Proper name 16 bit libcalls
[llvm/msp430.git] / lib / Linker / LinkModules.cpp
blob4a15d88d8f369649df64db2d640a77cf3976ce1e
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Assembly/Writer.h"
27 #include "llvm/Support/Streams.h"
28 #include "llvm/System/Path.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include <sstream>
31 using namespace llvm;
33 // Error - Simple wrapper function to conditionally assign to E and return true.
34 // This just makes error return conditions a little bit simpler...
35 static inline bool Error(std::string *E, const std::string &Message) {
36 if (E) *E = Message;
37 return true;
40 // Function: ResolveTypes()
42 // Description:
43 // Attempt to link the two specified types together.
45 // Inputs:
46 // DestTy - The type to which we wish to resolve.
47 // SrcTy - The original type which we want to resolve.
49 // Outputs:
50 // DestST - The symbol table in which the new type should be placed.
52 // Return value:
53 // true - There is an error and the types cannot yet be linked.
54 // false - No errors.
56 static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
57 if (DestTy == SrcTy) return false; // If already equal, noop
58 assert(DestTy && SrcTy && "Can't handle null types");
60 if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
61 // Type _is_ in module, just opaque...
62 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
63 } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
64 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
65 } else {
66 return true; // Cannot link types... not-equal and neither is opaque.
68 return false;
71 /// LinkerTypeMap - This implements a map of types that is stable
72 /// even if types are resolved/refined to other types. This is not a general
73 /// purpose map, it is specific to the linker's use.
74 namespace {
75 class LinkerTypeMap : public AbstractTypeUser {
76 typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
77 TheMapTy TheMap;
79 LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
80 void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
81 public:
82 LinkerTypeMap() {}
83 ~LinkerTypeMap() {
84 for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
85 E = TheMap.end(); I != E; ++I)
86 I->first->removeAbstractTypeUser(this);
89 /// lookup - Return the value for the specified type or null if it doesn't
90 /// exist.
91 const Type *lookup(const Type *Ty) const {
92 TheMapTy::const_iterator I = TheMap.find(Ty);
93 if (I != TheMap.end()) return I->second;
94 return 0;
97 /// erase - Remove the specified type, returning true if it was in the set.
98 bool erase(const Type *Ty) {
99 if (!TheMap.erase(Ty))
100 return false;
101 if (Ty->isAbstract())
102 Ty->removeAbstractTypeUser(this);
103 return true;
106 /// insert - This returns true if the pointer was new to the set, false if it
107 /// was already in the set.
108 bool insert(const Type *Src, const Type *Dst) {
109 if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
110 return false; // Already in map.
111 if (Src->isAbstract())
112 Src->addAbstractTypeUser(this);
113 return true;
116 protected:
117 /// refineAbstractType - The callback method invoked when an abstract type is
118 /// resolved to another type. An object must override this method to update
119 /// its internal state to reference NewType instead of OldType.
121 virtual void refineAbstractType(const DerivedType *OldTy,
122 const Type *NewTy) {
123 TheMapTy::iterator I = TheMap.find(OldTy);
124 const Type *DstTy = I->second;
126 TheMap.erase(I);
127 if (OldTy->isAbstract())
128 OldTy->removeAbstractTypeUser(this);
130 // Don't reinsert into the map if the key is concrete now.
131 if (NewTy->isAbstract())
132 insert(NewTy, DstTy);
135 /// The other case which AbstractTypeUsers must be aware of is when a type
136 /// makes the transition from being abstract (where it has clients on it's
137 /// AbstractTypeUsers list) to concrete (where it does not). This method
138 /// notifies ATU's when this occurs for a type.
139 virtual void typeBecameConcrete(const DerivedType *AbsTy) {
140 TheMap.erase(AbsTy);
141 AbsTy->removeAbstractTypeUser(this);
144 // for debugging...
145 virtual void dump() const {
146 cerr << "AbstractTypeSet!\n";
152 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
153 // recurses down into derived types, merging the used types if the parent types
154 // are compatible.
155 static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
156 LinkerTypeMap &Pointers) {
157 if (DstTy == SrcTy) return false; // If already equal, noop
159 // If we found our opaque type, resolve it now!
160 if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
161 return ResolveTypes(DstTy, SrcTy);
163 // Two types cannot be resolved together if they are of different primitive
164 // type. For example, we cannot resolve an int to a float.
165 if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
167 // If neither type is abstract, then they really are just different types.
168 if (!DstTy->isAbstract() && !SrcTy->isAbstract())
169 return true;
171 // Otherwise, resolve the used type used by this derived type...
172 switch (DstTy->getTypeID()) {
173 default:
174 return true;
175 case Type::FunctionTyID: {
176 const FunctionType *DstFT = cast<FunctionType>(DstTy);
177 const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
178 if (DstFT->isVarArg() != SrcFT->isVarArg() ||
179 DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
180 return true;
182 // Use TypeHolder's so recursive resolution won't break us.
