1 Target Independent Opportunities:
3 //===---------------------------------------------------------------------===//
5 With the recent changes to make the implicit def/use set explicit in
6 machineinstrs, we should change the target descriptions for 'call' instructions
7 so that the .td files don't list all the call-clobbered registers as implicit
8 defs. Instead, these should be added by the code generator (e.g. on the dag).
10 This has a number of uses:
12 1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
13 for their different impdef sets.
14 2. Targets with multiple calling convs (e.g. x86) which have different clobber
15 sets don't need copies of call instructions.
16 3. 'Interprocedural register allocation' can be done to reduce the clobber sets
19 //===---------------------------------------------------------------------===//
21 Make the PPC branch selector target independant
23 //===---------------------------------------------------------------------===//
25 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
26 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
27 safe in general, even on darwin. See the libm implementation of hypot for
28 examples (which special case when x/y are exactly zero to get signed zeros etc
31 //===---------------------------------------------------------------------===//
33 Solve this DAG isel folding deficiency:
51 The problem is the store's chain operand is not the load X but rather
52 a TokenFactor of the load X and load Y, which prevents the folding.
54 There are two ways to fix this:
56 1. The dag combiner can start using alias analysis to realize that y/x
57 don't alias, making the store to X not dependent on the load from Y.
58 2. The generated isel could be made smarter in the case it can't
59 disambiguate the pointers.
61 Number 1 is the preferred solution.
63 This has been "fixed" by a TableGen hack. But that is a short term workaround
64 which will be removed once the proper fix is made.
66 //===---------------------------------------------------------------------===//
68 On targets with expensive 64-bit multiply, we could LSR this:
75 for (i = ...; ++i, tmp+=tmp)
78 This would be a win on ppc32, but not x86 or ppc64.
80 //===---------------------------------------------------------------------===//
82 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
84 //===---------------------------------------------------------------------===//
86 Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply.
88 //===---------------------------------------------------------------------===//
90 Interesting? testcase for add/shift/mul reassoc:
92 int bar(int x, int y) {
93 return x*x*x+y+x*x*x*x*x*y*y*y*y;
95 int foo(int z, int n) {
96 return bar(z, n) + bar(2*z, 2*n);
99 Reassociate should handle the example in GCC PR16157.
101 //===---------------------------------------------------------------------===//
103 These two functions should generate the same code on big-endian systems:
105 int g(int *j,int *l) { return memcmp(j,l,4); }
106 int h(int *j, int *l) { return *j - *l; }
108 this could be done in SelectionDAGISel.cpp, along with other special cases,
111 //===---------------------------------------------------------------------===//
113 It would be nice to revert this patch:
114 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
116 And teach the dag combiner enough to simplify the code expanded before
117 legalize. It seems plausible that this knowledge would let it simplify other
120 //===---------------------------------------------------------------------===//
122 For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
123 to the type size. It works but can be overly conservative as the alignment of
124 specific vector types are target dependent.
126 //===---------------------------------------------------------------------===//
128 We should add 'unaligned load/store' nodes, and produce them from code like
131 v4sf example(float *P) {
132 return (v4sf){P[0], P[1], P[2], P[3] };
135 //===---------------------------------------------------------------------===//
137 Add support for conditional increments, and other related patterns. Instead
142 je LBB16_2 #cond_next
153 //===---------------------------------------------------------------------===//
155 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
157 Expand these to calls of sin/cos and stores:
158 double sincos(double x, double *sin, double *cos);
159 float sincosf(float x, float *sin, float *cos);
160 long double sincosl(long double x, long double *sin, long double *cos);
162 Doing so could allow SROA of the destination pointers. See also:
163 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
165 This is now easily doable with MRVs. We could even make an intrinsic for this
166 if anyone cared enough about sincos.
168 //===---------------------------------------------------------------------===//
170 Scalar Repl cannot currently promote this testcase to 'ret long cst':
172 %struct.X = type { i32, i32 }
173 %struct.Y = type { %struct.X }
176 %retval = alloca %struct.Y, align 8
177 %tmp12 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 0
178 store i32 0, i32* %tmp12
179 %tmp15 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 1
180 store i32 1, i32* %tmp15
181 %retval.upgrd.1 = bitcast %struct.Y* %retval to i64*
182 %retval.upgrd.2 = load i64* %retval.upgrd.1
183 ret i64 %retval.upgrd.2
186 it should be extended to do so.
188 //===---------------------------------------------------------------------===//
190 -scalarrepl should promote this to be a vector scalar.
192 %struct..0anon = type { <4 x float> }
194 define void @test1(<4 x float> %V, float* %P) {
195 %u = alloca %struct..0anon, align 16
196 %tmp = getelementptr %struct..0anon* %u, i32 0, i32 0
197 store <4 x float> %V, <4 x float>* %tmp
198 %tmp1 = bitcast %struct..0anon* %u to [4 x float]*
199 %tmp.upgrd.1 = getelementptr [4 x float]* %tmp1, i32 0, i32 1
200 %tmp.upgrd.2 = load float* %tmp.upgrd.1
201 %tmp3 = mul float %tmp.upgrd.2, 2.000000e+00
202 store float %tmp3, float* %P
206 //===---------------------------------------------------------------------===//
208 Turn this into a single byte store with no load (the other 3 bytes are
211 void %test(uint* %P) {
213 %tmp14 = or uint %tmp, 3305111552
214 %tmp15 = and uint %tmp14, 3321888767
215 store uint %tmp15, uint* %P
219 //===---------------------------------------------------------------------===//
221 dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x.
