const GlobalVariable
*GV
) {
1779 // If this is a global ctors/dtors list, handle it now.
1780 if (GV
->hasAppendingLinkage() && GV
->use_empty()) {
1781 if (GV
->getName() == "llvm.global_ctors")
1783 else if (GV
->getName() == "llvm.global_dtors")
1787 // Otherwise, it it is other metadata, don't print it. This catches things
1788 // like debug information.
1789 if (GV
->getSection() == "llvm.metadata")
1796 bool CWriter::doInitialization(Module
&M
) {
1800 TD
= new TargetData(&M
);
1801 IL
= new IntrinsicLowering(*TD
);
1802 IL
->AddPrototypes(M
);
1804 // Ensure that all structure types have names...
1805 Mang
= new Mangler(M
);
1806 Mang
->markCharUnacceptable('.');
1808 // Keep track of which functions are static ctors/dtors so they can have
1809 // an attribute added to their prototypes.
1810 std::set
<Function
*> StaticCtors
, StaticDtors
;
1811 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1813 switch (getGlobalVariableClass(I
)) {
1816 FindStaticTors(I
, StaticCtors
);
1819 FindStaticTors(I
, StaticDtors
);
1824 // get declaration for alloca
1825 Out
<< "/* Provide Declarations */\n";
1826 Out
<< "#include <stdarg.h>\n"; // Varargs support
1827 Out
<< "#include <setjmp.h>\n"; // Unwind support
1828 generateCompilerSpecificCode(Out
, TD
);
1830 // Provide a definition for `bool' if not compiling with a C++ compiler.
1832 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1834 << "\n\n/* Support for floating point constants */\n"
1835 << "typedef unsigned long long ConstantDoubleTy;\n"
1836 << "typedef unsigned int ConstantFloatTy;\n"
1837 << "typedef struct { unsigned long long f1; unsigned short f2; "
1838 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1839 // This is used for both kinds of 128-bit long double; meaning differs.
1840 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1841 " ConstantFP128Ty;\n"
1842 << "\n\n/* Global Declarations */\n";
1844 // First output all the declarations for the program, because C requires
1845 // Functions & globals to be declared before they are used.
1848 // Loop over the symbol table, emitting all named constants...
1849 printModuleTypes(M
.getTypeSymbolTable());
1851 // Global variable declarations...
1852 if (!M
.global_empty()) {
1853 Out
<< "\n/* External Global Variable Declarations */\n";
1854 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1857 if (I
->hasExternalLinkage() || I
->hasExternalWeakLinkage() ||
1858 I
->hasCommonLinkage())
1860 else if (I
->hasDLLImportLinkage())
1861 Out
<< "__declspec(dllimport) ";
1863 continue; // Internal Global
1865 // Thread Local Storage
1866 if (I
->isThreadLocal())
1869 printType(Out
, I
->getType()->getElementType(), false, GetValueName(I
));
1871 if (I
->hasExternalWeakLinkage())
1872 Out
<< " __EXTERNAL_WEAK__";
1877 // Function declarations
1878 Out
<< "\n/* Function Declarations */\n";
1879 Out
<< "double fmod(double, double);\n"; // Support for FP rem
1880 Out
<< "float fmodf(float, float);\n";
1881 Out
<< "long double fmodl(long double, long double);\n";
1883 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
1884 // Don't print declarations for intrinsic functions.
1885 if (!I
->isIntrinsic() && I
->getName() != "setjmp" &&
1886 I
->getName() != "longjmp" && I
->getName() != "_setjmp") {
1887 if (I
->hasExternalWeakLinkage())
1889 printFunctionSignature(I
, true);
1890 if (I
->hasWeakLinkage() || I
->hasLinkOnceLinkage())
1891 Out
<< " __ATTRIBUTE_WEAK__";
1892 if (I
->hasExternalWeakLinkage())
1893 Out
<< " __EXTERNAL_WEAK__";
1894 if (StaticCtors
.count(I
))
1895 Out
<< " __ATTRIBUTE_CTOR__";
1896 if (StaticDtors
.count(I
))
1897 Out
<< " __ATTRIBUTE_DTOR__";
1898 if (I
->hasHiddenVisibility())
1899 Out
<< " __HIDDEN__";
1901 if (I
->hasName() && I
->getName()[0] == 1)
1902 Out
<< " LLVM_ASM(\"" << I
->getName().c_str()+1 << "\")";
1908 // Output the global variable declarations
1909 if (!M
.global_empty()) {
1910 Out
<< "\n\n/* Global Variable Declarations */\n";
1911 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1913 if (!I
->isDeclaration()) {
1914 // Ignore special globals, such as debug info.
1915 if (getGlobalVariableClass(I
))
1918 if (I
->hasLocalLinkage())
1923 // Thread Local Storage
1924 if (I
->isThreadLocal())
1927 printType(Out
, I
->getType()->getElementType(), false,
1930 if (I
->hasLinkOnceLinkage())
1931 Out
<< " __attribute__((common))";
1932 else if (I
->hasCommonLinkage()) // FIXME is this right?
1933 Out
<< " __ATTRIBUTE_WEAK__";
1934 else if (I
->hasWeakLinkage())
1935 Out
<< " __ATTRIBUTE_WEAK__";
1936 else if (I
->hasExternalWeakLinkage())
1937 Out
<< " __EXTERNAL_WEAK__";
1938 if (I
->hasHiddenVisibility())
1939 Out
<< " __HIDDEN__";
1944 // Output the global variable definitions and contents...
1945 if (!M
.global_empty()) {
1946 Out
<< "\n\n/* Global Variable Definitions and Initialization */\n";
1947 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1949 if (!I
->isDeclaration()) {
1950 // Ignore special globals, such as debug info.
1951 if (getGlobalVariableClass(I
))
1954 if (I
->hasLocalLinkage())
1956 else if (I
->hasDLLImportLinkage())
1957 Out
<< "__declspec(dllimport) ";
1958 else if (I
->hasDLLExportLinkage())
1959 Out
<< "__declspec(dllexport) ";
1961 // Thread Local Storage
1962 if (I
->isThreadLocal())
1965 printType(Out
, I
->getType()->getElementType(), false,
1967 if (I
->hasLinkOnceLinkage())
1968 Out
<< " __attribute__((common))";
1969 else if (I
->hasWeakLinkage())
1970 Out
<< " __ATTRIBUTE_WEAK__";
1971 else if (I
->hasCommonLinkage())
1972 Out
<< " __ATTRIBUTE_WEAK__";
1974 if (I
->hasHiddenVisibility())
1975 Out
<< " __HIDDEN__";
1977 // If the initializer is not null, emit the initializer. If it is null,
1978 // we try to avoid emitting large amounts of zeros. The problem with
1979 // this, however, occurs when the variable has weak linkage. In this
1980 // case, the assembler will complain about the variable being both weak
1981 // and common, so we disable this optimization.
1982 // FIXME common linkage should avoid this problem.
1983 if (!I
->getInitializer()->isNullValue()) {
1985 writeOperand(I
->getInitializer(), true);
1986 } else if (I
->hasWeakLinkage()) {
1987 // We have to specify an initializer, but it doesn't have to be
1988 // complete. If the value is an aggregate, print out { 0 }, and let
1989 // the compiler figure out the rest of the zeros.
1991 if (isa
<StructType
>(I
->getInitializer()->getType()) ||
1992 isa
<VectorType
>(I
->getInitializer()->getType())) {
1994 } else if (isa
<ArrayType
>(I
->getInitializer()->getType())) {
1995 // As with structs and vectors, but with an extra set of braces
1996 // because arrays are wrapped in structs.
1999 // Just print it out normally.
