1 //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions determines the possibility of performing constant
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Support/GetElementPtrTypeIterator.h"
25 #include "llvm/Support/MathExtras.h"
30 //===----------------------------------------------------------------------===//
31 // Constant Folding internal helper functions
32 //===----------------------------------------------------------------------===//
34 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
35 /// from a global, return the global and the constant. Because of
36 /// constantexprs, this function is recursive.
37 static bool IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
38 int64_t &Offset
, const TargetData
&TD
) {
39 // Trivial case, constant is the global.
40 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
45 // Otherwise, if this isn't a constant expr, bail out.
46 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
47 if (!CE
) return false;
49 // Look through ptr->int and ptr->ptr casts.
50 if (CE
->getOpcode() == Instruction::PtrToInt
||
51 CE
->getOpcode() == Instruction::BitCast
)
52 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
);
54 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
55 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
56 // Cannot compute this if the element type of the pointer is missing size
58 if (!cast
<PointerType
>(CE
->getOperand(0)->getType())
59 ->getElementType()->isSized())
62 // If the base isn't a global+constant, we aren't either.
63 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
))
66 // Otherwise, add any offset that our operands provide.
67 gep_type_iterator GTI
= gep_type_begin(CE
);
68 for (User::const_op_iterator i
= CE
->op_begin() + 1, e
= CE
->op_end();
70 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*i
);
71 if (!CI
) return false; // Index isn't a simple constant?
72 if (CI
->getZExtValue() == 0) continue; // Not adding anything.
74 if (const StructType
*ST
= dyn_cast
<StructType
>(*GTI
)) {
76 Offset
+= TD
.getStructLayout(ST
)->getElementOffset(CI
->getZExtValue());
78 const SequentialType
*SQT
= cast
<SequentialType
>(*GTI
);
79 Offset
+= TD
.getTypePaddedSize(SQT
->getElementType())*CI
->getSExtValue();
89 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
90 /// Attempt to symbolically evaluate the result of a binary operator merging
91 /// these together. If target data info is available, it is provided as TD,
92 /// otherwise TD is null.
93 static Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
,
94 Constant
*Op1
, const TargetData
*TD
){
97 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
98 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
102 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
103 // constant. This happens frequently when iterating over a global array.
104 if (Opc
== Instruction::Sub
&& TD
) {
105 GlobalValue
*GV1
, *GV2
;
106 int64_t Offs1
, Offs2
;
108 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, *TD
))
109 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, *TD
) &&
111 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
112 return ConstantInt::get(Op0
->getType(), Offs1
-Offs2
);
119 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
120 /// constant expression, do so.
121 static Constant
*SymbolicallyEvaluateGEP(Constant
* const* Ops
, unsigned NumOps
,
122 const Type
*ResultTy
,
123 const TargetData
*TD
) {
124 Constant
*Ptr
= Ops
[0];
125 if (!TD
|| !cast
<PointerType
>(Ptr
->getType())->getElementType()->isSized())
128 uint64_t BasePtr
= 0;
129 if (!Ptr
->isNullValue()) {
130 // If this is a inttoptr from a constant int, we can fold this as the base,
131 // otherwise we can't.
132 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
133 if (CE
->getOpcode() == Instruction::IntToPtr
)
134 if (ConstantInt
*Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
135 BasePtr
= Base
->getZExtValue();
141 // If this is a constant expr gep that is effectively computing an
142 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
143 for (unsigned i
= 1; i
!= NumOps
; ++i
)
144 if (!isa
<ConstantInt
>(Ops
[i
]))
147 uint64_t Offset
= TD
->getIndexedOffset(Ptr
->getType(),
148 (Value
**)Ops
+1, NumOps
-1);
149 Constant
*C
= ConstantInt::get(TD
->getIntPtrType(), Offset
+BasePtr
);
150 return ConstantExpr::getIntToPtr(C
, ResultTy
);
153 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
154 /// targetdata. Return 0 if unfoldable.
155 static Constant
*FoldBitCast(Constant
*C
, const Type
*DestTy
,
156 const TargetData
&TD
) {
157 // If this is a bitcast from constant vector -> vector, fold it.
158 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
159 if (const VectorType
*DestVTy
= dyn_cast
<VectorType
>(DestTy
)) {
160 // If the element types match, VMCore can fold it.