227 int t = __builtin_clz(x);
237 //===---------------------------------------------------------------------===//
239 Legalize should lower ctlz like this:
240 ctlz(x) = popcnt((x-1) & ~x)
242 on targets that have popcnt but not ctlz. itanium, what else?
244 //===---------------------------------------------------------------------===//
246 quantum_sigma_x in 462.libquantum contains the following loop:
248 for(i=0; i<reg->size; i++)
250 /* Flip the target bit of each basis state */
251 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
254 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
255 so cool to turn it into something like:
257 long long Res = ((MAX_UNSIGNED) 1 << target);
259 for(i=0; i<reg->size; i++)
260 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
262 for(i=0; i<reg->size; i++)
263 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
266 ... which would only do one 32-bit XOR per loop iteration instead of two.
268 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
271 //===---------------------------------------------------------------------===//
273 This isn't recognized as bswap by instcombine (yes, it really is bswap):
275 unsigned long reverse(unsigned v) {
277 t = v ^ ((v << 16) | (v >> 16));
279 v = (v << 24) | (v >> 8);
283 //===---------------------------------------------------------------------===//
285 These idioms should be recognized as popcount (see PR1488):
287 unsigned countbits_slow(unsigned v) {
289 for (c = 0; v; v >>= 1)
293 unsigned countbits_fast(unsigned v){
296 v &= v - 1; // clear the least significant bit set
300 BITBOARD = unsigned long long
301 int PopCnt(register BITBOARD a) {
309 unsigned int popcount(unsigned int input) {
310 unsigned int count = 0;
311 for (unsigned int i = 0; i < 4 * 8; i++)
312 count += (input >> i) & i;
316 //===---------------------------------------------------------------------===//
318 These should turn into single 16-bit (unaligned?) loads on little/big endian
321 unsigned short read_16_le(const unsigned char *adr) {
322 return adr[0] | (adr[1] << 8);
324 unsigned short read_16_be(const unsigned char *adr) {
325 return (adr[0] << 8) | adr[1];
328 //===---------------------------------------------------------------------===//
330 -instcombine should handle this transform:
331 icmp pred (sdiv X / C1 ), C2
332 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
334 Currently InstCombine avoids this transform but will do it when the signs of
335 the operands and the sign of the divide match. See the FIXME in
336 InstructionCombining.cpp in the visitSetCondInst method after the switch case
337 for Instruction::UDiv (around line 4447) for more details.
339 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
342 //===---------------------------------------------------------------------===//
344 viterbi speeds up *significantly* if the various "history" related copy loops
345 are turned into memcpy calls at the source level. We need a "loops to memcpy"
348 //===---------------------------------------------------------------------===//
352 typedef unsigned U32;
353 typedef unsigned long long U64;
354 int test (U32 *inst, U64 *regs) {
357 int r1 = (temp >> 20) & 0xf;
358 int b2 = (temp >> 16) & 0xf;
359 effective_addr2 = temp & 0xfff;
360 if (b2) effective_addr2 += regs[b2];
361 b2 = (temp >> 12) & 0xf;
362 if (b2) effective_addr2 += regs[b2];
363 effective_addr2 &= regs[4];
364 if ((effective_addr2 & 3) == 0)
369 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
370 we don't eliminate the computation of the top half of effective_addr2 because
371 we don't have whole-function selection dags. On x86, this means we use one
372 extra register for the function when effective_addr2 is declared as U64 than
373 when it is declared U32.
375 //===---------------------------------------------------------------------===//
377 Promote for i32 bswap can use i64 bswap + shr. Useful on targets with 64-bit
378 regs and bswap, like itanium.
380 //===---------------------------------------------------------------------===//
382 LSR should know what GPR types a target has. This code:
384 volatile short X, Y; // globals
388 for (i = 0; i < N; i++) { X = i; Y = i*4; }
391 produces two identical IV's (after promotion) on PPC/ARM:
393 LBB1_1: @bb.preheader
404 add r1, r1, #1 <- [0,+,1]
406 add r2, r2, #1 <- [0,+,1]
411 //===---------------------------------------------------------------------===//
413 Tail call elim should be more aggressive, checking to see if the call is
414 followed by an uncond branch to an exit block.
416 ; This testcase is due to tail-duplication not wanting to copy the return
417 ; instruction into the terminating blocks because there was other code
418 ; optimized out of the function after the taildup happened.
419 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
421 define i32 @t4(i32 %a) {
423 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
424 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
425 br i1 %tmp.2, label %then.0, label %else.0
427 then.0: ; preds = %entry
428 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
429 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
432 else.0: ; preds = %entry
433 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
434 br i1 %tmp.7, label %then.1, label %return
436 then.1: ; preds = %else.0
437 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
438 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
441 return: ; preds = %then.1, %else.0, %then.0
442 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
447 //===---------------------------------------------------------------------===//
449 Tail recursion elimination is not transforming this function, because it is
450 returning n, which fails the isDynamicConstant check in the accumulator
453 long long fib(const long long n) {
459 return fib(n-1) + fib(n-2);
463 //===---------------------------------------------------------------------===//
465 Tail recursion elimination should handle:
470 return 2 * pow2m1 (n - 1) + 1;
473 Also, multiplies can be turned into SHL's, so they should be handled as if
474 they were associative. "return foo() << 1" can be tail recursion eliminated.
