1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/CodeGen/FastISel.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
28 // X86 Specific DAG Nodes
30 // Start the numbering where the builtin ops leave off.
31 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
33 /// BSF - Bit scan forward.
34 /// BSR - Bit scan reverse.
38 /// SHLD, SHRD - Double shift instructions. These correspond to
39 /// X86::SHLDxx and X86::SHRDxx instructions.
43 /// FAND - Bitwise logical AND of floating point values. This corresponds
44 /// to X86::ANDPS or X86::ANDPD.
47 /// FOR - Bitwise logical OR of floating point values. This corresponds
48 /// to X86::ORPS or X86::ORPD.
51 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52 /// to X86::XORPS or X86::XORPD.
55 /// FSRL - Bitwise logical right shift of floating point values. These
56 /// corresponds to X86::PSRLDQ.
59 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
60 /// integer source in memory and FP reg result. This corresponds to the
61 /// X86::FILD*m instructions. It has three inputs (token chain, address,
62 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
63 /// also produces a flag).
67 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
68 /// integer destination in memory and a FP reg source. This corresponds
69 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
70 /// has two inputs (token chain and address) and two outputs (int value
76 /// FLD - This instruction implements an extending load to FP stack slots.
77 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
78 /// operand, ptr to load from, and a ValueType node indicating the type
82 /// FST - This instruction implements a truncating store to FP stack
83 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
84 /// chain operand, value to store, address, and a ValueType to store it
88 /// CALL/TAILCALL - These operations represent an abstract X86 call
89 /// instruction, which includes a bunch of information. In particular the
90 /// operands of these node are:
92 /// #0 - The incoming token chain
94 /// #2 - The number of arg bytes the caller pushes on the stack.
95 /// #3 - The number of arg bytes the callee pops off the stack.
96 /// #4 - The value to pass in AL/AX/EAX (optional)
97 /// #5 - The value to pass in DL/DX/EDX (optional)
99 /// The result values of these nodes are:
101 /// #0 - The outgoing token chain
102 /// #1 - The first register result value (optional)
103 /// #2 - The second register result value (optional)
105 /// The CALL vs TAILCALL distinction boils down to whether the callee is
106 /// known not to modify the caller's stack frame, as is standard with
111 /// RDTSC_DAG - This operation implements the lowering for
115 /// X86 compare and logical compare instructions.
118 /// X86 bit-test instructions.
121 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
122 /// operand produced by a CMP instruction.
125 /// X86 conditional moves. Operand 0 and operand 1 are the two values
126 /// to select from. Operand 2 is the condition code, and operand 3 is the
127 /// flag operand produced by a CMP or TEST instruction. It also writes a
131 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
132 /// is the block to branch if condition is true, operand 2 is the
133 /// condition code, and operand 3 is the flag operand produced by a CMP
134 /// or TEST instruction.
137 /// Return with a flag operand. Operand 0 is the chain operand, operand
138 /// 1 is the number of bytes of stack to pop.
141 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
144 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
147 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
148 /// at function entry, used for PIC code.
151 /// Wrapper - A wrapper node for TargetConstantPool,
152 /// TargetExternalSymbol, and TargetGlobalAddress.
155 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
156 /// relative displacements.
159 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
160 /// i32, corresponds to X86::PEXTRB.
163 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
164 /// i32, corresponds to X86::PEXTRW.
167 /// INSERTPS - Insert any element of a 4 x float vector into any element
168 /// of a destination 4 x floatvector.
171 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
172 /// corresponds to X86::PINSRB.
175 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
176 /// corresponds to X86::PINSRW.
179 /// PSHUFB - Shuffle 16 8-bit values within a vector.
182 /// FMAX, FMIN - Floating point max and min.
186 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
187 /// approximation. Note that these typically require refinement
188 /// in order to obtain suitable precision.
191 // TLSADDR - Thread Local Storage.
194 // SegmentBaseAddress - The address segment:0
197 // EH_RETURN - Exception Handling helpers.
200 /// TC_RETURN - Tail call return.
202 /// operand #1 callee (register or absolute)
203 /// operand #2 stack adjustment
204 /// operand #3 optional in flag
207 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
211 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
212 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
213 // Atomic 64-bit binary operations.
222 // FNSTCW16m - Store FP control world into i16 memory.
225 // VZEXT_MOVL - Vector move low and zero extend.
228 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
231 // VSHL, VSRL - Vector logical left / right shift.
234 // CMPPD, CMPPS - Vector double/float comparison.
235 // CMPPD, CMPPS - Vector double/float comparison.
238 // PCMP* - Vector integer comparisons.
239 PCMPEQB
, PCMPEQW
, PCMPEQD
, PCMPEQQ
,
240 PCMPGTB
, PCMPGTW
, PCMPGTD
, PCMPGTQ
,
242 // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
243 ADD
, SUB
, SMUL
, UMUL
,
246 // MUL_IMM - X86 specific multiply by immediate.