2000 writeOperand(I
->getInitializer(), true);
2008 Out
<< "\n\n/* Function Bodies */\n";
2010 // Emit some helper functions for dealing with FCMP instruction's
2012 Out
<< "static inline int llvm_fcmp_ord(double X, double Y) { ";
2013 Out
<< "return X == X && Y == Y; }\n";
2014 Out
<< "static inline int llvm_fcmp_uno(double X, double Y) { ";
2015 Out
<< "return X != X || Y != Y; }\n";
2016 Out
<< "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2017 Out
<< "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2018 Out
<< "static inline int llvm_fcmp_une(double X, double Y) { ";
2019 Out
<< "return X != Y; }\n";
2020 Out
<< "static inline int llvm_fcmp_ult(double X, double Y) { ";
2021 Out
<< "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2022 Out
<< "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2023 Out
<< "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2024 Out
<< "static inline int llvm_fcmp_ule(double X, double Y) { ";
2025 Out
<< "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2026 Out
<< "static inline int llvm_fcmp_uge(double X, double Y) { ";
2027 Out
<< "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2028 Out
<< "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2029 Out
<< "return X == Y ; }\n";
2030 Out
<< "static inline int llvm_fcmp_one(double X, double Y) { ";
2031 Out
<< "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2032 Out
<< "static inline int llvm_fcmp_olt(double X, double Y) { ";
2033 Out
<< "return X < Y ; }\n";
2034 Out
<< "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2035 Out
<< "return X > Y ; }\n";
2036 Out
<< "static inline int llvm_fcmp_ole(double X, double Y) { ";
2037 Out
<< "return X <= Y ; }\n";
2038 Out
<< "static inline int llvm_fcmp_oge(double X, double Y) { ";
2039 Out
<< "return X >= Y ; }\n";
2044 /// Output all floating point constants that cannot be printed accurately...
2045 void CWriter::printFloatingPointConstants(Function
&F
) {
2046 // Scan the module for floating point constants. If any FP constant is used
2047 // in the function, we want to redirect it here so that we do not depend on
2048 // the precision of the printed form, unless the printed form preserves
2051 for (constant_iterator I
= constant_begin(&F
), E
= constant_end(&F
);
2053 printFloatingPointConstants(*I
);
2058 void CWriter::printFloatingPointConstants(const Constant
*C
) {
2059 // If this is a constant expression, recursively check for constant fp values.
2060 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2061 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
2062 printFloatingPointConstants(CE
->getOperand(i
));
2066 // Otherwise, check for a FP constant that we need to print.
2067 const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(C
);
2069 // Do not put in FPConstantMap if safe.
2070 isFPCSafeToPrint(FPC
) ||
2071 // Already printed this constant?
2072 FPConstantMap
.count(FPC
))
2075 FPConstantMap
[FPC
] = FPCounter
; // Number the FP constants
2077 if (FPC
->getType() == Type::DoubleTy
) {
2078 double Val
= FPC
->getValueAPF().convertToDouble();
2079 uint64_t i
= FPC
->getValueAPF().bitcastToAPInt().getZExtValue();
2080 Out
<< "static const ConstantDoubleTy FPConstant" << FPCounter
++
2081 << " = 0x" << utohexstr(i
)
2082 << "ULL; /* " << Val
<< " */\n";
2083 } else if (FPC
->getType() == Type::FloatTy
) {
2084 float Val
= FPC
->getValueAPF().convertToFloat();
2085 uint32_t i
= (uint32_t)FPC
->getValueAPF().bitcastToAPInt().
2087 Out
<< "static const ConstantFloatTy FPConstant" << FPCounter
++
2088 << " = 0x" << utohexstr(i
)
2089 << "U; /* " << Val
<< " */\n";
2090 } else if (FPC
->getType() == Type::X86_FP80Ty
) {
2091 // api needed to prevent premature destruction
2092 APInt api
= FPC
->getValueAPF().bitcastToAPInt();
2093 const uint64_t *p
= api
.getRawData();
2094 Out
<< "static const ConstantFP80Ty FPConstant" << FPCounter
++
2095 << " = { 0x" << utohexstr(p
[0])
2096 << "ULL, 0x" << utohexstr((uint16_t)p
[1]) << ",{0,0,0}"
2097 << "}; /* Long double constant */\n";
2098 } else if (FPC
->getType() == Type::PPC_FP128Ty
) {
2099 APInt api
= FPC
->getValueAPF().bitcastToAPInt();
2100 const uint64_t *p
= api
.getRawData();
2101 Out
<< "static const ConstantFP128Ty FPConstant" << FPCounter
++
2103 << utohexstr(p
[0]) << ", 0x" << utohexstr(p
[1])
2104 << "}; /* Long double constant */\n";
2107 assert(0 && "Unknown float type!");
2113 /// printSymbolTable - Run through symbol table looking for type names. If a
2114 /// type name is found, emit its declaration...
2116 void CWriter::printModuleTypes(const TypeSymbolTable
&TST
) {
2117 Out
<< "/* Helper union for bitcasts */\n";
2118 Out
<< "typedef union {\n";
2119 Out
<< " unsigned int Int32;\n";
2120 Out
<< " unsigned long long Int64;\n";
2121 Out
<< " float Float;\n";
2122 Out
<< " double Double;\n";
2123 Out
<< "} llvmBitCastUnion;\n";
2125 // We are only interested in the type plane of the symbol table.
2126 TypeSymbolTable::const_iterator I
= TST
.begin();
2127 TypeSymbolTable::const_iterator End
= TST
.end();
2129 // If there are no type names, exit early.
2130 if (I
== End
) return;
2132 // Print out forward declarations for structure types before anything else!
2133 Out
<< "/* Structure forward decls */\n";
2134 for (; I
!= End
; ++I
) {
2135 std::string Name
= "struct l_" + Mang
->makeNameProper(I
->first
);
2136 Out
<< Name
<< ";\n";
2137 TypeNames
.insert(std::make_pair(I
->second
, Name
));
2142 // Now we can print out typedefs. Above, we guaranteed that this can only be
2143 // for struct or opaque types.
2144 Out
<< "/* Typedefs */\n";
2145 for (I
= TST
.begin(); I
!= End
; ++I
) {
2146 std::string Name
= "l_" + Mang
->makeNameProper(I
->first
);
2148 printType(Out
, I
->second
, false, Name
);
2154 // Keep track of which structures have been printed so far...
2155 std::set
<const Type
*> StructPrinted
;
2157 // Loop over all structures then push them into the stack so they are
2158 // printed in the correct order.
2160 Out
<< "/* Structure contents */\n";
2161 for (I
= TST
.begin(); I
!= End
; ++I
)
2162 if (isa
<StructType
>(I
->second
) || isa
<ArrayType
>(I
->second
))
2163 // Only print out used types!
2164 printContainedStructs(I
->second
, StructPrinted
);
2167 // Push the struct onto the stack and recursively push all structs
2168 // this one depends on.
2170 // TODO: Make this work properly with vector types
2172 void CWriter::printContainedStructs(const Type
*Ty
,
2173 std::set
<const Type
*> &StructPrinted
) {
2174 // Don't walk through pointers.
2175 if (isa
<PointerType
>(Ty
) || Ty
->isPrimitiveType() || Ty
->isInteger()) return;
2177 // Print all contained types first.
2178 for (Type::subtype_iterator I
= Ty
->subtype_begin(),
2179 E
= Ty
->subtype_end(); I
!= E
; ++I
)
2180 printContainedStructs(*I
, StructPrinted
);
2182 if (isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
)) {
2183 // Check to see if we have already printed this struct.
2184 if (StructPrinted
.insert(Ty
).second
) {
2185 // Print structure type out.
2186 std::string Name
= TypeNames
[Ty
];
2187 printType(Out
, Ty
, false, Name
, true);
2193 void CWriter::printFunctionSignature(const Function
*F
, bool Prototype
) {
2194 /// isStructReturn - Should this function actually return a struct by-value?
