Provide addc and subc
[llvm/msp430.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob319bbdbe655ff661914db0aef4e5cd85c5ffbe7d
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Mangler.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetAsmInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include <cerrno>
36 using namespace llvm;
38 static cl::opt<cl::boolOrDefault>
39 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
40 cl::init(cl::BOU_UNSET));
42 char AsmPrinter::ID = 0;
43 AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
44 const TargetAsmInfo *T, CodeGenOpt::Level OL, bool VDef)
45 : MachineFunctionPass(&ID), FunctionNumber(0), OptLevel(OL), O(o),
46 TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
47 IsInTextSection(false)
49 switch (AsmVerbose) {
50 case cl::BOU_UNSET: VerboseAsm = VDef; break;
51 case cl::BOU_TRUE: VerboseAsm = true; break;
52 case cl::BOU_FALSE: VerboseAsm = false; break;
56 AsmPrinter::~AsmPrinter() {
57 for (gcp_iterator I = GCMetadataPrinters.begin(),
58 E = GCMetadataPrinters.end(); I != E; ++I)
59 delete I->second;
62 /// SwitchToTextSection - Switch to the specified text section of the executable
63 /// if we are not already in it!
64 ///
65 void AsmPrinter::SwitchToTextSection(const char *NewSection,
66 const GlobalValue *GV) {
67 std::string NS;
68 if (GV && GV->hasSection())
69 NS = TAI->getSwitchToSectionDirective() + GV->getSection();
70 else
71 NS = NewSection;
73 // If we're already in this section, we're done.
74 if (CurrentSection == NS) return;
76 // Close the current section, if applicable.
77 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
78 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
80 CurrentSection = NS;
82 if (!CurrentSection.empty())
83 O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
85 IsInTextSection = true;
88 /// SwitchToDataSection - Switch to the specified data section of the executable
89 /// if we are not already in it!
90 ///
91 void AsmPrinter::SwitchToDataSection(const char *NewSection,
92 const GlobalValue *GV) {
93 std::string NS;
94 if (GV && GV->hasSection())
95 NS = TAI->getSwitchToSectionDirective() + GV->getSection();
96 else
97 NS = NewSection;
99 // If we're already in this section, we're done.
100 if (CurrentSection == NS) return;
102 // Close the current section, if applicable.
103 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
104 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
106 CurrentSection = NS;
108 if (!CurrentSection.empty())
109 O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
111 IsInTextSection = false;
114 /// SwitchToSection - Switch to the specified section of the executable if we
115 /// are not already in it!
116 void AsmPrinter::SwitchToSection(const Section* NS) {
117 const std::string& NewSection = NS->getName();
119 // If we're already in this section, we're done.
120 if (CurrentSection == NewSection) return;
122 // Close the current section, if applicable.
123 if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
124 O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
126 // FIXME: Make CurrentSection a Section* in the future
127 CurrentSection = NewSection;
128 CurrentSection_ = NS;
130 if (!CurrentSection.empty()) {
131 // If section is named we need to switch into it via special '.section'
132 // directive and also append funky flags. Otherwise - section name is just
133 // some magic assembler directive.
134 if (NS->isNamed())
135 O << TAI->getSwitchToSectionDirective()
136 << CurrentSection
137 << TAI->getSectionFlags(NS->getFlags());
138 else
139 O << CurrentSection;
140 O << TAI->getDataSectionStartSuffix() << '\n';
143 IsInTextSection = (NS->getFlags() & SectionFlags::Code);
146 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
147 MachineFunctionPass::getAnalysisUsage(AU);
148 AU.addRequired<GCModuleInfo>();
151 bool AsmPrinter::doInitialization(Module &M) {
152 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
154 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
155 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
157 if (TAI->hasSingleParameterDotFile()) {
158 /* Very minimal debug info. It is ignored if we emit actual
159 debug info. If we don't, this at helps the user find where
160 a function came from. */
161 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
164 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
165 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
166 MP->beginAssembly(O, *this, *TAI);
168 if (!M.getModuleInlineAsm().empty())
169 O << TAI->getCommentString() << " Start of file scope inline assembly\n"
170 << M.getModuleInlineAsm()
171 << '\n' << TAI->getCommentString()
172 << " End of file scope inline assembly\n";
174 SwitchToDataSection(""); // Reset back to no section.
176 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
177 if (MMI) MMI->AnalyzeModule(M);
178 DW = getAnalysisIfAvailable<DwarfWriter>();
179 return false;
182 bool AsmPrinter::doFinalization(Module &M) {
183 if (TAI->getWeakRefDirective()) {
184 if (!ExtWeakSymbols.empty())
185 SwitchToDataSection("");
187 for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
188 e = ExtWeakSymbols.end(); i != e; ++i)
189 O << TAI->getWeakRefDirective() << Mang->getValueName(*i) << '\n';
192 if (TAI->getSetDirective()) {
193 if (!M.alias_empty())
194 SwitchToSection(TAI->getTextSection());
196 O << '\n';
197 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
198 I!=E; ++I) {
199 std::string Name = Mang->getValueName(I);
200 std::string Target;
202 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
203 Target = Mang->getValueName(GV);
205 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
206 O << "\t.globl\t" << Name << '\n';
207 else if (I->hasWeakLinkage())
208 O << TAI->getWeakRefDirective() << Name << '\n';
209 else if (!I->hasLocalLinkage())
210 assert(0 && "Invalid alias linkage");
212 printVisibility(Name, I->getVisibility());
214 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
218 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
219 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
220 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
221 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
222 MP->finishAssembly(O, *this, *TAI);
224 // If we don't have any trampolines, then we don't require stack memory
225 // to be executable. Some targets have a directive to declare this.
226 Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
227 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
228 if (TAI->getNonexecutableStackDirective())
229 O << TAI->getNonexecutableStackDirective() << '\n';
231 delete Mang; Mang = 0;
232 return false;
235 const std::string &
236 AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF,
237 std::string &Name) const {
238 assert(MF && "No machine function?");
239 Name = MF->getFunction()->getName();
240 if (Name.empty())
241 Name = Mang->getValueName(MF->getFunction());
242 Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() +
243 Name + ".eh", TAI->getGlobalPrefix());
244 return Name;
247 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
248 // What's my mangled name?