183 PATypeHolder ST(SrcFT), DT(DstFT);
184 for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
185 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
186 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
187 return true;
189 return false;
191 case Type::StructTyID: {
192 const StructType *DstST = cast<StructType>(DstTy);
193 const StructType *SrcST = cast<StructType>(SrcTy);
194 if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
195 return true;
197 PATypeHolder ST(SrcST), DT(DstST);
198 for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
199 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
200 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
201 return true;
203 return false;
205 case Type::ArrayTyID: {
206 const ArrayType *DAT = cast<ArrayType>(DstTy);
207 const ArrayType *SAT = cast<ArrayType>(SrcTy);
208 if (DAT->getNumElements() != SAT->getNumElements()) return true;
209 return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
210 Pointers);
212 case Type::VectorTyID: {
213 const VectorType *DVT = cast<VectorType>(DstTy);
214 const VectorType *SVT = cast<VectorType>(SrcTy);
215 if (DVT->getNumElements() != SVT->getNumElements()) return true;
216 return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
217 Pointers);
219 case Type::PointerTyID: {
220 const PointerType *DstPT = cast<PointerType>(DstTy);
221 const PointerType *SrcPT = cast<PointerType>(SrcTy);
223 if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
224 return true;
226 // If this is a pointer type, check to see if we have already seen it. If
227 // so, we are in a recursive branch. Cut off the search now. We cannot use
228 // an associative container for this search, because the type pointers (keys
229 // in the container) change whenever types get resolved.
230 if (SrcPT->isAbstract())
231 if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
232 return ExistingDestTy != DstPT;
234 if (DstPT->isAbstract())
235 if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
236 return ExistingSrcTy != SrcPT;
237 // Otherwise, add the current pointers to the vector to stop recursion on
238 // this pair.
239 if (DstPT->isAbstract())
240 Pointers.insert(DstPT, SrcPT);
241 if (SrcPT->isAbstract())
242 Pointers.insert(SrcPT, DstPT);
244 return RecursiveResolveTypesI(DstPT->getElementType(),
245 SrcPT->getElementType(), Pointers);
250 static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
251 LinkerTypeMap PointerTypes;
252 return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
256 // LinkTypes - Go through the symbol table of the Src module and see if any
257 // types are named in the src module that are not named in the Dst module.
258 // Make sure there are no type name conflicts.
259 static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
260 TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
261 const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable();
263 // Look for a type plane for Type's...
264 TypeSymbolTable::const_iterator TI = SrcST->begin();
265 TypeSymbolTable::const_iterator TE = SrcST->end();
266 if (TI == TE) return false; // No named types, do nothing.
268 // Some types cannot be resolved immediately because they depend on other
269 // types being resolved to each other first. This contains a list of types we
270 // are waiting to recheck.
271 std::vector<std::string> DelayedTypesToResolve;
273 for ( ; TI != TE; ++TI ) {
274 const std::string &Name = TI->first;
275 const Type *RHS = TI->second;
277 // Check to see if this type name is already in the dest module.
278 Type *Entry = DestST->lookup(Name);
280 // If the name is just in the source module, bring it over to the dest.
281 if (Entry == 0) {
282 if (!Name.empty())
283 DestST->insert(Name, const_cast<Type*>(RHS));
284 } else if (ResolveTypes(Entry, RHS)) {
285 // They look different, save the types 'till later to resolve.
286 DelayedTypesToResolve.push_back(Name);
290 // Iteratively resolve types while we can...
291 while (!DelayedTypesToResolve.empty()) {
292 // Loop over all of the types, attempting to resolve them if possible...
293 unsigned OldSize = DelayedTypesToResolve.size();
295 // Try direct resolution by name...
296 for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
297 const std::string &Name = DelayedTypesToResolve[i];
298 Type *T1 = SrcST->lookup(Name);
299 Type *T2 = DestST->lookup(Name);
300 if (!ResolveTypes(T2, T1)) {
301 // We are making progress!
302 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
303 --i;
307 // Did we not eliminate any types?
308 if (DelayedTypesToResolve.size() == OldSize) {
309 // Attempt to resolve subelements of types. This allows us to merge these
310 // two types: { int* } and { opaque* }
311 for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
312 const std::string &Name = DelayedTypesToResolve[i];
313 if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
314 // We are making progress!
315 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
317 // Go back to the main loop, perhaps we can resolve directly by name
318 // now...
319 break;
323 // If we STILL cannot resolve the types, then there is something wrong.
324 if (DelayedTypesToResolve.size() == OldSize) {
325 // Remove the symbol name from the destination.
326 DelayedTypesToResolve.pop_back();
332 return false;
335 #ifndef NDEBUG
336 static void PrintMap(const std::map<const Value*, Value*> &M) {
337 for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
338 I != E; ++I) {
339 cerr << " Fr: " << (void*)I->first << " ";
340 I->first->dump();
341 cerr << " To: " << (void*)I->second << " ";
342 I->second->dump();
343 cerr << "\n";
346 #endif
349 // RemapOperand - Use ValueMap to convert constants from one module to another.
350 static Value *RemapOperand(const Value *In,
351 std::map<const Value*, Value*> &ValueMap) {
352 std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
353 if (I != ValueMap.end())
354 return I->second;
356 // Check to see if it's a constant that we are interested in transforming.
357 Value *Result = 0;
358 if (const Constant *CPV = dyn_cast<Constant>(In)) {
359 if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
360 isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
361 return const_cast<Constant*>(CPV); // Simple constants stay identical.