251 /// Define some predicates that are used for node matching.
253 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
254 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
255 bool isPSHUFDMask(ShuffleVectorSDNode
*N
);
257 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
258 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
259 bool isPSHUFHWMask(ShuffleVectorSDNode
*N
);
261 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
262 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
263 bool isPSHUFLWMask(ShuffleVectorSDNode
*N
);
265 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
266 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
267 bool isSHUFPMask(ShuffleVectorSDNode
*N
);
269 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
270 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
271 bool isMOVHLPSMask(ShuffleVectorSDNode
*N
);
273 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
274 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
276 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
);
278 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
279 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
280 bool isMOVLPMask(ShuffleVectorSDNode
*N
);
282 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
283 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
284 /// as well as MOVLHPS.
285 bool isMOVHPMask(ShuffleVectorSDNode
*N
);
287 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
288 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
289 bool isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
291 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
292 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
293 bool isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
295 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
296 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
298 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
);
300 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
301 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
303 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
);
305 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
306 /// specifies a shuffle of elements that is suitable for input to MOVSS,
307 /// MOVSD, and MOVD, i.e. setting the lowest element.
308 bool isMOVLMask(ShuffleVectorSDNode
*N
);
310 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
311 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
312 bool isMOVSHDUPMask(ShuffleVectorSDNode
*N
);
314 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
315 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
316 bool isMOVSLDUPMask(ShuffleVectorSDNode
*N
);
318 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
319 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
320 bool isMOVDDUPMask(ShuffleVectorSDNode
*N
);
322 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
323 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
325 unsigned getShuffleSHUFImmediate(SDNode
*N
);
327 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
328 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
330 unsigned getShufflePSHUFHWImmediate(SDNode
*N
);
332 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
333 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
335 unsigned getShufflePSHUFLWImmediate(SDNode
*N
);
338 //===--------------------------------------------------------------------===//
339 // X86TargetLowering - X86 Implementation of the TargetLowering interface
340 class X86TargetLowering
: public TargetLowering
{
341 int VarArgsFrameIndex
; // FrameIndex for start of varargs area.
342 int RegSaveFrameIndex
; // X86-64 vararg func register save area.
343 unsigned VarArgsGPOffset
; // X86-64 vararg func int reg offset.
344 unsigned VarArgsFPOffset
; // X86-64 vararg func fp reg offset.
345 int BytesToPopOnReturn
; // Number of arg bytes ret should pop.
346 int BytesCallerReserves
; // Number of arg bytes caller makes.
349 explicit X86TargetLowering(X86TargetMachine
&TM
);
351 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
353 SDValue
getPICJumpTableRelocBase(SDValue Table
,
354 SelectionDAG
&DAG
) const;
356 // Return the number of bytes that a function should pop when it returns (in
357 // addition to the space used by the return address).
359 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn
; }
361 // Return the number of bytes that the caller reserves for arguments passed
363 unsigned getBytesCallerReserves() const { return BytesCallerReserves
; }
365 /// getStackPtrReg - Return the stack pointer register we are using: either
367 unsigned getStackPtrReg() const { return X86StackPtr
; }
369 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
370 /// function arguments in the caller parameter area. For X86, aggregates
371 /// that contains are placed at 16-byte boundaries while the rest are at
372 /// 4-byte boundaries.
373 virtual unsigned getByValTypeAlignment(const Type
*Ty
) const;
375 /// getOptimalMemOpType - Returns the target specific optimal type for load
376 /// and store operations as a result of memset, memcpy, and memmove
377 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
380 MVT
getOptimalMemOpType(uint64_t Size
, unsigned Align
,
381 bool isSrcConst
, bool isSrcStr
) const;
383 /// LowerOperation - Provide custom lowering hooks for some operations.
385 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
);
387 /// ReplaceNodeResults - Replace the results of node with an illegal result
388 /// type with new values built out of custom code.
390 virtual void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
394 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
396 virtual MachineBasicBlock
*EmitInstrWithCustomInserter(MachineInstr
*MI
,
397 MachineBasicBlock
*MBB
) const;
400 /// getTargetNodeName - This method returns the name of a target specific
402 virtual const char *getTargetNodeName(unsigned Opcode
) const;
404 /// getSetCCResultType - Return the ISD::SETCC ValueType
405 virtual MVT
getSetCCResultType(MVT VT
) const;
407 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
408 /// in Mask are known to be either zero or one and return them in the
409 /// KnownZero/KnownOne bitsets.