249 CurrentFnName = Mang->getValueName(MF.getFunction());
250 IncrementFunctionNumber();
253 namespace {
254 // SectionCPs - Keep track the alignment, constpool entries per Section.
255 struct SectionCPs {
256 const Section *S;
257 unsigned Alignment;
258 SmallVector<unsigned, 4> CPEs;
259 SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
263 /// EmitConstantPool - Print to the current output stream assembly
264 /// representations of the constants in the constant pool MCP. This is
265 /// used to print out constants which have been "spilled to memory" by
266 /// the code generator.
268 void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
269 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
270 if (CP.empty()) return;
272 // Calculate sections for constant pool entries. We collect entries to go into
273 // the same section together to reduce amount of section switch statements.
274 SmallVector<SectionCPs, 4> CPSections;
275 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
276 MachineConstantPoolEntry CPE = CP[i];
277 unsigned Align = CPE.getAlignment();
278 const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
279 // The number of sections are small, just do a linear search from the
280 // last section to the first.
281 bool Found = false;
282 unsigned SecIdx = CPSections.size();
283 while (SecIdx != 0) {
284 if (CPSections[--SecIdx].S == S) {
285 Found = true;
286 break;
289 if (!Found) {
290 SecIdx = CPSections.size();
291 CPSections.push_back(SectionCPs(S, Align));
294 if (Align > CPSections[SecIdx].Alignment)
295 CPSections[SecIdx].Alignment = Align;
296 CPSections[SecIdx].CPEs.push_back(i);
299 // Now print stuff into the calculated sections.
300 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
301 SwitchToSection(CPSections[i].S);
302 EmitAlignment(Log2_32(CPSections[i].Alignment));
304 unsigned Offset = 0;
305 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
306 unsigned CPI = CPSections[i].CPEs[j];
307 MachineConstantPoolEntry CPE = CP[CPI];
309 // Emit inter-object padding for alignment.
310 unsigned AlignMask = CPE.getAlignment() - 1;
311 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
312 EmitZeros(NewOffset - Offset);
314 const Type *Ty = CPE.getType();
315 Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
317 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
318 << CPI << ":\t\t\t\t\t";
319 if (VerboseAsm) {
320 O << TAI->getCommentString() << ' ';
321 WriteTypeSymbolic(O, CPE.getType(), 0);
323 O << '\n';
324 if (CPE.isMachineConstantPoolEntry())
325 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
326 else
327 EmitGlobalConstant(CPE.Val.ConstVal);
332 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
333 /// by the current function to the current output stream.
335 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
336 MachineFunction &MF) {
337 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
338 if (JT.empty()) return;
340 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
342 // Pick the directive to use to print the jump table entries, and switch to
343 // the appropriate section.
344 TargetLowering *LoweringInfo = TM.getTargetLowering();
346 const char* JumpTableDataSection = TAI->getJumpTableDataSection();
347 const Function *F = MF.getFunction();
348 unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
349 if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
350 !JumpTableDataSection ||
351 SectionFlags & SectionFlags::Linkonce) {
352 // In PIC mode, we need to emit the jump table to the same section as the
353 // function body itself, otherwise the label differences won't make sense.
354 // We should also do if the section name is NULL or function is declared in
355 // discardable section.
356 SwitchToSection(TAI->SectionForGlobal(F));
357 } else {
358 SwitchToDataSection(JumpTableDataSection);
361 EmitAlignment(Log2_32(MJTI->getAlignment()));
363 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
364 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
366 // If this jump table was deleted, ignore it.
367 if (JTBBs.empty()) continue;
369 // For PIC codegen, if possible we want to use the SetDirective to reduce
370 // the number of relocations the assembler will generate for the jump table.
371 // Set directives are all printed before the jump table itself.
372 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
373 if (TAI->getSetDirective() && IsPic)
374 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
375 if (EmittedSets.insert(JTBBs[ii]))
376 printPICJumpTableSetLabel(i, JTBBs[ii]);
378 // On some targets (e.g. darwin) we want to emit two consequtive labels
379 // before each jump table. The first label is never referenced, but tells
380 // the assembler and linker the extents of the jump table object. The
381 // second label is actually referenced by the code.
382 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
383 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
385 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
386 << '_' << i << ":\n";
388 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
389 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
390 O << '\n';
395 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
396 const MachineBasicBlock *MBB,
397 unsigned uid) const {
398 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
400 // Use JumpTableDirective otherwise honor the entry size from the jump table
401 // info.
402 const char *JTEntryDirective = TAI->getJumpTableDirective();
403 bool HadJTEntryDirective = JTEntryDirective != NULL;
404 if (!HadJTEntryDirective) {
405 JTEntryDirective = MJTI->getEntrySize() == 4 ?
406 TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
409 O << JTEntryDirective << ' ';
411 // If we have emitted set directives for the jump table entries, print
412 // them rather than the entries themselves. If we're emitting PIC, then
413 // emit the table entries as differences between two text section labels.
414 // If we're emitting non-PIC code, then emit the entries as direct
415 // references to the target basic blocks.
416 if (IsPic) {
417 if (TAI->getSetDirective()) {
418 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
419 << '_' << uid << "_set_" << MBB->getNumber();
420 } else {
421 printBasicBlockLabel(MBB, false, false, false);
422 // If the arch uses custom Jump Table directives, don't calc relative to
423 // JT
424 if (!HadJTEntryDirective)
425 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
426 << getFunctionNumber() << '_' << uid;
428 } else {
429 printBasicBlockLabel(MBB, false, false, false);
434 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
435 /// special global used by LLVM. If so, emit it and return true, otherwise
436 /// do nothing and return false.
437 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
438 if (GV->getName() == "llvm.used") {
439 if (TAI->getUsedDirective() != 0) // No need to emit this at all.
440 EmitLLVMUsedList(GV->getInitializer());
441 return true;
444 // Ignore debug and non-emitted data.
445 if (GV->getSection() == "llvm.metadata" ||
446 GV->hasAvailableExternallyLinkage())
447 return true;
449 if (!GV->hasAppendingLinkage()) return false;
451 assert(GV->hasInitializer() && "Not a special LLVM global!");
453 const TargetData *TD = TM.getTargetData();
454 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
455 if (GV->getName() == "llvm.global_ctors") {
456 SwitchToDataSection(TAI->getStaticCtorsSection());
457 EmitAlignment(Align, 0);
458 EmitXXStructorList(GV->getInitializer());
459 return true;
462 if (GV->getName() == "llvm.global_dtors") {
463 SwitchToDataSection(TAI->getStaticDtorsSection());
464 EmitAlignment(Align, 0);
465 EmitXXStructorList(GV->getInitializer());
466 return true;
469 return false;
472 /// findGlobalValue - if CV is an expression equivalent to a single
473 /// global value, return that value.