363 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
364 std::vector<Constant*> Operands(CPA->getNumOperands());
365 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
366 Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
367 Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
368 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
369 std::vector<Constant*> Operands(CPS->getNumOperands());
370 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
371 Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
372 Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
373 } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
374 Result = const_cast<Constant*>(CPV);
375 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
376 std::vector<Constant*> Operands(CP->getNumOperands());
377 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
378 Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
379 Result = ConstantVector::get(Operands);
380 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
381 std::vector<Constant*> Ops;
382 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
383 Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
384 Result = CE->getWithOperands(Ops);
385 } else {
386 assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
387 assert(0 && "Unknown type of derived type constant value!");
389 } else if (isa<InlineAsm>(In)) {
390 Result = const_cast<Value*>(In);
393 // Cache the mapping in our local map structure
394 if (Result) {
395 ValueMap[In] = Result;
396 return Result;
399 #ifndef NDEBUG
400 cerr << "LinkModules ValueMap: \n";
401 PrintMap(ValueMap);
403 cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
404 assert(0 && "Couldn't remap value!");
405 #endif
406 return 0;
409 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
410 /// in the symbol table. This is good for all clients except for us. Go
411 /// through the trouble to force this back.
412 static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
413 assert(GV->getName() != Name && "Can't force rename to self");
414 ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
416 // If there is a conflict, rename the conflict.
417 if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
418 assert(ConflictGV->hasLocalLinkage() &&
419 "Not conflicting with a static global, should link instead!");
420 GV->takeName(ConflictGV);
421 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
422 assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
423 } else {
424 GV->setName(Name); // Force the name back
428 /// CopyGVAttributes - copy additional attributes (those not needed to construct
429 /// a GlobalValue) from the SrcGV to the DestGV.
430 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
431 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
432 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
433 DestGV->copyAttributesFrom(SrcGV);
434 DestGV->setAlignment(Alignment);
437 /// GetLinkageResult - This analyzes the two global values and determines what
438 /// the result will look like in the destination module. In particular, it
439 /// computes the resultant linkage type, computes whether the global in the
440 /// source should be copied over to the destination (replacing the existing
441 /// one), and computes whether this linkage is an error or not. It also performs
442 /// visibility checks: we cannot link together two symbols with different
443 /// visibilities.
444 static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
445 GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
446 std::string *Err) {
447 assert((!Dest || !Src->hasLocalLinkage()) &&
448 "If Src has internal linkage, Dest shouldn't be set!");
449 if (!Dest) {
450 // Linking something to nothing.
451 LinkFromSrc = true;
452 LT = Src->getLinkage();
453 } else if (Src->isDeclaration()) {
454 // If Src is external or if both Src & Dest are external.. Just link the
455 // external globals, we aren't adding anything.
456 if (Src->hasDLLImportLinkage()) {
457 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
458 if (Dest->isDeclaration()) {
459 LinkFromSrc = true;
460 LT = Src->getLinkage();
462 } else if (Dest->hasExternalWeakLinkage()) {
463 // If the Dest is weak, use the source linkage.
464 LinkFromSrc = true;
465 LT = Src->getLinkage();
466 } else {
467 LinkFromSrc = false;
468 LT = Dest->getLinkage();
470 } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
471 // If Dest is external but Src is not:
472 LinkFromSrc = true;
473 LT = Src->getLinkage();
474 } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
475 if (Src->getLinkage() != Dest->getLinkage())
476 return Error(Err, "Linking globals named '" + Src->getName() +
477 "': can only link appending global with another appending global!");
478 LinkFromSrc = true; // Special cased.
479 LT = Src->getLinkage();
480 } else if (Src->isWeakForLinker()) {
481 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
482 // or DLL* linkage.
483 if (Dest->hasExternalWeakLinkage() ||
484 Dest->hasAvailableExternallyLinkage() ||
485 (Dest->hasLinkOnceLinkage() &&
486 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
487 LinkFromSrc = true;
488 LT = Src->getLinkage();
489 } else {
490 LinkFromSrc = false;
491 LT = Dest->getLinkage();
493 } else if (Dest->isWeakForLinker()) {
494 // At this point we know that Src has External* or DLL* linkage.
495 if (Src->hasExternalWeakLinkage()) {
496 LinkFromSrc = false;
497 LT = Dest->getLinkage();
498 } else {
499 LinkFromSrc = true;
500 LT = GlobalValue::ExternalLinkage;
502 } else {
503 assert((Dest->hasExternalLinkage() ||
504 Dest->hasDLLImportLinkage() ||
505 Dest->hasDLLExportLinkage() ||
506 Dest->hasExternalWeakLinkage()) &&
507 (Src->hasExternalLinkage() ||
508 Src->hasDLLImportLinkage() ||
509 Src->hasDLLExportLinkage() ||
510 Src->hasExternalWeakLinkage()) &&
511 "Unexpected linkage type!");
512 return Error(Err, "Linking globals named '" + Src->getName() +
513 "': symbol multiply defined!");
516 // Check visibility
517 if (Dest && Src->getVisibility() != Dest->getVisibility())
518 if (!Src->isDeclaration() && !Dest->isDeclaration())
519 return Error(Err, "Linking globals named '" + Src->getName() +
520 "': symbols have different visibilities!");
521 return false;
524 // LinkGlobals - Loop through the global variables in the src module and merge
525 // them into the dest module.
