1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Mangler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetAsmInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
38 static cl::opt
<cl::boolOrDefault
>
39 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
40 cl::init(cl::BOU_UNSET
));
42 char AsmPrinter::ID
= 0;
43 AsmPrinter::AsmPrinter(raw_ostream
&o
, TargetMachine
&tm
,
44 const TargetAsmInfo
*T
, CodeGenOpt::Level OL
, bool VDef
)
45 : MachineFunctionPass(&ID
), FunctionNumber(0), OptLevel(OL
), O(o
),
46 TM(tm
), TAI(T
), TRI(tm
.getRegisterInfo()),
47 IsInTextSection(false)
50 case cl::BOU_UNSET
: VerboseAsm
= VDef
; break;
51 case cl::BOU_TRUE
: VerboseAsm
= true; break;
52 case cl::BOU_FALSE
: VerboseAsm
= false; break;
56 AsmPrinter::~AsmPrinter() {
57 for (gcp_iterator I
= GCMetadataPrinters
.begin(),
58 E
= GCMetadataPrinters
.end(); I
!= E
; ++I
)
62 /// SwitchToTextSection - Switch to the specified text section of the executable
63 /// if we are not already in it!
65 void AsmPrinter::SwitchToTextSection(const char *NewSection
,
66 const GlobalValue
*GV
) {
68 if (GV
&& GV
->hasSection())
69 NS
= TAI
->getSwitchToSectionDirective() + GV
->getSection();
73 // If we're already in this section, we're done.
74 if (CurrentSection
== NS
) return;
76 // Close the current section, if applicable.
77 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
78 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
82 if (!CurrentSection
.empty())
83 O
<< CurrentSection
<< TAI
->getTextSectionStartSuffix() << '\n';
85 IsInTextSection
= true;
88 /// SwitchToDataSection - Switch to the specified data section of the executable
89 /// if we are not already in it!
91 void AsmPrinter::SwitchToDataSection(const char *NewSection
,
92 const GlobalValue
*GV
) {
94 if (GV
&& GV
->hasSection())
95 NS
= TAI
->getSwitchToSectionDirective() + GV
->getSection();
99 // If we're already in this section, we're done.
100 if (CurrentSection
== NS
) return;
102 // Close the current section, if applicable.
103 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
104 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
108 if (!CurrentSection
.empty())
109 O
<< CurrentSection
<< TAI
->getDataSectionStartSuffix() << '\n';
111 IsInTextSection
= false;
114 /// SwitchToSection - Switch to the specified section of the executable if we
115 /// are not already in it!
116 void AsmPrinter::SwitchToSection(const Section
* NS
) {
117 const std::string
& NewSection
= NS
->getName();
119 // If we're already in this section, we're done.
120 if (CurrentSection
== NewSection
) return;
122 // Close the current section, if applicable.
123 if (TAI
->getSectionEndDirectiveSuffix() && !CurrentSection
.empty())
124 O
<< CurrentSection
<< TAI
->getSectionEndDirectiveSuffix() << '\n';
126 // FIXME: Make CurrentSection a Section* in the future
127 CurrentSection
= NewSection
;
128 CurrentSection_
= NS
;
130 if (!CurrentSection
.empty()) {
131 // If section is named we need to switch into it via special '.section'
132 // directive and also append funky flags. Otherwise - section name is just
133 // some magic assembler directive.
135 O
<< TAI
->getSwitchToSectionDirective()
137 << TAI
->getSectionFlags(NS
->getFlags());
140 O
<< TAI
->getDataSectionStartSuffix() << '\n';
143 IsInTextSection
= (NS
->getFlags() & SectionFlags::Code
);
146 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
147 MachineFunctionPass::getAnalysisUsage(AU
);
148 AU
.addRequired
<GCModuleInfo
>();
151 bool AsmPrinter::doInitialization(Module
&M
) {
152 Mang
= new Mangler(M
, TAI
->getGlobalPrefix(), TAI
->getPrivateGlobalPrefix());
154 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
155 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
157 if (TAI
->hasSingleParameterDotFile()) {
158 /* Very minimal debug info. It is ignored if we emit actual
159 debug info. If we don't, this at helps the user find where
160 a function came from. */
161 O
<< "\t.file\t\"" << M
.getModuleIdentifier() << "\"\n";
164 for (GCModuleInfo::iterator I
= MI
->begin(), E
= MI
->end(); I
!= E
; ++I
)
165 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
166 MP
->beginAssembly(O
, *this, *TAI
);
168 if (!M
.getModuleInlineAsm().empty())
169 O
<< TAI
->getCommentString() << " Start of file scope inline assembly\n"
170 << M
.getModuleInlineAsm()
171 << '\n' << TAI
->getCommentString()
172 << " End of file scope inline assembly\n";
174 SwitchToDataSection(""); // Reset back to no section.
176 MachineModuleInfo
*MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
177 if (MMI
) MMI
->AnalyzeModule(M
);
178 DW
= getAnalysisIfAvailable
<DwarfWriter
>();
182 bool AsmPrinter::doFinalization(Module
&M
) {
183 if (TAI
->getWeakRefDirective()) {
184 if (!ExtWeakSymbols
.empty())
185 SwitchToDataSection("");
187 for (std::set
<const GlobalValue
*>::iterator i
= ExtWeakSymbols
.begin(),
188 e
= ExtWeakSymbols
.end(); i
!= e
; ++i
)
189 O
<< TAI
->getWeakRefDirective() << Mang
->getValueName(*i
) << '\n';
192 if (TAI
->getSetDirective()) {
193 if (!M
.alias_empty())
194 SwitchToSection(TAI
->getTextSection());
197 for (Module::const_alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
199 std::string Name
= Mang
->getValueName(I
);
202 const GlobalValue
*GV
= cast
<GlobalValue
>(I
->getAliasedGlobal());
203 Target
= Mang
->getValueName(GV
);
205 if (I
->hasExternalLinkage() || !TAI
->getWeakRefDirective())
206 O
<< "\t.globl\t" << Name
<< '\n';
207 else if (I
->hasWeakLinkage())
208 O
<< TAI
->getWeakRefDirective() << Name
<< '\n';
209 else if (!I
->hasLocalLinkage())
210 assert(0 && "Invalid alias linkage");
212 printVisibility(Name
, I
->getVisibility());
214 O
<< TAI
->getSetDirective() << ' ' << Name
<< ", " << Target
<< '\n';
218 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
219 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
220 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
221 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*--I
))
222 MP
->finishAssembly(O
, *this, *TAI
);
224 // If we don't have any trampolines, then we don't require stack memory
225 // to be executable. Some targets have a directive to declare this.