474 const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
475 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
476 return GV;
477 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
478 const TargetData *TD = TM.getTargetData();
479 unsigned Opcode = CE->getOpcode();
480 switch (Opcode) {
481 case Instruction::GetElementPtr: {
482 const Constant *ptrVal = CE->getOperand(0);
483 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
484 if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
485 return 0;
486 return findGlobalValue(ptrVal);
488 case Instruction::BitCast:
489 return findGlobalValue(CE->getOperand(0));
490 default:
491 return 0;
494 return 0;
497 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
498 /// global in the specified llvm.used list for which emitUsedDirectiveFor
499 /// is true, as being used with this directive.
501 void AsmPrinter::EmitLLVMUsedList(Constant *List) {
502 const char *Directive = TAI->getUsedDirective();
504 // Should be an array of 'sbyte*'.
505 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
506 if (InitList == 0) return;
508 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
509 const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
510 if (TAI->emitUsedDirectiveFor(GV, Mang)) {
511 O << Directive;
512 EmitConstantValueOnly(InitList->getOperand(i));
513 O << '\n';
518 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
519 /// function pointers, ignoring the init priority.
520 void AsmPrinter::EmitXXStructorList(Constant *List) {
521 // Should be an array of '{ int, void ()* }' structs. The first value is the
522 // init priority, which we ignore.
523 if (!isa<ConstantArray>(List)) return;
524 ConstantArray *InitList = cast<ConstantArray>(List);
525 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
526 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
527 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
529 if (CS->getOperand(1)->isNullValue())
530 return; // Found a null terminator, exit printing.
531 // Emit the function pointer.
532 EmitGlobalConstant(CS->getOperand(1));
536 /// getGlobalLinkName - Returns the asm/link name of of the specified
537 /// global variable. Should be overridden by each target asm printer to
538 /// generate the appropriate value.
539 const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
540 std::string &LinkName) const {
541 if (isa<Function>(GV)) {
542 LinkName += TAI->getFunctionAddrPrefix();
543 LinkName += Mang->getValueName(GV);
544 LinkName += TAI->getFunctionAddrSuffix();
545 } else {
546 LinkName += TAI->getGlobalVarAddrPrefix();
547 LinkName += Mang->getValueName(GV);
548 LinkName += TAI->getGlobalVarAddrSuffix();
551 return LinkName;
554 /// EmitExternalGlobal - Emit the external reference to a global variable.
555 /// Should be overridden if an indirect reference should be used.
556 void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
557 std::string GLN;
558 O << getGlobalLinkName(GV, GLN);
563 //===----------------------------------------------------------------------===//
564 /// LEB 128 number encoding.
566 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
567 /// representing an unsigned leb128 value.
568 void AsmPrinter::PrintULEB128(unsigned Value) const {
569 char Buffer[20];
570 do {
571 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
572 Value >>= 7;
573 if (Value) Byte |= 0x80;
574 O << "0x" << utohex_buffer(Byte, Buffer+20);
575 if (Value) O << ", ";
576 } while (Value);
579 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
580 /// representing a signed leb128 value.
581 void AsmPrinter::PrintSLEB128(int Value) const {
582 int Sign = Value >> (8 * sizeof(Value) - 1);
583 bool IsMore;
584 char Buffer[20];
586 do {
587 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
588 Value >>= 7;
589 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
590 if (IsMore) Byte |= 0x80;
591 O << "0x" << utohex_buffer(Byte, Buffer+20);
592 if (IsMore) O << ", ";
593 } while (IsMore);
596 //===--------------------------------------------------------------------===//
597 // Emission and print routines
600 /// PrintHex - Print a value as a hexidecimal value.
602 void AsmPrinter::PrintHex(int Value) const {
603 char Buffer[20];
604 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
607 /// EOL - Print a newline character to asm stream. If a comment is present
608 /// then it will be printed first. Comments should not contain '\n'.
609 void AsmPrinter::EOL() const {
610 O << '\n';
613 void AsmPrinter::EOL(const std::string &Comment) const {
614 if (VerboseAsm && !Comment.empty()) {
615 O << '\t'
616 << TAI->getCommentString()
617 << ' '
618 << Comment;
620 O << '\n';
623 void AsmPrinter::EOL(const char* Comment) const {
624 if (VerboseAsm && *Comment) {
625 O << '\t'
626 << TAI->getCommentString()
627 << ' '
628 << Comment;
630 O << '\n';
633 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
634 /// unsigned leb128 value.
635 void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
636 if (TAI->hasLEB128()) {
637 O << "\t.uleb128\t"
638 << Value;
639 } else {
640 O << TAI->getData8bitsDirective();
641 PrintULEB128(Value);
645 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
646 /// signed leb128 value.
647 void AsmPrinter::EmitSLEB128Bytes(int Value) const {
648 if (TAI->hasLEB128()) {
649 O << "\t.sleb128\t"
650 << Value;
651 } else {
652 O << TAI->getData8bitsDirective();
653 PrintSLEB128(Value);
657 /// EmitInt8 - Emit a byte directive and value.
659 void AsmPrinter::EmitInt8(int Value) const {
660 O << TAI->getData8bitsDirective();
661 PrintHex(Value & 0xFF);
664 /// EmitInt16 - Emit a short directive and value.
666 void AsmPrinter::EmitInt16(int Value) const {
667 O << TAI->getData16bitsDirective();
668 PrintHex(Value & 0xFFFF);
671 /// EmitInt32 - Emit a long directive and value.
673 void AsmPrinter::EmitInt32(int Value) const {
674 O << TAI->getData32bitsDirective();
675 PrintHex(Value);
678 /// EmitInt64 - Emit a long long directive and value.