526 static bool LinkGlobals(Module *Dest, const Module *Src,
527 std::map<const Value*, Value*> &ValueMap,
528 std::multimap<std::string, GlobalVariable *> &AppendingVars,
529 std::string *Err) {
530 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
532 // Loop over all of the globals in the src module, mapping them over as we go
533 for (Module::const_global_iterator I = Src->global_begin(),
534 E = Src->global_end(); I != E; ++I) {
535 const GlobalVariable *SGV = I;
536 GlobalValue *DGV = 0;
538 // Check to see if may have to link the global with the global, alias or
539 // function.
540 if (SGV->hasName() && !SGV->hasLocalLinkage())
541 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getNameStart(),
542 SGV->getNameEnd()));
544 // If we found a global with the same name in the dest module, but it has
545 // internal linkage, we are really not doing any linkage here.
546 if (DGV && DGV->hasLocalLinkage())
547 DGV = 0;
549 // If types don't agree due to opaque types, try to resolve them.
550 if (DGV && DGV->getType() != SGV->getType())
551 RecursiveResolveTypes(SGV->getType(), DGV->getType());
553 assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
554 SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
555 "Global must either be external or have an initializer!");
557 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
558 bool LinkFromSrc = false;
559 if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
560 return true;
562 if (DGV == 0) {
563 // No linking to be performed, simply create an identical version of the
564 // symbol over in the dest module... the initializer will be filled in
565 // later by LinkGlobalInits.
566 GlobalVariable *NewDGV =
567 new GlobalVariable(SGV->getType()->getElementType(),
568 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
569 SGV->getName(), Dest, false,
570 SGV->getType()->getAddressSpace());
571 // Propagate alignment, visibility and section info.
572 CopyGVAttributes(NewDGV, SGV);
574 // If the LLVM runtime renamed the global, but it is an externally visible
575 // symbol, DGV must be an existing global with internal linkage. Rename
576 // it.
577 if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
578 ForceRenaming(NewDGV, SGV->getName());
580 // Make sure to remember this mapping.
581 ValueMap[SGV] = NewDGV;
583 // Keep track that this is an appending variable.
584 if (SGV->hasAppendingLinkage())
585 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
586 continue;
589 // If the visibilities of the symbols disagree and the destination is a
590 // prototype, take the visibility of its input.
591 if (DGV->isDeclaration())
592 DGV->setVisibility(SGV->getVisibility());
594 if (DGV->hasAppendingLinkage()) {
595 // No linking is performed yet. Just insert a new copy of the global, and
596 // keep track of the fact that it is an appending variable in the
597 // AppendingVars map. The name is cleared out so that no linkage is
598 // performed.
599 GlobalVariable *NewDGV =
600 new GlobalVariable(SGV->getType()->getElementType(),
601 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
602 "", Dest, false,
603 SGV->getType()->getAddressSpace());
605 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
606 NewDGV->setAlignment(DGV->getAlignment());
607 // Propagate alignment, section and visibility info.
608 CopyGVAttributes(NewDGV, SGV);
610 // Make sure to remember this mapping...
611 ValueMap[SGV] = NewDGV;
613 // Keep track that this is an appending variable...
614 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
615 continue;
618 if (LinkFromSrc) {
619 if (isa<GlobalAlias>(DGV))
620 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
621 "': symbol multiple defined");
623 // If the types don't match, and if we are to link from the source, nuke
624 // DGV and create a new one of the appropriate type. Note that the thing
625 // we are replacing may be a function (if a prototype, weak, etc) or a
626 // global variable.
627 GlobalVariable *NewDGV =
628 new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(),
629 NewLinkage, /*init*/0, DGV->getName(), Dest, false,
630 SGV->getType()->getAddressSpace());
632 // Propagate alignment, section, and visibility info.
633 CopyGVAttributes(NewDGV, SGV);
634 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
636 // DGV will conflict with NewDGV because they both had the same
637 // name. We must erase this now so ForceRenaming doesn't assert
638 // because DGV might not have internal linkage.
639 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
640 Var->eraseFromParent();
641 else
642 cast<Function>(DGV)->eraseFromParent();
643 DGV = NewDGV;
645 // If the symbol table renamed the global, but it is an externally visible
646 // symbol, DGV must be an existing global with internal linkage. Rename.
647 if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
648 ForceRenaming(NewDGV, SGV->getName());
650 // Inherit const as appropriate.
651 NewDGV->setConstant(SGV->isConstant());
653 // Make sure to remember this mapping.
654 ValueMap[SGV] = NewDGV;
655 continue;
658 // Not "link from source", keep the one in the DestModule and remap the
659 // input onto it.
661 // Special case for const propagation.
662 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
663 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
664 DGVar->setConstant(true);
666 // SGV is global, but DGV is alias.
667 if (isa<GlobalAlias>(DGV)) {
668 // The only valid mappings are:
669 // - SGV is external declaration, which is effectively a no-op.
670 // - SGV is weak, when we just need to throw SGV out.
671 if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
672 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
673 "': symbol multiple defined");
676 // Set calculated linkage
677 DGV->setLinkage(NewLinkage);
679 // Make sure to remember this mapping...