2195 bool isStructReturn
= F
->hasStructRetAttr();
2197 if (F
->hasLocalLinkage()) Out
<< "static ";
2198 if (F
->hasDLLImportLinkage()) Out
<< "__declspec(dllimport) ";
2199 if (F
->hasDLLExportLinkage()) Out
<< "__declspec(dllexport) ";
2200 switch (F
->getCallingConv()) {
2201 case CallingConv::X86_StdCall
:
2202 Out
<< "__attribute__((stdcall)) ";
2204 case CallingConv::X86_FastCall
:
2205 Out
<< "__attribute__((fastcall)) ";
2209 // Loop over the arguments, printing them...
2210 const FunctionType
*FT
= cast
<FunctionType
>(F
->getFunctionType());
2211 const AttrListPtr
&PAL
= F
->getAttributes();
2213 std::stringstream FunctionInnards
;
2215 // Print out the name...
2216 FunctionInnards
<< GetValueName(F
) << '(';
2218 bool PrintedArg
= false;
2219 if (!F
->isDeclaration()) {
2220 if (!F
->arg_empty()) {
2221 Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
2224 // If this is a struct-return function, don't print the hidden
2225 // struct-return argument.
2226 if (isStructReturn
) {
2227 assert(I
!= E
&& "Invalid struct return function!");
2232 std::string ArgName
;
2233 for (; I
!= E
; ++I
) {
2234 if (PrintedArg
) FunctionInnards
<< ", ";
2235 if (I
->hasName() || !Prototype
)
2236 ArgName
= GetValueName(I
);
2239 const Type
*ArgTy
= I
->getType();
2240 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
2241 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
2242 ByValParams
.insert(I
);
2244 printType(FunctionInnards
, ArgTy
,
2245 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
),
2252 // Loop over the arguments, printing them.
2253 FunctionType::param_iterator I
= FT
->param_begin(), E
= FT
->param_end();
2256 // If this is a struct-return function, don't print the hidden
2257 // struct-return argument.
2258 if (isStructReturn
) {
2259 assert(I
!= E
&& "Invalid struct return function!");
2264 for (; I
!= E
; ++I
) {
2265 if (PrintedArg
) FunctionInnards
<< ", ";
2266 const Type
*ArgTy
= *I
;
2267 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
2268 assert(isa
<PointerType
>(ArgTy
));
2269 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
2271 printType(FunctionInnards
, ArgTy
,
2272 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
));
2278 // Finish printing arguments... if this is a vararg function, print the ...,
2279 // unless there are no known types, in which case, we just emit ().
2281 if (FT
->isVarArg() && PrintedArg
) {
2282 if (PrintedArg
) FunctionInnards
<< ", ";
2283 FunctionInnards
<< "..."; // Output varargs portion of signature!
2284 } else if (!FT
->isVarArg() && !PrintedArg
) {
2285 FunctionInnards
<< "void"; // ret() -> ret(void) in C.
2287 FunctionInnards
<< ')';
2289 // Get the return tpe for the function.
2291 if (!isStructReturn
)
2292 RetTy
= F
->getReturnType();
2294 // If this is a struct-return function, print the struct-return type.
2295 RetTy
= cast
<PointerType
>(FT
->getParamType(0))->getElementType();
2298 // Print out the return type and the signature built above.
2299 printType(Out
, RetTy
,
2300 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
),
2301 FunctionInnards
.str());
2304 static inline bool isFPIntBitCast(const Instruction
&I
) {
2305 if (!isa
<BitCastInst
>(I
))
2307 const Type
*SrcTy
= I
.getOperand(0)->getType();
2308 const Type
*DstTy
= I
.getType();
2309 return (SrcTy
->isFloatingPoint() && DstTy
->isInteger()) ||
2310 (DstTy
->isFloatingPoint() && SrcTy
->isInteger());
2313 void CWriter::printFunction(Function
&F
) {
2314 /// isStructReturn - Should this function actually return a struct by-value?
2315 bool isStructReturn
= F
.hasStructRetAttr();
2317 printFunctionSignature(&F
, false);
2320 // If this is a struct return function, handle the result with magic.
2321 if (isStructReturn
) {
2322 const Type
*StructTy
=
2323 cast
<PointerType
>(F
.arg_begin()->getType())->getElementType();
2325 printType(Out
, StructTy
, false, "StructReturn");
2326 Out
<< "; /* Struct return temporary */\n";
2329 printType(Out
, F
.arg_begin()->getType(), false,
2330 GetValueName(F
.arg_begin()));
2331 Out
<< " = &StructReturn;\n";
2334 bool PrintedVar
= false;
2336 // print local variable information for the function
2337 for (inst_iterator I
= inst_begin(&F
), E
= inst_end(&F
); I
!= E
; ++I
) {
2338 if (const AllocaInst
*AI
= isDirectAlloca(&*I
)) {
2340 printType(Out
, AI
->getAllocatedType(), false, GetValueName(AI
));
2341 Out
<< "; /* Address-exposed local */\n";
2343 } else if (I
->getType() != Type::VoidTy
&& !isInlinableInst(*I
)) {
2345 printType(Out
, I
->getType(), false, GetValueName(&*I
));
2348 if (isa
<PHINode
>(*I
)) { // Print out PHI node temporaries as well...
2350 printType(Out
, I
->getType(), false,
2351 GetValueName(&*I
)+"__PHI_TEMPORARY");
2356 // We need a temporary for the BitCast to use so it can pluck a value out
2357 // of a union to do the BitCast. This is separate from the need for a
2358 // variable to hold the result of the BitCast.
2359 if (isFPIntBitCast(*I
)) {
2360 Out
<< " llvmBitCastUnion " << GetValueName(&*I
)
2361 << "__BITCAST_TEMPORARY;\n";
2369 if (F
.hasExternalLinkage() && F
.getName() == "main")
2370 Out
<< " CODE_FOR_MAIN();\n";
2372 // print the basic blocks
2373 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
2374 if (Loop
*L
= LI
->getLoopFor(BB
)) {
2375 if (L
->getHeader() == BB
&& L
->getParentLoop() == 0)
2378 printBasicBlock(BB
);
2385 void CWriter::printLoop(Loop
*L
) {
2386 Out
<< " do { /* Syntactic loop '" << L
->getHeader()->getName()
2387 << "' to make GCC happy */\n";
2388 for (unsigned i
= 0, e
= L
->getBlocks().size(); i
!= e
; ++i
) {
2389 BasicBlock
*BB
= L
->getBlocks()[i
];
2390 Loop
*BBLoop
= LI
->getLoopFor(BB
);
2392 printBasicBlock(BB
);
2393 else if (BB
== BBLoop
->getHeader() && BBLoop
->getParentLoop() == L
)
2396 Out
<< " } while (1); /* end of syntactic loop '"
2397 << L
->getHeader()->getName() << "' */\n";
2400 void CWriter::printBasicBlock(BasicBlock
*BB
) {
2402 // Don't print the label for the basic block if there are no uses, or if
2403 // the only terminator use is the predecessor basic block's terminator.
2404 // We have to scan the use list because PHI nodes use basic blocks too but
2405 // do not require a label to be generated.
2407 bool NeedsLabel
= false;
2408 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2409 if (isGotoCodeNecessary(*PI
, BB
)) {
2414 if (NeedsLabel
) Out
<< GetValueName(BB
) << ":\n";
2416 // Output all of the instructions in the basic block...
2417 for (BasicBlock::iterator II
= BB
->begin(), E
= --BB
->end(); II
!= E
;
2419 if (!isInlinableInst(*II
) && !isDirectAlloca(II
)) {
2420 if (II
->getType() != Type::VoidTy
&& !isInlineAsm(*II
))
2424 writeInstComputationInline(*II
);
2429 // Don't emit prefix or suffix for the terminator.