476 //===---------------------------------------------------------------------===//
478 Argument promotion should promote arguments for recursive functions, like
481 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
483 define internal i32 @foo(i32* %x) {
485 %tmp = load i32* %x ; <i32> [#uses=0]
486 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
490 define i32 @bar(i32* %x) {
492 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
496 //===---------------------------------------------------------------------===//
498 "basicaa" should know how to look through "or" instructions that act like add
499 instructions. For example in this code, the x*4+1 is turned into x*4 | 1, and
500 basicaa can't analyze the array subscript, leading to duplicated loads in the
503 void test(int X, int Y, int a[]) {
505 for (i=2; i<1000; i+=4) {
506 a[i+0] = a[i-1+0]*a[i-2+0];
507 a[i+1] = a[i-1+1]*a[i-2+1];
508 a[i+2] = a[i-1+2]*a[i-2+2];
509 a[i+3] = a[i-1+3]*a[i-2+3];
513 BasicAA also doesn't do this for add. It needs to know that &A[i+1] != &A[i].
515 //===---------------------------------------------------------------------===//
517 We should investigate an instruction sinking pass. Consider this silly
533 je LBB1_2 # cond_true
541 The PIC base computation (call+popl) is only used on one path through the
542 code, but is currently always computed in the entry block. It would be
543 better to sink the picbase computation down into the block for the
544 assertion, as it is the only one that uses it. This happens for a lot of
545 code with early outs.
547 Another example is loads of arguments, which are usually emitted into the
548 entry block on targets like x86. If not used in all paths through a
549 function, they should be sunk into the ones that do.
551 In this case, whole-function-isel would also handle this.
553 //===---------------------------------------------------------------------===//
555 Investigate lowering of sparse switch statements into perfect hash tables:
556 http://burtleburtle.net/bob/hash/perfect.html
558 //===---------------------------------------------------------------------===//
560 We should turn things like "load+fabs+store" and "load+fneg+store" into the
561 corresponding integer operations. On a yonah, this loop:
566 for (b = 0; b < 10000000; b++)
567 for (i = 0; i < 256; i++)
571 is twice as slow as this loop:
576 for (b = 0; b < 10000000; b++)
577 for (i = 0; i < 256; i++)
578 a[i] ^= (1ULL << 63);
581 and I suspect other processors are similar. On X86 in particular this is a
582 big win because doing this with integers allows the use of read/modify/write
585 //===---------------------------------------------------------------------===//
587 DAG Combiner should try to combine small loads into larger loads when
588 profitable. For example, we compile this C++ example:
590 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
591 extern THotKey m_HotKey;
592 THotKey GetHotKey () { return m_HotKey; }
594 into (-O3 -fno-exceptions -static -fomit-frame-pointer):
599 movb _m_HotKey+3, %cl
600 movb _m_HotKey+4, %dl
601 movb _m_HotKey+2, %ch
616 movzwl _m_HotKey+4, %edx
620 The LLVM IR contains the needed alignment info, so we should be able to
621 merge the loads and stores into 4-byte loads:
623 %struct.THotKey = type { i16, i8, i8, i8 }
624 define void @_Z9GetHotKeyv(%struct.THotKey* sret %agg.result) nounwind {
626 %tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8
627 %tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2
628 %tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1
629 %tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2
631 Alternatively, we should use a small amount of base-offset alias analysis
632 to make it so the scheduler doesn't need to hold all the loads in regs at
635 //===---------------------------------------------------------------------===//
637 We should extend parameter attributes to capture more information about
638 pointer parameters for alias analysis. Some ideas:
640 1. Add a "nocapture" attribute, which indicates that the callee does not store
641 the address of the parameter into a global or any other memory location
642 visible to the callee. This can be used to make basicaa and other analyses
643 more powerful. It is true for things like memcpy, strcat, and many other
644 things, including structs passed by value, most C++ references, etc.
645 2. Generalize readonly to be set on parameters. This is important mod/ref
646 info for the function, which is important for basicaa and others. It can
647 also be used by the inliner to avoid inserting a memcpy for byval
648 arguments when the function is inlined.
650 These functions can be inferred by various analysis passes such as the
651 globalsmodrefaa pass. Note that getting #2 right is actually really tricky.
655 void caller(S byvalarg) { G.field = 1; ... }
656 void callee() { caller(G); }
658 The fact that the caller does not modify byval arg is not enough, we need
659 to know that it doesn't modify G either. This is very tricky.
661 //===---------------------------------------------------------------------===//
663 We should add an FRINT node to the DAG to model targets that have legal
664 implementations of ceil/floor/rint.