410 virtual void computeMaskedBitsForTargetNode(const SDValue Op
,
414 const SelectionDAG
&DAG
,
415 unsigned Depth
= 0) const;
418 isGAPlusOffset(SDNode
*N
, GlobalValue
* &GA
, int64_t &Offset
) const;
420 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
);
422 ConstraintType
getConstraintType(const std::string
&Constraint
) const;
424 std::vector
<unsigned>
425 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
428 virtual const char *LowerXConstraint(MVT ConstraintVT
) const;
430 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
431 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
432 /// true it means one of the asm constraint of the inline asm instruction
433 /// being processed is 'm'.
434 virtual void LowerAsmOperandForConstraint(SDValue Op
,
435 char ConstraintLetter
,
437 std::vector
<SDValue
> &Ops
,
438 SelectionDAG
&DAG
) const;
440 /// getRegForInlineAsmConstraint - Given a physical register constraint
441 /// (e.g. {edx}), return the register number and the register class for the
442 /// register. This should only be used for C_Register constraints. On
443 /// error, this returns a register number of 0.
444 std::pair
<unsigned, const TargetRegisterClass
*>
445 getRegForInlineAsmConstraint(const std::string
&Constraint
,
448 /// isLegalAddressingMode - Return true if the addressing mode represented
449 /// by AM is legal for this target, for a load/store of the specified type.
450 virtual bool isLegalAddressingMode(const AddrMode
&AM
, const Type
*Ty
)const;
452 /// isTruncateFree - Return true if it's free to truncate a value of
453 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
454 /// register EAX to i16 by referencing its sub-register AX.
455 virtual bool isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const;
456 virtual bool isTruncateFree(MVT VT1
, MVT VT2
) const;
458 /// isZExtFree - Return true if any actual instruction that defines a
459 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
460 /// register. This does not necessarily include registers defined in
461 /// unknown ways, such as incoming arguments, or copies from unknown
462 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
463 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
464 /// all instructions that define 32-bit values implicit zero-extend the
465 /// result out to 64 bits.
466 virtual bool isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const;
467 virtual bool isZExtFree(MVT VT1
, MVT VT2
) const;
469 /// isShuffleMaskLegal - Targets can use this to indicate that they only
470 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
471 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
472 /// values are assumed to be legal.
473 virtual bool isShuffleMaskLegal(const SmallVectorImpl
<int> &Mask
,
476 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
477 /// used by Targets can use this to indicate if there is a suitable
478 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
480 virtual bool isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
483 /// ShouldShrinkFPConstant - If true, then instruction selection should
484 /// seek to shrink the FP constant of the specified type to a smaller type
485 /// in order to save space and / or reduce runtime.
486 virtual bool ShouldShrinkFPConstant(MVT VT
) const {
487 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
488 // expensive than a straight movsd. On the other hand, it's important to
489 // shrink long double fp constant since fldt is very slow.
490 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
493 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
494 /// for tail call optimization. Target which want to do tail call
495 /// optimization should implement this function.
496 virtual bool IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
498 SelectionDAG
&DAG
) const;
500 virtual const X86Subtarget
* getSubtarget() {
504 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
505 /// computed in an SSE register, not on the X87 floating point stack.
506 bool isScalarFPTypeInSSEReg(MVT VT
) const {
507 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
508 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
511 /// getWidenVectorType: given a vector type, returns the type to widen
512 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
513 /// If there is no vector type that we want to widen to, returns MVT::Other
514 /// When and were to widen is target dependent based on the cost of
515 /// scalarizing vs using the wider vector type.
516 virtual MVT
getWidenVectorType(MVT VT
) const;
518 /// createFastISel - This method returns a target specific FastISel object,
519 /// or null if the target does not support "fast" ISel.
521 createFastISel(MachineFunction
&mf
,
522 MachineModuleInfo
*mmi
, DwarfWriter
*dw
,
523 DenseMap
<const Value
*, unsigned> &,
524 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &,
525 DenseMap
<const AllocaInst
*, int> &
527 , SmallSet
<Instruction
*, 8> &
532 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
533 /// make the right decision when generating code for different targets.
534 const X86Subtarget
*Subtarget
;
535 const X86RegisterInfo
*RegInfo
;
536 const TargetData
*TD
;
538 /// X86StackPtr - X86 physical register used as stack ptr.
539 unsigned X86StackPtr
;
541 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
542 /// floating point ops.
543 /// When SSE is available, use it for f32 operations.
544 /// When SSE2 is available, use it for f64 operations.
545 bool X86ScalarSSEf32
;
546 bool X86ScalarSSEf64
;
548 SDNode
*LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
549 unsigned CallingConv
, SelectionDAG
&DAG
);
551 SDValue
LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
552 const CCValAssign
&VA
, MachineFrameInfo
*MFI
,
553 unsigned CC
, SDValue Root
, unsigned i
);
555 SDValue
LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
556 const SDValue
&StackPtr
,
557 const CCValAssign
&VA
, SDValue Chain
,
558 SDValue Arg
, ISD::ArgFlagsTy Flags
);
560 // Call lowering helpers.
