1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
35 //===----------------------------------------------------------------------===//
36 // ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
39 /// BitCastConstantVector - Convert the specified ConstantVector node to the
40 /// specified vector type. At this point, we know that the elements of the
41 /// input vector constant are all simple integer or FP values.
42 static Constant
*BitCastConstantVector(ConstantVector
*CV
,
43 const VectorType
*DstTy
) {
44 // If this cast changes element count then we can't handle it here:
45 // doing so requires endianness information. This should be handled by
46 // Analysis/ConstantFolding.cpp
47 unsigned NumElts
= DstTy
->getNumElements();
48 if (NumElts
!= CV
->getNumOperands())
51 // Check to verify that all elements of the input are simple.
52 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
53 if (!isa
<ConstantInt
>(CV
->getOperand(i
)) &&
54 !isa
<ConstantFP
>(CV
->getOperand(i
)))
58 // Bitcast each element now.
59 std::vector
<Constant
*> Result
;
60 const Type
*DstEltTy
= DstTy
->getElementType();
61 for (unsigned i
= 0; i
!= NumElts
; ++i
)
62 Result
.push_back(ConstantExpr::getBitCast(CV
->getOperand(i
), DstEltTy
));
63 return ConstantVector::get(Result
);
66 /// This function determines which opcode to use to fold two constant cast
67 /// expressions together. It uses CastInst::isEliminableCastPair to determine
68 /// the opcode. Consequently its just a wrapper around that function.
69 /// @brief Determine if it is valid to fold a cast of a cast
72 unsigned opc
, ///< opcode of the second cast constant expression
73 const ConstantExpr
*Op
, ///< the first cast constant expression
74 const Type
*DstTy
///< desintation type of the first cast
76 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
77 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
78 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
80 // The the types and opcodes for the two Cast constant expressions
81 const Type
*SrcTy
= Op
->getOperand(0)->getType();
82 const Type
*MidTy
= Op
->getType();
83 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
84 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
86 // Let CastInst::isEliminableCastPair do the heavy lifting.
87 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
91 static Constant
*FoldBitCast(Constant
*V
, const Type
*DestTy
) {
92 const Type
*SrcTy
= V
->getType();
94 return V
; // no-op cast
96 // Check to see if we are casting a pointer to an aggregate to a pointer to
97 // the first element. If so, return the appropriate GEP instruction.
98 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
99 if (const PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
100 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()) {
101 SmallVector
<Value
*, 8> IdxList
;
102 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
103 const Type
*ElTy
= PTy
->getElementType();
104 while (ElTy
!= DPTy
->getElementType()) {
105 if (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
106 if (STy
->getNumElements() == 0) break;
107 ElTy
= STy
->getElementType(0);
108 IdxList
.push_back(Constant::getNullValue(Type::Int32Ty
));
109 } else if (const SequentialType
*STy
=
110 dyn_cast
<SequentialType
>(ElTy
)) {
111 if (isa
<PointerType
>(ElTy
)) break; // Can't index into pointers!
112 ElTy
= STy
->getElementType();
113 IdxList
.push_back(IdxList
[0]);
119 if (ElTy
== DPTy
->getElementType())
120 return ConstantExpr::getGetElementPtr(V
, &IdxList
[0], IdxList
.size());
123 // Handle casts from one vector constant to another. We know that the src
124 // and dest type have the same size (otherwise its an illegal cast).
125 if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
126 if (const VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
127 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
128 "Not cast between same sized vectors!");
130 // First, check for null. Undef is already handled.
131 if (isa
<ConstantAggregateZero
>(V
))
132 return Constant::getNullValue(DestTy
);
134 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
135 return BitCastConstantVector(CV
, DestPTy
);
138 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
139 // This allows for other simplifications (although some of them
140 // can only be handled by Analysis/ConstantFolding.cpp).
141 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
142 return ConstantExpr::getBitCast(ConstantVector::get(&V
, 1), DestPTy
);
145 // Finally, implement bitcast folding now. The code below doesn't handle
147 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
148 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
150 // Handle integral constant input.
151 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
152 if (DestTy
->isInteger())
153 // Integral -> Integral. This is a no-op because the bit widths must
154 // be the same. Consequently, we just fold to V.
157 if (DestTy
->isFloatingPoint())
158 return ConstantFP::get(APFloat(CI
->getValue(),
159 DestTy
!= Type::PPC_FP128Ty
));
161 // Otherwise, can't fold this (vector?)
165 // Handle ConstantFP input.
166 if (const ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
))
168 return ConstantInt::get(FP
->getValueAPF().bitcastToAPInt());
174 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, const Constant
*V
,
175 const Type
*DestTy
) {
176 if (isa
<UndefValue
>(V
)) {
177 // zext(undef) = 0, because the top bits will be zero.
178 // sext(undef) = 0, because the top bits will all be the same.
179 // [us]itofp(undef) = 0, because the result value is bounded.
180 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
181 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
182 return Constant::getNullValue(DestTy
);
183 return UndefValue::get(DestTy
);
185 // No compile-time operations on this type yet.
186 if (V
->getType() == Type::PPC_FP128Ty
|| DestTy
== Type::PPC_FP128Ty
)
189 // If the cast operand is a constant expression, there's a few things we can
190 // do to try to simplify it.
191 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
193 // Try hard to fold cast of cast because they are often eliminable.
194 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
195 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
196 } else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
197 // If all of the indexes in the GEP are null values, there is no pointer
198 // adjustment going on. We might as well cast the source pointer.
199 bool isAllNull
= true;
200 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
201 if (!CE
->getOperand(i
)->isNullValue()) {
206 // This is casting one pointer type to another, always BitCast
207 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
211 // We actually have to do a cast now. Perform the cast according to the
214 case Instruction::FPTrunc
:
215 case Instruction::FPExt
:
216 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
218 APFloat Val
= FPC
->getValueAPF();
219 Val
.convert(DestTy
== Type::FloatTy
? APFloat::IEEEsingle
:
220 DestTy
== Type::DoubleTy
? APFloat::IEEEdouble
:
221 DestTy
== Type::X86_FP80Ty
? APFloat::x87DoubleExtended
:
222 DestTy
== Type::FP128Ty
? APFloat::IEEEquad
:
224 APFloat::rmNearestTiesToEven
, &ignored
);
225 return ConstantFP::get(Val
);
227 return 0; // Can't fold.
228 case Instruction::FPToUI
:
229 case Instruction::FPToSI
:
230 if (const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
231 const APFloat
&V
= FPC
->getValueAPF();
234 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
235 (void) V
.convertToInteger(x
, DestBitWidth
, opc
==Instruction::FPToSI
,
236 APFloat::rmTowardZero
, &ignored
);
237 APInt
Val(DestBitWidth
, 2, x
);
238 return ConstantInt::get(Val
);
240 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
241 std::vector
<Constant
*> res
;
242 const VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
243 const Type
*DstEltTy
= DestVecTy
->getElementType();
244 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
245 res
.push_back(ConstantExpr::getCast(opc
, CV
->getOperand(i
), DstEltTy
));
246 return ConstantVector::get(DestVecTy
, res
);
248 return 0; // Can't fold.
249 case Instruction::IntToPtr
: //always treated as unsigned
250 if (V
->isNullValue()) // Is it an integral null value?
251 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
252 return 0; // Other pointer types cannot be casted
253 case Instruction::PtrToInt
: // always treated as unsigned
254 if (V
->isNullValue()) // is it a null pointer value?
