Proper name 16 bit libcalls
[llvm/msp430.git] / lib / VMCore / Constants.cpp
blob2afaa6c7b3794a47b9306987b2bd057813d007f4
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "ConstantFold.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/GlobalValue.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include <algorithm>
30 #include <map>
31 using namespace llvm;
33 //===----------------------------------------------------------------------===//
34 // Constant Class
35 //===----------------------------------------------------------------------===//
37 void Constant::destroyConstantImpl() {
38 // When a Constant is destroyed, there may be lingering
39 // references to the constant by other constants in the constant pool. These
40 // constants are implicitly dependent on the module that is being deleted,
41 // but they don't know that. Because we only find out when the CPV is
42 // deleted, we must now notify all of our users (that should only be
43 // Constants) that they are, in fact, invalid now and should be deleted.
45 while (!use_empty()) {
46 Value *V = use_back();
47 #ifndef NDEBUG // Only in -g mode...
48 if (!isa<Constant>(V))
49 DOUT << "While deleting: " << *this
50 << "\n\nUse still stuck around after Def is destroyed: "
51 << *V << "\n\n";
52 #endif
53 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
54 Constant *CV = cast<Constant>(V);
55 CV->destroyConstant();
57 // The constant should remove itself from our use list...
58 assert((use_empty() || use_back() != V) && "Constant not removed!");
61 // Value has no outstanding references it is safe to delete it now...
62 delete this;
65 /// canTrap - Return true if evaluation of this constant could trap. This is
66 /// true for things like constant expressions that could divide by zero.
67 bool Constant::canTrap() const {
68 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
69 // The only thing that could possibly trap are constant exprs.
70 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
71 if (!CE) return false;
73 // ConstantExpr traps if any operands can trap.
74 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
75 if (getOperand(i)->canTrap())
76 return true;
78 // Otherwise, only specific operations can trap.
79 switch (CE->getOpcode()) {
80 default:
81 return false;
82 case Instruction::UDiv:
83 case Instruction::SDiv:
84 case Instruction::FDiv:
85 case Instruction::URem:
86 case Instruction::SRem:
87 case Instruction::FRem:
88 // Div and rem can trap if the RHS is not known to be non-zero.
89 if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
90 return true;
91 return false;
95 /// ContainsRelocations - Return true if the constant value contains relocations
96 /// which cannot be resolved at compile time. Kind argument is used to filter
97 /// only 'interesting' sorts of relocations.
98 bool Constant::ContainsRelocations(unsigned Kind) const {
99 if (const GlobalValue* GV = dyn_cast<GlobalValue>(this)) {
100 bool isLocal = GV->hasLocalLinkage();
101 if ((Kind & Reloc::Local) && isLocal) {
102 // Global has local linkage and 'local' kind of relocations are
103 // requested
104 return true;
107 if ((Kind & Reloc::Global) && !isLocal) {
108 // Global has non-local linkage and 'global' kind of relocations are
109 // requested
110 return true;
113 return false;
116 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
117 if (getOperand(i)->ContainsRelocations(Kind))
118 return true;
120 return false;
123 // Static constructor to create a '0' constant of arbitrary type...
124 Constant *Constant::getNullValue(const Type *Ty) {
125 static uint64_t zero[2] = {0, 0};
126 switch (Ty->getTypeID()) {
127 case Type::IntegerTyID:
128 return ConstantInt::get(Ty, 0);
129 case Type::FloatTyID:
130 return ConstantFP::get(APFloat(APInt(32, 0)));
131 case Type::DoubleTyID:
132 return ConstantFP::get(APFloat(APInt(64, 0)));
133 case Type::X86_FP80TyID:
134 return ConstantFP::get(APFloat(APInt(80, 2, zero)));
135 case Type::FP128TyID:
136 return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
137 case Type::PPC_FP128TyID:
138 return ConstantFP::get(APFloat(APInt(128, 2, zero)));
139 case Type::PointerTyID:
140 return ConstantPointerNull::get(cast<PointerType>(Ty));
141 case Type::StructTyID:
142 case Type::ArrayTyID:
143 case Type::VectorTyID:
144 return ConstantAggregateZero::get(Ty);
145 default:
146 // Function, Label, or Opaque type?