226 Function
* InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
227 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
228 if (TAI
->getNonexecutableStackDirective())
229 O
<< TAI
->getNonexecutableStackDirective() << '\n';
231 delete Mang
; Mang
= 0;
236 AsmPrinter::getCurrentFunctionEHName(const MachineFunction
*MF
,
237 std::string
&Name
) const {
238 assert(MF
&& "No machine function?");
239 Name
= MF
->getFunction()->getName();
241 Name
= Mang
->getValueName(MF
->getFunction());
242 Name
= Mang
->makeNameProper(TAI
->getEHGlobalPrefix() +
243 Name
+ ".eh", TAI
->getGlobalPrefix());
247 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
248 // What's my mangled name?
249 CurrentFnName
= Mang
->getValueName(MF
.getFunction());
250 IncrementFunctionNumber();
254 // SectionCPs - Keep track the alignment, constpool entries per Section.
258 SmallVector
<unsigned, 4> CPEs
;
259 SectionCPs(const Section
*s
, unsigned a
) : S(s
), Alignment(a
) {};
263 /// EmitConstantPool - Print to the current output stream assembly
264 /// representations of the constants in the constant pool MCP. This is
265 /// used to print out constants which have been "spilled to memory" by
266 /// the code generator.
268 void AsmPrinter::EmitConstantPool(MachineConstantPool
*MCP
) {
269 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
270 if (CP
.empty()) return;
272 // Calculate sections for constant pool entries. We collect entries to go into
273 // the same section together to reduce amount of section switch statements.
274 SmallVector
<SectionCPs
, 4> CPSections
;
275 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
276 MachineConstantPoolEntry CPE
= CP
[i
];
277 unsigned Align
= CPE
.getAlignment();
278 const Section
* S
= TAI
->SelectSectionForMachineConst(CPE
.getType());
279 // The number of sections are small, just do a linear search from the
280 // last section to the first.
282 unsigned SecIdx
= CPSections
.size();
283 while (SecIdx
!= 0) {
284 if (CPSections
[--SecIdx
].S
== S
) {
290 SecIdx
= CPSections
.size();
291 CPSections
.push_back(SectionCPs(S
, Align
));
294 if (Align
> CPSections
[SecIdx
].Alignment
)
295 CPSections
[SecIdx
].Alignment
= Align
;
296 CPSections
[SecIdx
].CPEs
.push_back(i
);
299 // Now print stuff into the calculated sections.
300 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
301 SwitchToSection(CPSections
[i
].S
);
302 EmitAlignment(Log2_32(CPSections
[i
].Alignment
));
305 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
306 unsigned CPI
= CPSections
[i
].CPEs
[j
];
307 MachineConstantPoolEntry CPE
= CP
[CPI
];
309 // Emit inter-object padding for alignment.
310 unsigned AlignMask
= CPE
.getAlignment() - 1;
311 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
312 EmitZeros(NewOffset
- Offset
);
314 const Type
*Ty
= CPE
.getType();
315 Offset
= NewOffset
+ TM
.getTargetData()->getTypePaddedSize(Ty
);
317 O
<< TAI
->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
318 << CPI
<< ":\t\t\t\t\t";
320 O
<< TAI
->getCommentString() << ' ';
321 WriteTypeSymbolic(O
, CPE
.getType(), 0);
324 if (CPE
.isMachineConstantPoolEntry())
325 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
327 EmitGlobalConstant(CPE
.Val
.ConstVal
);
332 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
333 /// by the current function to the current output stream.
335 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo
*MJTI
,
336 MachineFunction
&MF
) {
337 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
338 if (JT
.empty()) return;
340 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
342 // Pick the directive to use to print the jump table entries, and switch to
343 // the appropriate section.
344 TargetLowering
*LoweringInfo
= TM
.getTargetLowering();
346 const char* JumpTableDataSection
= TAI
->getJumpTableDataSection();
347 const Function
*F
= MF
.getFunction();
348 unsigned SectionFlags
= TAI
->SectionFlagsForGlobal(F
);
349 if ((IsPic
&& !(LoweringInfo
&& LoweringInfo
->usesGlobalOffsetTable())) ||
350 !JumpTableDataSection
||
351 SectionFlags
& SectionFlags::Linkonce
) {
352 // In PIC mode, we need to emit the jump table to the same section as the
353 // function body itself, otherwise the label differences won't make sense.
354 // We should also do if the section name is NULL or function is declared in
355 // discardable section.
356 SwitchToSection(TAI
->SectionForGlobal(F
));
358 SwitchToDataSection(JumpTableDataSection
);
361 EmitAlignment(Log2_32(MJTI
->getAlignment()));
363 for (unsigned i
= 0, e
= JT
.size(); i
!= e
; ++i
) {
364 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[i
].MBBs
;
366 // If this jump table was deleted, ignore it.
367 if (JTBBs
.empty()) continue;
369 // For PIC codegen, if possible we want to use the SetDirective to reduce
370 // the number of relocations the assembler will generate for the jump table.
371 // Set directives are all printed before the jump table itself.
372 SmallPtrSet
<MachineBasicBlock
*, 16> EmittedSets
;
373 if (TAI
->getSetDirective() && IsPic
)
374 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
375 if (EmittedSets
.insert(JTBBs
[ii
]))
376 printPICJumpTableSetLabel(i
, JTBBs
[ii
]);
378 // On some targets (e.g. darwin) we want to emit two consequtive labels
379 // before each jump table. The first label is never referenced, but tells
380 // the assembler and linker the extents of the jump table object. The
381 // second label is actually referenced by the code.
382 if (const char *JTLabelPrefix
= TAI
->getJumpTableSpecialLabelPrefix())
383 O
<< JTLabelPrefix
<< "JTI" << getFunctionNumber() << '_' << i
<< ":\n";
385 O
<< TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
386 << '_' << i
<< ":\n";
388 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
389 printPICJumpTableEntry(MJTI
, JTBBs
[ii
], i
);
395 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
396 const MachineBasicBlock
*MBB
,
397 unsigned uid
) const {
398 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
400 // Use JumpTableDirective otherwise honor the entry size from the jump table
402 const char *JTEntryDirective
= TAI
->getJumpTableDirective();
403 bool HadJTEntryDirective
= JTEntryDirective
!= NULL
;
404 if (!HadJTEntryDirective
) {
405 JTEntryDirective
= MJTI
->getEntrySize() == 4 ?