2430 visit(*BB
->getTerminator());
2434 // Specific Instruction type classes... note that all of the casts are
2435 // necessary because we use the instruction classes as opaque types...
2437 void CWriter::visitReturnInst(ReturnInst
&I
) {
2438 // If this is a struct return function, return the temporary struct.
2439 bool isStructReturn
= I
.getParent()->getParent()->hasStructRetAttr();
2441 if (isStructReturn
) {
2442 Out
<< " return StructReturn;\n";
2446 // Don't output a void return if this is the last basic block in the function
2447 if (I
.getNumOperands() == 0 &&
2448 &*--I
.getParent()->getParent()->end() == I
.getParent() &&
2449 !I
.getParent()->size() == 1) {
2453 if (I
.getNumOperands() > 1) {
2456 printType(Out
, I
.getParent()->getParent()->getReturnType());
2457 Out
<< " llvm_cbe_mrv_temp = {\n";
2458 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
2460 writeOperand(I
.getOperand(i
));
2466 Out
<< " return llvm_cbe_mrv_temp;\n";
2472 if (I
.getNumOperands()) {
2474 writeOperand(I
.getOperand(0));
2479 void CWriter::visitSwitchInst(SwitchInst
&SI
) {
2482 writeOperand(SI
.getOperand(0));
2483 Out
<< ") {\n default:\n";
2484 printPHICopiesForSuccessor (SI
.getParent(), SI
.getDefaultDest(), 2);
2485 printBranchToBlock(SI
.getParent(), SI
.getDefaultDest(), 2);
2487 for (unsigned i
= 2, e
= SI
.getNumOperands(); i
!= e
; i
+= 2) {
2489 writeOperand(SI
.getOperand(i
));
2491 BasicBlock
*Succ
= cast
<BasicBlock
>(SI
.getOperand(i
+1));
2492 printPHICopiesForSuccessor (SI
.getParent(), Succ
, 2);
2493 printBranchToBlock(SI
.getParent(), Succ
, 2);
2494 if (Function::iterator(Succ
) == next(Function::iterator(SI
.getParent())))
2500 void CWriter::visitUnreachableInst(UnreachableInst
&I
) {
2501 Out
<< " /*UNREACHABLE*/;\n";
2504 bool CWriter::isGotoCodeNecessary(BasicBlock
*From
, BasicBlock
*To
) {
2505 /// FIXME: This should be reenabled, but loop reordering safe!!
2508 if (next(Function::iterator(From
)) != Function::iterator(To
))
2509 return true; // Not the direct successor, we need a goto.
2511 //isa<SwitchInst>(From->getTerminator())
2513 if (LI
->getLoopFor(From
) != LI
->getLoopFor(To
))
2518 void CWriter::printPHICopiesForSuccessor (BasicBlock
*CurBlock
,
2519 BasicBlock
*Successor
,
2521 for (BasicBlock::iterator I
= Successor
->begin(); isa
<PHINode
>(I
); ++I
) {
2522 PHINode
*PN
= cast
<PHINode
>(I
);
2523 // Now we have to do the printing.
2524 Value
*IV
= PN
->getIncomingValueForBlock(CurBlock
);
2525 if (!isa
<UndefValue
>(IV
)) {
2526 Out
<< std::string(Indent
, ' ');
2527 Out
<< " " << GetValueName(I
) << "__PHI_TEMPORARY = ";
2529 Out
<< "; /* for PHI node */\n";
2534 void CWriter::printBranchToBlock(BasicBlock
*CurBB
, BasicBlock
*Succ
,
2536 if (isGotoCodeNecessary(CurBB
, Succ
)) {
2537 Out
<< std::string(Indent
, ' ') << " goto ";
2543 // Branch instruction printing - Avoid printing out a branch to a basic block
2544 // that immediately succeeds the current one.
2546 void CWriter::visitBranchInst(BranchInst
&I
) {
2548 if (I
.isConditional()) {
2549 if (isGotoCodeNecessary(I
.getParent(), I
.getSuccessor(0))) {
2551 writeOperand(I
.getCondition());
2554 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(0), 2);
2555 printBranchToBlock(I
.getParent(), I
.getSuccessor(0), 2);
2557 if (isGotoCodeNecessary(I
.getParent(), I
.getSuccessor(1))) {
2558 Out
<< " } else {\n";
2559 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(1), 2);
2560 printBranchToBlock(I
.getParent(), I
.getSuccessor(1), 2);
2563 // First goto not necessary, assume second one is...
2565 writeOperand(I
.getCondition());
2568 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(1), 2);
2569 printBranchToBlock(I
.getParent(), I
.getSuccessor(1), 2);
2574 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(0), 0);
2575 printBranchToBlock(I
.getParent(), I
.getSuccessor(0), 0);
2580 // PHI nodes get copied into temporary values at the end of predecessor basic
2581 // blocks. We now need to copy these temporary values into the REAL value for
2583 void CWriter::visitPHINode(PHINode
&I
) {
2585 Out
<< "__PHI_TEMPORARY";
2589 void CWriter::visitBinaryOperator(Instruction
&I
) {
2590 // binary instructions, shift instructions, setCond instructions.
2591 assert(!isa
<PointerType
>(I
.getType()));
2593 // We must cast the results of binary operations which might be promoted.
2594 bool needsCast
= false;
2595 if ((I
.getType() == Type::Int8Ty
) || (I
.getType() == Type::Int16Ty
)
2596 || (I
.getType() == Type::FloatTy
)) {
2599 printType(Out
, I
.getType(), false);
2603 // If this is a negation operation, print it out as such. For FP, we don't
2604 // want to print "-0.0 - X".
2605 if (BinaryOperator::isNeg(&I
)) {
2607 writeOperand(BinaryOperator::getNegArgument(cast
<BinaryOperator
>(&I
)));
2609 } else if (I
.getOpcode() == Instruction::FRem
) {
2610 // Output a call to fmod/fmodf instead of emitting a%b
2611 if (I
.getType() == Type::FloatTy
)
2613 else if (I
.getType() == Type::DoubleTy
)
2615 else // all 3 flavors of long double
2617 writeOperand(I
.getOperand(0));
2619 writeOperand(I
.getOperand(1));
2623 // Write out the cast of the instruction's value back to the proper type
2625 bool NeedsClosingParens
= writeInstructionCast(I
);
2627 // Certain instructions require the operand to be forced to a specific type
2628 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2629 // below for operand 1
2630 writeOperandWithCast(I
.getOperand(0), I
.getOpcode());
2632 switch (I
.getOpcode()) {
2633 case Instruction::Add
: Out
<< " + "; break;
2634 case Instruction::Sub
: Out
<< " - "; break;
2635 case Instruction::Mul
: Out
<< " * "; break;
2636 case Instruction::URem
:
2637 case Instruction::SRem
:
2638 case Instruction::FRem
: Out
<< " % "; break;
2639 case Instruction::UDiv
:
2640 case Instruction::SDiv
:
2641 case Instruction::FDiv
: Out
<< " / "; break;
2642 case Instruction::And
: Out
<< " & "; break;
2643 case Instruction::Or
: Out
<< " | "; break;
2644 case Instruction::Xor
: Out
<< " ^ "; break;
2645 case Instruction::Shl
: Out
<< " << "; break;
2646 case Instruction::LShr
:
2647 case Instruction::AShr
: Out
<< " >> "; break;
2648 default: cerr
<< "Invalid operator type!" << I
; abort();
2651 writeOperandWithCast(I
.getOperand(1), I
.getOpcode());
2652 if (NeedsClosingParens
)
2661 void CWriter::visitICmpInst(ICmpInst
&I
) {
2662 // We must cast the results of icmp which might be promoted.