255 return ConstantInt::get(DestTy
, 0);
256 return 0; // Other pointer types cannot be casted
257 case Instruction::UIToFP
:
258 case Instruction::SIToFP
:
259 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
260 APInt api
= CI
->getValue();
261 const uint64_t zero
[] = {0, 0};
262 APFloat apf
= APFloat(APInt(DestTy
->getPrimitiveSizeInBits(),
264 (void)apf
.convertFromAPInt(api
,
265 opc
==Instruction::SIToFP
,
266 APFloat::rmNearestTiesToEven
);
267 return ConstantFP::get(apf
);
269 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
270 std::vector
<Constant
*> res
;
271 const VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
272 const Type
*DstEltTy
= DestVecTy
->getElementType();
273 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
274 res
.push_back(ConstantExpr::getCast(opc
, CV
->getOperand(i
), DstEltTy
));
275 return ConstantVector::get(DestVecTy
, res
);
278 case Instruction::ZExt
:
279 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
280 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
281 APInt
Result(CI
->getValue());
282 Result
.zext(BitWidth
);
283 return ConstantInt::get(Result
);
286 case Instruction::SExt
:
287 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
288 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
289 APInt
Result(CI
->getValue());
290 Result
.sext(BitWidth
);
291 return ConstantInt::get(Result
);
294 case Instruction::Trunc
:
295 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
296 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
297 APInt
Result(CI
->getValue());
298 Result
.trunc(BitWidth
);
299 return ConstantInt::get(Result
);
302 case Instruction::BitCast
:
303 return FoldBitCast(const_cast<Constant
*>(V
), DestTy
);
305 assert(!"Invalid CE CastInst opcode");
309 assert(0 && "Failed to cast constant expression");
313 Constant
*llvm::ConstantFoldSelectInstruction(const Constant
*Cond
,
315 const Constant
*V2
) {
316 if (const ConstantInt
*CB
= dyn_cast
<ConstantInt
>(Cond
))
317 return const_cast<Constant
*>(CB
->getZExtValue() ? V1
: V2
);
319 if (isa
<UndefValue
>(V1
)) return const_cast<Constant
*>(V2
);
320 if (isa
<UndefValue
>(V2
)) return const_cast<Constant
*>(V1
);
321 if (isa
<UndefValue
>(Cond
)) return const_cast<Constant
*>(V1
);
322 if (V1
== V2
) return const_cast<Constant
*>(V1
);
326 Constant
*llvm::ConstantFoldExtractElementInstruction(const Constant
*Val
,
327 const Constant
*Idx
) {
328 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
329 return UndefValue::get(cast
<VectorType
>(Val
->getType())->getElementType());
330 if (Val
->isNullValue()) // ee(zero, x) -> zero
331 return Constant::getNullValue(
332 cast
<VectorType
>(Val
->getType())->getElementType());
334 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
335 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
336 return CVal
->getOperand(CIdx
->getZExtValue());
337 } else if (isa
<UndefValue
>(Idx
)) {
338 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
339 return CVal
->getOperand(0);
345 Constant
*llvm::ConstantFoldInsertElementInstruction(const Constant
*Val
,
347 const Constant
*Idx
) {
348 const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
350 APInt idxVal
= CIdx
->getValue();
351 if (isa
<UndefValue
>(Val
)) {
352 // Insertion of scalar constant into vector undef
353 // Optimize away insertion of undef
354 if (isa
<UndefValue
>(Elt
))
355 return const_cast<Constant
*>(Val
);
356 // Otherwise break the aggregate undef into multiple undefs and do
359 cast
<VectorType
>(Val
->getType())->getNumElements();
360 std::vector
<Constant
*> Ops
;
362 for (unsigned i
= 0; i
< numOps
; ++i
) {
364 (idxVal
== i
) ? Elt
: UndefValue::get(Elt
->getType());
365 Ops
.push_back(const_cast<Constant
*>(Op
));
367 return ConstantVector::get(Ops
);
369 if (isa
<ConstantAggregateZero
>(Val
)) {
370 // Insertion of scalar constant into vector aggregate zero
371 // Optimize away insertion of zero
372 if (Elt
->isNullValue())
373 return const_cast<Constant
*>(Val
);
374 // Otherwise break the aggregate zero into multiple zeros and do
377 cast
<VectorType
>(Val
->getType())->getNumElements();
378 std::vector
<Constant
*> Ops
;
380 for (unsigned i
= 0; i
< numOps
; ++i
) {
382 (idxVal
== i
) ? Elt
: Constant::getNullValue(Elt
->getType());
383 Ops
.push_back(const_cast<Constant
*>(Op
));
385 return ConstantVector::get(Ops
);
387 if (const ConstantVector
*CVal
= dyn_cast
<ConstantVector
>(Val
)) {
388 // Insertion of scalar constant into vector constant
389 std::vector
<Constant
*> Ops
;
390 Ops
.reserve(CVal
->getNumOperands());
391 for (unsigned i
= 0; i
< CVal
->getNumOperands(); ++i
) {
393 (idxVal
== i
) ? Elt
: cast
<Constant
>(CVal
->getOperand(i
));
394 Ops
.push_back(const_cast<Constant
*>(Op
));
396 return ConstantVector::get(Ops
);
402 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
403 /// return the specified element value. Otherwise return null.
404 static Constant
*GetVectorElement(const Constant
*C
, unsigned EltNo
) {
405 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
))
406 return CV
->getOperand(EltNo
);
408 const Type
*EltTy
= cast
<VectorType
>(C
->getType())->getElementType();
409 if (isa
<ConstantAggregateZero
>(C
))
410 return Constant::getNullValue(EltTy
);
411 if (isa
<UndefValue
>(C
))
412 return UndefValue::get(EltTy
);
416 Constant
*llvm::ConstantFoldShuffleVectorInstruction(const Constant
*V1
,
418 const Constant
*Mask
) {
419 // Undefined shuffle mask -> undefined value.
420 if (isa
<UndefValue
>(Mask
)) return UndefValue::get(V1
->getType());
422 unsigned MaskNumElts
= cast
<VectorType
>(Mask
->getType())->getNumElements();
423 unsigned SrcNumElts
= cast
<VectorType
>(V1
->getType())->getNumElements();
424 const Type
*EltTy
= cast
<VectorType
>(V1
->getType())->getElementType();
426 // Loop over the shuffle mask, evaluating each element.
427 SmallVector
<Constant
*, 32> Result
;
428 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
429 Constant
*InElt
= GetVectorElement(Mask
, i
);
430 if (InElt
== 0) return 0;
432 if (isa
<UndefValue
>(InElt
))
433 InElt
= UndefValue::get(EltTy
);
434 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(InElt
)) {
435 unsigned Elt
= CI
->getZExtValue();
436 if (Elt
>= SrcNumElts
*2)
437 InElt
= UndefValue::get(EltTy
);
438 else if (Elt
>= SrcNumElts
)
439 InElt
= GetVectorElement(V2
, Elt
- SrcNumElts
);
441 InElt
= GetVectorElement(V1
, Elt
);
442 if (InElt
== 0) return 0;
447 Result
.push_back(InElt
);
450 return ConstantVector::get(&Result
[0], Result
.size());
453 Constant
*llvm::ConstantFoldExtractValueInstruction(const Constant
*Agg
,
454 const unsigned *Idxs
,
456 // Base case: no indices, so return the entire value.