147 assert(!"Cannot create a null constant of that type!");
148 return 0;
152 Constant *Constant::getAllOnesValue(const Type *Ty) {
153 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
154 return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
155 return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
158 // Static constructor to create an integral constant with all bits set
159 ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
160 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
161 return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
162 return 0;
165 /// @returns the value for a vector integer constant of the given type that
166 /// has all its bits set to true.
167 /// @brief Get the all ones value
168 ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
169 std::vector<Constant*> Elts;
170 Elts.resize(Ty->getNumElements(),
171 ConstantInt::getAllOnesValue(Ty->getElementType()));
172 assert(Elts[0] && "Not a vector integer type!");
173 return cast<ConstantVector>(ConstantVector::get(Elts));
177 /// getVectorElements - This method, which is only valid on constant of vector
178 /// type, returns the elements of the vector in the specified smallvector.
179 /// This handles breaking down a vector undef into undef elements, etc. For
180 /// constant exprs and other cases we can't handle, we return an empty vector.
181 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
182 assert(isa<VectorType>(getType()) && "Not a vector constant!");
184 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
185 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
186 Elts.push_back(CV->getOperand(i));
187 return;
190 const VectorType *VT = cast<VectorType>(getType());
191 if (isa<ConstantAggregateZero>(this)) {
192 Elts.assign(VT->getNumElements(),
193 Constant::getNullValue(VT->getElementType()));
194 return;
197 if (isa<UndefValue>(this)) {
198 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
199 return;
202 // Unknown type, must be constant expr etc.
207 //===----------------------------------------------------------------------===//
208 // ConstantInt
209 //===----------------------------------------------------------------------===//
211 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
212 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
213 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
216 ConstantInt *ConstantInt::TheTrueVal = 0;
217 ConstantInt *ConstantInt::TheFalseVal = 0;
219 namespace llvm {
220 void CleanupTrueFalse(void *) {
221 ConstantInt::ResetTrueFalse();
225 static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
227 ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
228 assert(TheTrueVal == 0 && TheFalseVal == 0);
229 TheTrueVal = get(Type::Int1Ty, 1);
230 TheFalseVal = get(Type::Int1Ty, 0);
232 // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
233 TrueFalseCleanup.Register();
235 return WhichOne ? TheTrueVal : TheFalseVal;
239 namespace {
240 struct DenseMapAPIntKeyInfo {
241 struct KeyTy {
242 APInt val;
243 const Type* type;
244 KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
245 KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
246 bool operator==(const KeyTy& that) const {
247 return type == that.type && this->val == that.val;
249 bool operator!=(const KeyTy& that) const {
250 return !this->operator==(that);
253 static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
254 static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
255 static unsigned getHashValue(const KeyTy &Key) {
256 return DenseMapInfo<void*>::getHashValue(Key.type) ^
257 Key.val.getHashValue();
259 static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
260 return LHS == RHS;
262 static bool isPod() { return false; }
267 typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
268 DenseMapAPIntKeyInfo> IntMapTy;
269 static ManagedStatic<IntMapTy> IntConstants;
271 ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
272 const IntegerType *ITy = cast<IntegerType>(Ty);
273 return get(APInt(ITy->getBitWidth(), V, isSigned));
276 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
277 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
278 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
279 // compare APInt's of different widths, which would violate an APInt class
280 // invariant which generates an assertion.
281 ConstantInt *ConstantInt::get(const APInt& V) {
282 // Get the corresponding integer type for the bit width of the value.
283 const IntegerType *ITy = IntegerType::get(V.getBitWidth());
284 // get an existing value or the insertion position
285 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
286 ConstantInt *&Slot = (*IntConstants)[Key];
287 // if it exists, return it.
288 if (Slot)
289 return Slot;
290 // otherwise create a new one, insert it, and return it.