680 void AsmPrinter::EmitInt64(uint64_t Value) const {
681 if (TAI->getData64bitsDirective()) {
682 O << TAI->getData64bitsDirective();
683 PrintHex(Value);
684 } else {
685 if (TM.getTargetData()->isBigEndian()) {
686 EmitInt32(unsigned(Value >> 32)); O << '\n';
687 EmitInt32(unsigned(Value));
688 } else {
689 EmitInt32(unsigned(Value)); O << '\n';
690 EmitInt32(unsigned(Value >> 32));
695 /// toOctal - Convert the low order bits of X into an octal digit.
697 static inline char toOctal(int X) {
698 return (X&7)+'0';
701 /// printStringChar - Print a char, escaped if necessary.
703 static void printStringChar(raw_ostream &O, unsigned char C) {
704 if (C == '"') {
705 O << "\\\"";
706 } else if (C == '\\') {
707 O << "\\\\";
708 } else if (isprint((unsigned char)C)) {
709 O << C;
710 } else {
711 switch(C) {
712 case '\b': O << "\\b"; break;
713 case '\f': O << "\\f"; break;
714 case '\n': O << "\\n"; break;
715 case '\r': O << "\\r"; break;
716 case '\t': O << "\\t"; break;
717 default:
718 O << '\\';
719 O << toOctal(C >> 6);
720 O << toOctal(C >> 3);
721 O << toOctal(C >> 0);
722 break;
727 /// EmitString - Emit a string with quotes and a null terminator.
728 /// Special characters are emitted properly.
729 /// \literal (Eg. '\t') \endliteral
730 void AsmPrinter::EmitString(const std::string &String) const {
731 EmitString(String.c_str(), String.size());
734 void AsmPrinter::EmitString(const char *String, unsigned Size) const {
735 const char* AscizDirective = TAI->getAscizDirective();
736 if (AscizDirective)
737 O << AscizDirective;
738 else
739 O << TAI->getAsciiDirective();
740 O << '\"';
741 for (unsigned i = 0; i < Size; ++i)
742 printStringChar(O, String[i]);
743 if (AscizDirective)
744 O << '\"';
745 else
746 O << "\\0\"";
750 /// EmitFile - Emit a .file directive.
751 void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
752 O << "\t.file\t" << Number << " \"";
753 for (unsigned i = 0, N = Name.size(); i < N; ++i)
754 printStringChar(O, Name[i]);
755 O << '\"';
759 //===----------------------------------------------------------------------===//
761 // EmitAlignment - Emit an alignment directive to the specified power of
762 // two boundary. For example, if you pass in 3 here, you will get an 8
763 // byte alignment. If a global value is specified, and if that global has
764 // an explicit alignment requested, it will unconditionally override the
765 // alignment request. However, if ForcedAlignBits is specified, this value
766 // has final say: the ultimate alignment will be the max of ForcedAlignBits
767 // and the alignment computed with NumBits and the global.
769 // The algorithm is:
770 // Align = NumBits;
771 // if (GV && GV->hasalignment) Align = GV->getalignment();
772 // Align = std::max(Align, ForcedAlignBits);
774 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
775 unsigned ForcedAlignBits,
776 bool UseFillExpr) const {
777 if (GV && GV->getAlignment())
778 NumBits = Log2_32(GV->getAlignment());
779 NumBits = std::max(NumBits, ForcedAlignBits);
781 if (NumBits == 0) return; // No need to emit alignment.
782 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
783 O << TAI->getAlignDirective() << NumBits;
785 unsigned FillValue = TAI->getTextAlignFillValue();
786 UseFillExpr &= IsInTextSection && FillValue;
787 if (UseFillExpr) {
788 O << ',';
789 PrintHex(FillValue);
791 O << '\n';
795 /// EmitZeros - Emit a block of zeros.
797 void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
798 if (NumZeros) {
799 if (TAI->getZeroDirective()) {
800 O << TAI->getZeroDirective() << NumZeros;
801 if (TAI->getZeroDirectiveSuffix())
802 O << TAI->getZeroDirectiveSuffix();
803 O << '\n';
804 } else {
805 for (; NumZeros; --NumZeros)
806 O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
811 // Print out the specified constant, without a storage class. Only the
812 // constants valid in constant expressions can occur here.
813 void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
814 if (CV->isNullValue() || isa<UndefValue>(CV))
815 O << '0';
816 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
817 O << CI->getZExtValue();
818 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
819 // This is a constant address for a global variable or function. Use the
820 // name of the variable or function as the address value, possibly
821 // decorating it with GlobalVarAddrPrefix/Suffix or
822 // FunctionAddrPrefix/Suffix (these all default to "" )
823 if (isa<Function>(GV)) {
824 O << TAI->getFunctionAddrPrefix()
825 << Mang->getValueName(GV)
826 << TAI->getFunctionAddrSuffix();
827 } else {
828 O << TAI->getGlobalVarAddrPrefix()
829 << Mang->getValueName(GV)
830 << TAI->getGlobalVarAddrSuffix();
832 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
833 const TargetData *TD = TM.getTargetData();
834 unsigned Opcode = CE->getOpcode();
835 switch (Opcode) {
836 case Instruction::GetElementPtr: {
837 // generate a symbolic expression for the byte address
838 const Constant *ptrVal = CE->getOperand(0);
839 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
840 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
841 idxVec.size())) {
842 // Truncate/sext the offset to the pointer size.
843 if (TD->getPointerSizeInBits() != 64) {
844 int SExtAmount = 64-TD->getPointerSizeInBits();
845 Offset = (Offset << SExtAmount) >> SExtAmount;
848 if (Offset)
849 O << '(';
850 EmitConstantValueOnly(ptrVal);
851 if (Offset > 0)
852 O << ") + " << Offset;
853 else if (Offset < 0)
854 O << ") - " << -Offset;
855 } else {
856 EmitConstantValueOnly(ptrVal);
858 break;
860 case Instruction::Trunc:
861 case Instruction::ZExt:
862 case Instruction::SExt:
863 case Instruction::FPTrunc:
864 case Instruction::FPExt:
865 case Instruction::UIToFP:
866 case Instruction::SIToFP:
867 case Instruction::FPToUI:
868 case Instruction::FPToSI:
869 assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
870 break;
871 case Instruction::BitCast:
872 return EmitConstantValueOnly(CE->getOperand(0));
874 case Instruction::IntToPtr: {
875 // Handle casts to pointers by changing them into casts to the appropriate
876 // integer type. This promotes constant folding and simplifies this code.