458 return const_cast<Constant
*>(Agg
);
460 if (isa
<UndefValue
>(Agg
)) // ev(undef, x) -> undef
461 return UndefValue::get(ExtractValueInst::getIndexedType(Agg
->getType(),
465 if (isa
<ConstantAggregateZero
>(Agg
)) // ev(0, x) -> 0
467 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg
->getType(),
471 // Otherwise recurse.
472 return ConstantFoldExtractValueInstruction(Agg
->getOperand(*Idxs
),
476 Constant
*llvm::ConstantFoldInsertValueInstruction(const Constant
*Agg
,
478 const unsigned *Idxs
,
480 // Base case: no indices, so replace the entire value.
482 return const_cast<Constant
*>(Val
);
484 if (isa
<UndefValue
>(Agg
)) {
485 // Insertion of constant into aggregate undef
486 // Optimize away insertion of undef
487 if (isa
<UndefValue
>(Val
))
488 return const_cast<Constant
*>(Agg
);
489 // Otherwise break the aggregate undef into multiple undefs and do
491 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
493 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
494 numOps
= AR
->getNumElements();
496 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
497 std::vector
<Constant
*> Ops(numOps
);
498 for (unsigned i
= 0; i
< numOps
; ++i
) {
499 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
502 ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy
),
503 Val
, Idxs
+1, NumIdx
-1) :
504 UndefValue::get(MemberTy
);
505 Ops
[i
] = const_cast<Constant
*>(Op
);
507 if (isa
<StructType
>(AggTy
))
508 return ConstantStruct::get(Ops
);
510 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
512 if (isa
<ConstantAggregateZero
>(Agg
)) {
513 // Insertion of constant into aggregate zero
514 // Optimize away insertion of zero
515 if (Val
->isNullValue())
516 return const_cast<Constant
*>(Agg
);
517 // Otherwise break the aggregate zero into multiple zeros and do
519 const CompositeType
*AggTy
= cast
<CompositeType
>(Agg
->getType());
521 if (const ArrayType
*AR
= dyn_cast
<ArrayType
>(AggTy
))
522 numOps
= AR
->getNumElements();
524 numOps
= cast
<StructType
>(AggTy
)->getNumElements();
525 std::vector
<Constant
*> Ops(numOps
);
526 for (unsigned i
= 0; i
< numOps
; ++i
) {
527 const Type
*MemberTy
= AggTy
->getTypeAtIndex(i
);
530 ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy
),
531 Val
, Idxs
+1, NumIdx
-1) :
532 Constant::getNullValue(MemberTy
);
533 Ops
[i
] = const_cast<Constant
*>(Op
);
535 if (isa
<StructType
>(AggTy
))
536 return ConstantStruct::get(Ops
);
538 return ConstantArray::get(cast
<ArrayType
>(AggTy
), Ops
);
540 if (isa
<ConstantStruct
>(Agg
) || isa
<ConstantArray
>(Agg
)) {
541 // Insertion of constant into aggregate constant
542 std::vector
<Constant
*> Ops(Agg
->getNumOperands());
543 for (unsigned i
= 0; i
< Agg
->getNumOperands(); ++i
) {
546 ConstantFoldInsertValueInstruction(Agg
->getOperand(i
),
547 Val
, Idxs
+1, NumIdx
-1) :
549 Ops
[i
] = const_cast<Constant
*>(Op
);
552 if (isa
<StructType
>(Agg
->getType()))
553 C
= ConstantStruct::get(Ops
);
555 C
= ConstantArray::get(cast
<ArrayType
>(Agg
->getType()), Ops
);
562 /// EvalVectorOp - Given two vector constants and a function pointer, apply the
563 /// function pointer to each element pair, producing a new ConstantVector
564 /// constant. Either or both of V1 and V2 may be NULL, meaning a
565 /// ConstantAggregateZero operand.
566 static Constant
*EvalVectorOp(const ConstantVector
*V1
,
567 const ConstantVector
*V2
,
568 const VectorType
*VTy
,
569 Constant
*(*FP
)(Constant
*, Constant
*)) {
570 std::vector
<Constant
*> Res
;
571 const Type
*EltTy
= VTy
->getElementType();
572 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
573 const Constant
*C1
= V1
? V1
->getOperand(i
) : Constant::getNullValue(EltTy
);
574 const Constant
*C2
= V2
? V2
->getOperand(i
) : Constant::getNullValue(EltTy
);
575 Res
.push_back(FP(const_cast<Constant
*>(C1
),
576 const_cast<Constant
*>(C2
)));
578 return ConstantVector::get(Res
);
581 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
,
583 const Constant
*C2
) {
584 // No compile-time operations on this type yet.
585 if (C1
->getType() == Type::PPC_FP128Ty
)
588 // Handle UndefValue up front
589 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
591 case Instruction::Xor
:
592 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
593 // Handle undef ^ undef -> 0 special case. This is a common
595 return Constant::getNullValue(C1
->getType());
597 case Instruction::Add
:
598 case Instruction::Sub
:
599 return UndefValue::get(C1
->getType());
600 case Instruction::Mul
:
601 case Instruction::And
:
602 return Constant::getNullValue(C1
->getType());
603 case Instruction::UDiv
:
604 case Instruction::SDiv
:
605 case Instruction::FDiv
:
606 case Instruction::URem
:
607 case Instruction::SRem
:
608 case Instruction::FRem
:
609 if (!isa
<UndefValue
>(C2
)) // undef / X -> 0
610 return Constant::getNullValue(C1
->getType());
611 return const_cast<Constant
*>(C2
); // X / undef -> undef
612 case Instruction::Or
: // X | undef -> -1
613 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(C1
->getType()))
614 return ConstantVector::getAllOnesValue(PTy
);
615 return ConstantInt::getAllOnesValue(C1
->getType());
616 case Instruction::LShr
:
617 if (isa
<UndefValue
>(C2
) && isa
<UndefValue
>(C1
))
618 return const_cast<Constant
*>(C1
); // undef lshr undef -> undef
619 return Constant::getNullValue(C1
->getType()); // X lshr undef -> 0
621 case Instruction::AShr
:
622 if (!isa
<UndefValue
>(C2
))
623 return const_cast<Constant
*>(C1
); // undef ashr X --> undef
624 else if (isa
<UndefValue
>(C1
))
625 return const_cast<Constant
*>(C1
); // undef ashr undef -> undef
627 return const_cast<Constant
*>(C1
); // X ashr undef --> X
628 case Instruction::Shl
:
629 // undef << X -> 0 or X << undef -> 0
630 return Constant::getNullValue(C1
->getType());
634 // Handle simplifications of the RHS when a constant int.
635 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
637 case Instruction::Add
:
638 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X + 0 == X
640 case Instruction::Sub
:
641 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X - 0 == X
643 case Instruction::Mul
:
644 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C2
); // X * 0 == 0
645 if (CI2
->equalsInt(1))
646 return const_cast<Constant
*>(C1
); // X * 1 == X
648 case Instruction::UDiv
:
649 case Instruction::SDiv
:
650 if (CI2
->equalsInt(1))
651 return const_cast<Constant
*>(C1
); // X / 1 == X
652 if (CI2
->equalsInt(0))
653 return UndefValue::get(CI2
->getType()); // X / 0 == undef
655 case Instruction::URem
:
656 case Instruction::SRem
:
657 if (CI2
->equalsInt(1))
658 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
659 if (CI2
->equalsInt(0))
660 return UndefValue::get(CI2
->getType()); // X % 0 == undef
662 case Instruction::And
:
663 if (CI2
->isZero()) return const_cast<Constant
*>(C2
); // X & 0 == 0
664 if (CI2
->isAllOnesValue())
665 return const_cast<Constant
*>(C1
); // X & -1 == X
667 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
668 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
669 if (CE1
->getOpcode() == Instruction::ZExt
) {
670 unsigned DstWidth
= CI2
->getType()->getBitWidth();
672 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
673 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
674 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
675 return const_cast<Constant
*>(C1
);
678 // If and'ing the address of a global with a constant, fold it.