291 return Slot = new ConstantInt(ITy, V);
294 //===----------------------------------------------------------------------===//
295 // ConstantFP
296 //===----------------------------------------------------------------------===//
298 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
299 if (Ty == Type::FloatTy)
300 return &APFloat::IEEEsingle;
301 if (Ty == Type::DoubleTy)
302 return &APFloat::IEEEdouble;
303 if (Ty == Type::X86_FP80Ty)
304 return &APFloat::x87DoubleExtended;
305 else if (Ty == Type::FP128Ty)
306 return &APFloat::IEEEquad;
308 assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
309 return &APFloat::PPCDoubleDouble;
312 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
313 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
314 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
315 "FP type Mismatch");
318 bool ConstantFP::isNullValue() const {
319 return Val.isZero() && !Val.isNegative();
322 ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
323 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
324 apf.changeSign();
325 return ConstantFP::get(apf);
328 bool ConstantFP::isExactlyValue(const APFloat& V) const {
329 return Val.bitwiseIsEqual(V);
332 namespace {
333 struct DenseMapAPFloatKeyInfo {
334 struct KeyTy {
335 APFloat val;
336 KeyTy(const APFloat& V) : val(V){}
337 KeyTy(const KeyTy& that) : val(that.val) {}
338 bool operator==(const KeyTy& that) const {
339 return this->val.bitwiseIsEqual(that.val);
341 bool operator!=(const KeyTy& that) const {
342 return !this->operator==(that);
345 static inline KeyTy getEmptyKey() {
346 return KeyTy(APFloat(APFloat::Bogus,1));
348 static inline KeyTy getTombstoneKey() {
349 return KeyTy(APFloat(APFloat::Bogus,2));
351 static unsigned getHashValue(const KeyTy &Key) {
352 return Key.val.getHashValue();
354 static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
355 return LHS == RHS;
357 static bool isPod() { return false; }
361 //---- ConstantFP::get() implementation...
363 typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
364 DenseMapAPFloatKeyInfo> FPMapTy;
366 static ManagedStatic<FPMapTy> FPConstants;
368 ConstantFP *ConstantFP::get(const APFloat &V) {
369 DenseMapAPFloatKeyInfo::KeyTy Key(V);
370 ConstantFP *&Slot = (*FPConstants)[Key];
371 if (Slot) return Slot;
373 const Type *Ty;
374 if (&V.getSemantics() == &APFloat::IEEEsingle)
375 Ty = Type::FloatTy;
376 else if (&V.getSemantics() == &APFloat::IEEEdouble)
377 Ty = Type::DoubleTy;
378 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
379 Ty = Type::X86_FP80Ty;
380 else if (&V.getSemantics() == &APFloat::IEEEquad)
381 Ty = Type::FP128Ty;
382 else {
383 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format");
384 Ty = Type::PPC_FP128Ty;
387 return Slot = new ConstantFP(Ty, V);
390 /// get() - This returns a constant fp for the specified value in the
391 /// specified type. This should only be used for simple constant values like
392 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
393 ConstantFP *ConstantFP::get(const Type *Ty, double V) {
394 APFloat FV(V);
395 bool ignored;
396 FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven, &ignored);
397 return get(FV);
400 //===----------------------------------------------------------------------===//
401 // ConstantXXX Classes
402 //===----------------------------------------------------------------------===//
405 ConstantArray::ConstantArray(const ArrayType *T,
406 const std::vector<Constant*> &V)
407 : Constant(T, ConstantArrayVal,
408 OperandTraits<ConstantArray>::op_end(this) - V.size(),
409 V.size()) {
410 assert(V.size() == T->getNumElements() &&
411 "Invalid initializer vector for constant array");
412 Use *OL = OperandList;
413 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
414 I != E; ++I, ++OL) {
415 Constant *C = *I;
416 assert((C->getType() == T->getElementType() ||
417 (T->isAbstract() &&
418 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
419 "Initializer for array element doesn't match array element type!");
420 *OL = C;
425 ConstantStruct::ConstantStruct(const StructType *T,
426 const std::vector<Constant*> &V)
427 : Constant(T, ConstantStructVal,
428 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
429 V.size()) {
430 assert(V.size() == T->getNumElements() &&
431 "Invalid initializer vector for constant structure");
432 Use *OL = OperandList;
433 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
434 I != E; ++I, ++OL) {
435 Constant *C = *I;
436 assert((C->getType() == T->getElementType(I-V.begin()) ||
437 ((T->getElementType(I-V.begin())->isAbstract() ||
438 C->getType()->isAbstract()) &&
439 T->getElementType(I-V.begin())->getTypeID() ==
440 C->getType()->getTypeID())) &&
441 "Initializer for struct element doesn't match struct element type!");
442 *OL = C;
447 ConstantVector::ConstantVector(const VectorType *T,
448 const std::vector<Constant*> &V)
449 : Constant(T, ConstantVectorVal,
450 OperandTraits<ConstantVector>::op_end(this) - V.size(),
451 V.size()) {
452 Use *OL = OperandList;
453 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
454 I != E; ++I, ++OL) {
455 Constant *C = *I;
456 assert((C->getType() == T->getElementType() ||
457 (T->isAbstract() &&
458 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
459 "Initializer for vector element doesn't match vector element type!");
460 *OL = C;
465 namespace llvm {
466 // We declare several classes private to this file, so use an anonymous
467 // namespace
468 namespace {
470 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
471 /// behind the scenes to implement unary constant exprs.