680 ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
682 return false;
685 static GlobalValue::LinkageTypes
686 CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
687 GlobalValue::LinkageTypes SL = SGV->getLinkage();
688 GlobalValue::LinkageTypes DL = DGV->getLinkage();
689 if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
690 return GlobalValue::ExternalLinkage;
691 else if (SL == GlobalValue::WeakAnyLinkage ||
692 DL == GlobalValue::WeakAnyLinkage)
693 return GlobalValue::WeakAnyLinkage;
694 else if (SL == GlobalValue::WeakODRLinkage ||
695 DL == GlobalValue::WeakODRLinkage)
696 return GlobalValue::WeakODRLinkage;
697 else if (SL == GlobalValue::InternalLinkage &&
698 DL == GlobalValue::InternalLinkage)
699 return GlobalValue::InternalLinkage;
700 else {
701 assert (SL == GlobalValue::PrivateLinkage &&
702 DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
703 return GlobalValue::PrivateLinkage;
707 // LinkAlias - Loop through the alias in the src module and link them into the
708 // dest module. We're assuming, that all functions/global variables were already
709 // linked in.
710 static bool LinkAlias(Module *Dest, const Module *Src,
711 std::map<const Value*, Value*> &ValueMap,
712 std::string *Err) {
713 // Loop over all alias in the src module
714 for (Module::const_alias_iterator I = Src->alias_begin(),
715 E = Src->alias_end(); I != E; ++I) {
716 const GlobalAlias *SGA = I;
717 const GlobalValue *SAliasee = SGA->getAliasedGlobal();
718 GlobalAlias *NewGA = NULL;
720 // Globals were already linked, thus we can just query ValueMap for variant
721 // of SAliasee in Dest.
722 std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
723 assert(VMI != ValueMap.end() && "Aliasee not linked");
724 GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
725 GlobalValue* DGV = NULL;
727 // Try to find something 'similar' to SGA in destination module.
728 if (!DGV && !SGA->hasLocalLinkage()) {
729 DGV = Dest->getNamedAlias(SGA->getName());
731 // If types don't agree due to opaque types, try to resolve them.
732 if (DGV && DGV->getType() != SGA->getType())
733 RecursiveResolveTypes(SGA->getType(), DGV->getType());
736 if (!DGV && !SGA->hasLocalLinkage()) {
737 DGV = Dest->getGlobalVariable(SGA->getName());
739 // If types don't agree due to opaque types, try to resolve them.
740 if (DGV && DGV->getType() != SGA->getType())
741 RecursiveResolveTypes(SGA->getType(), DGV->getType());
744 if (!DGV && !SGA->hasLocalLinkage()) {
745 DGV = Dest->getFunction(SGA->getName());
747 // If types don't agree due to opaque types, try to resolve them.
748 if (DGV && DGV->getType() != SGA->getType())
749 RecursiveResolveTypes(SGA->getType(), DGV->getType());
752 // No linking to be performed on internal stuff.
753 if (DGV && DGV->hasLocalLinkage())
754 DGV = NULL;
756 if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
757 // Types are known to be the same, check whether aliasees equal. As
758 // globals are already linked we just need query ValueMap to find the
759 // mapping.
760 if (DAliasee == DGA->getAliasedGlobal()) {
761 // This is just two copies of the same alias. Propagate linkage, if
762 // necessary.
763 DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
765 NewGA = DGA;
766 // Proceed to 'common' steps
767 } else
768 return Error(Err, "Alias Collision on '" + SGA->getName()+
769 "': aliases have different aliasees");
770 } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
771 // The only allowed way is to link alias with external declaration or weak
772 // symbol..
773 if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
774 // But only if aliasee is global too...
775 if (!isa<GlobalVariable>(DAliasee))
776 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
777 "': aliasee is not global variable");
779 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
780 SGA->getName(), DAliasee, Dest);
781 CopyGVAttributes(NewGA, SGA);
783 // Any uses of DGV need to change to NewGA, with cast, if needed.
784 if (SGA->getType() != DGVar->getType())
785 DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
786 DGVar->getType()));
787 else
788 DGVar->replaceAllUsesWith(NewGA);
790 // DGVar will conflict with NewGA because they both had the same
791 // name. We must erase this now so ForceRenaming doesn't assert
792 // because DGV might not have internal linkage.
793 DGVar->eraseFromParent();
795 // Proceed to 'common' steps
796 } else
797 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
798 "': symbol multiple defined");
799 } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
800 // The only allowed way is to link alias with external declaration or weak
801 // symbol...
802 if (DF->isDeclaration() || DF->isWeakForLinker()) {
803 // But only if aliasee is function too...
804 if (!isa<Function>(DAliasee))
805 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
806 "': aliasee is not function");
808 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
809 SGA->getName(), DAliasee, Dest);
810 CopyGVAttributes(NewGA, SGA);
812 // Any uses of DF need to change to NewGA, with cast, if needed.
813 if (SGA->getType() != DF->getType())
814 DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
815 DF->getType()));
816 else
817 DF->replaceAllUsesWith(NewGA);
819 // DF will conflict with NewGA because they both had the same
820 // name. We must erase this now so ForceRenaming doesn't assert
821 // because DF might not have internal linkage.
822 DF->eraseFromParent();
824 // Proceed to 'common' steps
825 } else
826 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
827 "': symbol multiple defined");
828 } else {
829 // No linking to be performed, simply create an identical version of the
830 // alias over in the dest module...
832 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
833 SGA->getName(), DAliasee, Dest);
834 CopyGVAttributes(NewGA, SGA);
836 // Proceed to 'common' steps
839 assert(NewGA && "No alias was created in destination module!");
841 // If the symbol table renamed the alias, but it is an externally visible
842 // symbol, DGA must be an global value with internal linkage. Rename it.