679 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
680 isa
<GlobalValue
>(CE1
->getOperand(0))) {
681 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
683 // Functions are at least 4-byte aligned.
684 unsigned GVAlign
= GV
->getAlignment();
685 if (isa
<Function
>(GV
))
686 GVAlign
= std::max(GVAlign
, 4U);
689 unsigned DstWidth
= CI2
->getType()->getBitWidth();
690 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
691 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
693 // If checking bits we know are clear, return zero.
694 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
695 return Constant::getNullValue(CI2
->getType());
700 case Instruction::Or
:
701 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X | 0 == X
702 if (CI2
->isAllOnesValue())
703 return const_cast<Constant
*>(C2
); // X | -1 == -1
705 case Instruction::Xor
:
706 if (CI2
->equalsInt(0)) return const_cast<Constant
*>(C1
); // X ^ 0 == X
708 case Instruction::AShr
:
709 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
710 if (const ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
711 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
712 return ConstantExpr::getLShr(const_cast<Constant
*>(C1
),
713 const_cast<Constant
*>(C2
));
718 // At this point we know neither constant is an UndefValue.
719 if (const ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
720 if (const ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
721 using namespace APIntOps
;
722 const APInt
&C1V
= CI1
->getValue();
723 const APInt
&C2V
= CI2
->getValue();
727 case Instruction::Add
:
728 return ConstantInt::get(C1V
+ C2V
);
729 case Instruction::Sub
:
730 return ConstantInt::get(C1V
- C2V
);
731 case Instruction::Mul
:
732 return ConstantInt::get(C1V
* C2V
);
733 case Instruction::UDiv
:
734 assert(!CI2
->isNullValue() && "Div by zero handled above");
735 return ConstantInt::get(C1V
.udiv(C2V
));
736 case Instruction::SDiv
:
737 assert(!CI2
->isNullValue() && "Div by zero handled above");
738 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
739 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
740 return ConstantInt::get(C1V
.sdiv(C2V
));
741 case Instruction::URem
:
742 assert(!CI2
->isNullValue() && "Div by zero handled above");
743 return ConstantInt::get(C1V
.urem(C2V
));
744 case Instruction::SRem
:
745 assert(!CI2
->isNullValue() && "Div by zero handled above");
746 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
747 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
748 return ConstantInt::get(C1V
.srem(C2V
));
749 case Instruction::And
:
750 return ConstantInt::get(C1V
& C2V
);
751 case Instruction::Or
:
752 return ConstantInt::get(C1V
| C2V
);
753 case Instruction::Xor
:
754 return ConstantInt::get(C1V
^ C2V
);
755 case Instruction::Shl
: {
756 uint32_t shiftAmt
= C2V
.getZExtValue();
757 if (shiftAmt
< C1V
.getBitWidth())
758 return ConstantInt::get(C1V
.shl(shiftAmt
));
760 return UndefValue::get(C1
->getType()); // too big shift is undef
762 case Instruction::LShr
: {
763 uint32_t shiftAmt
= C2V
.getZExtValue();
764 if (shiftAmt
< C1V
.getBitWidth())
765 return ConstantInt::get(C1V
.lshr(shiftAmt
));
767 return UndefValue::get(C1
->getType()); // too big shift is undef
769 case Instruction::AShr
: {
770 uint32_t shiftAmt
= C2V
.getZExtValue();
771 if (shiftAmt
< C1V
.getBitWidth())
772 return ConstantInt::get(C1V
.ashr(shiftAmt
));
774 return UndefValue::get(C1
->getType()); // too big shift is undef
778 } else if (const ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
779 if (const ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
780 APFloat C1V
= CFP1
->getValueAPF();
781 APFloat C2V
= CFP2
->getValueAPF();
782 APFloat C3V
= C1V
; // copy for modification
786 case Instruction::Add
:
787 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
788 return ConstantFP::get(C3V
);
789 case Instruction::Sub
:
790 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
791 return ConstantFP::get(C3V
);
792 case Instruction::Mul
:
793 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
794 return ConstantFP::get(C3V
);
795 case Instruction::FDiv
:
796 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
797 return ConstantFP::get(C3V
);
798 case Instruction::FRem
:
799 (void)C3V
.mod(C2V
, APFloat::rmNearestTiesToEven
);
800 return ConstantFP::get(C3V
);
803 } else if (const VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
804 const ConstantVector
*CP1
= dyn_cast
<ConstantVector
>(C1
);
805 const ConstantVector
*CP2
= dyn_cast
<ConstantVector
>(C2
);
806 if ((CP1
!= NULL
|| isa
<ConstantAggregateZero
>(C1
)) &&
807 (CP2
!= NULL
|| isa
<ConstantAggregateZero
>(C2
))) {
811 case Instruction::Add
:
812 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getAdd
);
813 case Instruction::Sub
:
814 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getSub
);
815 case Instruction::Mul
:
816 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getMul
);
817 case Instruction::UDiv
:
818 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getUDiv
);
819 case Instruction::SDiv
:
820 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getSDiv
);
821 case Instruction::FDiv
:
822 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getFDiv
);
823 case Instruction::URem
:
824 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getURem
);
825 case Instruction::SRem
:
826 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getSRem
);
827 case Instruction::FRem
:
828 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getFRem
);
829 case Instruction::And
:
830 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getAnd
);
831 case Instruction::Or
:
832 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getOr
);
833 case Instruction::Xor
:
834 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getXor
);
835 case Instruction::LShr
:
836 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getLShr
);
837 case Instruction::AShr
:
838 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getAShr
);
839 case Instruction::Shl
:
840 return EvalVectorOp(CP1
, CP2
, VTy
, ConstantExpr::getShl
);
845 if (isa
<ConstantExpr
>(C1
)) {
846 // There are many possible foldings we could do here. We should probably
847 // at least fold add of a pointer with an integer into the appropriate
848 // getelementptr. This will improve alias analysis a bit.
849 } else if (isa
<ConstantExpr
>(C2
)) {
850 // If C2 is a constant expr and C1 isn't, flop them around and fold the
851 // other way if possible.
853 case Instruction::Add
:
854 case Instruction::Mul
:
855 case Instruction::And
:
856 case Instruction::Or
:
857 case Instruction::Xor
:
858 // No change of opcode required.
859 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
861 case Instruction::Shl
:
862 case Instruction::LShr
:
863 case Instruction::AShr
:
864 case Instruction::Sub
:
865 case Instruction::SDiv
:
866 case Instruction::UDiv
:
867 case Instruction::FDiv
:
868 case Instruction::URem
:
869 case Instruction::SRem
:
870 case Instruction::FRem
:
871 default: // These instructions cannot be flopped around.
876 // We don't know how to fold this.