877 Constant *Op = CE->getOperand(0);
878 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
879 return EmitConstantValueOnly(Op);
883 case Instruction::PtrToInt: {
884 // Support only foldable casts to/from pointers that can be eliminated by
885 // changing the pointer to the appropriately sized integer type.
886 Constant *Op = CE->getOperand(0);
887 const Type *Ty = CE->getType();
889 // We can emit the pointer value into this slot if the slot is an
890 // integer slot greater or equal to the size of the pointer.
891 if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
892 return EmitConstantValueOnly(Op);
894 O << "((";
895 EmitConstantValueOnly(Op);
896 APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
898 SmallString<40> S;
899 ptrMask.toStringUnsigned(S);
900 O << ") & " << S.c_str() << ')';
901 break;
903 case Instruction::Add:
904 case Instruction::Sub:
905 case Instruction::And:
906 case Instruction::Or:
907 case Instruction::Xor:
908 O << '(';
909 EmitConstantValueOnly(CE->getOperand(0));
910 O << ')';
911 switch (Opcode) {
912 case Instruction::Add:
913 O << " + ";
914 break;
915 case Instruction::Sub:
916 O << " - ";
917 break;
918 case Instruction::And:
919 O << " & ";
920 break;
921 case Instruction::Or:
922 O << " | ";
923 break;
924 case Instruction::Xor:
925 O << " ^ ";
926 break;
927 default:
928 break;
930 O << '(';
931 EmitConstantValueOnly(CE->getOperand(1));
932 O << ')';
933 break;
934 default:
935 assert(0 && "Unsupported operator!");
937 } else {
938 assert(0 && "Unknown constant value!");
942 /// printAsCString - Print the specified array as a C compatible string, only if
943 /// the predicate isString is true.
945 static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
946 unsigned LastElt) {
947 assert(CVA->isString() && "Array is not string compatible!");
949 O << '\"';
950 for (unsigned i = 0; i != LastElt; ++i) {
951 unsigned char C =
952 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
953 printStringChar(O, C);
955 O << '\"';
958 /// EmitString - Emit a zero-byte-terminated string constant.
960 void AsmPrinter::EmitString(const ConstantArray *CVA) const {
961 unsigned NumElts = CVA->getNumOperands();
962 if (TAI->getAscizDirective() && NumElts &&
963 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
964 O << TAI->getAscizDirective();
965 printAsCString(O, CVA, NumElts-1);
966 } else {
967 O << TAI->getAsciiDirective();
968 printAsCString(O, CVA, NumElts);
970 O << '\n';
973 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
974 unsigned AddrSpace) {
975 if (CVA->isString()) {
976 EmitString(CVA);
977 } else { // Not a string. Print the values in successive locations
978 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
979 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
983 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
984 const VectorType *PTy = CP->getType();
986 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
987 EmitGlobalConstant(CP->getOperand(I));
990 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
991 unsigned AddrSpace) {
992 // Print the fields in successive locations. Pad to align if needed!
993 const TargetData *TD = TM.getTargetData();
994 unsigned Size = TD->getTypePaddedSize(CVS->getType());
995 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
996 uint64_t sizeSoFar = 0;
997 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
998 const Constant* field = CVS->getOperand(i);
1000 // Check if padding is needed and insert one or more 0s.
1001 uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
1002 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1003 - cvsLayout->getElementOffset(i)) - fieldSize;
1004 sizeSoFar += fieldSize + padSize;
1006 // Now print the actual field value.
1007 EmitGlobalConstant(field, AddrSpace);
1009 // Insert padding - this may include padding to increase the size of the
1010 // current field up to the ABI size (if the struct is not packed) as well
1011 // as padding to ensure that the next field starts at the right offset.
1012 EmitZeros(padSize, AddrSpace);
1014 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1015 "Layout of constant struct may be incorrect!");
1018 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1019 unsigned AddrSpace) {
1020 // FP Constants are printed as integer constants to avoid losing
1021 // precision...
1022 const TargetData *TD = TM.getTargetData();
1023 if (CFP->getType() == Type::DoubleTy) {
1024 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1025 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1026 if (TAI->getData64bitsDirective(AddrSpace)) {
1027 O << TAI->getData64bitsDirective(AddrSpace) << i;
1028 if (VerboseAsm)
1029 O << '\t' << TAI->getCommentString() << " double value: " << Val;
1030 O << '\n';
1031 } else if (TD->isBigEndian()) {
1032 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1033 if (VerboseAsm)
1034 O << '\t' << TAI->getCommentString()
1035 << " double most significant word " << Val;
1036 O << '\n';
1037 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1038 if (VerboseAsm)
1039 O << '\t' << TAI->getCommentString()
1040 << " double least significant word " << Val;
1041 O << '\n';
1042 } else {
1043 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1044 if (VerboseAsm)
1045 O << '\t' << TAI->getCommentString()
1046 << " double least significant word " << Val;
1047 O << '\n';
1048 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1049 if (VerboseAsm)
1050 O << '\t' << TAI->getCommentString()
1051 << " double most significant word " << Val;
1052 O << '\n';
1054 return;
1055 } else if (CFP->getType() == Type::FloatTy) {
1056 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1057 O << TAI->getData32bitsDirective(AddrSpace)
1058 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1059 if (VerboseAsm)
1060 O << '\t' << TAI->getCommentString() << " float " << Val;
1061 O << '\n';
1062 return;
1063 } else if (CFP->getType() == Type::X86_FP80Ty) {
1064 // all long double variants are printed as hex
1065 // api needed to prevent premature destruction
1066 APInt api = CFP->getValueAPF().bitcastToAPInt();
1067 const uint64_t *p = api.getRawData();
1068 // Convert to double so we can print the approximate val as a comment.