406 TAI
->getData32bitsDirective() : TAI
->getData64bitsDirective();
409 O
<< JTEntryDirective
<< ' ';
411 // If we have emitted set directives for the jump table entries, print
412 // them rather than the entries themselves. If we're emitting PIC, then
413 // emit the table entries as differences between two text section labels.
414 // If we're emitting non-PIC code, then emit the entries as direct
415 // references to the target basic blocks.
417 if (TAI
->getSetDirective()) {
418 O
<< TAI
->getPrivateGlobalPrefix() << getFunctionNumber()
419 << '_' << uid
<< "_set_" << MBB
->getNumber();
421 printBasicBlockLabel(MBB
, false, false, false);
422 // If the arch uses custom Jump Table directives, don't calc relative to
424 if (!HadJTEntryDirective
)
425 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI"
426 << getFunctionNumber() << '_' << uid
;
429 printBasicBlockLabel(MBB
, false, false, false);
434 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
435 /// special global used by LLVM. If so, emit it and return true, otherwise
436 /// do nothing and return false.
437 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
438 if (GV
->getName() == "llvm.used") {
439 if (TAI
->getUsedDirective() != 0) // No need to emit this at all.
440 EmitLLVMUsedList(GV
->getInitializer());
444 // Ignore debug and non-emitted data.
445 if (GV
->getSection() == "llvm.metadata" ||
446 GV
->hasAvailableExternallyLinkage())
449 if (!GV
->hasAppendingLinkage()) return false;
451 assert(GV
->hasInitializer() && "Not a special LLVM global!");
453 const TargetData
*TD
= TM
.getTargetData();
454 unsigned Align
= Log2_32(TD
->getPointerPrefAlignment());
455 if (GV
->getName() == "llvm.global_ctors") {
456 SwitchToDataSection(TAI
->getStaticCtorsSection());
457 EmitAlignment(Align
, 0);
458 EmitXXStructorList(GV
->getInitializer());
462 if (GV
->getName() == "llvm.global_dtors") {
463 SwitchToDataSection(TAI
->getStaticDtorsSection());
464 EmitAlignment(Align
, 0);
465 EmitXXStructorList(GV
->getInitializer());
472 /// findGlobalValue - if CV is an expression equivalent to a single
473 /// global value, return that value.
474 const GlobalValue
* AsmPrinter::findGlobalValue(const Constant
*CV
) {
475 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
477 else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
478 const TargetData
*TD
= TM
.getTargetData();
479 unsigned Opcode
= CE
->getOpcode();
481 case Instruction::GetElementPtr
: {
482 const Constant
*ptrVal
= CE
->getOperand(0);
483 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
484 if (TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0], idxVec
.size()))
486 return findGlobalValue(ptrVal
);
488 case Instruction::BitCast
:
489 return findGlobalValue(CE
->getOperand(0));
497 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
498 /// global in the specified llvm.used list for which emitUsedDirectiveFor
499 /// is true, as being used with this directive.
501 void AsmPrinter::EmitLLVMUsedList(Constant
*List
) {
502 const char *Directive
= TAI
->getUsedDirective();
504 // Should be an array of 'sbyte*'.
505 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
506 if (InitList
== 0) return;
508 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
509 const GlobalValue
*GV
= findGlobalValue(InitList
->getOperand(i
));
510 if (TAI
->emitUsedDirectiveFor(GV
, Mang
)) {
512 EmitConstantValueOnly(InitList
->getOperand(i
));
518 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
519 /// function pointers, ignoring the init priority.
520 void AsmPrinter::EmitXXStructorList(Constant
*List
) {
521 // Should be an array of '{ int, void ()* }' structs. The first value is the
522 // init priority, which we ignore.
523 if (!isa
<ConstantArray
>(List
)) return;
524 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
525 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
526 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
527 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
529 if (CS
->getOperand(1)->isNullValue())
530 return; // Found a null terminator, exit printing.
531 // Emit the function pointer.
532 EmitGlobalConstant(CS
->getOperand(1));
536 /// getGlobalLinkName - Returns the asm/link name of of the specified
537 /// global variable. Should be overridden by each target asm printer to
538 /// generate the appropriate value.
539 const std::string
&AsmPrinter::getGlobalLinkName(const GlobalVariable
*GV
,
540 std::string
&LinkName
) const {
541 if (isa
<Function
>(GV
)) {
542 LinkName
+= TAI
->getFunctionAddrPrefix();
543 LinkName
+= Mang
->getValueName(GV
);
544 LinkName
+= TAI
->getFunctionAddrSuffix();
546 LinkName
+= TAI
->getGlobalVarAddrPrefix();
547 LinkName
+= Mang
->getValueName(GV
);
548 LinkName
+= TAI
->getGlobalVarAddrSuffix();
554 /// EmitExternalGlobal - Emit the external reference to a global variable.
555 /// Should be overridden if an indirect reference should be used.
556 void AsmPrinter::EmitExternalGlobal(const GlobalVariable
*GV
) {
558 O
<< getGlobalLinkName(GV
, GLN
);
563 //===----------------------------------------------------------------------===//
564 /// LEB 128 number encoding.
566 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
567 /// representing an unsigned leb128 value.
568 void AsmPrinter::PrintULEB128(unsigned Value
) const {
571 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
573 if (Value
) Byte
|= 0x80;
574 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
575 if (Value
) O
<< ", ";
579 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
580 /// representing a signed leb128 value.
581 void AsmPrinter::PrintSLEB128(int Value
) const {
582 int Sign
= Value
>> (8 * sizeof(Value
) - 1);
587 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
589 IsMore
= Value
!= Sign
|| ((Byte
^ Sign
) & 0x40) != 0;
590 if (IsMore
) Byte
|= 0x80;
591 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
592 if (IsMore
) O
<< ", ";
596 //===--------------------------------------------------------------------===//
597 // Emission and print routines
600 /// PrintHex - Print a value as a hexidecimal value.
602 void AsmPrinter::PrintHex(int Value
) const {
604 O
<< "0x" << utohex_buffer(static_cast<unsigned>(Value
), Buffer
+20);
607 /// EOL - Print a newline character to asm stream. If a comment is present
608 /// then it will be printed first. Comments should not contain '\n'.
609 void AsmPrinter::EOL() const {
613 void AsmPrinter::EOL(const std::string
&Comment
) const {
614 if (VerboseAsm
&& !Comment
.empty()) {
616 << TAI
->getCommentString()
623 void AsmPrinter::EOL(const char* Comment
) const {
624 if (VerboseAsm
&& *Comment
) {
626 << TAI
->getCommentString()
633 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
634 /// unsigned leb128 value.