880 /// isZeroSizedType - This type is zero sized if its an array or structure of
881 /// zero sized types. The only leaf zero sized type is an empty structure.
882 static bool isMaybeZeroSizedType(const Type
*Ty
) {
883 if (isa
<OpaqueType
>(Ty
)) return true; // Can't say.
884 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
886 // If all of elements have zero size, this does too.
887 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
888 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
891 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
892 return isMaybeZeroSizedType(ATy
->getElementType());
897 /// IdxCompare - Compare the two constants as though they were getelementptr
898 /// indices. This allows coersion of the types to be the same thing.
900 /// If the two constants are the "same" (after coersion), return 0. If the
901 /// first is less than the second, return -1, if the second is less than the
902 /// first, return 1. If the constants are not integral, return -2.
904 static int IdxCompare(Constant
*C1
, Constant
*C2
, const Type
*ElTy
) {
905 if (C1
== C2
) return 0;
907 // Ok, we found a different index. If they are not ConstantInt, we can't do
908 // anything with them.
909 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
910 return -2; // don't know!
912 // Ok, we have two differing integer indices. Sign extend them to be the same
913 // type. Long is always big enough, so we use it.
914 if (C1
->getType() != Type::Int64Ty
)
915 C1
= ConstantExpr::getSExt(C1
, Type::Int64Ty
);
917 if (C2
->getType() != Type::Int64Ty
)
918 C2
= ConstantExpr::getSExt(C2
, Type::Int64Ty
);
920 if (C1
== C2
) return 0; // They are equal
922 // If the type being indexed over is really just a zero sized type, there is
923 // no pointer difference being made here.
924 if (isMaybeZeroSizedType(ElTy
))
927 // If they are really different, now that they are the same type, then we
928 // found a difference!
929 if (cast
<ConstantInt
>(C1
)->getSExtValue() <
930 cast
<ConstantInt
>(C2
)->getSExtValue())
936 /// evaluateFCmpRelation - This function determines if there is anything we can
937 /// decide about the two constants provided. This doesn't need to handle simple
938 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
939 /// If we can determine that the two constants have a particular relation to
940 /// each other, we should return the corresponding FCmpInst predicate,
941 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
942 /// ConstantFoldCompareInstruction.
944 /// To simplify this code we canonicalize the relation so that the first
945 /// operand is always the most "complex" of the two. We consider ConstantFP
946 /// to be the simplest, and ConstantExprs to be the most complex.
947 static FCmpInst::Predicate
evaluateFCmpRelation(const Constant
*V1
,
948 const Constant
*V2
) {
949 assert(V1
->getType() == V2
->getType() &&
950 "Cannot compare values of different types!");
952 // No compile-time operations on this type yet.
953 if (V1
->getType() == Type::PPC_FP128Ty
)
954 return FCmpInst::BAD_FCMP_PREDICATE
;
956 // Handle degenerate case quickly
957 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
959 if (!isa
<ConstantExpr
>(V1
)) {
960 if (!isa
<ConstantExpr
>(V2
)) {
961 // We distilled thisUse the standard constant folder for a few cases
963 Constant
*C1
= const_cast<Constant
*>(V1
);
964 Constant
*C2
= const_cast<Constant
*>(V2
);
965 R
= dyn_cast
<ConstantInt
>(
966 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, C1
, C2
));
967 if (R
&& !R
->isZero())
968 return FCmpInst::FCMP_OEQ
;
969 R
= dyn_cast
<ConstantInt
>(
970 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, C1
, C2
));
971 if (R
&& !R
->isZero())
972 return FCmpInst::FCMP_OLT
;
973 R
= dyn_cast
<ConstantInt
>(
974 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, C1
, C2
));
975 if (R
&& !R
->isZero())
976 return FCmpInst::FCMP_OGT
;
978 // Nothing more we can do
979 return FCmpInst::BAD_FCMP_PREDICATE
;
982 // If the first operand is simple and second is ConstantExpr, swap operands.
983 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
984 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
985 return FCmpInst::getSwappedPredicate(SwappedRelation
);
987 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
988 // constantexpr or a simple constant.
989 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
990 switch (CE1
->getOpcode()) {
991 case Instruction::FPTrunc
:
992 case Instruction::FPExt
:
993 case Instruction::UIToFP
:
994 case Instruction::SIToFP
:
995 // We might be able to do something with these but we don't right now.
1001 // There are MANY other foldings that we could perform here. They will
1002 // probably be added on demand, as they seem needed.
1003 return FCmpInst::BAD_FCMP_PREDICATE
;
1006 /// evaluateICmpRelation - This function determines if there is anything we can
1007 /// decide about the two constants provided. This doesn't need to handle simple
1008 /// things like integer comparisons, but should instead handle ConstantExprs
1009 /// and GlobalValues. If we can determine that the two constants have a
1010 /// particular relation to each other, we should return the corresponding ICmp
1011 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1013 /// To simplify this code we canonicalize the relation so that the first
1014 /// operand is always the most "complex" of the two. We consider simple
1015 /// constants (like ConstantInt) to be the simplest, followed by
1016 /// GlobalValues, followed by ConstantExpr's (the most complex).
1018 static ICmpInst::Predicate
evaluateICmpRelation(const Constant
*V1
,
1021 assert(V1
->getType() == V2
->getType() &&
1022 "Cannot compare different types of values!");
1023 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1025 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
)) {
1026 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
)) {
1027 // We distilled this down to a simple case, use the standard constant
1030 Constant
*C1
= const_cast<Constant
*>(V1
);
1031 Constant
*C2
= const_cast<Constant
*>(V2
);
1032 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1033 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1034 if (R
&& !R
->isZero())
1036 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1037 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1038 if (R
&& !R
->isZero())
1040 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1041 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, C1
, C2
));
1042 if (R
&& !R
->isZero())
1045 // If we couldn't figure it out, bail.
1046 return ICmpInst::BAD_ICMP_PREDICATE
;
1049 // If the first operand is simple, swap operands.
1050 ICmpInst::Predicate SwappedRelation
=
1051 evaluateICmpRelation(V2
, V1
, isSigned
);
1052 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1053 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1055 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(V1
)) {
1056 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1057 ICmpInst::Predicate SwappedRelation
=
1058 evaluateICmpRelation(V2
, V1
, isSigned
);
1059 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1060 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1062 return ICmpInst::BAD_ICMP_PREDICATE
;
1065 // Now we know that the RHS is a GlobalValue or simple constant,
1066 // which (since the types must match) means that it's a ConstantPointerNull.
1067 if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1068 // Don't try to decide equality of aliases.
1069 if (!isa
<GlobalAlias
>(CPR1
) && !isa
<GlobalAlias
>(CPR2
))
1070 if (!CPR1
->hasExternalWeakLinkage() || !CPR2
->hasExternalWeakLinkage())
1071 return ICmpInst::ICMP_NE
;
1073 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1074 // GlobalVals can never be null. Don't try to evaluate aliases.
1075 if (!CPR1
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(CPR1
))
1076 return ICmpInst::ICMP_NE
;
1079 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1080 // constantexpr, a CPR, or a simple constant.
1081 const ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1082 const Constant
*CE1Op0
= CE1
->getOperand(0);
1084 switch (CE1
->getOpcode()) {
1085 case Instruction::Trunc
:
1086 case Instruction::FPTrunc
:
1087 case Instruction::FPExt
:
1088 case Instruction::FPToUI
:
1089 case Instruction::FPToSI
:
1090 break; // We can't evaluate floating point casts or truncations.