666 //===---------------------------------------------------------------------===//
668 This GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34043
669 contains a testcase that compiles down to:
671 %struct.XMM128 = type { <4 x float> }
673 %src = alloca %struct.XMM128
675 %tmp6263 = bitcast %struct.XMM128* %src to <2 x i64>*
676 %tmp65 = getelementptr %struct.XMM128* %src, i32 0, i32 0
677 store <2 x i64> %tmp5899, <2 x i64>* %tmp6263, align 16
678 %tmp66 = load <4 x float>* %tmp65, align 16
679 %tmp71 = add <4 x float> %tmp66, %tmp66
681 If the mid-level optimizer turned the bitcast of pointer + store of tmp5899
682 into a bitcast of the vector value and a store to the pointer, then the
683 store->load could be easily removed.
685 //===---------------------------------------------------------------------===//
690 long long input[8] = {1,1,1,1,1,1,1,1};
694 We currently compile this into a memcpy from a global array since the
695 initializer is fairly large and not memset'able. This is good, but the memcpy
696 gets lowered to load/stores in the code generator. This is also ok, except
697 that the codegen lowering for memcpy doesn't handle the case when the source
698 is a constant global. This gives us atrocious code like this:
703 movl _C.0.1444-"L1$pb"+32(%eax), %ecx
705 movl _C.0.1444-"L1$pb"+20(%eax), %ecx
707 movl _C.0.1444-"L1$pb"+36(%eax), %ecx
709 movl _C.0.1444-"L1$pb"+44(%eax), %ecx
711 movl _C.0.1444-"L1$pb"+40(%eax), %ecx
713 movl _C.0.1444-"L1$pb"+12(%eax), %ecx
715 movl _C.0.1444-"L1$pb"+4(%eax), %ecx
727 //===---------------------------------------------------------------------===//
729 http://llvm.org/PR717:
731 The following code should compile into "ret int undef". Instead, LLVM
732 produces "ret int 0":
741 //===---------------------------------------------------------------------===//
743 The loop unroller should partially unroll loops (instead of peeling them)
744 when code growth isn't too bad and when an unroll count allows simplification
745 of some code within the loop. One trivial example is:
751 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
760 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
761 reduction in code size. The resultant code would then also be suitable for
762 exit value computation.
764 //===---------------------------------------------------------------------===//
766 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
767 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
768 matching code in dag combine doesn't look through truncates aggressively
769 enough. Here are some testcases reduces from GCC PR17886:
771 unsigned long long f(unsigned long long x, int y) {
772 return (x << y) | (x >> 64-y);
774 unsigned f2(unsigned x, int y){
775 return (x << y) | (x >> 32-y);
777 unsigned long long f3(unsigned long long x){
779 return (x << y) | (x >> 64-y);
781 unsigned f4(unsigned x){
783 return (x << y) | (x >> 32-y);
785 unsigned long long f5(unsigned long long x, unsigned long long y) {
786 return (x << 8) | ((y >> 48) & 0xffull);
788 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
791 return (x << 8) | ((y >> 48) & 0xffull);
793 return (x << 16) | ((y >> 40) & 0xffffull);
795 return (x << 24) | ((y >> 32) & 0xffffffull);
797 return (x << 32) | ((y >> 24) & 0xffffffffull);
799 return (x << 40) | ((y >> 16) & 0xffffffffffull);
803 On X86-64, we only handle f2/f3/f4 right. On x86-32, a few of these
804 generate truly horrible code, instead of using shld and friends. On
805 ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is
806 badness. PPC64 misses f, f5 and f6. CellSPU aborts in isel.
808 //===---------------------------------------------------------------------===//
810 We do a number of simplifications in simplify libcalls to strength reduce
811 standard library functions, but we don't currently merge them together. For
812 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
813 be done safely if "b" isn't modified between the strlen and memcpy of course.
815 //===---------------------------------------------------------------------===//
817 We should be able to evaluate this loop:
819 int test(int x_offs) {
825 //===---------------------------------------------------------------------===//
827 Reassociate should turn things like:
829 int factorial(int X) {
830 return X*X*X*X*X*X*X*X;
833 into llvm.powi calls, allowing the code generator to produce balanced
834 multiplication trees.
836 //===---------------------------------------------------------------------===//
838 We generate a horrible libcall for llvm.powi. For example, we compile:
841 double f(double a) { return std::pow(a, 4); }
847 movsd 16(%esp), %xmm0
850 call L___powidf2$stub
858 movsd 16(%esp), %xmm0
866 //===---------------------------------------------------------------------===//
868 We compile this program: (from GCC PR11680)
869 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
871 Into code that runs the same speed in fast/slow modes, but both modes run 2x
872 slower than when compile with GCC (either 4.0 or 4.2):
874 $ llvm-g++ perf.cpp -O3 -fno-exceptions
876 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
878 $ g++ perf.cpp -O3 -fno-exceptions
880 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
882 It looks like we are making the same inlining decisions, so this may be raw
883 codegen badness or something else (haven't investigated).
885 //===---------------------------------------------------------------------===//
887 We miss some instcombines for stuff like this:
889 void foo (unsigned int a) {
890 /* This one is equivalent to a >= (3 << 2). */
895 A few other related ones are in GCC PR14753.
897 //===---------------------------------------------------------------------===//
899 Divisibility by constant can be simplified (according to GCC PR12849) from
900 being a mulhi to being a mul lo (cheaper). Testcase:
902 void bar(unsigned n) {
907 I think this basically amounts to a dag combine to simplify comparisons against
908 multiply hi's into a comparison against the mullo.