635 void AsmPrinter::EmitULEB128Bytes(unsigned Value
) const {
636 if (TAI
->hasLEB128()) {
640 O
<< TAI
->getData8bitsDirective();
645 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
646 /// signed leb128 value.
647 void AsmPrinter::EmitSLEB128Bytes(int Value
) const {
648 if (TAI
->hasLEB128()) {
652 O
<< TAI
->getData8bitsDirective();
657 /// EmitInt8 - Emit a byte directive and value.
659 void AsmPrinter::EmitInt8(int Value
) const {
660 O
<< TAI
->getData8bitsDirective();
661 PrintHex(Value
& 0xFF);
664 /// EmitInt16 - Emit a short directive and value.
666 void AsmPrinter::EmitInt16(int Value
) const {
667 O
<< TAI
->getData16bitsDirective();
668 PrintHex(Value
& 0xFFFF);
671 /// EmitInt32 - Emit a long directive and value.
673 void AsmPrinter::EmitInt32(int Value
) const {
674 O
<< TAI
->getData32bitsDirective();
678 /// EmitInt64 - Emit a long long directive and value.
680 void AsmPrinter::EmitInt64(uint64_t Value
) const {
681 if (TAI
->getData64bitsDirective()) {
682 O
<< TAI
->getData64bitsDirective();
685 if (TM
.getTargetData()->isBigEndian()) {
686 EmitInt32(unsigned(Value
>> 32)); O
<< '\n';
687 EmitInt32(unsigned(Value
));
689 EmitInt32(unsigned(Value
)); O
<< '\n';
690 EmitInt32(unsigned(Value
>> 32));
695 /// toOctal - Convert the low order bits of X into an octal digit.
697 static inline char toOctal(int X
) {
701 /// printStringChar - Print a char, escaped if necessary.
703 static void printStringChar(raw_ostream
&O
, unsigned char C
) {
706 } else if (C
== '\\') {
708 } else if (isprint((unsigned char)C
)) {
712 case '\b': O
<< "\\b"; break;
713 case '\f': O
<< "\\f"; break;
714 case '\n': O
<< "\\n"; break;
715 case '\r': O
<< "\\r"; break;
716 case '\t': O
<< "\\t"; break;
719 O
<< toOctal(C
>> 6);
720 O
<< toOctal(C
>> 3);
721 O
<< toOctal(C
>> 0);
727 /// EmitString - Emit a string with quotes and a null terminator.
728 /// Special characters are emitted properly.
729 /// \literal (Eg. '\t') \endliteral
730 void AsmPrinter::EmitString(const std::string
&String
) const {
731 EmitString(String
.c_str(), String
.size());
734 void AsmPrinter::EmitString(const char *String
, unsigned Size
) const {
735 const char* AscizDirective
= TAI
->getAscizDirective();
739 O
<< TAI
->getAsciiDirective();
741 for (unsigned i
= 0; i
< Size
; ++i
)
742 printStringChar(O
, String
[i
]);
750 /// EmitFile - Emit a .file directive.
751 void AsmPrinter::EmitFile(unsigned Number
, const std::string
&Name
) const {
752 O
<< "\t.file\t" << Number
<< " \"";
753 for (unsigned i
= 0, N
= Name
.size(); i
< N
; ++i
)
754 printStringChar(O
, Name
[i
]);
759 //===----------------------------------------------------------------------===//
761 // EmitAlignment - Emit an alignment directive to the specified power of
762 // two boundary. For example, if you pass in 3 here, you will get an 8
763 // byte alignment. If a global value is specified, and if that global has
764 // an explicit alignment requested, it will unconditionally override the
765 // alignment request. However, if ForcedAlignBits is specified, this value
766 // has final say: the ultimate alignment will be the max of ForcedAlignBits
767 // and the alignment computed with NumBits and the global.
771 // if (GV && GV->hasalignment) Align = GV->getalignment();
772 // Align = std::max(Align, ForcedAlignBits);
774 void AsmPrinter::EmitAlignment(unsigned NumBits
, const GlobalValue
*GV
,
775 unsigned ForcedAlignBits
,
776 bool UseFillExpr
) const {
777 if (GV
&& GV
->getAlignment())
778 NumBits
= Log2_32(GV
->getAlignment());
779 NumBits
= std::max(NumBits
, ForcedAlignBits
);
781 if (NumBits
== 0) return; // No need to emit alignment.
782 if (TAI
->getAlignmentIsInBytes()) NumBits
= 1 << NumBits
;
783 O
<< TAI
->getAlignDirective() << NumBits
;
785 unsigned FillValue
= TAI
->getTextAlignFillValue();
786 UseFillExpr
&= IsInTextSection
&& FillValue
;
795 /// EmitZeros - Emit a block of zeros.
797 void AsmPrinter::EmitZeros(uint64_t NumZeros
, unsigned AddrSpace
) const {
799 if (TAI
->getZeroDirective()) {
800 O
<< TAI
->getZeroDirective() << NumZeros
;
801 if (TAI
->getZeroDirectiveSuffix())
802 O
<< TAI
->getZeroDirectiveSuffix();
805 for (; NumZeros
; --NumZeros
)
806 O
<< TAI
->getData8bitsDirective(AddrSpace
) << "0\n";
811 // Print out the specified constant, without a storage class. Only the
812 // constants valid in constant expressions can occur here.
813 void AsmPrinter::EmitConstantValueOnly(const Constant
*CV
) {
814 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
816 else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
817 O
<< CI
->getZExtValue();
818 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
819 // This is a constant address for a global variable or function. Use the
820 // name of the variable or function as the address value, possibly
821 // decorating it with GlobalVarAddrPrefix/Suffix or
822 // FunctionAddrPrefix/Suffix (these all default to "" )
823 if (isa
<Function
>(GV
)) {
824 O
<< TAI
->getFunctionAddrPrefix()
825 << Mang
->getValueName(GV
)
826 << TAI
->getFunctionAddrSuffix();
828 O
<< TAI
->getGlobalVarAddrPrefix()
829 << Mang
->getValueName(GV
)
830 << TAI
->getGlobalVarAddrSuffix();
832 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
833 const TargetData
*TD
= TM
.getTargetData();
834 unsigned Opcode
= CE
->getOpcode();
836 case Instruction::GetElementPtr
: {
837 // generate a symbolic expression for the byte address
838 const Constant
*ptrVal
= CE
->getOperand(0);
839 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
840 if (int64_t Offset
= TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0],
842 // Truncate/sext the offset to the pointer size.