161 unsigned NumDstElt
= DestVTy
->getNumElements();
162 unsigned NumSrcElt
= CV
->getNumOperands();
163 if (NumDstElt
== NumSrcElt
)
166 const Type
*SrcEltTy
= CV
->getType()->getElementType();
167 const Type
*DstEltTy
= DestVTy
->getElementType();
169 // Otherwise, we're changing the number of elements in a vector, which
170 // requires endianness information to do the right thing. For example,
171 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
172 // folds to (little endian):
173 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
174 // and to (big endian):
175 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
177 // First thing is first. We only want to think about integer here, so if
178 // we have something in FP form, recast it as integer.
179 if (DstEltTy
->isFloatingPoint()) {
180 // Fold to an vector of integers with same size as our FP type.
181 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
182 const Type
*DestIVTy
= VectorType::get(IntegerType::get(FPWidth
),
184 // Recursively handle this integer conversion, if possible.
185 C
= FoldBitCast(C
, DestIVTy
, TD
);
188 // Finally, VMCore can handle this now that #elts line up.
189 return ConstantExpr::getBitCast(C
, DestTy
);
192 // Okay, we know the destination is integer, if the input is FP, convert
193 // it to integer first.
194 if (SrcEltTy
->isFloatingPoint()) {
195 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
196 const Type
*SrcIVTy
= VectorType::get(IntegerType::get(FPWidth
),
198 // Ask VMCore to do the conversion now that #elts line up.
199 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
200 CV
= dyn_cast
<ConstantVector
>(C
);
201 if (!CV
) return 0; // If VMCore wasn't able to fold it, bail out.
204 // Now we know that the input and output vectors are both integer vectors
205 // of the same size, and that their #elements is not the same. Do the
206 // conversion here, which depends on whether the input or output has
208 bool isLittleEndian
= TD
.isLittleEndian();
210 SmallVector
<Constant
*, 32> Result
;
211 if (NumDstElt
< NumSrcElt
) {
212 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
213 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
214 unsigned Ratio
= NumSrcElt
/NumDstElt
;
215 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
217 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
218 // Build each element of the result.
219 Constant
*Elt
= Zero
;
220 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
221 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
222 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(SrcElt
++));
223 if (!Src
) return 0; // Reject constantexpr elements.
225 // Zero extend the element to the right size.
226 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
228 // Shift it to the right place, depending on endianness.
229 Src
= ConstantExpr::getShl(Src
,
230 ConstantInt::get(Src
->getType(), ShiftAmt
));
231 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
234 Elt
= ConstantExpr::getOr(Elt
, Src
);
236 Result
.push_back(Elt
);
239 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
240 unsigned Ratio
= NumDstElt
/NumSrcElt
;
241 unsigned DstBitSize
= DstEltTy
->getPrimitiveSizeInBits();
243 // Loop over each source value, expanding into multiple results.
244 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
245 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(i
));
246 if (!Src
) return 0; // Reject constantexpr elements.
248 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
249 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
250 // Shift the piece of the value into the right place, depending on
252 Constant
*Elt
= ConstantExpr::getLShr(Src
,
253 ConstantInt::get(Src
->getType(), ShiftAmt
));
254 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
256 // Truncate and remember this piece.
257 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
262 return ConstantVector::get(&Result
[0], Result
.size());
270 //===----------------------------------------------------------------------===//
271 // Constant Folding public APIs
272 //===----------------------------------------------------------------------===//
275 /// ConstantFoldInstruction - Attempt to constant fold the specified
276 /// instruction. If successful, the constant result is returned, if not, null
277 /// is returned. Note that this function can only fail when attempting to fold
278 /// instructions like loads and stores, which have no constant expression form.
280 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const TargetData
*TD
) {
281 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
282 if (PN
->getNumIncomingValues() == 0)
283 return UndefValue::get(PN
->getType());
285 Constant
*Result
= dyn_cast
<Constant
>(PN
->getIncomingValue(0));
286 if (Result
== 0) return 0;
288 // Handle PHI nodes specially here...
289 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
290 if (PN
->getIncomingValue(i
) != Result
&& PN
->getIncomingValue(i
) != PN
)
291 return 0; // Not all the same incoming constants...
293 // If we reach here, all incoming values are the same constant.
297 // Scan the operand list, checking to see if they are all constants, if so,
298 // hand off to ConstantFoldInstOperands.