843 if (NewGA->getName() != SGA->getName() &&
844 !NewGA->hasLocalLinkage())
845 ForceRenaming(NewGA, SGA->getName());
847 // Remember this mapping so uses in the source module get remapped
848 // later by RemapOperand.
849 ValueMap[SGA] = NewGA;
852 return false;
856 // LinkGlobalInits - Update the initializers in the Dest module now that all
857 // globals that may be referenced are in Dest.
858 static bool LinkGlobalInits(Module *Dest, const Module *Src,
859 std::map<const Value*, Value*> &ValueMap,
860 std::string *Err) {
861 // Loop over all of the globals in the src module, mapping them over as we go
862 for (Module::const_global_iterator I = Src->global_begin(),
863 E = Src->global_end(); I != E; ++I) {
864 const GlobalVariable *SGV = I;
866 if (SGV->hasInitializer()) { // Only process initialized GV's
867 // Figure out what the initializer looks like in the dest module...
868 Constant *SInit =
869 cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
870 // Grab destination global variable or alias.
871 GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
873 // If dest if global variable, check that initializers match.
874 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
875 if (DGVar->hasInitializer()) {
876 if (SGV->hasExternalLinkage()) {
877 if (DGVar->getInitializer() != SInit)
878 return Error(Err, "Global Variable Collision on '" +
879 SGV->getName() +
880 "': global variables have different initializers");
881 } else if (DGVar->isWeakForLinker()) {
882 // Nothing is required, mapped values will take the new global
883 // automatically.
884 } else if (SGV->isWeakForLinker()) {
885 // Nothing is required, mapped values will take the new global
886 // automatically.
887 } else if (DGVar->hasAppendingLinkage()) {
888 assert(0 && "Appending linkage unimplemented!");
889 } else {
890 assert(0 && "Unknown linkage!");
892 } else {
893 // Copy the initializer over now...
894 DGVar->setInitializer(SInit);
896 } else {
897 // Destination is alias, the only valid situation is when source is
898 // weak. Also, note, that we already checked linkage in LinkGlobals(),
899 // thus we assert here.
900 // FIXME: Should we weaken this assumption, 'dereference' alias and
901 // check for initializer of aliasee?
902 assert(SGV->isWeakForLinker());
906 return false;
909 // LinkFunctionProtos - Link the functions together between the two modules,
910 // without doing function bodies... this just adds external function prototypes
911 // to the Dest function...
913 static bool LinkFunctionProtos(Module *Dest, const Module *Src,
914 std::map<const Value*, Value*> &ValueMap,
915 std::string *Err) {
916 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
918 // Loop over all of the functions in the src module, mapping them over
919 for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
920 const Function *SF = I; // SrcFunction
921 GlobalValue *DGV = 0;
923 // Check to see if may have to link the function with the global, alias or
924 // function.
925 if (SF->hasName() && !SF->hasLocalLinkage())
926 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getNameStart(),
927 SF->getNameEnd()));
929 // If we found a global with the same name in the dest module, but it has
930 // internal linkage, we are really not doing any linkage here.
931 if (DGV && DGV->hasLocalLinkage())
932 DGV = 0;
934 // If types don't agree due to opaque types, try to resolve them.
935 if (DGV && DGV->getType() != SF->getType())
936 RecursiveResolveTypes(SF->getType(), DGV->getType());
938 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
939 bool LinkFromSrc = false;
940 if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
941 return true;
943 // If there is no linkage to be performed, just bring over SF without
944 // modifying it.
945 if (DGV == 0) {
946 // Function does not already exist, simply insert an function signature
947 // identical to SF into the dest module.
948 Function *NewDF = Function::Create(SF->getFunctionType(),
949 SF->getLinkage(),
950 SF->getName(), Dest);
951 CopyGVAttributes(NewDF, SF);
953 // If the LLVM runtime renamed the function, but it is an externally
954 // visible symbol, DF must be an existing function with internal linkage.
955 // Rename it.
956 if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
957 ForceRenaming(NewDF, SF->getName());
959 // ... and remember this mapping...
960 ValueMap[SF] = NewDF;
961 continue;
964 // If the visibilities of the symbols disagree and the destination is a
965 // prototype, take the visibility of its input.
966 if (DGV->isDeclaration())
967 DGV->setVisibility(SF->getVisibility());
969 if (LinkFromSrc) {
970 if (isa<GlobalAlias>(DGV))
971 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
972 "': symbol multiple defined");
974 // We have a definition of the same name but different type in the
975 // source module. Copy the prototype to the destination and replace
976 // uses of the destination's prototype with the new prototype.
977 Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
978 SF->getName(), Dest);
979 CopyGVAttributes(NewDF, SF);
981 // Any uses of DF need to change to NewDF, with cast
982 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
984 // DF will conflict with NewDF because they both had the same. We must
985 // erase this now so ForceRenaming doesn't assert because DF might
986 // not have internal linkage.
987 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
988 Var->eraseFromParent();
989 else
990 cast<Function>(DGV)->eraseFromParent();
992 // If the symbol table renamed the function, but it is an externally
993 // visible symbol, DF must be an existing function with internal
994 // linkage. Rename it.
995 if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
996 ForceRenaming(NewDF, SF->getName());
998 // Remember this mapping so uses in the source module get remapped
999 // later by RemapOperand.