843 if (TD
->getPointerSizeInBits() != 64) {
844 int SExtAmount
= 64-TD
->getPointerSizeInBits();
845 Offset
= (Offset
<< SExtAmount
) >> SExtAmount
;
850 EmitConstantValueOnly(ptrVal
);
852 O
<< ") + " << Offset
;
854 O
<< ") - " << -Offset
;
856 EmitConstantValueOnly(ptrVal
);
860 case Instruction::Trunc
:
861 case Instruction::ZExt
:
862 case Instruction::SExt
:
863 case Instruction::FPTrunc
:
864 case Instruction::FPExt
:
865 case Instruction::UIToFP
:
866 case Instruction::SIToFP
:
867 case Instruction::FPToUI
:
868 case Instruction::FPToSI
:
869 assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
871 case Instruction::BitCast
:
872 return EmitConstantValueOnly(CE
->getOperand(0));
874 case Instruction::IntToPtr
: {
875 // Handle casts to pointers by changing them into casts to the appropriate
876 // integer type. This promotes constant folding and simplifies this code.
877 Constant
*Op
= CE
->getOperand(0);
878 Op
= ConstantExpr::getIntegerCast(Op
, TD
->getIntPtrType(), false/*ZExt*/);
879 return EmitConstantValueOnly(Op
);
883 case Instruction::PtrToInt
: {
884 // Support only foldable casts to/from pointers that can be eliminated by
885 // changing the pointer to the appropriately sized integer type.
886 Constant
*Op
= CE
->getOperand(0);
887 const Type
*Ty
= CE
->getType();
889 // We can emit the pointer value into this slot if the slot is an
890 // integer slot greater or equal to the size of the pointer.
891 if (TD
->getTypePaddedSize(Ty
) >= TD
->getTypePaddedSize(Op
->getType()))
892 return EmitConstantValueOnly(Op
);
895 EmitConstantValueOnly(Op
);
896 APInt ptrMask
= APInt::getAllOnesValue(TD
->getTypePaddedSizeInBits(Ty
));
899 ptrMask
.toStringUnsigned(S
);
900 O
<< ") & " << S
.c_str() << ')';
903 case Instruction::Add
:
904 case Instruction::Sub
:
905 case Instruction::And
:
906 case Instruction::Or
:
907 case Instruction::Xor
:
909 EmitConstantValueOnly(CE
->getOperand(0));
912 case Instruction::Add
:
915 case Instruction::Sub
:
918 case Instruction::And
:
921 case Instruction::Or
:
924 case Instruction::Xor
:
931 EmitConstantValueOnly(CE
->getOperand(1));
935 assert(0 && "Unsupported operator!");
938 assert(0 && "Unknown constant value!");
942 /// printAsCString - Print the specified array as a C compatible string, only if
943 /// the predicate isString is true.
945 static void printAsCString(raw_ostream
&O
, const ConstantArray
*CVA
,
947 assert(CVA
->isString() && "Array is not string compatible!");
950 for (unsigned i
= 0; i
!= LastElt
; ++i
) {
952 (unsigned char)cast
<ConstantInt
>(CVA
->getOperand(i
))->getZExtValue();
953 printStringChar(O
, C
);
958 /// EmitString - Emit a zero-byte-terminated string constant.
960 void AsmPrinter::EmitString(const ConstantArray
*CVA
) const {
961 unsigned NumElts
= CVA
->getNumOperands();
962 if (TAI
->getAscizDirective() && NumElts
&&
963 cast
<ConstantInt
>(CVA
->getOperand(NumElts
-1))->getZExtValue() == 0) {
964 O
<< TAI
->getAscizDirective();
965 printAsCString(O
, CVA
, NumElts
-1);
967 O
<< TAI
->getAsciiDirective();
968 printAsCString(O
, CVA
, NumElts
);
973 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray
*CVA
,
974 unsigned AddrSpace
) {
975 if (CVA
->isString()) {
977 } else { // Not a string. Print the values in successive locations
978 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
979 EmitGlobalConstant(CVA
->getOperand(i
), AddrSpace
);
983 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector
*CP
) {
984 const VectorType
*PTy
= CP
->getType();
986 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
987 EmitGlobalConstant(CP
->getOperand(I
));
990 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
991 unsigned AddrSpace
) {
992 // Print the fields in successive locations. Pad to align if needed!
993 const TargetData
*TD
= TM
.getTargetData();
994 unsigned Size
= TD
->getTypePaddedSize(CVS
->getType());
995 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
996 uint64_t sizeSoFar
= 0;
997 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
998 const Constant
* field
= CVS
->getOperand(i
);
1000 // Check if padding is needed and insert one or more 0s.
1001 uint64_t fieldSize
= TD
->getTypePaddedSize(field
->getType());
1002 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
1003 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
1004 sizeSoFar
+= fieldSize
+ padSize
;
1006 // Now print the actual field value.
1007 EmitGlobalConstant(field
, AddrSpace
);
1009 // Insert padding - this may include padding to increase the size of the
1010 // current field up to the ABI size (if the struct is not packed) as well
1011 // as padding to ensure that the next field starts at the right offset.
1012 EmitZeros(padSize
, AddrSpace
);
1014 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
1015 "Layout of constant struct may be incorrect!");
1018 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP
*CFP
,
1019 unsigned AddrSpace
) {
1020 // FP Constants are printed as integer constants to avoid losing
1022 const TargetData
*TD
= TM
.getTargetData();
1023 if (CFP
->getType() == Type::DoubleTy
) {
1024 double Val
= CFP
->getValueAPF().convertToDouble(); // for comment only
1025 uint64_t i
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1026 if (TAI
->getData64bitsDirective(AddrSpace
)) {
1027 O
<< TAI
->getData64bitsDirective(AddrSpace
) << i
;
1029 O
<< '\t' << TAI
->getCommentString() << " double value: " << Val
;
1031 } else if (TD
->isBigEndian()) {
1032 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1034 O
<< '\t' << TAI
->getCommentString()
1035 << " double most significant word " << Val
;
1037 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1039 O
<< '\t' << TAI
->getCommentString()
1040 << " double least significant word " << Val
;
1043 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1045 O
<< '\t' << TAI
->getCommentString()
1046 << " double least significant word " << Val
;
1048 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1050 O
<< '\t' << TAI
->getCommentString()
1051 << " double most significant word " << Val
;
1055 } else if (CFP
->getType() == Type::FloatTy
) {
1056 float Val
= CFP
->getValueAPF().convertToFloat(); // for comment only
1057 O
<< TAI
->getData32bitsDirective(AddrSpace
)
1058 << CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1060 O
<< '\t' << TAI
->getCommentString() << " float " << Val
;
1063 } else if (CFP
->getType() == Type::X86_FP80Ty
) {
1064 // all long double variants are printed as hex
1065 // api needed to prevent premature destruction
1066 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1067 const uint64_t *p
= api
.getRawData();
1068 // Convert to double so we can print the approximate val as a comment.