1092 case Instruction::UIToFP
:
1093 case Instruction::SIToFP
:
1094 case Instruction::BitCast
:
1095 case Instruction::ZExt
:
1096 case Instruction::SExt
:
1097 // If the cast is not actually changing bits, and the second operand is a
1098 // null pointer, do the comparison with the pre-casted value.
1099 if (V2
->isNullValue() &&
1100 (isa
<PointerType
>(CE1
->getType()) || CE1
->getType()->isInteger())) {
1101 bool sgnd
= isSigned
;
1102 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1103 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1104 return evaluateICmpRelation(CE1Op0
,
1105 Constant::getNullValue(CE1Op0
->getType()),
1109 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1110 // from the same type as the src of the LHS, evaluate the inputs. This is
1111 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1112 // which happens a lot in compilers with tagged integers.
1113 if (const ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(V2
))
1114 if (CE2
->isCast() && isa
<PointerType
>(CE1
->getType()) &&
1115 CE1
->getOperand(0)->getType() == CE2
->getOperand(0)->getType() &&
1116 CE1
->getOperand(0)->getType()->isInteger()) {
1117 bool sgnd
= isSigned
;
1118 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1119 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1120 return evaluateICmpRelation(CE1
->getOperand(0), CE2
->getOperand(0),
1125 case Instruction::GetElementPtr
:
1126 // Ok, since this is a getelementptr, we know that the constant has a
1127 // pointer type. Check the various cases.
1128 if (isa
<ConstantPointerNull
>(V2
)) {
1129 // If we are comparing a GEP to a null pointer, check to see if the base
1130 // of the GEP equals the null pointer.
1131 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1132 if (GV
->hasExternalWeakLinkage())
1133 // Weak linkage GVals could be zero or not. We're comparing that
1134 // to null pointer so its greater-or-equal
1135 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1137 // If its not weak linkage, the GVal must have a non-zero address
1138 // so the result is greater-than
1139 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1140 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1141 // If we are indexing from a null pointer, check to see if we have any
1142 // non-zero indices.
1143 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1144 if (!CE1
->getOperand(i
)->isNullValue())
1145 // Offsetting from null, must not be equal.
1146 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1147 // Only zero indexes from null, must still be zero.
1148 return ICmpInst::ICMP_EQ
;
1150 // Otherwise, we can't really say if the first operand is null or not.
1151 } else if (const GlobalValue
*CPR2
= dyn_cast
<GlobalValue
>(V2
)) {
1152 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1153 if (CPR2
->hasExternalWeakLinkage())
1154 // Weak linkage GVals could be zero or not. We're comparing it to
1155 // a null pointer, so its less-or-equal
1156 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1158 // If its not weak linkage, the GVal must have a non-zero address
1159 // so the result is less-than
1160 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1161 } else if (const GlobalValue
*CPR1
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1163 // If this is a getelementptr of the same global, then it must be
1164 // different. Because the types must match, the getelementptr could
1165 // only have at most one index, and because we fold getelementptr's
1166 // with a single zero index, it must be nonzero.
1167 assert(CE1
->getNumOperands() == 2 &&
1168 !CE1
->getOperand(1)->isNullValue() &&
1169 "Suprising getelementptr!");
1170 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1172 // If they are different globals, we don't know what the value is,
1173 // but they can't be equal.
1174 return ICmpInst::ICMP_NE
;
1178 const ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1179 const Constant
*CE2Op0
= CE2
->getOperand(0);
1181 // There are MANY other foldings that we could perform here. They will
1182 // probably be added on demand, as they seem needed.
1183 switch (CE2
->getOpcode()) {
1185 case Instruction::GetElementPtr
:
1186 // By far the most common case to handle is when the base pointers are
1187 // obviously to the same or different globals.
1188 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1189 if (CE1Op0
!= CE2Op0
) // Don't know relative ordering, but not equal
1190 return ICmpInst::ICMP_NE
;
1191 // Ok, we know that both getelementptr instructions are based on the
1192 // same global. From this, we can precisely determine the relative
1193 // ordering of the resultant pointers.
1196 // Compare all of the operands the GEP's have in common.
1197 gep_type_iterator GTI
= gep_type_begin(CE1
);
1198 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1200 switch (IdxCompare(CE1
->getOperand(i
), CE2
->getOperand(i
),
1201 GTI
.getIndexedType())) {
1202 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1203 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1204 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1207 // Ok, we ran out of things they have in common. If any leftovers
1208 // are non-zero then we have a difference, otherwise we are equal.
1209 for (; i
< CE1
->getNumOperands(); ++i
)
1210 if (!CE1
->getOperand(i
)->isNullValue()) {
1211 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1212 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1214 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1217 for (; i
< CE2
->getNumOperands(); ++i
)
1218 if (!CE2
->getOperand(i
)->isNullValue()) {
1219 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1220 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1222 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1224 return ICmpInst::ICMP_EQ
;
1233 return ICmpInst::BAD_ICMP_PREDICATE
;
1236 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1238 const Constant
*C2
) {
1239 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1240 if (pred
== FCmpInst::FCMP_FALSE
) {
1241 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1242 return Constant::getNullValue(VectorType::getInteger(VT
));
1244 return ConstantInt::getFalse();
1247 if (pred
== FCmpInst::FCMP_TRUE
) {
1248 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1249 return Constant::getAllOnesValue(VectorType::getInteger(VT
));
1251 return ConstantInt::getTrue();
1254 // Handle some degenerate cases first
1255 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1256 // vicmp/vfcmp -> [vector] undef
1257 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType()))
1258 return UndefValue::get(VectorType::getInteger(VTy
));
1260 // icmp/fcmp -> i1 undef
1261 return UndefValue::get(Type::Int1Ty
);
1264 // No compile-time operations on this type yet.
1265 if (C1
->getType() == Type::PPC_FP128Ty
)
1268 // icmp eq/ne(null,GV) -> false/true
1269 if (C1
->isNullValue()) {
1270 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1271 // Don't try to evaluate aliases. External weak GV can be null.
1272 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1273 if (pred
== ICmpInst::ICMP_EQ
)
1274 return ConstantInt::getFalse();
1275 else if (pred
== ICmpInst::ICMP_NE
)
1276 return ConstantInt::getTrue();
1278 // icmp eq/ne(GV,null) -> false/true
1279 } else if (C2
->isNullValue()) {
1280 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1281 // Don't try to evaluate aliases. External weak GV can be null.