472 class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
473 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
474 public:
475 // allocate space for exactly one operand
476 void *operator new(size_t s) {
477 return User::operator new(s, 1);
479 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
480 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
481 Op<0>() = C;
483 /// Transparently provide more efficient getOperand methods.
484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
487 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
488 /// behind the scenes to implement binary constant exprs.
489 class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
490 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
491 public:
492 // allocate space for exactly two operands
493 void *operator new(size_t s) {
494 return User::operator new(s, 2);
496 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
497 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
498 Op<0>() = C1;
499 Op<1>() = C2;
501 /// Transparently provide more efficient getOperand methods.
502 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
505 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
506 /// behind the scenes to implement select constant exprs.
507 class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
508 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
509 public:
510 // allocate space for exactly three operands
511 void *operator new(size_t s) {
512 return User::operator new(s, 3);
514 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
515 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
516 Op<0>() = C1;
517 Op<1>() = C2;
518 Op<2>() = C3;
520 /// Transparently provide more efficient getOperand methods.
521 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
524 /// ExtractElementConstantExpr - This class is private to
525 /// Constants.cpp, and is used behind the scenes to implement
526 /// extractelement constant exprs.
527 class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
528 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
529 public:
530 // allocate space for exactly two operands
531 void *operator new(size_t s) {
532 return User::operator new(s, 2);
534 ExtractElementConstantExpr(Constant *C1, Constant *C2)
535 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
536 Instruction::ExtractElement, &Op<0>(), 2) {
537 Op<0>() = C1;
538 Op<1>() = C2;
540 /// Transparently provide more efficient getOperand methods.
541 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
544 /// InsertElementConstantExpr - This class is private to
545 /// Constants.cpp, and is used behind the scenes to implement
546 /// insertelement constant exprs.
547 class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
548 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
549 public:
550 // allocate space for exactly three operands
551 void *operator new(size_t s) {
552 return User::operator new(s, 3);
554 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
555 : ConstantExpr(C1->getType(), Instruction::InsertElement,
556 &Op<0>(), 3) {
557 Op<0>() = C1;
558 Op<1>() = C2;
559 Op<2>() = C3;
561 /// Transparently provide more efficient getOperand methods.
562 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
565 /// ShuffleVectorConstantExpr - This class is private to
566 /// Constants.cpp, and is used behind the scenes to implement
567 /// shufflevector constant exprs.
568 class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
569 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
570 public:
571 // allocate space for exactly three operands
572 void *operator new(size_t s) {
573 return User::operator new(s, 3);
575 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
576 : ConstantExpr(VectorType::get(
577 cast<VectorType>(C1->getType())->getElementType(),
578 cast<VectorType>(C3->getType())->getNumElements()),
579 Instruction::ShuffleVector,
580 &Op<0>(), 3) {
581 Op<0>() = C1;
582 Op<1>() = C2;
583 Op<2>() = C3;
585 /// Transparently provide more efficient getOperand methods.
586 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
589 /// ExtractValueConstantExpr - This class is private to
590 /// Constants.cpp, and is used behind the scenes to implement
591 /// extractvalue constant exprs.
592 class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr {
593 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
594 public:
595 // allocate space for exactly one operand
596 void *operator new(size_t s) {
597 return User::operator new(s, 1);
599 ExtractValueConstantExpr(Constant *Agg,
600 const SmallVector<unsigned, 4> &IdxList,
601 const Type *DestTy)
602 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
603 Indices(IdxList) {
604 Op<0>() = Agg;
607 /// Indices - These identify which value to extract.
608 const SmallVector<unsigned, 4> Indices;
610 /// Transparently provide more efficient getOperand methods.
611 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
614 /// InsertValueConstantExpr - This class is private to
615 /// Constants.cpp, and is used behind the scenes to implement
616 /// insertvalue constant exprs.