299 SmallVector
<Constant
*, 8> Ops
;
300 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
301 if (Constant
*Op
= dyn_cast
<Constant
>(*i
))
304 return 0; // All operands not constant!
306 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
307 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
308 &Ops
[0], Ops
.size(), TD
);
310 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
311 &Ops
[0], Ops
.size(), TD
);
314 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
315 /// using the specified TargetData. If successful, the constant result is
316 /// result is returned, if not, null is returned.
317 Constant
*llvm::ConstantFoldConstantExpression(ConstantExpr
*CE
,
318 const TargetData
*TD
) {
319 assert(TD
&& "ConstantFoldConstantExpression requires a valid TargetData.");
321 SmallVector
<Constant
*, 8> Ops
;
322 for (User::op_iterator i
= CE
->op_begin(), e
= CE
->op_end(); i
!= e
; ++i
)
323 Ops
.push_back(cast
<Constant
>(*i
));
326 return ConstantFoldCompareInstOperands(CE
->getPredicate(),
327 &Ops
[0], Ops
.size(), TD
);
329 return ConstantFoldInstOperands(CE
->getOpcode(), CE
->getType(),
330 &Ops
[0], Ops
.size(), TD
);
333 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
334 /// specified opcode and operands. If successful, the constant result is
335 /// returned, if not, null is returned. Note that this function can fail when
336 /// attempting to fold instructions like loads and stores, which have no
337 /// constant expression form.
339 Constant
*llvm::ConstantFoldInstOperands(unsigned Opcode
, const Type
*DestTy
,
340 Constant
* const* Ops
, unsigned NumOps
,
341 const TargetData
*TD
) {
342 // Handle easy binops first.
343 if (Instruction::isBinaryOp(Opcode
)) {
344 if (isa
<ConstantExpr
>(Ops
[0]) || isa
<ConstantExpr
>(Ops
[1]))
345 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, Ops
[0], Ops
[1], TD
))
348 return ConstantExpr::get(Opcode
, Ops
[0], Ops
[1]);
353 case Instruction::Call
:
354 if (Function
*F
= dyn_cast
<Function
>(Ops
[0]))
355 if (canConstantFoldCallTo(F
))
356 return ConstantFoldCall(F
, Ops
+1, NumOps
-1);
358 case Instruction::ICmp
:
359 case Instruction::FCmp
:
360 case Instruction::VICmp
:
361 case Instruction::VFCmp
:
362 assert(0 &&"This function is invalid for compares: no predicate specified");
363 case Instruction::PtrToInt
:
364 // If the input is a inttoptr, eliminate the pair. This requires knowing
365 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
366 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
367 if (TD
&& CE
->getOpcode() == Instruction::IntToPtr
) {
368 Constant
*Input
= CE
->getOperand(0);
369 unsigned InWidth
= Input
->getType()->getPrimitiveSizeInBits();
370 if (TD
->getPointerSizeInBits() < InWidth
) {
372 ConstantInt::get(APInt::getLowBitsSet(InWidth
,
373 TD
->getPointerSizeInBits()));
374 Input
= ConstantExpr::getAnd(Input
, Mask
);
376 // Do a zext or trunc to get to the dest size.
377 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
380 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
381 case Instruction::IntToPtr
:
382 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
383 // the int size is >= the ptr size. This requires knowing the width of a
384 // pointer, so it can't be done in ConstantExpr::getCast.
385 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
386 if (TD
&& CE
->getOpcode() == Instruction::PtrToInt
&&
387 TD
->getPointerSizeInBits() <=
388 CE
->getType()->getPrimitiveSizeInBits()) {
389 Constant
*Input
= CE
->getOperand(0);
390 Constant
*C
= FoldBitCast(Input
, DestTy
, *TD
);
391 return C
? C
: ConstantExpr::getBitCast(Input
, DestTy
);
394 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
395 case Instruction::Trunc
:
396 case Instruction::ZExt
:
397 case Instruction::SExt
:
398 case Instruction::FPTrunc
:
399 case Instruction::FPExt
:
400 case Instruction::UIToFP
:
401 case Instruction::SIToFP
:
402 case Instruction::FPToUI
:
403 case Instruction::FPToSI
:
404 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
405 case Instruction::BitCast
:
407 if (Constant
*C
= FoldBitCast(Ops
[0], DestTy
, *TD
))
409 return ConstantExpr::getBitCast(Ops
[0], DestTy
);
410 case Instruction::Select
:
411 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
412 case Instruction::ExtractElement
:
413 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
414 case Instruction::InsertElement
:
415 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
416 case Instruction::ShuffleVector
:
417 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
418 case Instruction::GetElementPtr
:
419 if (Constant
*C
= SymbolicallyEvaluateGEP(Ops
, NumOps
, DestTy
, TD
))
422 return ConstantExpr::getGetElementPtr(Ops
[0], Ops
+1, NumOps
-1);
426 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
427 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
428 /// returns a constant expression of the specified operands.