2663 bool needsCast
= false;
2665 // Write out the cast of the instruction's value back to the proper type
2667 bool NeedsClosingParens
= writeInstructionCast(I
);
2669 // Certain icmp predicate require the operand to be forced to a specific type
2670 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2671 // below for operand 1
2672 writeOperandWithCast(I
.getOperand(0), I
);
2674 switch (I
.getPredicate()) {
2675 case ICmpInst::ICMP_EQ
: Out
<< " == "; break;
2676 case ICmpInst::ICMP_NE
: Out
<< " != "; break;
2677 case ICmpInst::ICMP_ULE
:
2678 case ICmpInst::ICMP_SLE
: Out
<< " <= "; break;
2679 case ICmpInst::ICMP_UGE
:
2680 case ICmpInst::ICMP_SGE
: Out
<< " >= "; break;
2681 case ICmpInst::ICMP_ULT
:
2682 case ICmpInst::ICMP_SLT
: Out
<< " < "; break;
2683 case ICmpInst::ICMP_UGT
:
2684 case ICmpInst::ICMP_SGT
: Out
<< " > "; break;
2685 default: cerr
<< "Invalid icmp predicate!" << I
; abort();
2688 writeOperandWithCast(I
.getOperand(1), I
);
2689 if (NeedsClosingParens
)
2697 void CWriter::visitFCmpInst(FCmpInst
&I
) {
2698 if (I
.getPredicate() == FCmpInst::FCMP_FALSE
) {
2702 if (I
.getPredicate() == FCmpInst::FCMP_TRUE
) {
2708 switch (I
.getPredicate()) {
2709 default: assert(0 && "Illegal FCmp predicate");
2710 case FCmpInst::FCMP_ORD
: op
= "ord"; break;
2711 case FCmpInst::FCMP_UNO
: op
= "uno"; break;
2712 case FCmpInst::FCMP_UEQ
: op
= "ueq"; break;
2713 case FCmpInst::FCMP_UNE
: op
= "une"; break;
2714 case FCmpInst::FCMP_ULT
: op
= "ult"; break;
2715 case FCmpInst::FCMP_ULE
: op
= "ule"; break;
2716 case FCmpInst::FCMP_UGT
: op
= "ugt"; break;
2717 case FCmpInst::FCMP_UGE
: op
= "uge"; break;
2718 case FCmpInst::FCMP_OEQ
: op
= "oeq"; break;
2719 case FCmpInst::FCMP_ONE
: op
= "one"; break;
2720 case FCmpInst::FCMP_OLT
: op
= "olt"; break;
2721 case FCmpInst::FCMP_OLE
: op
= "ole"; break;
2722 case FCmpInst::FCMP_OGT
: op
= "ogt"; break;
2723 case FCmpInst::FCMP_OGE
: op
= "oge"; break;
2726 Out
<< "llvm_fcmp_" << op
<< "(";
2727 // Write the first operand
2728 writeOperand(I
.getOperand(0));
2730 // Write the second operand
2731 writeOperand(I
.getOperand(1));
2735 static const char * getFloatBitCastField(const Type
*Ty
) {
2736 switch (Ty
->getTypeID()) {
2737 default: assert(0 && "Invalid Type");
2738 case Type::FloatTyID
: return "Float";
2739 case Type::DoubleTyID
: return "Double";
2740 case Type::IntegerTyID
: {
2741 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
2750 void CWriter::visitCastInst(CastInst
&I
) {
2751 const Type
*DstTy
= I
.getType();
2752 const Type
*SrcTy
= I
.getOperand(0)->getType();
2753 if (isFPIntBitCast(I
)) {
2755 // These int<->float and long<->double casts need to be handled specially
2756 Out
<< GetValueName(&I
) << "__BITCAST_TEMPORARY."
2757 << getFloatBitCastField(I
.getOperand(0)->getType()) << " = ";
2758 writeOperand(I
.getOperand(0));
2759 Out
<< ", " << GetValueName(&I
) << "__BITCAST_TEMPORARY."
2760 << getFloatBitCastField(I
.getType());
2766 printCast(I
.getOpcode(), SrcTy
, DstTy
);
2768 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2769 if (SrcTy
== Type::Int1Ty
&& I
.getOpcode() == Instruction::SExt
)
2772 writeOperand(I
.getOperand(0));
2774 if (DstTy
== Type::Int1Ty
&&
2775 (I
.getOpcode() == Instruction::Trunc
||
2776 I
.getOpcode() == Instruction::FPToUI
||
2777 I
.getOpcode() == Instruction::FPToSI
||
2778 I
.getOpcode() == Instruction::PtrToInt
)) {
2779 // Make sure we really get a trunc to bool by anding the operand with 1
2785 void CWriter::visitSelectInst(SelectInst
&I
) {
2787 writeOperand(I
.getCondition());
2789 writeOperand(I
.getTrueValue());
2791 writeOperand(I
.getFalseValue());
2796 void CWriter::lowerIntrinsics(Function
&F
) {
2797 // This is used to keep track of intrinsics that get generated to a lowered
2798 // function. We must generate the prototypes before the function body which
2799 // will only be expanded on first use (by the loop below).
2800 std::vector
<Function
*> prototypesToGen
;
2802 // Examine all the instructions in this function to find the intrinsics that
2803 // need to be lowered.
2804 for (Function::iterator BB
= F
.begin(), EE
= F
.end(); BB
!= EE
; ++BB
)
2805 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; )
2806 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
++))
2807 if (Function
*F
= CI
->getCalledFunction())
2808 switch (F
->getIntrinsicID()) {
2809 case Intrinsic::not_intrinsic
:
2810 case Intrinsic::memory_barrier
:
2811 case Intrinsic::vastart
:
2812 case Intrinsic::vacopy
:
2813 case Intrinsic::vaend
:
2814 case Intrinsic::returnaddress
:
2815 case Intrinsic::frameaddress
:
2816 case Intrinsic::setjmp
:
2817 case Intrinsic::longjmp
:
2818 case Intrinsic::prefetch
:
2819 case Intrinsic::dbg_stoppoint
:
2820 case Intrinsic::powi
:
2821 case Intrinsic::x86_sse_cmp_ss
:
2822 case Intrinsic::x86_sse_cmp_ps
:
2823 case Intrinsic::x86_sse2_cmp_sd
:
2824 case Intrinsic::x86_sse2_cmp_pd
:
2825 case Intrinsic::ppc_altivec_lvsl
:
2826 // We directly implement these intrinsics
2829 // If this is an intrinsic that directly corresponds to a GCC
2830 // builtin, we handle it.
2831 const char *BuiltinName
= "";
2832 #define GET_GCC_BUILTIN_NAME
2833 #include "llvm/Intrinsics.gen"
2834 #undef GET_GCC_BUILTIN_NAME
2835 // If we handle it, don't lower it.
2836 if (BuiltinName
[0]) break;
2838 // All other intrinsic calls we must lower.
2839 Instruction
*Before
= 0;
2840 if (CI
!= &BB
->front())
2841 Before
= prior(BasicBlock::iterator(CI
));
2843 IL
->LowerIntrinsicCall(CI
);
2844 if (Before
) { // Move iterator to instruction after call
2849 // If the intrinsic got lowered to another call, and that call has
2850 // a definition then we need to make sure its prototype is emitted
2851 // before any calls to it.
2852 if (CallInst
*Call
= dyn_cast
<CallInst
>(I
))
2853 if (Function
*NewF
= Call
->getCalledFunction())
2854 if (!NewF
->isDeclaration())
2855 prototypesToGen
.push_back(NewF
);
2860 // We may have collected some prototypes to emit in the loop above.
2861 // Emit them now, before the function that uses them is emitted. But,
2862 // be careful not to emit them twice.