1069 APFloat DoubleVal = CFP->getValueAPF();
1070 bool ignored;
1071 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1072 &ignored);
1073 if (TD->isBigEndian()) {
1074 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1075 if (VerboseAsm)
1076 O << '\t' << TAI->getCommentString()
1077 << " long double most significant halfword of ~"
1078 << DoubleVal.convertToDouble();
1079 O << '\n';
1080 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1081 if (VerboseAsm)
1082 O << '\t' << TAI->getCommentString() << " long double next halfword";
1083 O << '\n';
1084 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1085 if (VerboseAsm)
1086 O << '\t' << TAI->getCommentString() << " long double next halfword";
1087 O << '\n';
1088 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1089 if (VerboseAsm)
1090 O << '\t' << TAI->getCommentString() << " long double next halfword";
1091 O << '\n';
1092 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1093 if (VerboseAsm)
1094 O << '\t' << TAI->getCommentString()
1095 << " long double least significant halfword";
1096 O << '\n';
1097 } else {
1098 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1099 if (VerboseAsm)
1100 O << '\t' << TAI->getCommentString()
1101 << " long double least significant halfword of ~"
1102 << DoubleVal.convertToDouble();
1103 O << '\n';
1104 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1105 if (VerboseAsm)
1106 O << '\t' << TAI->getCommentString()
1107 << " long double next halfword";
1108 O << '\n';
1109 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1110 if (VerboseAsm)
1111 O << '\t' << TAI->getCommentString()
1112 << " long double next halfword";
1113 O << '\n';
1114 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1115 if (VerboseAsm)
1116 O << '\t' << TAI->getCommentString()
1117 << " long double next halfword";
1118 O << '\n';
1119 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1120 if (VerboseAsm)
1121 O << '\t' << TAI->getCommentString()
1122 << " long double most significant halfword";
1123 O << '\n';
1125 EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
1126 TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
1127 return;
1128 } else if (CFP->getType() == Type::PPC_FP128Ty) {
1129 // all long double variants are printed as hex
1130 // api needed to prevent premature destruction
1131 APInt api = CFP->getValueAPF().bitcastToAPInt();
1132 const uint64_t *p = api.getRawData();
1133 if (TD->isBigEndian()) {
1134 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1135 if (VerboseAsm)
1136 O << '\t' << TAI->getCommentString()
1137 << " long double most significant word";
1138 O << '\n';
1139 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1140 if (VerboseAsm)
1141 O << '\t' << TAI->getCommentString()
1142 << " long double next word";
1143 O << '\n';
1144 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1145 if (VerboseAsm)
1146 O << '\t' << TAI->getCommentString()
1147 << " long double next word";
1148 O << '\n';
1149 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1150 if (VerboseAsm)
1151 O << '\t' << TAI->getCommentString()
1152 << " long double least significant word";
1153 O << '\n';
1154 } else {
1155 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1156 if (VerboseAsm)
1157 O << '\t' << TAI->getCommentString()
1158 << " long double least significant word";
1159 O << '\n';
1160 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1161 if (VerboseAsm)
1162 O << '\t' << TAI->getCommentString()
1163 << " long double next word";
1164 O << '\n';
1165 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1166 if (VerboseAsm)
1167 O << '\t' << TAI->getCommentString()
1168 << " long double next word";
1169 O << '\n';
1170 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1171 if (VerboseAsm)
1172 O << '\t' << TAI->getCommentString()
1173 << " long double most significant word";
1174 O << '\n';
1176 return;
1177 } else assert(0 && "Floating point constant type not handled");
1180 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1181 unsigned AddrSpace) {
1182 const TargetData *TD = TM.getTargetData();
1183 unsigned BitWidth = CI->getBitWidth();
1184 assert(isPowerOf2_32(BitWidth) &&
1185 "Non-power-of-2-sized integers not handled!");
1187 // We don't expect assemblers to support integer data directives
1188 // for more than 64 bits, so we emit the data in at most 64-bit
1189 // quantities at a time.
1190 const uint64_t *RawData = CI->getValue().getRawData();
1191 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1192 uint64_t Val;
1193 if (TD->isBigEndian())
1194 Val = RawData[e - i - 1];
1195 else
1196 Val = RawData[i];
1198 if (TAI->getData64bitsDirective(AddrSpace))
1199 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1200 else if (TD->isBigEndian()) {
1201 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1202 if (VerboseAsm)
1203 O << '\t' << TAI->getCommentString()
1204 << " Double-word most significant word " << Val;
1205 O << '\n';
1206 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1207 if (VerboseAsm)
1208 O << '\t' << TAI->getCommentString()
1209 << " Double-word least significant word " << Val;
1210 O << '\n';
1211 } else {
1212 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1213 if (VerboseAsm)
1214 O << '\t' << TAI->getCommentString()
1215 << " Double-word least significant word " << Val;
1216 O << '\n';
1217 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1218 if (VerboseAsm)
1219 O << '\t' << TAI->getCommentString()
1220 << " Double-word most significant word " << Val;
1221 O << '\n';
1226 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1227 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1228 const TargetData *TD = TM.getTargetData();
1229 const Type *type = CV->getType();
1230 unsigned Size = TD->getTypePaddedSize(type);
1232 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1233 EmitZeros(Size, AddrSpace);
1234 return;
1235 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1236 EmitGlobalConstantArray(CVA , AddrSpace);
1237 return;
1238 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1239 EmitGlobalConstantStruct(CVS, AddrSpace);
1240 return;
1241 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1242 EmitGlobalConstantFP(CFP, AddrSpace);
1243 return;
1244 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1245 // Small integers are handled below; large integers are handled here.
1246 if (Size > 4) {
1247 EmitGlobalConstantLargeInt(CI, AddrSpace);
1248 return;
1250 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1251 EmitGlobalConstantVector(CP);
1252 return;
1255 printDataDirective(type, AddrSpace);
1256 EmitConstantValueOnly(CV);
1257 if (VerboseAsm) {
1258 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1259 SmallString<40> S;
1260 CI->getValue().toStringUnsigned(S, 16);
1261 O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
1264 O << '\n';
1267 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1268 // Target doesn't support this yet!
1269 abort();
1272 /// PrintSpecial - Print information related to the specified machine instr
1273 /// that is independent of the operand, and may be independent of the instr
1274 /// itself. This can be useful for portably encoding the comment character
1275 /// or other bits of target-specific knowledge into the asmstrings. The
1276 /// syntax used is ${:comment}. Targets can override this to add support
1277 /// for their own strange codes.
1278 void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1279 if (!strcmp(Code, "private")) {
1280 O << TAI->getPrivateGlobalPrefix();
1281 } else if (!strcmp(Code, "comment")) {
1282 if (VerboseAsm)
1283 O << TAI->getCommentString();
1284 } else if (!strcmp(Code, "uid")) {
1285 // Assign a unique ID to this machine instruction.