1000 ValueMap[SF] = NewDF;
1001 continue;
1004 // Not "link from source", keep the one in the DestModule and remap the
1005 // input onto it.
1007 if (isa<GlobalAlias>(DGV)) {
1008 // The only valid mappings are:
1009 // - SF is external declaration, which is effectively a no-op.
1010 // - SF is weak, when we just need to throw SF out.
1011 if (!SF->isDeclaration() && !SF->isWeakForLinker())
1012 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1013 "': symbol multiple defined");
1016 // Set calculated linkage
1017 DGV->setLinkage(NewLinkage);
1019 // Make sure to remember this mapping.
1020 ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1022 return false;
1025 // LinkFunctionBody - Copy the source function over into the dest function and
1026 // fix up references to values. At this point we know that Dest is an external
1027 // function, and that Src is not.
1028 static bool LinkFunctionBody(Function *Dest, Function *Src,
1029 std::map<const Value*, Value*> &ValueMap,
1030 std::string *Err) {
1031 assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1033 // Go through and convert function arguments over, remembering the mapping.
1034 Function::arg_iterator DI = Dest->arg_begin();
1035 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1036 I != E; ++I, ++DI) {
1037 DI->setName(I->getName()); // Copy the name information over...
1039 // Add a mapping to our local map
1040 ValueMap[I] = DI;
1043 // Splice the body of the source function into the dest function.
1044 Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1046 // At this point, all of the instructions and values of the function are now
1047 // copied over. The only problem is that they are still referencing values in
1048 // the Source function as operands. Loop through all of the operands of the
1049 // functions and patch them up to point to the local versions...
1051 for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1052 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1053 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1054 OI != OE; ++OI)
1055 if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1056 *OI = RemapOperand(*OI, ValueMap);
1058 // There is no need to map the arguments anymore.
1059 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1060 I != E; ++I)
1061 ValueMap.erase(I);
1063 return false;
1067 // LinkFunctionBodies - Link in the function bodies that are defined in the
1068 // source module into the DestModule. This consists basically of copying the
1069 // function over and fixing up references to values.
1070 static bool LinkFunctionBodies(Module *Dest, Module *Src,
1071 std::map<const Value*, Value*> &ValueMap,
1072 std::string *Err) {
1074 // Loop over all of the functions in the src module, mapping them over as we
1075 // go
1076 for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1077 if (!SF->isDeclaration()) { // No body if function is external
1078 Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1080 // DF not external SF external?
1081 if (DF && DF->isDeclaration())
1082 // Only provide the function body if there isn't one already.
1083 if (LinkFunctionBody(DF, SF, ValueMap, Err))
1084 return true;
1087 return false;
1090 // LinkAppendingVars - If there were any appending global variables, link them
1091 // together now. Return true on error.
1092 static bool LinkAppendingVars(Module *M,
1093 std::multimap<std::string, GlobalVariable *> &AppendingVars,
1094 std::string *ErrorMsg) {
1095 if (AppendingVars.empty()) return false; // Nothing to do.
1097 // Loop over the multimap of appending vars, processing any variables with the
1098 // same name, forming a new appending global variable with both of the
1099 // initializers merged together, then rewrite references to the old variables
1100 // and delete them.
1101 std::vector<Constant*> Inits;
1102 while (AppendingVars.size() > 1) {
1103 // Get the first two elements in the map...
1104 std::multimap<std::string,
1105 GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1107 // If the first two elements are for different names, there is no pair...
1108 // Otherwise there is a pair, so link them together...
1109 if (First->first == Second->first) {
1110 GlobalVariable *G1 = First->second, *G2 = Second->second;
1111 const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1112 const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1114 // Check to see that they two arrays agree on type...
1115 if (T1->getElementType() != T2->getElementType())
1116 return Error(ErrorMsg,
1117 "Appending variables with different element types need to be linked!");
1118 if (G1->isConstant() != G2->isConstant())
1119 return Error(ErrorMsg,
1120 "Appending variables linked with different const'ness!");
1122 if (G1->getAlignment() != G2->getAlignment())
1123 return Error(ErrorMsg,
1124 "Appending variables with different alignment need to be linked!");
1126 if (G1->getVisibility() != G2->getVisibility())
1127 return Error(ErrorMsg,
1128 "Appending variables with different visibility need to be linked!");
1130 if (G1->getSection() != G2->getSection())
1131 return Error(ErrorMsg,
1132 "Appending variables with different section name need to be linked!");
1134 unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1135 ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
1137 G1->setName(""); // Clear G1's name in case of a conflict!
1139 // Create the new global variable...
1140 GlobalVariable *NG =
1141 new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
1142 /*init*/0, First->first, M, G1->isThreadLocal(),
1143 G1->getType()->getAddressSpace());
1145 // Propagate alignment, visibility and section info.
1146 CopyGVAttributes(NG, G1);
1148 // Merge the initializer...
1149 Inits.reserve(NewSize);
1150 if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1151 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1152 Inits.push_back(I->getOperand(i));
1153 } else {
1154 assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1155 Constant *CV = Constant::getNullValue(T1->getElementType());
1156 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1157 Inits.push_back(CV);
1159 if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1160 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1161 Inits.push_back(I->getOperand(i));
1162 } else {
1163 assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1164 Constant *CV = Constant::getNullValue(T2->getElementType());
1165 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1166 Inits.push_back(CV);
1168 NG->setInitializer(ConstantArray::get(NewType, Inits));
1169 Inits.clear();
1171 // Replace any uses of the two global variables with uses of the new
1172 // global...