2863 std::vector
<Function
*>::iterator I
= prototypesToGen
.begin();
2864 std::vector
<Function
*>::iterator E
= prototypesToGen
.end();
2865 for ( ; I
!= E
; ++I
) {
2866 if (intrinsicPrototypesAlreadyGenerated
.insert(*I
).second
) {
2868 printFunctionSignature(*I
, true);
2874 void CWriter::visitCallInst(CallInst
&I
) {
2875 if (isa
<InlineAsm
>(I
.getOperand(0)))
2876 return visitInlineAsm(I
);
2878 bool WroteCallee
= false;
2880 // Handle intrinsic function calls first...
2881 if (Function
*F
= I
.getCalledFunction())
2882 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2883 if (visitBuiltinCall(I
, ID
, WroteCallee
))
2886 Value
*Callee
= I
.getCalledValue();
2888 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
2889 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
2891 // If this is a call to a struct-return function, assign to the first
2892 // parameter instead of passing it to the call.
2893 const AttrListPtr
&PAL
= I
.getAttributes();
2894 bool hasByVal
= I
.hasByValArgument();
2895 bool isStructRet
= I
.hasStructRetAttr();
2897 writeOperandDeref(I
.getOperand(1));
2901 if (I
.isTailCall()) Out
<< " /*tail*/ ";
2904 // If this is an indirect call to a struct return function, we need to cast
2905 // the pointer. Ditto for indirect calls with byval arguments.
2906 bool NeedsCast
= (hasByVal
|| isStructRet
) && !isa
<Function
>(Callee
);
2908 // GCC is a real PITA. It does not permit codegening casts of functions to
2909 // function pointers if they are in a call (it generates a trap instruction
2910 // instead!). We work around this by inserting a cast to void* in between
2911 // the function and the function pointer cast. Unfortunately, we can't just
2912 // form the constant expression here, because the folder will immediately
2915 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2916 // that void* and function pointers have the same size. :( To deal with this
2917 // in the common case, we handle casts where the number of arguments passed
2920 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Callee
))
2922 if (Function
*RF
= dyn_cast
<Function
>(CE
->getOperand(0))) {
2928 // Ok, just cast the pointer type.
2931 printStructReturnPointerFunctionType(Out
, PAL
,
2932 cast
<PointerType
>(I
.getCalledValue()->getType()));
2934 printType(Out
, I
.getCalledValue()->getType(), false, "", true, PAL
);
2936 printType(Out
, I
.getCalledValue()->getType());
2939 writeOperand(Callee
);
2940 if (NeedsCast
) Out
<< ')';
2945 unsigned NumDeclaredParams
= FTy
->getNumParams();
2947 CallSite::arg_iterator AI
= I
.op_begin()+1, AE
= I
.op_end();
2949 if (isStructRet
) { // Skip struct return argument.
2954 bool PrintedArg
= false;
2955 for (; AI
!= AE
; ++AI
, ++ArgNo
) {
2956 if (PrintedArg
) Out
<< ", ";
2957 if (ArgNo
< NumDeclaredParams
&&
2958 (*AI
)->getType() != FTy
->getParamType(ArgNo
)) {
2960 printType(Out
, FTy
->getParamType(ArgNo
),
2961 /*isSigned=*/PAL
.paramHasAttr(ArgNo
+1, Attribute::SExt
));
2964 // Check if the argument is expected to be passed by value.
2965 if (I
.paramHasAttr(ArgNo
+1, Attribute::ByVal
))
2966 writeOperandDeref(*AI
);
2974 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2975 /// if the entire call is handled, return false it it wasn't handled, and
2976 /// optionally set 'WroteCallee' if the callee has already been printed out.
2977 bool CWriter::visitBuiltinCall(CallInst
&I
, Intrinsic::ID ID
,
2978 bool &WroteCallee
) {
2981 // If this is an intrinsic that directly corresponds to a GCC
2982 // builtin, we emit it here.
2983 const char *BuiltinName
= "";
2984 Function
*F
= I
.getCalledFunction();
2985 #define GET_GCC_BUILTIN_NAME
2986 #include "llvm/Intrinsics.gen"
2987 #undef GET_GCC_BUILTIN_NAME
2988 assert(BuiltinName
[0] && "Unknown LLVM intrinsic!");
2994 case Intrinsic::memory_barrier
:
2995 Out
<< "__sync_synchronize()";
2997 case Intrinsic::vastart
:
3000 Out
<< "va_start(*(va_list*)";
3001 writeOperand(I
.getOperand(1));
3003 // Output the last argument to the enclosing function.
3004 if (I
.getParent()->getParent()->arg_empty()) {
3005 cerr
<< "The C backend does not currently support zero "
3006 << "argument varargs functions, such as '"
3007 << I
.getParent()->getParent()->getName() << "'!\n";
3010 writeOperand(--I
.getParent()->getParent()->arg_end());
3013 case Intrinsic::vaend
:
3014 if (!isa
<ConstantPointerNull
>(I
.getOperand(1))) {
3015 Out
<< "0; va_end(*(va_list*)";
3016 writeOperand(I
.getOperand(1));
3019 Out
<< "va_end(*(va_list*)0)";
3022 case Intrinsic::vacopy
:
3024 Out
<< "va_copy(*(va_list*)";
3025 writeOperand(I
.getOperand(1));
3026 Out
<< ", *(va_list*)";
3027 writeOperand(I
.getOperand(2));
3030 case Intrinsic::returnaddress
:
3031 Out
<< "__builtin_return_address(";
3032 writeOperand(I
.getOperand(1));
3035 case Intrinsic::frameaddress
:
3036 Out
<< "__builtin_frame_address(";
3037 writeOperand(I
.getOperand(1));
3040 case Intrinsic::powi
:
3041 Out
<< "__builtin_powi(";
3042 writeOperand(I
.getOperand(1));
3044 writeOperand(I
.getOperand(2));
3047 case Intrinsic::setjmp
:
3048 Out
<< "setjmp(*(jmp_buf*)";
3049 writeOperand(I
.getOperand(1));
3052 case Intrinsic::longjmp
:
3053 Out
<< "longjmp(*(jmp_buf*)";
3054 writeOperand(I
.getOperand(1));
3056 writeOperand(I
.getOperand(2));
3059 case Intrinsic::prefetch
:
3060 Out
<< "LLVM_PREFETCH((const void *)";
3061 writeOperand(I
.getOperand(1));
3063 writeOperand(I
.getOperand(2));
3065 writeOperand(I
.getOperand(3));
3068 case Intrinsic::stacksave
:
3069 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3070 // to work around GCC bugs (see PR1809).
3071 Out
<< "0; *((void**)&" << GetValueName(&I
)
3072 << ") = __builtin_stack_save()";
3074 case Intrinsic::dbg_stoppoint
: {
3075 // If we use writeOperand directly we get a "u" suffix which is rejected
3077 std::stringstream SPIStr
;
3078 DbgStopPointInst
&SPI
= cast
<DbgStopPointInst
>(I
);
3079 SPI
.getDirectory()->print(SPIStr
);
3083 Out
<< SPIStr
.str();
3085 SPI
.getFileName()->print(SPIStr
);
3086 Out
<< SPIStr
.str() << "\"\n";
3089 case Intrinsic::x86_sse_cmp_ss
:
3090 case Intrinsic::x86_sse_cmp_ps
:
3091 case Intrinsic::x86_sse2_cmp_sd
:
3092 case Intrinsic::x86_sse2_cmp_pd
:
3094 printType(Out
, I
.getType());
3096 // Multiple GCC builtins multiplex onto this intrinsic.