1069 APFloat DoubleVal
= CFP
->getValueAPF();
1071 DoubleVal
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
1073 if (TD
->isBigEndian()) {
1074 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1076 O
<< '\t' << TAI
->getCommentString()
1077 << " long double most significant halfword of ~"
1078 << DoubleVal
.convertToDouble();
1080 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1082 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1084 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1086 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1088 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1090 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1092 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1094 O
<< '\t' << TAI
->getCommentString()
1095 << " long double least significant halfword";
1098 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1100 O
<< '\t' << TAI
->getCommentString()
1101 << " long double least significant halfword of ~"
1102 << DoubleVal
.convertToDouble();
1104 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1106 O
<< '\t' << TAI
->getCommentString()
1107 << " long double next halfword";
1109 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1111 O
<< '\t' << TAI
->getCommentString()
1112 << " long double next halfword";
1114 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1116 O
<< '\t' << TAI
->getCommentString()
1117 << " long double next halfword";
1119 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1121 O
<< '\t' << TAI
->getCommentString()
1122 << " long double most significant halfword";
1125 EmitZeros(TD
->getTypePaddedSize(Type::X86_FP80Ty
) -
1126 TD
->getTypeStoreSize(Type::X86_FP80Ty
), AddrSpace
);
1128 } else if (CFP
->getType() == Type::PPC_FP128Ty
) {
1129 // all long double variants are printed as hex
1130 // api needed to prevent premature destruction
1131 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1132 const uint64_t *p
= api
.getRawData();
1133 if (TD
->isBigEndian()) {
1134 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1136 O
<< '\t' << TAI
->getCommentString()
1137 << " long double most significant word";
1139 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1141 O
<< '\t' << TAI
->getCommentString()
1142 << " long double next word";
1144 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1146 O
<< '\t' << TAI
->getCommentString()
1147 << " long double next word";
1149 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1151 O
<< '\t' << TAI
->getCommentString()
1152 << " long double least significant word";
1155 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1157 O
<< '\t' << TAI
->getCommentString()
1158 << " long double least significant word";
1160 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1162 O
<< '\t' << TAI
->getCommentString()
1163 << " long double next word";
1165 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1167 O
<< '\t' << TAI
->getCommentString()
1168 << " long double next word";
1170 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1172 O
<< '\t' << TAI
->getCommentString()
1173 << " long double most significant word";
1177 } else assert(0 && "Floating point constant type not handled");
1180 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt
*CI
,
1181 unsigned AddrSpace
) {
1182 const TargetData
*TD
= TM
.getTargetData();
1183 unsigned BitWidth
= CI
->getBitWidth();
1184 assert(isPowerOf2_32(BitWidth
) &&
1185 "Non-power-of-2-sized integers not handled!");
1187 // We don't expect assemblers to support integer data directives
1188 // for more than 64 bits, so we emit the data in at most 64-bit
1189 // quantities at a time.
1190 const uint64_t *RawData
= CI
->getValue().getRawData();
1191 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
1193 if (TD
->isBigEndian())
1194 Val
= RawData
[e
- i
- 1];
1198 if (TAI
->getData64bitsDirective(AddrSpace
))
1199 O
<< TAI
->getData64bitsDirective(AddrSpace
) << Val
<< '\n';
1200 else if (TD
->isBigEndian()) {
1201 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1203 O
<< '\t' << TAI
->getCommentString()
1204 << " Double-word most significant word " << Val
;
1206 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1208 O
<< '\t' << TAI
->getCommentString()
1209 << " Double-word least significant word " << Val
;
1212 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1214 O
<< '\t' << TAI
->getCommentString()
1215 << " Double-word least significant word " << Val
;
1217 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1219 O
<< '\t' << TAI
->getCommentString()
1220 << " Double-word most significant word " << Val
;
1226 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1227 void AsmPrinter::EmitGlobalConstant(const Constant
*CV
, unsigned AddrSpace
) {
1228 const TargetData
*TD
= TM
.getTargetData();
1229 const Type
*type
= CV
->getType();
1230 unsigned Size
= TD
->getTypePaddedSize(type
);
1232 if (CV
->isNullValue() || isa
<UndefValue
>(CV
)) {
1233 EmitZeros(Size
, AddrSpace
);
1235 } else if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
1236 EmitGlobalConstantArray(CVA
, AddrSpace
);
1238 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
1239 EmitGlobalConstantStruct(CVS
, AddrSpace
);
1241 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1242 EmitGlobalConstantFP(CFP
, AddrSpace
);
1244 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1245 // Small integers are handled below; large integers are handled here.
1247 EmitGlobalConstantLargeInt(CI
, AddrSpace
);
1250 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
1251 EmitGlobalConstantVector(CP
);
1255 printDataDirective(type
, AddrSpace
);
1256 EmitConstantValueOnly(CV
);
1258 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1260 CI
->getValue().toStringUnsigned(S
, 16);
1261 O
<< "\t\t\t" << TAI
->getCommentString() << " 0x" << S
.c_str();
1267 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
1268 // Target doesn't support this yet!
1272 /// PrintSpecial - Print information related to the specified machine instr
1273 /// that is independent of the operand, and may be independent of the instr
1274 /// itself. This can be useful for portably encoding the comment character
1275 /// or other bits of target-specific knowledge into the asmstrings. The
1276 /// syntax used is ${:comment}. Targets can override this to add support
1277 /// for their own strange codes.
1278 void AsmPrinter::PrintSpecial(const MachineInstr
*MI
, const char *Code
) const {
1279 if (!strcmp(Code
, "private")) {
1280 O
<< TAI
->getPrivateGlobalPrefix();
1281 } else if (!strcmp(Code
, "comment")) {
1283 O
<< TAI
->getCommentString();
1284 } else if (!strcmp(Code
, "uid")) {
1285 // Assign a unique ID to this machine instruction.