910 //===---------------------------------------------------------------------===//
912 SROA is not promoting the union on the stack in this example, we should end
917 double v __attribute__((vector_size(16)));
919 typedef union vec2d vec2d;
921 static vec2d a={{1,2}}, b={{3,4}};
924 return (vec2d){ .v = a.v + b.v * (vec2d){{5,5}}.v };
927 //===---------------------------------------------------------------------===//
929 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
930 bunch of other stuff from this example (see PR1604):
940 std::scanf("%d", &t.val);
941 std::printf("%d\n", t.val);
944 //===---------------------------------------------------------------------===//
946 Instcombine will merge comparisons like (x >= 10) && (x < 20) by producing (x -
947 10) u< 10, but only when the comparisons have matching sign.
949 This could be converted with a similiar technique. (PR1941)
951 define i1 @test(i8 %x) {
952 %A = icmp uge i8 %x, 5
953 %B = icmp slt i8 %x, 20
958 //===---------------------------------------------------------------------===//
960 These functions perform the same computation, but produce different assembly.
962 define i8 @select(i8 %x) readnone nounwind {
963 %A = icmp ult i8 %x, 250
964 %B = select i1 %A, i8 0, i8 1
968 define i8 @addshr(i8 %x) readnone nounwind {
969 %A = zext i8 %x to i9
970 %B = add i9 %A, 6 ;; 256 - 250 == 6
972 %D = trunc i9 %C to i8
976 //===---------------------------------------------------------------------===//
980 f (unsigned long a, unsigned long b, unsigned long c)
982 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
985 f (unsigned long a, unsigned long b, unsigned long c)
987 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
989 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
990 "clang -emit-llvm-bc | opt -std-compile-opts".
992 //===---------------------------------------------------------------------===//
995 #define PMD_MASK (~((1UL << 23) - 1))
996 void clear_pmd_range(unsigned long start, unsigned long end)
998 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
1001 The expression should optimize to something like
1002 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
1003 -emit-llvm-bc | opt -std-compile-opts".
1005 //===---------------------------------------------------------------------===//
1009 foo (unsigned int a, unsigned int b)
1011 if (a <= 7 && b <= 7)
1014 Should combine to "(a|b) <= 7". Currently not optimized with "clang
1015 -emit-llvm-bc | opt -std-compile-opts".
1017 //===---------------------------------------------------------------------===//
1023 return (n >= 0 ? 1 : -1);
1025 Should combine to (n >> 31) | 1. Currently not optimized with "clang
1026 -emit-llvm-bc | opt -std-compile-opts | llc".
1028 //===---------------------------------------------------------------------===//
1031 int test(int a, int b)
1038 Should combine to "a <= b". Currently not optimized with "clang
1039 -emit-llvm-bc | opt -std-compile-opts | llc".
1041 //===---------------------------------------------------------------------===//
1043 void a(int variable)
1045 if (variable == 4 || variable == 6)
1048 This should optimize to "if ((variable | 2) == 6)". Currently not
1049 optimized with "clang -emit-llvm-bc | opt -std-compile-opts | llc".
1051 //===---------------------------------------------------------------------===//
1053 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
1055 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
1056 These should combine to the same thing. Currently, the first function
1057 produces better code on X86.
1059 //===---------------------------------------------------------------------===//
1062 #define abs(x) x>0?x:-x
1065 return (abs(x)) >= 0;
1067 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
1068 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1070 //===---------------------------------------------------------------------===//
1074 rotate_cst (unsigned int a)
1076 a = (a << 10) | (a >> 22);
1081 minus_cst (unsigned int a)
1090 mask_gt (unsigned int a)
1092 /* This is equivalent to a > 15. */
1097 rshift_gt (unsigned int a)
1099 /* This is equivalent to a > 23. */
1103 All should simplify to a single comparison. All of these are
1104 currently not optimized with "clang -emit-llvm-bc | opt
1107 //===---------------------------------------------------------------------===//
1110 int c(int* x) {return (char*)x+2 == (char*)x;}
1111 Should combine to 0. Currently not optimized with "clang
1112 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
1114 //===---------------------------------------------------------------------===//
1116 int a(unsigned char* b) {return *b > 99;}
1117 There's an unnecessary zext in the generated code with "clang
1118 -emit-llvm-bc | opt -std-compile-opts".
1120 //===---------------------------------------------------------------------===//
1122 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
1123 Should be combined to "((b >> 1) | b) & 1". Currently not optimized
1124 with "clang -emit-llvm-bc | opt -std-compile-opts".
1126 //===---------------------------------------------------------------------===//
1128 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
1129 Should combine to "x | (y & 3)". Currently not optimized with "clang
1130 -emit-llvm-bc | opt -std-compile-opts".
1132 //===---------------------------------------------------------------------===//
1134 unsigned a(unsigned a) {return ((a | 1) & 3) | (a & -4);}
1135 Should combine to "a | 1". Currently not optimized with "clang
1136 -emit-llvm-bc | opt -std-compile-opts".