3097 switch (cast
<ConstantInt
>(I
.getOperand(3))->getZExtValue()) {
3098 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
3099 case 0: Out
<< "__builtin_ia32_cmpeq"; break;
3100 case 1: Out
<< "__builtin_ia32_cmplt"; break;
3101 case 2: Out
<< "__builtin_ia32_cmple"; break;
3102 case 3: Out
<< "__builtin_ia32_cmpunord"; break;
3103 case 4: Out
<< "__builtin_ia32_cmpneq"; break;
3104 case 5: Out
<< "__builtin_ia32_cmpnlt"; break;
3105 case 6: Out
<< "__builtin_ia32_cmpnle"; break;
3106 case 7: Out
<< "__builtin_ia32_cmpord"; break;
3108 if (ID
== Intrinsic::x86_sse_cmp_ps
|| ID
== Intrinsic::x86_sse2_cmp_pd
)
3112 if (ID
== Intrinsic::x86_sse_cmp_ss
|| ID
== Intrinsic::x86_sse_cmp_ps
)
3118 writeOperand(I
.getOperand(1));
3120 writeOperand(I
.getOperand(2));
3123 case Intrinsic::ppc_altivec_lvsl
:
3125 printType(Out
, I
.getType());
3127 Out
<< "__builtin_altivec_lvsl(0, (void*)";
3128 writeOperand(I
.getOperand(1));
3134 //This converts the llvm constraint string to something gcc is expecting.
3135 //TODO: work out platform independent constraints and factor those out
3136 // of the per target tables
3137 // handle multiple constraint codes
3138 std::string
CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo
& c
) {
3140 assert(c
.Codes
.size() == 1 && "Too many asm constraint codes to handle");
3142 const char *const *table
= 0;
3144 //Grab the translation table from TargetAsmInfo if it exists
3147 const TargetMachineRegistry::entry
* Match
=
3148 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule
, E
);
3150 //Per platform Target Machines don't exist, so create it
3151 // this must be done only once
3152 const TargetMachine
* TM
= Match
->CtorFn(*TheModule
, "");
3153 TAsm
= TM
->getTargetAsmInfo();
3157 table
= TAsm
->getAsmCBE();
3159 //Search the translation table if it exists
3160 for (int i
= 0; table
&& table
[i
]; i
+= 2)
3161 if (c
.Codes
[0] == table
[i
])
3164 //default is identity
3168 //TODO: import logic from AsmPrinter.cpp
3169 static std::string
gccifyAsm(std::string asmstr
) {
3170 for (std::string::size_type i
= 0; i
!= asmstr
.size(); ++i
)
3171 if (asmstr
[i
] == '\n')
3172 asmstr
.replace(i
, 1, "\\n");
3173 else if (asmstr
[i
] == '\t')
3174 asmstr
.replace(i
, 1, "\\t");
3175 else if (asmstr
[i
] == '$') {
3176 if (asmstr
[i
+ 1] == '{') {
3177 std::string::size_type a
= asmstr
.find_first_of(':', i
+ 1);
3178 std::string::size_type b
= asmstr
.find_first_of('}', i
+ 1);
3179 std::string n
= "%" +
3180 asmstr
.substr(a
+ 1, b
- a
- 1) +
3181 asmstr
.substr(i
+ 2, a
- i
- 2);
3182 asmstr
.replace(i
, b
- i
+ 1, n
);
3185 asmstr
.replace(i
, 1, "%");
3187 else if (asmstr
[i
] == '%')//grr
3188 { asmstr
.replace(i
, 1, "%%"); ++i
;}
3193 //TODO: assumptions about what consume arguments from the call are likely wrong
3194 // handle communitivity
3195 void CWriter::visitInlineAsm(CallInst
&CI
) {
3196 InlineAsm
* as
= cast
<InlineAsm
>(CI
.getOperand(0));
3197 std::vector
<InlineAsm::ConstraintInfo
> Constraints
= as
->ParseConstraints();
3199 std::vector
<std::pair
<Value
*, int> > ResultVals
;
3200 if (CI
.getType() == Type::VoidTy
)
3202 else if (const StructType
*ST
= dyn_cast
<StructType
>(CI
.getType())) {
3203 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
)
3204 ResultVals
.push_back(std::make_pair(&CI
, (int)i
));
3206 ResultVals
.push_back(std::make_pair(&CI
, -1));
3209 // Fix up the asm string for gcc and emit it.
3210 Out
<< "__asm__ volatile (\"" << gccifyAsm(as
->getAsmString()) << "\"\n";
3213 unsigned ValueCount
= 0;
3214 bool IsFirst
= true;
3216 // Convert over all the output constraints.
3217 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3218 E
= Constraints
.end(); I
!= E
; ++I
) {
3220 if (I
->Type
!= InlineAsm::isOutput
) {
3222 continue; // Ignore non-output constraints.
3225 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3226 std::string C
= InterpretASMConstraint(*I
);
3227 if (C
.empty()) continue;
3238 if (ValueCount
< ResultVals
.size()) {
3239 DestVal
= ResultVals
[ValueCount
].first
;
3240 DestValNo
= ResultVals
[ValueCount
].second
;
3242 DestVal
= CI
.getOperand(ValueCount
-ResultVals
.size()+1);
3244 if (I
->isEarlyClobber
)
3247 Out
<< "\"=" << C
<< "\"(" << GetValueName(DestVal
);
3248 if (DestValNo
!= -1)
3249 Out
<< ".field" << DestValNo
; // Multiple retvals.
3255 // Convert over all the input constraints.
3259 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3260 E
= Constraints
.end(); I
!= E
; ++I
) {
3261 if (I
->Type
!= InlineAsm::isInput
) {
3263 continue; // Ignore non-input constraints.
3266 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3267 std::string C
= InterpretASMConstraint(*I
);
3268 if (C
.empty()) continue;
3275 assert(ValueCount
>= ResultVals
.size() && "Input can't refer to result");
3276 Value
*SrcVal
= CI
.getOperand(ValueCount
-ResultVals
.size()+1);
3278 Out
<< "\"" << C
<< "\"(";
3280 writeOperand(SrcVal
);
3282 writeOperandDeref(SrcVal
);
3286 // Convert over the clobber constraints.
3289 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3290 E
= Constraints
.end(); I
!= E
; ++I
) {
3291 if (I
->Type
!= InlineAsm::isClobber
)
3292 continue; // Ignore non-input constraints.
3294 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3295 std::string C
= InterpretASMConstraint(*I
);
3296 if (C
.empty()) continue;
3303 Out
<< '\"' << C
<< '"';
3309 void CWriter::visitMallocInst(MallocInst
&I
) {
3310 assert(0 && "lowerallocations pass didn't work!");
3313 void CWriter::visitAllocaInst(AllocaInst
&I
) {
3315 printType(Out
, I
.getType());
3316 Out
<< ") alloca(sizeof(";
3317 printType(Out
, I
.getType()->getElementType());
3319 if (I
.isArrayAllocation()) {
3321 writeOperand(I
.getOperand(0));
3326 void CWriter::visitFreeInst(FreeInst
&I
) {
3327 assert(0 && "lowerallocations pass didn't work!");
3330 void CWriter::printGEPExpression(Value
*Ptr
, gep_type_iterator I
,
3331 gep_type_iterator E
, bool Static
) {
3333 // If there are no indices, just print out the pointer.
3339 // Find out if the last index is into a vector. If so, we have to print this
3340 // specially. Since vectors can't have elements of indexable type, only the
3341 // last index could possibly be of a vector element.
3342 const VectorType
*LastIndexIsVector
= 0;
3344 for (gep_type_iterator TmpI
= I
; TmpI
!= E
; ++TmpI
)
3345 LastIndexIsVector
= dyn_cast
<VectorType
>(*TmpI
);
3350 // If the last index is into a vector, we can't print it as &a[i][j] because
3351 // we can't index into a vector with j in GCC. Instead, emit this as
3352 // (((float*)&a[i])+j)
3353 if (LastIndexIsVector
) {
3355 printType(Out
, PointerType::getUnqual(LastIndexIsVector
->getElementType()));
3361 // If the first index is 0 (very typical) we can do a number of
3362 // simplifications to clean up the code.