1286 static const MachineInstr
*LastMI
= 0;
1287 static const Function
*F
= 0;
1288 static unsigned Counter
= 0U-1;
1290 // Comparing the address of MI isn't sufficient, because machineinstrs may
1291 // be allocated to the same address across functions.
1292 const Function
*ThisF
= MI
->getParent()->getParent()->getFunction();
1294 // If this is a new machine instruction, bump the counter.
1295 if (LastMI
!= MI
|| F
!= ThisF
) {
1302 cerr
<< "Unknown special formatter '" << Code
1303 << "' for machine instr: " << *MI
;
1309 /// printInlineAsm - This method formats and prints the specified machine
1310 /// instruction that is an inline asm.
1311 void AsmPrinter::printInlineAsm(const MachineInstr
*MI
) const {
1312 unsigned NumOperands
= MI
->getNumOperands();
1314 // Count the number of register definitions.
1315 unsigned NumDefs
= 0;
1316 for (; MI
->getOperand(NumDefs
).isReg() && MI
->getOperand(NumDefs
).isDef();
1318 assert(NumDefs
!= NumOperands
-1 && "No asm string?");
1320 assert(MI
->getOperand(NumDefs
).isSymbol() && "No asm string?");
1322 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1323 const char *AsmStr
= MI
->getOperand(NumDefs
).getSymbolName();
1325 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1326 // These are useful to see where empty asm's wound up.
1327 if (AsmStr
[0] == 0) {
1328 O
<< TAI
->getInlineAsmStart() << "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1332 O
<< TAI
->getInlineAsmStart() << "\n\t";
1334 // The variant of the current asmprinter.
1335 int AsmPrinterVariant
= TAI
->getAssemblerDialect();
1337 int CurVariant
= -1; // The number of the {.|.|.} region we are in.
1338 const char *LastEmitted
= AsmStr
; // One past the last character emitted.
1340 while (*LastEmitted
) {
1341 switch (*LastEmitted
) {
1343 // Not a special case, emit the string section literally.
1344 const char *LiteralEnd
= LastEmitted
+1;
1345 while (*LiteralEnd
&& *LiteralEnd
!= '{' && *LiteralEnd
!= '|' &&
1346 *LiteralEnd
!= '}' && *LiteralEnd
!= '$' && *LiteralEnd
!= '\n')
1348 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1349 O
.write(LastEmitted
, LiteralEnd
-LastEmitted
);
1350 LastEmitted
= LiteralEnd
;
1354 ++LastEmitted
; // Consume newline character.
1355 O
<< '\n'; // Indent code with newline.
1358 ++LastEmitted
; // Consume '$' character.
1362 switch (*LastEmitted
) {
1363 default: Done
= false; break;
1364 case '$': // $$ -> $
1365 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1367 ++LastEmitted
; // Consume second '$' character.
1369 case '(': // $( -> same as GCC's { character.
1370 ++LastEmitted
; // Consume '(' character.
1371 if (CurVariant
!= -1) {
1372 cerr
<< "Nested variants found in inline asm string: '"
1376 CurVariant
= 0; // We're in the first variant now.
1379 ++LastEmitted
; // consume '|' character.
1380 if (CurVariant
== -1)
1381 O
<< '|'; // this is gcc's behavior for | outside a variant
1383 ++CurVariant
; // We're in the next variant.
1385 case ')': // $) -> same as GCC's } char.
1386 ++LastEmitted
; // consume ')' character.
1387 if (CurVariant
== -1)
1388 O
<< '}'; // this is gcc's behavior for } outside a variant
1395 bool HasCurlyBraces
= false;
1396 if (*LastEmitted
== '{') { // ${variable}
1397 ++LastEmitted
; // Consume '{' character.
1398 HasCurlyBraces
= true;
1401 // If we have ${:foo}, then this is not a real operand reference, it is a
1402 // "magic" string reference, just like in .td files. Arrange to call
1404 if (HasCurlyBraces
&& *LastEmitted
== ':') {
1406 const char *StrStart
= LastEmitted
;
1407 const char *StrEnd
= strchr(StrStart
, '}');
1409 cerr
<< "Unterminated ${:foo} operand in inline asm string: '"
1414 std::string
Val(StrStart
, StrEnd
);
1415 PrintSpecial(MI
, Val
.c_str());
1416 LastEmitted
= StrEnd
+1;
1420 const char *IDStart
= LastEmitted
;
1423 long Val
= strtol(IDStart
, &IDEnd
, 10); // We only accept numbers for IDs.
1424 if (!isdigit(*IDStart
) || (Val
== 0 && errno
== EINVAL
)) {
1425 cerr
<< "Bad $ operand number in inline asm string: '"
1429 LastEmitted
= IDEnd
;
1431 char Modifier
[2] = { 0, 0 };
1433 if (HasCurlyBraces
) {
1434 // If we have curly braces, check for a modifier character. This
1435 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1436 if (*LastEmitted
== ':') {
1437 ++LastEmitted
; // Consume ':' character.
1438 if (*LastEmitted
== 0) {
1439 cerr
<< "Bad ${:} expression in inline asm string: '"
1444 Modifier
[0] = *LastEmitted
;
1445 ++LastEmitted
; // Consume modifier character.
1448 if (*LastEmitted
!= '}') {
1449 cerr
<< "Bad ${} expression in inline asm string: '"
1453 ++LastEmitted
; // Consume '}' character.
1456 if ((unsigned)Val
>= NumOperands
-1) {
1457 cerr
<< "Invalid $ operand number in inline asm string: '"
1462 // Okay, we finally have a value number. Ask the target to print this
1464 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
) {
1469 // Scan to find the machine operand number for the operand.
1470 for (; Val
; --Val
) {
1471 if (OpNo
>= MI
->getNumOperands()) break;
1472 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1473 OpNo
+= InlineAsm::getNumOperandRegisters(OpFlags
) + 1;
1476 if (OpNo
>= MI
->getNumOperands()) {
1479 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1480 ++OpNo
; // Skip over the ID number.
1482 if (Modifier
[0]=='l') // labels are target independent
1483 printBasicBlockLabel(MI
->getOperand(OpNo
).getMBB(),
1484 false, false, false);
1486 AsmPrinter
*AP
= const_cast<AsmPrinter
*>(this);
1487 if ((OpFlags
& 7) == 4) {
1488 Error
= AP
->PrintAsmMemoryOperand(MI
, OpNo
, AsmPrinterVariant
,
1489 Modifier
[0] ? Modifier
: 0);
1491 Error
= AP
->PrintAsmOperand(MI
, OpNo
, AsmPrinterVariant
,
1492 Modifier
[0] ? Modifier
: 0);
1497 cerr
<< "Invalid operand found in inline asm: '"
1507 O
<< "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1510 /// printImplicitDef - This method prints the specified machine instruction
1511 /// that is an implicit def.