430 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
431 Constant
*const * Ops
,
433 const TargetData
*TD
) {
434 // fold: icmp (inttoptr x), null -> icmp x, 0
435 // fold: icmp (ptrtoint x), 0 -> icmp x, null
436 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
437 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
439 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
440 // around to know if bit truncation is happening.
441 if (ConstantExpr
*CE0
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
442 if (TD
&& Ops
[1]->isNullValue()) {
443 const Type
*IntPtrTy
= TD
->getIntPtrType();
444 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
445 // Convert the integer value to the right size to ensure we get the
446 // proper extension or truncation.
447 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
449 Constant
*NewOps
[] = { C
, Constant::getNullValue(C
->getType()) };
450 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2, TD
);
453 // Only do this transformation if the int is intptrty in size, otherwise
454 // there is a truncation or extension that we aren't modeling.
455 if (CE0
->getOpcode() == Instruction::PtrToInt
&&
456 CE0
->getType() == IntPtrTy
) {
457 Constant
*C
= CE0
->getOperand(0);
458 Constant
*NewOps
[] = { C
, Constant::getNullValue(C
->getType()) };
460 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2, TD
);
464 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(Ops
[1])) {
465 if (TD
&& CE0
->getOpcode() == CE1
->getOpcode()) {
466 const Type
*IntPtrTy
= TD
->getIntPtrType();
468 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
469 // Convert the integer value to the right size to ensure we get the
470 // proper extension or truncation.
471 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
473 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
475 Constant
*NewOps
[] = { C0
, C1
};
476 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2, TD
);
479 // Only do this transformation if the int is intptrty in size, otherwise
480 // there is a truncation or extension that we aren't modeling.
481 if ((CE0
->getOpcode() == Instruction::PtrToInt
&&
482 CE0
->getType() == IntPtrTy
&&
483 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType())) {
484 Constant
*NewOps
[] = {
485 CE0
->getOperand(0), CE1
->getOperand(0)
487 return ConstantFoldCompareInstOperands(Predicate
, NewOps
, 2, TD
);
492 return ConstantExpr::getCompare(Predicate
, Ops
[0], Ops
[1]);
496 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
497 /// getelementptr constantexpr, return the constant value being addressed by the
498 /// constant expression, or null if something is funny and we can't decide.
499 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
501 if (CE
->getOperand(1) != Constant::getNullValue(CE
->getOperand(1)->getType()))
502 return 0; // Do not allow stepping over the value!
504 // Loop over all of the operands, tracking down which value we are
506 gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
507 for (++I
; I
!= E
; ++I
)
508 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
509 ConstantInt
*CU
= cast
<ConstantInt
>(I
.getOperand());
510 assert(CU
->getZExtValue() < STy
->getNumElements() &&
511 "Struct index out of range!");
512 unsigned El
= (unsigned)CU
->getZExtValue();
513 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(C
)) {
514 C
= CS
->getOperand(El
);
515 } else if (isa
<ConstantAggregateZero
>(C
)) {
516 C
= Constant::getNullValue(STy
->getElementType(El
));
517 } else if (isa
<UndefValue
>(C
)) {
518 C
= UndefValue::get(STy
->getElementType(El
));
522 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand())) {
523 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(*I
)) {
524 if (CI
->getZExtValue() >= ATy
->getNumElements())
526 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(C
))
527 C
= CA
->getOperand(CI
->getZExtValue());
528 else if (isa
<ConstantAggregateZero
>(C
))
529 C
= Constant::getNullValue(ATy
->getElementType());
530 else if (isa
<UndefValue
>(C
))
531 C
= UndefValue::get(ATy
->getElementType());
534 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(*I
)) {
535 if (CI
->getZExtValue() >= PTy
->getNumElements())
537 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
))
538 C
= CP
->getOperand(CI
->getZExtValue());
539 else if (isa
<ConstantAggregateZero
>(C
))
540 C
= Constant::getNullValue(PTy
->getElementType());
541 else if (isa
<UndefValue
>(C
))
542 C
= UndefValue::get(PTy
->getElementType());
555 //===----------------------------------------------------------------------===//
556 // Constant Folding for Calls
559 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
560 /// the specified function.