1138 //===---------------------------------------------------------------------===//
1140 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
1141 Should fold to "(~a & c) | (a & b)". Currently not optimized with
1142 "clang -emit-llvm-bc | opt -std-compile-opts".
1144 //===---------------------------------------------------------------------===//
1146 int a(int a,int b) {return (~(a|b))|a;}
1147 Should fold to "a|~b". Currently not optimized with "clang
1148 -emit-llvm-bc | opt -std-compile-opts".
1150 //===---------------------------------------------------------------------===//
1152 int a(int a, int b) {return (a&&b) || (a&&!b);}
1153 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
1154 | opt -std-compile-opts".
1156 //===---------------------------------------------------------------------===//
1158 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
1159 Should fold to "a ? b : c", or at least something sane. Currently not
1160 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1162 //===---------------------------------------------------------------------===//
1164 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
1165 Should fold to a && (b || c). Currently not optimized with "clang
1166 -emit-llvm-bc | opt -std-compile-opts".
1168 //===---------------------------------------------------------------------===//
1170 int a(int x) {return x | ((x & 8) ^ 8);}
1171 Should combine to x | 8. Currently not optimized with "clang
1172 -emit-llvm-bc | opt -std-compile-opts".
1174 //===---------------------------------------------------------------------===//
1176 int a(int x) {return x ^ ((x & 8) ^ 8);}
1177 Should also combine to x | 8. Currently not optimized with "clang
1178 -emit-llvm-bc | opt -std-compile-opts".
1180 //===---------------------------------------------------------------------===//
1182 int a(int x) {return (x & 8) == 0 ? -1 : -9;}
1183 Should combine to (x | -9) ^ 8. Currently not optimized with "clang
1184 -emit-llvm-bc | opt -std-compile-opts".
1186 //===---------------------------------------------------------------------===//
1188 int a(int x) {return (x & 8) == 0 ? -9 : -1;}
1189 Should combine to x | -9. Currently not optimized with "clang
1190 -emit-llvm-bc | opt -std-compile-opts".
1192 //===---------------------------------------------------------------------===//
1194 int a(int x) {return ((x | -9) ^ 8) & x;}
1195 Should combine to x & -9. Currently not optimized with "clang
1196 -emit-llvm-bc | opt -std-compile-opts".
1198 //===---------------------------------------------------------------------===//
1200 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
1201 Should combine to "a * 0x88888888 >> 31". Currently not optimized
1202 with "clang -emit-llvm-bc | opt -std-compile-opts".
1204 //===---------------------------------------------------------------------===//
1206 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
1207 There's an unnecessary zext in the generated code with "clang
1208 -emit-llvm-bc | opt -std-compile-opts".
1210 //===---------------------------------------------------------------------===//
1212 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
1213 Should combine to "20 * (((unsigned)x) & -2)". Currently not
1214 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1216 //===---------------------------------------------------------------------===//
1218 We would like to do the following transform in the instcombiner:
1222 However, this isn't valid if (-X) overflows. We can implement this when we
1223 have the concept of a "C signed subtraction" operator that which is undefined
1226 //===---------------------------------------------------------------------===//
1228 This was noticed in the entryblock for grokdeclarator in 403.gcc:
1230 %tmp = icmp eq i32 %decl_context, 4
1231 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
1232 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
1233 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
1235 tmp1 should be simplified to something like:
1236 (!tmp || decl_context == 1)
1238 This allows recursive simplifications, tmp1 is used all over the place in
1239 the function, e.g. by:
1241 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
1242 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
1243 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
1247 //===---------------------------------------------------------------------===//
1249 Store sinking: This code:
1251 void f (int n, int *cond, int *res) {
1254 for (i = 0; i < n; i++)
1256 *res ^= 234; /* (*) */
1259 On this function GVN hoists the fully redundant value of *res, but nothing
1260 moves the store out. This gives us this code:
1262 bb: ; preds = %bb2, %entry
1263 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
1264 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
1265 %1 = load i32* %cond, align 4
1266 %2 = icmp eq i32 %1, 0
1267 br i1 %2, label %bb2, label %bb1
1270 %3 = xor i32 %.rle, 234
1271 store i32 %3, i32* %res, align 4
1274 bb2: ; preds = %bb, %bb1
1275 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
1276 %indvar.next = add i32 %i.05, 1
1277 %exitcond = icmp eq i32 %indvar.next, %n
1278 br i1 %exitcond, label %return, label %bb
1280 DSE should sink partially dead stores to get the store out of the loop.
1282 Here's another partial dead case:
1283 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1285 //===---------------------------------------------------------------------===//
1287 Scalar PRE hoists the mul in the common block up to the else:
1289 int test (int a, int b, int c, int g) {
1299 It would be better to do the mul once to reduce codesize above the if.
1300 This is GCC PR38204.
1302 //===---------------------------------------------------------------------===//
1304 GCC PR37810 is an interesting case where we should sink load/store reload
1305 into the if block and outside the loop, so we don't reload/store it on the
1326 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1327 we don't sink the store. We need partially dead store sinking.