617 class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr {
618 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
619 public:
620 // allocate space for exactly one operand
621 void *operator new(size_t s) {
622 return User::operator new(s, 2);
624 InsertValueConstantExpr(Constant *Agg, Constant *Val,
625 const SmallVector<unsigned, 4> &IdxList,
626 const Type *DestTy)
627 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
628 Indices(IdxList) {
629 Op<0>() = Agg;
630 Op<1>() = Val;
633 /// Indices - These identify the position for the insertion.
634 const SmallVector<unsigned, 4> Indices;
636 /// Transparently provide more efficient getOperand methods.
637 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
641 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
642 /// used behind the scenes to implement getelementpr constant exprs.
643 class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
644 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
645 const Type *DestTy);
646 public:
647 static GetElementPtrConstantExpr *Create(Constant *C,
648 const std::vector<Constant*>&IdxList,
649 const Type *DestTy) {
650 return new(IdxList.size() + 1)
651 GetElementPtrConstantExpr(C, IdxList, DestTy);
653 /// Transparently provide more efficient getOperand methods.
654 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
657 // CompareConstantExpr - This class is private to Constants.cpp, and is used
658 // behind the scenes to implement ICmp and FCmp constant expressions. This is
659 // needed in order to store the predicate value for these instructions.
660 struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
661 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
662 // allocate space for exactly two operands
663 void *operator new(size_t s) {
664 return User::operator new(s, 2);
666 unsigned short predicate;
667 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
668 unsigned short pred, Constant* LHS, Constant* RHS)
669 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
670 Op<0>() = LHS;
671 Op<1>() = RHS;
673 /// Transparently provide more efficient getOperand methods.
674 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
677 } // end anonymous namespace
679 template <>
680 struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
682 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
684 template <>
685 struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
687 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
689 template <>
690 struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
692 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
694 template <>
695 struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
697 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
699 template <>
700 struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
702 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
704 template <>
705 struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
707 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
709 template <>
710 struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
712 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
714 template <>
715 struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
717 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
719 template <>
720 struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
723 GetElementPtrConstantExpr::GetElementPtrConstantExpr
724 (Constant *C,
725 const std::vector<Constant*> &IdxList,
726 const Type *DestTy)
727 : ConstantExpr(DestTy, Instruction::GetElementPtr,
728 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
729 - (IdxList.size()+1),
730 IdxList.size()+1) {
731 OperandList[0] = C;
732 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
733 OperandList[i+1] = IdxList[i];
736 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
739 template <>
740 struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
742 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
745 } // End llvm namespace
748 // Utility function for determining if a ConstantExpr is a CastOp or not. This
749 // can't be inline because we don't want to #include Instruction.h into
750 // Constant.h
751 bool ConstantExpr::isCast() const {
752 return Instruction::isCast(getOpcode());
755 bool ConstantExpr::isCompare() const {
756 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp ||
757 getOpcode() == Instruction::VICmp || getOpcode() == Instruction::VFCmp;
760 bool ConstantExpr::hasIndices() const {
761 return getOpcode() == Instruction::ExtractValue ||
762 getOpcode() == Instruction::InsertValue;
765 const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
766 if (const ExtractValueConstantExpr *EVCE =
767 dyn_cast<ExtractValueConstantExpr>(this))
768 return EVCE->Indices;
770 return cast<InsertValueConstantExpr>(this)->Indices;
773 /// ConstantExpr::get* - Return some common constants without having to
774 /// specify the full Instruction::OPCODE identifier.