3363 Value
*FirstOp
= I
.getOperand();
3364 if (!isa
<Constant
>(FirstOp
) || !cast
<Constant
>(FirstOp
)->isNullValue()) {
3365 // First index isn't simple, print it the hard way.
3368 ++I
; // Skip the zero index.
3370 // Okay, emit the first operand. If Ptr is something that is already address
3371 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3372 if (isAddressExposed(Ptr
)) {
3373 writeOperandInternal(Ptr
, Static
);
3374 } else if (I
!= E
&& isa
<StructType
>(*I
)) {
3375 // If we didn't already emit the first operand, see if we can print it as
3376 // P->f instead of "P[0].f"
3378 Out
<< "->field" << cast
<ConstantInt
>(I
.getOperand())->getZExtValue();
3379 ++I
; // eat the struct index as well.
3381 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3388 for (; I
!= E
; ++I
) {
3389 if (isa
<StructType
>(*I
)) {
3390 Out
<< ".field" << cast
<ConstantInt
>(I
.getOperand())->getZExtValue();
3391 } else if (isa
<ArrayType
>(*I
)) {
3393 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3395 } else if (!isa
<VectorType
>(*I
)) {
3397 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3400 // If the last index is into a vector, then print it out as "+j)". This
3401 // works with the 'LastIndexIsVector' code above.
3402 if (isa
<Constant
>(I
.getOperand()) &&
3403 cast
<Constant
>(I
.getOperand())->isNullValue()) {
3404 Out
<< "))"; // avoid "+0".
3407 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3415 void CWriter::writeMemoryAccess(Value
*Operand
, const Type
*OperandType
,
3416 bool IsVolatile
, unsigned Alignment
) {
3418 bool IsUnaligned
= Alignment
&&
3419 Alignment
< TD
->getABITypeAlignment(OperandType
);
3423 if (IsVolatile
|| IsUnaligned
) {
3426 Out
<< "struct __attribute__ ((packed, aligned(" << Alignment
<< "))) {";
3427 printType(Out
, OperandType
, false, IsUnaligned
? "data" : "volatile*");
3430 if (IsVolatile
) Out
<< "volatile ";
3436 writeOperand(Operand
);
3438 if (IsVolatile
|| IsUnaligned
) {
3445 void CWriter::visitLoadInst(LoadInst
&I
) {
3446 writeMemoryAccess(I
.getOperand(0), I
.getType(), I
.isVolatile(),
3451 void CWriter::visitStoreInst(StoreInst
&I
) {
3452 writeMemoryAccess(I
.getPointerOperand(), I
.getOperand(0)->getType(),
3453 I
.isVolatile(), I
.getAlignment());
3455 Value
*Operand
= I
.getOperand(0);
3456 Constant
*BitMask
= 0;
3457 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Operand
->getType()))
3458 if (!ITy
->isPowerOf2ByteWidth())
3459 // We have a bit width that doesn't match an even power-of-2 byte
3460 // size. Consequently we must & the value with the type's bit mask
3461 BitMask
= ConstantInt::get(ITy
, ITy
->getBitMask());
3464 writeOperand(Operand
);
3467 printConstant(BitMask
, false);
3472 void CWriter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
3473 printGEPExpression(I
.getPointerOperand(), gep_type_begin(I
),
3474 gep_type_end(I
), false);
3477 void CWriter::visitVAArgInst(VAArgInst
&I
) {
3478 Out
<< "va_arg(*(va_list*)";
3479 writeOperand(I
.getOperand(0));
3481 printType(Out
, I
.getType());
3485 void CWriter::visitInsertElementInst(InsertElementInst
&I
) {
3486 const Type
*EltTy
= I
.getType()->getElementType();
3487 writeOperand(I
.getOperand(0));
3490 printType(Out
, PointerType::getUnqual(EltTy
));
3491 Out
<< ")(&" << GetValueName(&I
) << "))[";
3492 writeOperand(I
.getOperand(2));
3494 writeOperand(I
.getOperand(1));
3498 void CWriter::visitExtractElementInst(ExtractElementInst
&I
) {
3499 // We know that our operand is not inlined.
3502 cast
<VectorType
>(I
.getOperand(0)->getType())->getElementType();
3503 printType(Out
, PointerType::getUnqual(EltTy
));
3504 Out
<< ")(&" << GetValueName(I
.getOperand(0)) << "))[";
3505 writeOperand(I
.getOperand(1));
3509 void CWriter::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
3511 printType(Out
, SVI
.getType());
3513 const VectorType
*VT
= SVI
.getType();
3514 unsigned NumElts
= VT
->getNumElements();
3515 const Type
*EltTy
= VT
->getElementType();
3517 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3519 int SrcVal
= SVI
.getMaskValue(i
);
3520 if ((unsigned)SrcVal
>= NumElts
*2) {
3521 Out
<< " 0/*undef*/ ";
3523 Value
*Op
= SVI
.getOperand((unsigned)SrcVal
>= NumElts
);
3524 if (isa
<Instruction
>(Op
)) {
3525 // Do an extractelement of this value from the appropriate input.
3527 printType(Out
, PointerType::getUnqual(EltTy
));
3528 Out
<< ")(&" << GetValueName(Op
)
3529 << "))[" << (SrcVal
& (NumElts
-1)) << "]";
3530 } else if (isa
<ConstantAggregateZero
>(Op
) || isa
<UndefValue
>(Op
)) {
3533 printConstant(cast
<ConstantVector
>(Op
)->getOperand(SrcVal
&
3542 void CWriter::visitInsertValueInst(InsertValueInst
&IVI
) {
3543 // Start by copying the entire aggregate value into the result variable.
3544 writeOperand(IVI
.getOperand(0));
3547 // Then do the insert to update the field.
3548 Out
<< GetValueName(&IVI
);
3549 for (const unsigned *b
= IVI
.idx_begin(), *i
= b
, *e
= IVI
.idx_end();
3551 const Type
*IndexedTy
=
3552 ExtractValueInst::getIndexedType(IVI
.getOperand(0)->getType(), b
, i
+1);
3553 if (isa
<ArrayType
>(IndexedTy
))
3554 Out
<< ".array[" << *i
<< "]";
3556 Out
<< ".field" << *i
;
3559 writeOperand(IVI
.getOperand(1));
3562 void CWriter::visitExtractValueInst(ExtractValueInst
&EVI
) {
3564 if (isa
<UndefValue
>(EVI
.getOperand(0))) {
3566 printType(Out
, EVI
.getType());
3567 Out
<< ") 0/*UNDEF*/";
3569 Out
<< GetValueName(EVI
.getOperand(0));
3570 for (const unsigned *b
= EVI
.idx_begin(), *i
= b
, *e
= EVI
.idx_end();
3572 const Type
*IndexedTy
=
3573 ExtractValueInst::getIndexedType(EVI
.getOperand(0)->getType(), b
, i
+1);
3574 if (isa
<ArrayType
>(IndexedTy
))
3575 Out
<< ".array[" << *i
<< "]";
3577 Out
<< ".field" << *i
;
3583 //===----------------------------------------------------------------------===//
3584 // External Interface declaration
3585 //===----------------------------------------------------------------------===//
3587 bool CTargetMachine::addPassesToEmitWholeFile(PassManager
&PM
,
3589 CodeGenFileType FileType
,
3590 CodeGenOpt::Level OptLevel
) {
3591 if (FileType
!= TargetMachine::AssemblyFile
) return true;
3593 PM
.add(createGCLoweringPass());
3594 PM
.add(createLowerAllocationsPass(true));
3595 PM
.add(createLowerInvokePass());
3596 PM
.add(createCFGSimplificationPass()); // clean up after lower invoke.
3597 PM
.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3598 PM
.add(new CWriter(o
));
3599 PM
.add(createGCInfoDeleter());