561 bool IsCalleePop(bool isVarArg
, unsigned CallingConv
);
562 bool CallRequiresGOTPtrInReg(bool Is64Bit
, bool IsTailCall
);
563 bool CallRequiresFnAddressInReg(bool Is64Bit
, bool IsTailCall
);
564 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
565 SDValue Chain
, bool IsTailCall
, bool Is64Bit
,
566 int FPDiff
, DebugLoc dl
);
568 CCAssignFn
*CCAssignFnForNode(unsigned CallingConv
) const;
569 NameDecorationStyle
NameDecorationForFORMAL_ARGUMENTS(SDValue Op
);
570 unsigned GetAlignedArgumentStackSize(unsigned StackSize
, SelectionDAG
&DAG
);
572 std::pair
<SDValue
,SDValue
> FP_TO_SINTHelper(SDValue Op
,
575 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
);
576 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
);
577 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
);
578 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
);
579 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
);
580 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
);
581 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
);
582 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
);
583 SDValue
LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
584 int64_t Offset
, SelectionDAG
&DAG
) const;
585 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
);
586 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
);
587 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
);
588 SDValue
LowerShift(SDValue Op
, SelectionDAG
&DAG
);
589 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
);
590 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
);
591 SDValue
LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
);
592 SDValue
LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
);
593 SDValue
LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
);
594 SDValue
LowerFABS(SDValue Op
, SelectionDAG
&DAG
);
595 SDValue
LowerFNEG(SDValue Op
, SelectionDAG
&DAG
);
596 SDValue
LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
);
597 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
);
598 SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
);
599 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
);
600 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
);
601 SDValue
LowerMEMSET(SDValue Op
, SelectionDAG
&DAG
);
602 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
);
603 SDValue
LowerCALL(SDValue Op
, SelectionDAG
&DAG
);
604 SDValue
LowerRET(SDValue Op
, SelectionDAG
&DAG
);
605 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
);
606 SDValue
LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
);
607 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
);
608 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
);
609 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
);
610 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
);
611 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
);
612 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
);
613 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
);
614 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
);
615 SDValue
LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
);
616 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
);
617 SDValue
LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
);
618 SDValue
LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
);
619 SDValue
LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
);
620 SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
);
622 SDValue
LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
);
623 SDValue
LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
);
624 SDValue
LowerREADCYCLECOUNTER(SDValue Op
, SelectionDAG
&DAG
);
626 void ReplaceATOMIC_BINARY_64(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
627 SelectionDAG
&DAG
, unsigned NewOp
);
629 SDValue
EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
631 SDValue Dst
, SDValue Src
,
632 SDValue Size
, unsigned Align
,
633 const Value
*DstSV
, uint64_t DstSVOff
);
634 SDValue
EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
636 SDValue Dst
, SDValue Src
,
637 SDValue Size
, unsigned Align
,
639 const Value
*DstSV
, uint64_t DstSVOff
,
640 const Value
*SrcSV
, uint64_t SrcSVOff
);
642 /// Utility function to emit atomic bitwise operations (and, or, xor).
643 // It takes the bitwise instruction to expand, the associated machine basic
644 // block, and the associated X86 opcodes for reg/reg and reg/imm.
645 MachineBasicBlock
*EmitAtomicBitwiseWithCustomInserter(
646 MachineInstr
*BInstr
,
647 MachineBasicBlock
*BB
,
655 TargetRegisterClass
*RC
,
656 bool invSrc
= false) const;
658 MachineBasicBlock
*EmitAtomicBit6432WithCustomInserter(
659 MachineInstr
*BInstr
,
660 MachineBasicBlock
*BB
,
665 bool invSrc
= false) const;
667 /// Utility function to emit atomic min and max. It takes the min/max
668 /// instruction to expand, the associated basic block, and the associated
669 /// cmov opcode for moving the min or max value.
670 MachineBasicBlock
*EmitAtomicMinMaxWithCustomInserter(MachineInstr
*BInstr
,
671 MachineBasicBlock
*BB
,
672 unsigned cmovOpc
) const;
674 /// Emit nodes that will be selected as "test Op0,Op0", or something
675 /// equivalent, for use with the given x86 condition code.
676 SDValue
EmitTest(SDValue Op0
, unsigned X86CC
, SelectionDAG
&DAG
);
678 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
679 /// equivalent, for use with the given x86 condition code.
680 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
685 FastISel
*createFastISel(MachineFunction
&mf
,
686 MachineModuleInfo
*mmi
, DwarfWriter
*dw
,
687 DenseMap
<const Value
*, unsigned> &,
688 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &,
689 DenseMap
<const AllocaInst
*, int> &
691 , SmallSet
<Instruction
*, 8> &
697 #endif // X86ISELLOWERING_H