1329 //===---------------------------------------------------------------------===//
1331 [PHI TRANSLATE GEPs]
1333 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1334 leading to excess stack traffic. This could be handled by GVN with some crazy
1335 symbolic phi translation. The code we get looks like (g is on the stack):
1339 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1340 store i32 %8, i32* %9, align bel %bb3
1342 bb3: ; preds = %bb1, %bb2, %bb
1343 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1344 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1345 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1346 %11 = load i32* %10, align 4
1348 %11 is fully redundant, an in BB2 it should have the value %8.
1350 GCC PR33344 is a similar case.
1352 //===---------------------------------------------------------------------===//
1354 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1355 GCC testsuite. There are many pre testcases as ssa-pre-*.c
1357 //===---------------------------------------------------------------------===//
1359 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1360 GCC testsuite. For example, predcom-1.c is:
1362 for (i = 2; i < 1000; i++)
1363 fib[i] = (fib[i-1] + fib[i - 2]) & 0xffff;
1365 which compiles into:
1367 bb1: ; preds = %bb1, %bb1.thread
1368 %indvar = phi i32 [ 0, %bb1.thread ], [ %0, %bb1 ]
1369 %i.0.reg2mem.0 = add i32 %indvar, 2
1370 %0 = add i32 %indvar, 1 ; <i32> [#uses=3]
1371 %1 = getelementptr [1000 x i32]* @fib, i32 0, i32 %0
1372 %2 = load i32* %1, align 4 ; <i32> [#uses=1]
1373 %3 = getelementptr [1000 x i32]* @fib, i32 0, i32 %indvar
1374 %4 = load i32* %3, align 4 ; <i32> [#uses=1]
1375 %5 = add i32 %4, %2 ; <i32> [#uses=1]
1376 %6 = and i32 %5, 65535 ; <i32> [#uses=1]
1377 %7 = getelementptr [1000 x i32]* @fib, i32 0, i32 %i.0.reg2mem.0
1378 store i32 %6, i32* %7, align 4
1379 %exitcond = icmp eq i32 %0, 998 ; <i1> [#uses=1]
1380 br i1 %exitcond, label %return, label %bb1
1387 instead of handling this as a loop or other xform, all we'd need to do is teach
1388 load PRE to phi translate the %0 add (i+1) into the predecessor as (i'+1+1) =
1389 (i'+2) (where i' is the previous iteration of i). This would find the store
1392 predcom-2.c is apparently the same as predcom-1.c
1393 predcom-3.c is very similar but needs loads feeding each other instead of
1395 predcom-4.c seems the same as the rest.
1398 //===---------------------------------------------------------------------===//
1400 Other simple load PRE cases:
1401 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35287 [LPRE crit edge splitting]
1403 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34677 (licm does this, LPRE crit edge)
1404 llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | opt -mem2reg -simplifycfg -gvn | llvm-dis
1406 //===---------------------------------------------------------------------===//
1408 Type based alias analysis:
1409 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1411 //===---------------------------------------------------------------------===//
1413 When GVN/PRE finds a store of float* to a must aliases pointer when expecting
1414 an int*, it should turn it into a bitcast. This is a nice generalization of
1415 the SROA hack that would apply to other cases, e.g.:
1417 int foo(int C, int *P, float X) {
1428 One example (that requires crazy phi translation) is:
1429 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16799 [BITCAST PHI TRANS]
1431 //===---------------------------------------------------------------------===//
1433 A/B get pinned to the stack because we turn an if/then into a select instead
1434 of PRE'ing the load/store. This may be fixable in instcombine:
1435 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37892
1439 Interesting missed case because of control flow flattening (should be 2 loads):
1440 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1441 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1442 opt -mem2reg -gvn -instcombine | llvm-dis
1443 we miss it because we need 1) GEP PHI TRAN, 2) CRIT EDGE 3) MULTIPLE DIFFERENT
1444 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1446 //===---------------------------------------------------------------------===//
1448 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1449 We could eliminate the branch condition here, loading from null is undefined:
1451 struct S { int w, x, y, z; };
1452 struct T { int r; struct S s; };
1453 void bar (struct S, int);
1454 void foo (int a, struct T b)
1462 //===---------------------------------------------------------------------===//
1464 simplifylibcalls should do several optimizations for strspn/strcspn:
1466 strcspn(x, "") -> strlen(x)
1469 strspn(x, "") -> strlen(x)
1470 strspn(x, "a") -> strchr(x, 'a')-x
1472 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1474 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1476 register size_t __result = 0;
1477 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1478 __s[__result] != __reject2 && __s[__result] != __reject3)
1483 This should turn into a switch on the character. See PR3253 for some notes on
1486 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1488 //===---------------------------------------------------------------------===//
1490 "gas" uses this idiom:
1491 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1493 else if (strchr ("<>", *intel_parser.op_string)
1495 Those should be turned into a switch.
1497 //===---------------------------------------------------------------------===//
1499 252.eon contains this interesting code:
1501 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1502 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1503 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1504 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1505 call void @llvm.memcpy.i32(i8* %endptr,
1506 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1507 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1509 This is interesting for a couple reasons. First, in this:
1511 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1512 %strlen = call i32 @strlen(i8* %3072)
1514 The strlen could be replaced with: %strlen = sub %3072, %3073, because the
1515 strcpy call returns a pointer to the end of the string. Based on that, the
1516 endptr GEP just becomes equal to 3073, which eliminates a strlen call and GEP.