1286 static const MachineInstr *LastMI = 0;
1287 static const Function *F = 0;
1288 static unsigned Counter = 0U-1;
1290 // Comparing the address of MI isn't sufficient, because machineinstrs may
1291 // be allocated to the same address across functions.
1292 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1294 // If this is a new machine instruction, bump the counter.
1295 if (LastMI != MI || F != ThisF) {
1296 ++Counter;
1297 LastMI = MI;
1298 F = ThisF;
1300 O << Counter;
1301 } else {
1302 cerr << "Unknown special formatter '" << Code
1303 << "' for machine instr: " << *MI;
1304 exit(1);
1309 /// printInlineAsm - This method formats and prints the specified machine
1310 /// instruction that is an inline asm.
1311 void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1312 unsigned NumOperands = MI->getNumOperands();
1314 // Count the number of register definitions.
1315 unsigned NumDefs = 0;
1316 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1317 ++NumDefs)
1318 assert(NumDefs != NumOperands-1 && "No asm string?");
1320 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1322 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1323 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1325 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1326 // These are useful to see where empty asm's wound up.
1327 if (AsmStr[0] == 0) {
1328 O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1329 return;
1332 O << TAI->getInlineAsmStart() << "\n\t";
1334 // The variant of the current asmprinter.
1335 int AsmPrinterVariant = TAI->getAssemblerDialect();
1337 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1338 const char *LastEmitted = AsmStr; // One past the last character emitted.
1340 while (*LastEmitted) {
1341 switch (*LastEmitted) {
1342 default: {
1343 // Not a special case, emit the string section literally.
1344 const char *LiteralEnd = LastEmitted+1;
1345 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1346 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1347 ++LiteralEnd;
1348 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1349 O.write(LastEmitted, LiteralEnd-LastEmitted);
1350 LastEmitted = LiteralEnd;
1351 break;
1353 case '\n':
1354 ++LastEmitted; // Consume newline character.
1355 O << '\n'; // Indent code with newline.
1356 break;
1357 case '$': {
1358 ++LastEmitted; // Consume '$' character.
1359 bool Done = true;
1361 // Handle escapes.
1362 switch (*LastEmitted) {
1363 default: Done = false; break;
1364 case '$': // $$ -> $
1365 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1366 O << '$';
1367 ++LastEmitted; // Consume second '$' character.
1368 break;
1369 case '(': // $( -> same as GCC's { character.
1370 ++LastEmitted; // Consume '(' character.
1371 if (CurVariant != -1) {
1372 cerr << "Nested variants found in inline asm string: '"
1373 << AsmStr << "'\n";
1374 exit(1);
1376 CurVariant = 0; // We're in the first variant now.
1377 break;
1378 case '|':
1379 ++LastEmitted; // consume '|' character.
1380 if (CurVariant == -1)
1381 O << '|'; // this is gcc's behavior for | outside a variant
1382 else
1383 ++CurVariant; // We're in the next variant.
1384 break;
1385 case ')': // $) -> same as GCC's } char.
1386 ++LastEmitted; // consume ')' character.
1387 if (CurVariant == -1)
1388 O << '}'; // this is gcc's behavior for } outside a variant
1389 else
1390 CurVariant = -1;
1391 break;
1393 if (Done) break;
1395 bool HasCurlyBraces = false;
1396 if (*LastEmitted == '{') { // ${variable}
1397 ++LastEmitted; // Consume '{' character.
1398 HasCurlyBraces = true;
1401 // If we have ${:foo}, then this is not a real operand reference, it is a
1402 // "magic" string reference, just like in .td files. Arrange to call
1403 // PrintSpecial.
1404 if (HasCurlyBraces && *LastEmitted == ':') {
1405 ++LastEmitted;
1406 const char *StrStart = LastEmitted;
1407 const char *StrEnd = strchr(StrStart, '}');
1408 if (StrEnd == 0) {
1409 cerr << "Unterminated ${:foo} operand in inline asm string: '"
1410 << AsmStr << "'\n";
1411 exit(1);
1414 std::string Val(StrStart, StrEnd);
1415 PrintSpecial(MI, Val.c_str());
1416 LastEmitted = StrEnd+1;
1417 break;
1420 const char *IDStart = LastEmitted;
1421 char *IDEnd;
1422 errno = 0;
1423 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1424 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1425 cerr << "Bad $ operand number in inline asm string: '"
1426 << AsmStr << "'\n";
1427 exit(1);
1429 LastEmitted = IDEnd;
1431 char Modifier[2] = { 0, 0 };
1433 if (HasCurlyBraces) {
1434 // If we have curly braces, check for a modifier character. This
1435 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1436 if (*LastEmitted == ':') {
1437 ++LastEmitted; // Consume ':' character.
1438 if (*LastEmitted == 0) {
1439 cerr << "Bad ${:} expression in inline asm string: '"
1440 << AsmStr << "'\n";
1441 exit(1);
1444 Modifier[0] = *LastEmitted;
1445 ++LastEmitted; // Consume modifier character.
1448 if (*LastEmitted != '}') {
1449 cerr << "Bad ${} expression in inline asm string: '"
1450 << AsmStr << "'\n";
1451 exit(1);
1453 ++LastEmitted; // Consume '}' character.
1456 if ((unsigned)Val >= NumOperands-1) {
1457 cerr << "Invalid $ operand number in inline asm string: '"
1458 << AsmStr << "'\n";
1459 exit(1);
1462 // Okay, we finally have a value number. Ask the target to print this
1463 // operand!
1464 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1465 unsigned OpNo = 1;
1467 bool Error = false;
1469 // Scan to find the machine operand number for the operand.
1470 for (; Val; --Val) {
1471 if (OpNo >= MI->getNumOperands()) break;
1472 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1473 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1476 if (OpNo >= MI->getNumOperands()) {
1477 Error = true;
1478 } else {
1479 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1480 ++OpNo; // Skip over the ID number.
1482 if (Modifier[0]=='l') // labels are target independent
1483 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1484 false, false, false);
1485 else {
1486 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1487 if ((OpFlags & 7) == 4) {
1488 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1489 Modifier[0] ? Modifier : 0);
1490 } else {
1491 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1492 Modifier[0] ? Modifier : 0);
1496 if (Error) {
1497 cerr << "Invalid operand found in inline asm: '"
1498 << AsmStr << "'\n";
1499 MI->dump();
1500 exit(1);
1503 break;
1507 O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
1510 /// printImplicitDef - This method prints the specified machine instruction
1511 /// that is an implicit def.