562 llvm::canConstantFoldCallTo(const Function
*F
) {
563 switch (F
->getIntrinsicID()) {
564 case Intrinsic::sqrt
:
565 case Intrinsic::powi
:
566 case Intrinsic::bswap
:
567 case Intrinsic::ctpop
:
568 case Intrinsic::ctlz
:
569 case Intrinsic::cttz
:
574 if (!F
->hasName()) return false;
575 const char *Str
= F
->getNameStart();
576 unsigned Len
= F
->getNameLen();
578 // In these cases, the check of the length is required. We don't want to
579 // return true for a name like "cos\0blah" which strcmp would return equal to
580 // "cos", but has length 8.
582 default: return false;
585 return !strcmp(Str
, "acos") || !strcmp(Str
, "asin") ||
586 !strcmp(Str
, "atan");
588 return !strcmp(Str
, "atan2");
592 return !strcmp(Str
, "cos");
594 return !strcmp(Str
, "ceil") || !strcmp(Str
, "cosf") ||
595 !strcmp(Str
, "cosh");
599 return !strcmp(Str
, "exp");
603 return !strcmp(Str
, "fabs") || !strcmp(Str
, "fmod");
605 return !strcmp(Str
, "floor");
609 if (Len
== 3 && !strcmp(Str
, "log"))
611 if (Len
== 5 && !strcmp(Str
, "log10"))
615 if (Len
== 3 && !strcmp(Str
, "pow"))
620 return !strcmp(Str
, "sin");
622 return !strcmp(Str
, "sinh") || !strcmp(Str
, "sqrt") ||
623 !strcmp(Str
, "sinf");
625 return !strcmp(Str
, "sqrtf");
628 if (Len
== 3 && !strcmp(Str
, "tan"))
630 else if (Len
== 4 && !strcmp(Str
, "tanh"))
636 static Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
,
645 if (Ty
== Type::FloatTy
)
646 return ConstantFP::get(APFloat((float)V
));
647 if (Ty
== Type::DoubleTy
)
648 return ConstantFP::get(APFloat(V
));
649 assert(0 && "Can only constant fold float/double");
650 return 0; // dummy return to suppress warning
653 static Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
663 if (Ty
== Type::FloatTy
)
664 return ConstantFP::get(APFloat((float)V
));
665 if (Ty
== Type::DoubleTy
)
666 return ConstantFP::get(APFloat(V
));
667 assert(0 && "Can only constant fold float/double");
668 return 0; // dummy return to suppress warning
671 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
672 /// with the specified arguments, returning null if unsuccessful.
675 llvm::ConstantFoldCall(Function
*F
,
676 Constant
* const* Operands
, unsigned NumOperands
) {
677 if (!F
->hasName()) return 0;
678 const char *Str
= F
->getNameStart();
679 unsigned Len
= F
->getNameLen();
681 const Type
*Ty
= F
->getReturnType();
682 if (NumOperands
== 1) {
683 if (ConstantFP
*Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
684 if (Ty
!=Type::FloatTy
&& Ty
!=Type::DoubleTy
)
686 /// Currently APFloat versions of these functions do not exist, so we use
687 /// the host native double versions. Float versions are not called
688 /// directly but for all these it is true (float)(f((double)arg)) ==
689 /// f(arg). Long double not supported yet.