1512 void AsmPrinter::printImplicitDef(const MachineInstr
*MI
) const {
1514 O
<< '\t' << TAI
->getCommentString() << " implicit-def: "
1515 << TRI
->getAsmName(MI
->getOperand(0).getReg()) << '\n';
1518 /// printLabel - This method prints a local label used by debug and
1519 /// exception handling tables.
1520 void AsmPrinter::printLabel(const MachineInstr
*MI
) const {
1521 printLabel(MI
->getOperand(0).getImm());
1524 void AsmPrinter::printLabel(unsigned Id
) const {
1525 O
<< TAI
->getPrivateGlobalPrefix() << "label" << Id
<< ":\n";
1528 /// printDeclare - This method prints a local variable declaration used by
1530 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1531 /// entry into dwarf table.
1532 void AsmPrinter::printDeclare(const MachineInstr
*MI
) const {
1533 unsigned FI
= MI
->getOperand(0).getIndex();
1534 GlobalValue
*GV
= MI
->getOperand(1).getGlobal();
1535 DW
->RecordVariable(cast
<GlobalVariable
>(GV
), FI
, MI
);
1538 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1539 /// instruction, using the specified assembler variant. Targets should
1540 /// overried this to format as appropriate.
1541 bool AsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNo
,
1542 unsigned AsmVariant
, const char *ExtraCode
) {
1543 // Target doesn't support this yet!
1547 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
, unsigned OpNo
,
1548 unsigned AsmVariant
,
1549 const char *ExtraCode
) {
1550 // Target doesn't support this yet!
1554 /// printBasicBlockLabel - This method prints the label for the specified
1555 /// MachineBasicBlock
1556 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock
*MBB
,
1559 bool printComment
) const {
1561 unsigned Align
= MBB
->getAlignment();
1563 EmitAlignment(Log2_32(Align
));
1566 O
<< TAI
->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1567 << MBB
->getNumber();
1570 if (printComment
&& MBB
->getBasicBlock())
1571 O
<< '\t' << TAI
->getCommentString() << ' '
1572 << MBB
->getBasicBlock()->getNameStart();
1575 /// printPICJumpTableSetLabel - This method prints a set label for the
1576 /// specified MachineBasicBlock for a jumptable entry.
1577 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
,
1578 const MachineBasicBlock
*MBB
) const {
1579 if (!TAI
->getSetDirective())
1582 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1583 << getFunctionNumber() << '_' << uid
<< "_set_" << MBB
->getNumber() << ',';
1584 printBasicBlockLabel(MBB
, false, false, false);
1585 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1586 << '_' << uid
<< '\n';
1589 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
, unsigned uid2
,
1590 const MachineBasicBlock
*MBB
) const {
1591 if (!TAI
->getSetDirective())
1594 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1595 << getFunctionNumber() << '_' << uid
<< '_' << uid2
1596 << "_set_" << MBB
->getNumber() << ',';
1597 printBasicBlockLabel(MBB
, false, false, false);
1598 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1599 << '_' << uid
<< '_' << uid2
<< '\n';
1602 /// printDataDirective - This method prints the asm directive for the
1604 void AsmPrinter::printDataDirective(const Type
*type
, unsigned AddrSpace
) {
1605 const TargetData
*TD
= TM
.getTargetData();
1606 switch (type
->getTypeID()) {
1607 case Type::IntegerTyID
: {
1608 unsigned BitWidth
= cast
<IntegerType
>(type
)->getBitWidth();
1610 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1611 else if (BitWidth
<= 16)
1612 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1613 else if (BitWidth
<= 32)
1614 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1615 else if (BitWidth
<= 64) {
1616 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1617 "Target cannot handle 64-bit constant exprs!");
1618 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1620 assert(0 && "Target cannot handle given data directive width!");
1624 case Type::PointerTyID
:
1625 if (TD
->getPointerSize() == 8) {
1626 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1627 "Target cannot handle 64-bit pointer exprs!");
1628 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1629 } else if (TD
->getPointerSize() == 2) {
1630 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1631 } else if (TD
->getPointerSize() == 1) {
1632 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1634 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1637 case Type::FloatTyID
: case Type::DoubleTyID
:
1638 case Type::X86_FP80TyID
: case Type::FP128TyID
: case Type::PPC_FP128TyID
:
1639 assert (0 && "Should have already output floating point constant.");
1641 assert (0 && "Can't handle printing this type of thing");
1646 void AsmPrinter::printSuffixedName(const char *Name
, const char *Suffix
,
1647 const char *Prefix
) {
1650 O
<< TAI
->getPrivateGlobalPrefix();
1651 if (Prefix
) O
<< Prefix
;
1663 void AsmPrinter::printSuffixedName(const std::string
&Name
, const char* Suffix
) {
1664 printSuffixedName(Name
.c_str(), Suffix
);
1667 void AsmPrinter::printVisibility(const std::string
& Name
,
1668 unsigned Visibility
) const {
1669 if (Visibility
== GlobalValue::HiddenVisibility
) {
1670 if (const char *Directive
= TAI
->getHiddenDirective())
1671 O
<< Directive
<< Name
<< '\n';
1672 } else if (Visibility
== GlobalValue::ProtectedVisibility
) {
1673 if (const char *Directive
= TAI
->getProtectedDirective())
1674 O
<< Directive
<< Name
<< '\n';
1678 void AsmPrinter::printOffset(int64_t Offset
) const {
1681 else if (Offset
< 0)
1685 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
*S
) {
1686 if (!S
->usesMetadata())
1689 gcp_iterator GCPI
= GCMetadataPrinters
.find(S
);
1690 if (GCPI
!= GCMetadataPrinters
.end())
1691 return GCPI
->second
;
1693 const char *Name
= S
->getName().c_str();
1695 for (GCMetadataPrinterRegistry::iterator
1696 I
= GCMetadataPrinterRegistry::begin(),
1697 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
1698 if (strcmp(Name
, I
->getName()) == 0) {
1699 GCMetadataPrinter
*GMP
= I
->instantiate();
1701 GCMetadataPrinters
.insert(std::make_pair(S
, GMP
));
1705 cerr
<< "no GCMetadataPrinter registered for GC: " << Name
<< "\n";