1512 void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1513 if (VerboseAsm)
1514 O << '\t' << TAI->getCommentString() << " implicit-def: "
1515 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1518 /// printLabel - This method prints a local label used by debug and
1519 /// exception handling tables.
1520 void AsmPrinter::printLabel(const MachineInstr *MI) const {
1521 printLabel(MI->getOperand(0).getImm());
1524 void AsmPrinter::printLabel(unsigned Id) const {
1525 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1528 /// printDeclare - This method prints a local variable declaration used by
1529 /// debug tables.
1530 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1531 /// entry into dwarf table.
1532 void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1533 unsigned FI = MI->getOperand(0).getIndex();
1534 GlobalValue *GV = MI->getOperand(1).getGlobal();
1535 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1538 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1539 /// instruction, using the specified assembler variant. Targets should
1540 /// overried this to format as appropriate.
1541 bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1542 unsigned AsmVariant, const char *ExtraCode) {
1543 // Target doesn't support this yet!
1544 return true;
1547 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1548 unsigned AsmVariant,
1549 const char *ExtraCode) {
1550 // Target doesn't support this yet!
1551 return true;
1554 /// printBasicBlockLabel - This method prints the label for the specified
1555 /// MachineBasicBlock
1556 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1557 bool printAlign,
1558 bool printColon,
1559 bool printComment) const {
1560 if (printAlign) {
1561 unsigned Align = MBB->getAlignment();
1562 if (Align)
1563 EmitAlignment(Log2_32(Align));
1566 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1567 << MBB->getNumber();
1568 if (printColon)
1569 O << ':';
1570 if (printComment && MBB->getBasicBlock())
1571 O << '\t' << TAI->getCommentString() << ' '
1572 << MBB->getBasicBlock()->getNameStart();
1575 /// printPICJumpTableSetLabel - This method prints a set label for the
1576 /// specified MachineBasicBlock for a jumptable entry.
1577 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1578 const MachineBasicBlock *MBB) const {
1579 if (!TAI->getSetDirective())
1580 return;
1582 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1583 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1584 printBasicBlockLabel(MBB, false, false, false);
1585 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1586 << '_' << uid << '\n';
1589 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1590 const MachineBasicBlock *MBB) const {
1591 if (!TAI->getSetDirective())
1592 return;
1594 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1595 << getFunctionNumber() << '_' << uid << '_' << uid2
1596 << "_set_" << MBB->getNumber() << ',';
1597 printBasicBlockLabel(MBB, false, false, false);
1598 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1599 << '_' << uid << '_' << uid2 << '\n';
1602 /// printDataDirective - This method prints the asm directive for the
1603 /// specified type.
1604 void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1605 const TargetData *TD = TM.getTargetData();
1606 switch (type->getTypeID()) {
1607 case Type::IntegerTyID: {
1608 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1609 if (BitWidth <= 8)
1610 O << TAI->getData8bitsDirective(AddrSpace);
1611 else if (BitWidth <= 16)
1612 O << TAI->getData16bitsDirective(AddrSpace);
1613 else if (BitWidth <= 32)
1614 O << TAI->getData32bitsDirective(AddrSpace);
1615 else if (BitWidth <= 64) {
1616 assert(TAI->getData64bitsDirective(AddrSpace) &&
1617 "Target cannot handle 64-bit constant exprs!");
1618 O << TAI->getData64bitsDirective(AddrSpace);
1619 } else {
1620 assert(0 && "Target cannot handle given data directive width!");
1622 break;
1624 case Type::PointerTyID:
1625 if (TD->getPointerSize() == 8) {
1626 assert(TAI->getData64bitsDirective(AddrSpace) &&
1627 "Target cannot handle 64-bit pointer exprs!");
1628 O << TAI->getData64bitsDirective(AddrSpace);
1629 } else if (TD->getPointerSize() == 2) {
1630 O << TAI->getData16bitsDirective(AddrSpace);
1631 } else if (TD->getPointerSize() == 1) {
1632 O << TAI->getData8bitsDirective(AddrSpace);
1633 } else {
1634 O << TAI->getData32bitsDirective(AddrSpace);
1636 break;
1637 case Type::FloatTyID: case Type::DoubleTyID:
1638 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1639 assert (0 && "Should have already output floating point constant.");
1640 default:
1641 assert (0 && "Can't handle printing this type of thing");
1642 break;
1646 void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
1647 const char *Prefix) {
1648 if (Name[0]=='\"')
1649 O << '\"';
1650 O << TAI->getPrivateGlobalPrefix();
1651 if (Prefix) O << Prefix;
1652 if (Name[0]=='\"')
1653 O << '\"';
1654 if (Name[0]=='\"')
1655 O << Name[1];
1656 else
1657 O << Name;
1658 O << Suffix;
1659 if (Name[0]=='\"')
1660 O << '\"';
1663 void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
1664 printSuffixedName(Name.c_str(), Suffix);
1667 void AsmPrinter::printVisibility(const std::string& Name,
1668 unsigned Visibility) const {
1669 if (Visibility == GlobalValue::HiddenVisibility) {
1670 if (const char *Directive = TAI->getHiddenDirective())
1671 O << Directive << Name << '\n';
1672 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1673 if (const char *Directive = TAI->getProtectedDirective())
1674 O << Directive << Name << '\n';
1678 void AsmPrinter::printOffset(int64_t Offset) const {
1679 if (Offset > 0)
1680 O << '+' << Offset;
1681 else if (Offset < 0)
1682 O << Offset;
1685 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1686 if (!S->usesMetadata())
1687 return 0;
1689 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1690 if (GCPI != GCMetadataPrinters.end())
1691 return GCPI->second;
1693 const char *Name = S->getName().c_str();
1695 for (GCMetadataPrinterRegistry::iterator
1696 I = GCMetadataPrinterRegistry::begin(),
1697 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1698 if (strcmp(Name, I->getName()) == 0) {
1699 GCMetadataPrinter *GMP = I->instantiate();
1700 GMP->S = S;
1701 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1702 return GMP;
1705 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1706 abort();