690 double V
= Ty
==Type::FloatTy
? (double)Op
->getValueAPF().convertToFloat():
691 Op
->getValueAPF().convertToDouble();
694 if (Len
== 4 && !strcmp(Str
, "acos"))
695 return ConstantFoldFP(acos
, V
, Ty
);
696 else if (Len
== 4 && !strcmp(Str
, "asin"))
697 return ConstantFoldFP(asin
, V
, Ty
);
698 else if (Len
== 4 && !strcmp(Str
, "atan"))
699 return ConstantFoldFP(atan
, V
, Ty
);
702 if (Len
== 4 && !strcmp(Str
, "ceil"))
703 return ConstantFoldFP(ceil
, V
, Ty
);
704 else if (Len
== 3 && !strcmp(Str
, "cos"))
705 return ConstantFoldFP(cos
, V
, Ty
);
706 else if (Len
== 4 && !strcmp(Str
, "cosh"))
707 return ConstantFoldFP(cosh
, V
, Ty
);
708 else if (Len
== 4 && !strcmp(Str
, "cosf"))
709 return ConstantFoldFP(cos
, V
, Ty
);
712 if (Len
== 3 && !strcmp(Str
, "exp"))
713 return ConstantFoldFP(exp
, V
, Ty
);
716 if (Len
== 4 && !strcmp(Str
, "fabs"))
717 return ConstantFoldFP(fabs
, V
, Ty
);
718 else if (Len
== 5 && !strcmp(Str
, "floor"))
719 return ConstantFoldFP(floor
, V
, Ty
);
722 if (Len
== 3 && !strcmp(Str
, "log") && V
> 0)
723 return ConstantFoldFP(log
, V
, Ty
);
724 else if (Len
== 5 && !strcmp(Str
, "log10") && V
> 0)
725 return ConstantFoldFP(log10
, V
, Ty
);
726 else if (!strcmp(Str
, "llvm.sqrt.f32") ||
727 !strcmp(Str
, "llvm.sqrt.f64")) {
729 return ConstantFoldFP(sqrt
, V
, Ty
);
731 return Constant::getNullValue(Ty
);
735 if (Len
== 3 && !strcmp(Str
, "sin"))
736 return ConstantFoldFP(sin
, V
, Ty
);
737 else if (Len
== 4 && !strcmp(Str
, "sinh"))
738 return ConstantFoldFP(sinh
, V
, Ty
);
739 else if (Len
== 4 && !strcmp(Str
, "sqrt") && V
>= 0)
740 return ConstantFoldFP(sqrt
, V
, Ty
);
741 else if (Len
== 5 && !strcmp(Str
, "sqrtf") && V
>= 0)
742 return ConstantFoldFP(sqrt
, V
, Ty
);
743 else if (Len
== 4 && !strcmp(Str
, "sinf"))
744 return ConstantFoldFP(sin
, V
, Ty
);
747 if (Len
== 3 && !strcmp(Str
, "tan"))
748 return ConstantFoldFP(tan
, V
, Ty
);
749 else if (Len
== 4 && !strcmp(Str
, "tanh"))
750 return ConstantFoldFP(tanh
, V
, Ty
);
755 } else if (ConstantInt
*Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
756 if (Len
> 11 && !memcmp(Str
, "llvm.bswap", 10))
757 return ConstantInt::get(Op
->getValue().byteSwap());
758 else if (Len
> 11 && !memcmp(Str
, "llvm.ctpop", 10))
759 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
760 else if (Len
> 10 && !memcmp(Str
, "llvm.cttz", 9))
761 return ConstantInt::get(Ty
, Op
->getValue().countTrailingZeros());
762 else if (Len
> 10 && !memcmp(Str
, "llvm.ctlz", 9))
763 return ConstantInt::get(Ty
, Op
->getValue().countLeadingZeros());
765 } else if (NumOperands
== 2) {
766 if (ConstantFP
*Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
767 if (Ty
!=Type::FloatTy
&& Ty
!=Type::DoubleTy
)
769 double Op1V
= Ty
==Type::FloatTy
?
770 (double)Op1
->getValueAPF().convertToFloat():
771 Op1
->getValueAPF().convertToDouble();
772 if (ConstantFP
*Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
773 double Op2V
= Ty
==Type::FloatTy
?
774 (double)Op2
->getValueAPF().convertToFloat():
775 Op2
->getValueAPF().convertToDouble();
777 if (Len
== 3 && !strcmp(Str
, "pow")) {
778 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
779 } else if (Len
== 4 && !strcmp(Str
, "fmod")) {
780 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
);
781 } else if (Len
== 5 && !strcmp(Str
, "atan2")) {
782 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
784 } else if (ConstantInt
*Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
785 if (!strcmp(Str
, "llvm.powi.f32")) {
786 return ConstantFP::get(APFloat((float)std::pow((float)Op1V
,
787 (int)Op2C
->getZExtValue())));
788 } else if (!strcmp(Str
, "llvm.powi.f64")) {
789 return ConstantFP::get(APFloat((double)std::pow((double)Op1V
,
790 (int)Op2C
->getZExtValue())));