1174 // FIXME: This should rewrite simple/straight-forward uses such as
1175 // getelementptr instructions to not use the Cast!
1176 G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
1177 G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
1179 // Remove the two globals from the module now...
1180 M->getGlobalList().erase(G1);
1181 M->getGlobalList().erase(G2);
1183 // Put the new global into the AppendingVars map so that we can handle
1184 // linking of more than two vars...
1185 Second->second = NG;
1187 AppendingVars.erase(First);
1190 return false;
1193 static bool ResolveAliases(Module *Dest) {
1194 for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1195 I != E; ++I)
1196 if (const GlobalValue *GV = I->resolveAliasedGlobal())
1197 if (GV != I && !GV->isDeclaration())
1198 I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1200 return false;
1203 // LinkModules - This function links two modules together, with the resulting
1204 // left module modified to be the composite of the two input modules. If an
1205 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1206 // the problem. Upon failure, the Dest module could be in a modified state, and
1207 // shouldn't be relied on to be consistent.
1208 bool
1209 Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1210 assert(Dest != 0 && "Invalid Destination module");
1211 assert(Src != 0 && "Invalid Source Module");
1213 if (Dest->getDataLayout().empty()) {
1214 if (!Src->getDataLayout().empty()) {
1215 Dest->setDataLayout(Src->getDataLayout());
1216 } else {
1217 std::string DataLayout;
1219 if (Dest->getEndianness() == Module::AnyEndianness) {
1220 if (Src->getEndianness() == Module::BigEndian)
1221 DataLayout.append("E");
1222 else if (Src->getEndianness() == Module::LittleEndian)
1223 DataLayout.append("e");
1226 if (Dest->getPointerSize() == Module::AnyPointerSize) {
1227 if (Src->getPointerSize() == Module::Pointer64)
1228 DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1229 else if (Src->getPointerSize() == Module::Pointer32)
1230 DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1232 Dest->setDataLayout(DataLayout);
1236 // Copy the target triple from the source to dest if the dest's is empty.
1237 if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1238 Dest->setTargetTriple(Src->getTargetTriple());
1240 if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1241 Src->getDataLayout() != Dest->getDataLayout())
1242 cerr << "WARNING: Linking two modules of different data layouts!\n";
1243 if (!Src->getTargetTriple().empty() &&
1244 Dest->getTargetTriple() != Src->getTargetTriple())
1245 cerr << "WARNING: Linking two modules of different target triples!\n";
1247 // Append the module inline asm string.
1248 if (!Src->getModuleInlineAsm().empty()) {
1249 if (Dest->getModuleInlineAsm().empty())
1250 Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1251 else
1252 Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1253 Src->getModuleInlineAsm());
1256 // Update the destination module's dependent libraries list with the libraries
1257 // from the source module. There's no opportunity for duplicates here as the
1258 // Module ensures that duplicate insertions are discarded.
1259 for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1260 SI != SE; ++SI)
1261 Dest->addLibrary(*SI);
1263 // LinkTypes - Go through the symbol table of the Src module and see if any
1264 // types are named in the src module that are not named in the Dst module.
1265 // Make sure there are no type name conflicts.
1266 if (LinkTypes(Dest, Src, ErrorMsg))
1267 return true;
1269 // ValueMap - Mapping of values from what they used to be in Src, to what they
1270 // are now in Dest.
1271 std::map<const Value*, Value*> ValueMap;
1273 // AppendingVars - Keep track of global variables in the destination module
1274 // with appending linkage. After the module is linked together, they are
1275 // appended and the module is rewritten.
1276 std::multimap<std::string, GlobalVariable *> AppendingVars;
1277 for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1278 I != E; ++I) {
1279 // Add all of the appending globals already in the Dest module to
1280 // AppendingVars.
1281 if (I->hasAppendingLinkage())
1282 AppendingVars.insert(std::make_pair(I->getName(), I));
1285 // Insert all of the globals in src into the Dest module... without linking
1286 // initializers (which could refer to functions not yet mapped over).
1287 if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1288 return true;
1290 // Link the functions together between the two modules, without doing function
1291 // bodies... this just adds external function prototypes to the Dest
1292 // function... We do this so that when we begin processing function bodies,
1293 // all of the global values that may be referenced are available in our
1294 // ValueMap.
1295 if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1296 return true;
1298 // If there were any alias, link them now. We really need to do this now,
1299 // because all of the aliases that may be referenced need to be available in
1300 // ValueMap
1301 if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1303 // Update the initializers in the Dest module now that all globals that may
1304 // be referenced are in Dest.
1305 if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1307 // Link in the function bodies that are defined in the source module into the
1308 // DestModule. This consists basically of copying the function over and
1309 // fixing up references to values.
1310 if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1312 // If there were any appending global variables, link them together now.
1313 if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1315 // Resolve all uses of aliases with aliasees
1316 if (ResolveAliases(Dest)) return true;
1318 // If the source library's module id is in the dependent library list of the
1319 // destination library, remove it since that module is now linked in.
1320 sys::Path modId;
1321 modId.set(Src->getModuleIdentifier());
1322 if (!modId.isEmpty())
1323 Dest->removeLibrary(modId.getBasename());
1325 return false;
1328 // vim: sw=2