1518 Second, the memcpy+strlen strlen can be replaced with:
1520 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1522 Because the destination was just copied into the specified memory buffer. This,
1523 in turn, can be constant folded to "4".
1525 In other code, it contains:
1527 %endptr6978 = bitcast i8* %endptr69 to i32*
1528 store i32 7107374, i32* %endptr6978, align 1
1529 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1531 Which could also be constant folded. Whatever is producing this should probably
1532 be fixed to leave this as a memcpy from a string.
1534 Further, eon also has an interesting partially redundant strlen call:
1536 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1537 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1538 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1539 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1540 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1541 br i1 %685, label %bb10, label %bb9
1544 %686 = call i32 @strlen(i8* %683) nounwind readonly
1545 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1546 br i1 %687, label %bb10, label %bb11
1548 bb10: ; preds = %bb9, %bb8
1549 %688 = call i32 @strlen(i8* %683) nounwind readonly
1551 This could be eliminated by doing the strlen once in bb8, saving code size and
1552 improving perf on the bb8->9->10 path.
1554 //===---------------------------------------------------------------------===//
1556 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1558 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1561 bb62: ; preds = %bb55, %bb53
1562 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1563 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1564 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1565 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1568 br i1 %or.cond, label %bb65, label %bb72
1570 bb65: ; preds = %bb62
1571 store i8 0, i8* %173, align 1
1574 bb72: ; preds = %bb65, %bb62
1575 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1576 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1578 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1579 redundant with the %171 call. At worst, we could shove the %177 strlen call
1580 up into the bb65 block moving it out of the bb62->bb72 path. However, note
1581 that bb65 stores to the string, zeroing out the last byte. This means that on
1582 that path the value of %177 is actually just %171-1. A sub is cheaper than a
1585 This pattern repeats several times, basically doing:
1590 where it is "obvious" that B = A-1.
1592 //===---------------------------------------------------------------------===//
1594 186.crafty contains this interesting pattern:
1596 %77 = call i8* @strstr(i8* getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0),
1598 %phitmp648 = icmp eq i8* %77, getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0)
1599 br i1 %phitmp648, label %bb70, label %bb76
1601 bb70: ; preds = %OptionMatch.exit91, %bb69
1602 %78 = call i32 @strlen(i8* %30) nounwind readonly align 1 ; <i32> [#uses=1]
1606 if (strstr(cststr, P) == cststr) {
1610 The strstr call would be significantly cheaper written as:
1613 if (memcmp(P, str, strlen(P)))
1616 This is memcmp+strlen instead of strstr. This also makes the strlen fully
1619 //===---------------------------------------------------------------------===//
1621 186.crafty also contains this code:
1623 %1906 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0))
1624 %1907 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1906
1625 %1908 = call i8* @strcpy(i8* %1907, i8* %1905) nounwind align 1
1626 %1909 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0))
1627 %1910 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1909
1629 The last strlen is computable as 1908-@pgn_event, which means 1910=1908.
1631 //===---------------------------------------------------------------------===//
1633 186.crafty has this interesting pattern with the "out.4543" variable:
1635 call void @llvm.memcpy.i32(
1636 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1637 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1638 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1640 It is basically doing:
1642 memcpy(globalarray, "string");
1643 printf(..., globalarray);
1645 Anyway, by knowing that printf just reads the memory and forward substituting
1646 the string directly into the printf, this eliminates reads from globalarray.
1647 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1648 other similar functions) there are many stores to "out". Once all the printfs
1649 stop using "out", all that is left is the memcpy's into it. This should allow
1650 globalopt to remove the "stored only" global.
1652 //===---------------------------------------------------------------------===//
1656 define inreg i32 @foo(i8* inreg %p) nounwind {
1658 %tmp1 = ashr i8 %tmp0, 5
1659 %tmp2 = sext i8 %tmp1 to i32
1663 could be dagcombine'd to a sign-extending load with a shift.
1664 For example, on x86 this currently gets this:
1670 while it could get this:
1675 //===---------------------------------------------------------------------===//
1679 int test(int x) { return 1-x == x; } // --> return false
1680 int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1682 Always foldable for odd constants, what is the rule for even?
1684 //===---------------------------------------------------------------------===//
1686 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1687 for next field in struct (which is at same address).
1689 For example: store of float into { {{}}, float } could be turned into a store to
1692 //===---------------------------------------------------------------------===//
1695 double foo(double a) { return sin(a); }
1697 This compiles into this on x86-64 Linux:
1708 //===---------------------------------------------------------------------===//
1710 Instcombine should replace the load with a constant in:
1712 static const char x[4] = {'a', 'b', 'c', 'd'};
1714 unsigned int y(void) {
1715 return *(unsigned int *)x;
1718 It currently only does this transformation when the size of the constant
1719 is the same as the size of the integer (so, try x[5]) and the last byte
1720 is a null (making it a C string). There's no need for these restrictions.
1722 //===---------------------------------------------------------------------===//
1724 The arg promotion pass should make use of nocapture to make its alias analysis
1725 stuff much more precise.
1727 //===---------------------------------------------------------------------===//