1282 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1283 if (pred
== ICmpInst::ICMP_EQ
)
1284 return ConstantInt::getFalse();
1285 else if (pred
== ICmpInst::ICMP_NE
)
1286 return ConstantInt::getTrue();
1290 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1291 APInt V1
= cast
<ConstantInt
>(C1
)->getValue();
1292 APInt V2
= cast
<ConstantInt
>(C2
)->getValue();
1294 default: assert(0 && "Invalid ICmp Predicate"); return 0;
1295 case ICmpInst::ICMP_EQ
: return ConstantInt::get(Type::Int1Ty
, V1
== V2
);
1296 case ICmpInst::ICMP_NE
: return ConstantInt::get(Type::Int1Ty
, V1
!= V2
);
1297 case ICmpInst::ICMP_SLT
:return ConstantInt::get(Type::Int1Ty
, V1
.slt(V2
));
1298 case ICmpInst::ICMP_SGT
:return ConstantInt::get(Type::Int1Ty
, V1
.sgt(V2
));
1299 case ICmpInst::ICMP_SLE
:return ConstantInt::get(Type::Int1Ty
, V1
.sle(V2
));
1300 case ICmpInst::ICMP_SGE
:return ConstantInt::get(Type::Int1Ty
, V1
.sge(V2
));
1301 case ICmpInst::ICMP_ULT
:return ConstantInt::get(Type::Int1Ty
, V1
.ult(V2
));
1302 case ICmpInst::ICMP_UGT
:return ConstantInt::get(Type::Int1Ty
, V1
.ugt(V2
));
1303 case ICmpInst::ICMP_ULE
:return ConstantInt::get(Type::Int1Ty
, V1
.ule(V2
));
1304 case ICmpInst::ICMP_UGE
:return ConstantInt::get(Type::Int1Ty
, V1
.uge(V2
));
1306 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1307 APFloat C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1308 APFloat C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1309 APFloat::cmpResult R
= C1V
.compare(C2V
);
1311 default: assert(0 && "Invalid FCmp Predicate"); return 0;
1312 case FCmpInst::FCMP_FALSE
: return ConstantInt::getFalse();
1313 case FCmpInst::FCMP_TRUE
: return ConstantInt::getTrue();
1314 case FCmpInst::FCMP_UNO
:
1315 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
);
1316 case FCmpInst::FCMP_ORD
:
1317 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpUnordered
);
1318 case FCmpInst::FCMP_UEQ
:
1319 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1320 R
==APFloat::cmpEqual
);
1321 case FCmpInst::FCMP_OEQ
:
1322 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpEqual
);
1323 case FCmpInst::FCMP_UNE
:
1324 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpEqual
);
1325 case FCmpInst::FCMP_ONE
:
1326 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1327 R
==APFloat::cmpGreaterThan
);
1328 case FCmpInst::FCMP_ULT
:
1329 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1330 R
==APFloat::cmpLessThan
);
1331 case FCmpInst::FCMP_OLT
:
1332 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
);
1333 case FCmpInst::FCMP_UGT
:
1334 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpUnordered
||
1335 R
==APFloat::cmpGreaterThan
);
1336 case FCmpInst::FCMP_OGT
:
1337 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
);
1338 case FCmpInst::FCMP_ULE
:
1339 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpGreaterThan
);
1340 case FCmpInst::FCMP_OLE
:
1341 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpLessThan
||
1342 R
==APFloat::cmpEqual
);
1343 case FCmpInst::FCMP_UGE
:
1344 return ConstantInt::get(Type::Int1Ty
, R
!=APFloat::cmpLessThan
);
1345 case FCmpInst::FCMP_OGE
:
1346 return ConstantInt::get(Type::Int1Ty
, R
==APFloat::cmpGreaterThan
||
1347 R
==APFloat::cmpEqual
);
1349 } else if (isa
<VectorType
>(C1
->getType())) {
1350 SmallVector
<Constant
*, 16> C1Elts
, C2Elts
;
1351 C1
->getVectorElements(C1Elts
);
1352 C2
->getVectorElements(C2Elts
);
1354 // If we can constant fold the comparison of each element, constant fold
1355 // the whole vector comparison.
1356 SmallVector
<Constant
*, 4> ResElts
;
1357 const Type
*InEltTy
= C1Elts
[0]->getType();
1358 bool isFP
= InEltTy
->isFloatingPoint();
1359 const Type
*ResEltTy
= InEltTy
;
1361 ResEltTy
= IntegerType::get(InEltTy
->getPrimitiveSizeInBits());
1363 for (unsigned i
= 0, e
= C1Elts
.size(); i
!= e
; ++i
) {
1364 // Compare the elements, producing an i1 result or constant expr.
1367 C
= ConstantExpr::getFCmp(pred
, C1Elts
[i
], C2Elts
[i
]);
1369 C
= ConstantExpr::getICmp(pred
, C1Elts
[i
], C2Elts
[i
]);
1371 // If it is a bool or undef result, convert to the dest type.
1372 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
1374 ResElts
.push_back(Constant::getNullValue(ResEltTy
));
1376 ResElts
.push_back(Constant::getAllOnesValue(ResEltTy
));
1377 } else if (isa
<UndefValue
>(C
)) {
1378 ResElts
.push_back(UndefValue::get(ResEltTy
));
1384 if (ResElts
.size() == C1Elts
.size())
1385 return ConstantVector::get(&ResElts
[0], ResElts
.size());
1388 if (C1
->getType()->isFloatingPoint()) {
1389 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1390 switch (evaluateFCmpRelation(C1
, C2
)) {
1391 default: assert(0 && "Unknown relation!");
1392 case FCmpInst::FCMP_UNO
:
1393 case FCmpInst::FCMP_ORD
:
1394 case FCmpInst::FCMP_UEQ
:
1395 case FCmpInst::FCMP_UNE
:
1396 case FCmpInst::FCMP_ULT
:
1397 case FCmpInst::FCMP_UGT
:
1398 case FCmpInst::FCMP_ULE
:
1399 case FCmpInst::FCMP_UGE
:
1400 case FCmpInst::FCMP_TRUE
:
1401 case FCmpInst::FCMP_FALSE
:
1402 case FCmpInst::BAD_FCMP_PREDICATE
:
1403 break; // Couldn't determine anything about these constants.
1404 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1405 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1406 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1407 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1409 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1410 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1411 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1412 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1414 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1415 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1416 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1417 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1419 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1420 // We can only partially decide this relation.
1421 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1423 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1426 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1427 // We can only partially decide this relation.
1428 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1430 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1433 case ICmpInst::ICMP_NE
: // We know that C1 != C2
1434 // We can only partially decide this relation.
1435 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1437 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1442 // If we evaluated the result, return it now.
1444 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType())) {
1446 return Constant::getNullValue(VectorType::getInteger(VT
));
1448 return Constant::getAllOnesValue(VectorType::getInteger(VT
));
1450 return ConstantInt::get(Type::Int1Ty
, Result
);
1454 // Evaluate the relation between the two constants, per the predicate.
1455 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1456 switch (evaluateICmpRelation(C1
, C2
, CmpInst::isSigned(pred
))) {
1457 default: assert(0 && "Unknown relational!");
1458 case ICmpInst::BAD_ICMP_PREDICATE
:
1459 break; // Couldn't determine anything about these constants.
1460 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1461 // If we know the constants are equal, we can decide the result of this
1462 // computation precisely.
1463 Result
= (pred
== ICmpInst::ICMP_EQ
||
1464 pred
== ICmpInst::ICMP_ULE
||
1465 pred
== ICmpInst::ICMP_SLE
||
1466 pred
== ICmpInst::ICMP_UGE
||
1467 pred
== ICmpInst::ICMP_SGE
);
1469 case ICmpInst::ICMP_ULT
:
1470 // If we know that C1 < C2, we can decide the result of this computation
1472 Result
= (pred
== ICmpInst::ICMP_ULT
||
1473 pred
== ICmpInst::ICMP_NE
||
1474 pred
== ICmpInst::ICMP_ULE
);
1476 case ICmpInst::ICMP_SLT
:
1477 // If we know that C1 < C2, we can decide the result of this computation
1479 Result
= (pred
== ICmpInst::ICMP_SLT
||
1480 pred
== ICmpInst::ICMP_NE
||
1481 pred
== ICmpInst::ICMP_SLE
);
1483 case ICmpInst::ICMP_UGT
:
1484 // If we know that C1 > C2, we can decide the result of this computation
1486 Result
= (pred
== ICmpInst::ICMP_UGT
||
1487 pred
== ICmpInst::ICMP_NE
||
1488 pred
== ICmpInst::ICMP_UGE
);
1490 case ICmpInst::ICMP_SGT
:
1491 // If we know that C1 > C2, we can decide the result of this computation
1493 Result
= (pred
== ICmpInst::ICMP_SGT
||
1494 pred
== ICmpInst::ICMP_NE
||
1495 pred
== ICmpInst::ICMP_SGE
);
1497 case ICmpInst::ICMP_ULE
:
1498 // If we know that C1 <= C2, we can only partially decide this relation.
1499 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1500 if (pred
== ICmpInst::ICMP_ULT
) Result
= 1;
1502 case ICmpInst::ICMP_SLE
:
1503 // If we know that C1 <= C2, we can only partially decide this relation.
1504 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1505 if (pred
== ICmpInst::ICMP_SLT
) Result
= 1;
1508 case ICmpInst::ICMP_UGE
:
1509 // If we know that C1 >= C2, we can only partially decide this relation.
1510 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1511 if (pred
== ICmpInst::ICMP_UGT
) Result
= 1;
1513 case ICmpInst::ICMP_SGE
:
1514 // If we know that C1 >= C2, we can only partially decide this relation.
1515 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1516 if (pred
== ICmpInst::ICMP_SGT
) Result
= 1;
1519 case ICmpInst::ICMP_NE
:
1520 // If we know that C1 != C2, we can only partially decide this relation.
1521 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1522 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1526 // If we evaluated the result, return it now.
1528 if (const VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType())) {
1530 return Constant::getNullValue(VT
);
1532 return Constant::getAllOnesValue(VT
);
1534 return ConstantInt::get(Type::Int1Ty
, Result
);
1537 if (!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) {
1538 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1539 // other way if possible.
1541 case ICmpInst::ICMP_EQ
:
1542 case ICmpInst::ICMP_NE
:
1543 // No change of predicate required.
1544 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1546 case ICmpInst::ICMP_ULT
:
1547 case ICmpInst::ICMP_SLT
:
1548 case ICmpInst::ICMP_UGT
:
1549 case ICmpInst::ICMP_SGT
:
1550 case ICmpInst::ICMP_ULE
:
1551 case ICmpInst::ICMP_SLE
:
1552 case ICmpInst::ICMP_UGE
:
1553 case ICmpInst::ICMP_SGE
:
1554 // Change the predicate as necessary to swap the operands.
1555 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1556 return ConstantFoldCompareInstruction(pred
, C2
, C1
);
1558 default: // These predicates cannot be flopped around.
1566 Constant
*llvm::ConstantFoldGetElementPtr(const Constant
*C
,
1567 Constant
* const *Idxs
,
1570 (NumIdx
== 1 && Idxs
[0]->isNullValue()))
1571 return const_cast<Constant
*>(C
);
1573 if (isa
<UndefValue
>(C
)) {
1574 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1575 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1577 (Value
**)Idxs
+NumIdx
);
1578 assert(Ty
!= 0 && "Invalid indices for GEP!");
1579 return UndefValue::get(PointerType::get(Ty
, Ptr
->getAddressSpace()));
1582 Constant
*Idx0
= Idxs
[0];
1583 if (C
->isNullValue()) {
1585 for (unsigned i
= 0, e
= NumIdx
; i
!= e
; ++i
)
1586 if (!Idxs
[i
]->isNullValue()) {
1591 const PointerType
*Ptr
= cast
<PointerType
>(C
->getType());
1592 const Type
*Ty
= GetElementPtrInst::getIndexedType(Ptr
,
1594 (Value
**)Idxs
+NumIdx
);
1595 assert(Ty
!= 0 && "Invalid indices for GEP!");
1597 ConstantPointerNull::get(PointerType::get(Ty
,Ptr
->getAddressSpace()));
1601 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(const_cast<Constant
*>(C
))) {
1602 // Combine Indices - If the source pointer to this getelementptr instruction
1603 // is a getelementptr instruction, combine the indices of the two
1604 // getelementptr instructions into a single instruction.
1606 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
1607 const Type
*LastTy
= 0;
1608 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
1612 if ((LastTy
&& isa
<ArrayType
>(LastTy
)) || Idx0
->isNullValue()) {
1613 SmallVector
<Value
*, 16> NewIndices
;
1614 NewIndices
.reserve(NumIdx
+ CE
->getNumOperands());
1615 for (unsigned i
= 1, e
= CE
->getNumOperands()-1; i
!= e
; ++i
)
1616 NewIndices
.push_back(CE
->getOperand(i
));
1618 // Add the last index of the source with the first index of the new GEP.
1619 // Make sure to handle the case when they are actually different types.
1620 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
1621 // Otherwise it must be an array.
1622 if (!Idx0
->isNullValue()) {
1623 const Type
*IdxTy
= Combined
->getType();
1624 if (IdxTy
!= Idx0
->getType()) {
1625 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, Type::Int64Ty
);
1626 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
,
1628 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
1631 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
1635 NewIndices
.push_back(Combined
);
1636 NewIndices
.insert(NewIndices
.end(), Idxs
+1, Idxs
+NumIdx
);
1637 return ConstantExpr::getGetElementPtr(CE
->getOperand(0), &NewIndices
[0],
1642 // Implement folding of:
1643 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1645 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1647 if (CE
->isCast() && NumIdx
> 1 && Idx0
->isNullValue()) {
1648 if (const PointerType
*SPT
=
1649 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType()))
1650 if (const ArrayType
*SAT
= dyn_cast
<ArrayType
>(SPT
->getElementType()))
1651 if (const ArrayType
*CAT
=
1652 dyn_cast
<ArrayType
>(cast
<PointerType
>(C
->getType())->getElementType()))
1653 if (CAT
->getElementType() == SAT
->getElementType())
1654 return ConstantExpr::getGetElementPtr(
1655 (Constant
*)CE
->getOperand(0), Idxs
, NumIdx
);
1658 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1659 // Into: inttoptr (i64 0 to i8*)
1660 // This happens with pointers to member functions in C++.
1661 if (CE
->getOpcode() == Instruction::IntToPtr
&& NumIdx
== 1 &&
1662 isa
<ConstantInt
>(CE
->getOperand(0)) && isa
<ConstantInt
>(Idxs
[0]) &&
1663 cast
<PointerType
>(CE
->getType())->getElementType() == Type::Int8Ty
) {
1664 Constant
*Base
= CE
->getOperand(0);
1665 Constant
*Offset
= Idxs
[0];
1667 // Convert the smaller integer to the larger type.
1668 if (Offset
->getType()->getPrimitiveSizeInBits() <
1669 Base
->getType()->getPrimitiveSizeInBits())
1670 Offset
= ConstantExpr::getSExt(Offset
, Base
->getType());
1671 else if (Base
->getType()->getPrimitiveSizeInBits() <
1672 Offset
->getType()->getPrimitiveSizeInBits())
1673 Base
= ConstantExpr::getZExt(Base
, Offset
->getType());
1675 Base
= ConstantExpr::getAdd(Base
, Offset
);
1676 return ConstantExpr::getIntToPtr(Base
, CE
->getType());