776 Constant *ConstantExpr::getNeg(Constant *C) {
777 return get(Instruction::Sub,
778 ConstantExpr::getZeroValueForNegationExpr(C->getType()),
781 Constant *ConstantExpr::getNot(Constant *C) {
782 assert((isa<IntegerType>(C->getType()) ||
783 cast<VectorType>(C->getType())->getElementType()->isInteger()) &&
784 "Cannot NOT a nonintegral value!");
785 return get(Instruction::Xor, C,
786 Constant::getAllOnesValue(C->getType()));
788 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
789 return get(Instruction::Add, C1, C2);
791 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
792 return get(Instruction::Sub, C1, C2);
794 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
795 return get(Instruction::Mul, C1, C2);
797 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
798 return get(Instruction::UDiv, C1, C2);
800 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
801 return get(Instruction::SDiv, C1, C2);
803 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
804 return get(Instruction::FDiv, C1, C2);
806 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
807 return get(Instruction::URem, C1, C2);
809 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
810 return get(Instruction::SRem, C1, C2);
812 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
813 return get(Instruction::FRem, C1, C2);
815 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
816 return get(Instruction::And, C1, C2);
818 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
819 return get(Instruction::Or, C1, C2);
821 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
822 return get(Instruction::Xor, C1, C2);
824 unsigned ConstantExpr::getPredicate() const {
825 assert(getOpcode() == Instruction::FCmp ||
826 getOpcode() == Instruction::ICmp ||
827 getOpcode() == Instruction::VFCmp ||
828 getOpcode() == Instruction::VICmp);
829 return ((const CompareConstantExpr*)this)->predicate;
831 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
832 return get(Instruction::Shl, C1, C2);
834 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
835 return get(Instruction::LShr, C1, C2);
837 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
838 return get(Instruction::AShr, C1, C2);
841 /// getWithOperandReplaced - Return a constant expression identical to this
842 /// one, but with the specified operand set to the specified value.
843 Constant *
844 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
845 assert(OpNo < getNumOperands() && "Operand num is out of range!");
846 assert(Op->getType() == getOperand(OpNo)->getType() &&
847 "Replacing operand with value of different type!");
848 if (getOperand(OpNo) == Op)
849 return const_cast<ConstantExpr*>(this);
851 Constant *Op0, *Op1, *Op2;
852 switch (getOpcode()) {
853 case Instruction::Trunc:
854 case Instruction::ZExt:
855 case Instruction::SExt:
856 case Instruction::FPTrunc:
857 case Instruction::FPExt:
858 case Instruction::UIToFP:
859 case Instruction::SIToFP:
860 case Instruction::FPToUI:
861 case Instruction::FPToSI:
862 case Instruction::PtrToInt:
863 case Instruction::IntToPtr:
864 case Instruction::BitCast:
865 return ConstantExpr::getCast(getOpcode(), Op, getType());
866 case Instruction::Select:
867 Op0 = (OpNo == 0) ? Op : getOperand(0);
868 Op1 = (OpNo == 1) ? Op : getOperand(1);
869 Op2 = (OpNo == 2) ? Op : getOperand(2);
870 return ConstantExpr::getSelect(Op0, Op1, Op2);
871 case Instruction::InsertElement:
872 Op0 = (OpNo == 0) ? Op : getOperand(0);
873 Op1 = (OpNo == 1) ? Op : getOperand(1);
874 Op2 = (OpNo == 2) ? Op : getOperand(2);
875 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
876 case Instruction::ExtractElement:
877 Op0 = (OpNo == 0) ? Op : getOperand(0);
878 Op1 = (OpNo == 1) ? Op : getOperand(1);
879 return ConstantExpr::getExtractElement(Op0, Op1);
880 case Instruction::ShuffleVector:
881 Op0 = (OpNo == 0) ? Op : getOperand(0);
882 Op1 = (OpNo == 1) ? Op : getOperand(1);
883 Op2 = (OpNo == 2) ? Op : getOperand(2);
884 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
885 case Instruction::GetElementPtr: {
886 SmallVector<Constant*, 8> Ops;
887 Ops.resize(getNumOperands()-1);
888 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
889 Ops[i-1] = getOperand(i);
890 if (OpNo == 0)
891 return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
892 Ops[OpNo-1] = Op;
893 return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
895 default:
896 assert(getNumOperands() == 2 && "Must be binary operator?");
897 Op0 = (OpNo == 0) ? Op : getOperand(0);
898 Op1 = (OpNo == 1) ? Op : getOperand(1);
899 return ConstantExpr::get(getOpcode(), Op0, Op1);
903 /// getWithOperands - This returns the current constant expression with the
904 /// operands replaced with the specified values. The specified operands must
905 /// match count and type with the existing ones.
906 Constant *ConstantExpr::
907 getWithOperands(Constant* const *Ops, unsigned NumOps) const {
908 assert(NumOps == getNumOperands() && "Operand count mismatch!");
909 bool AnyChange = false;
910 for (unsigned i = 0; i != NumOps; ++i) {
911 assert(Ops[i]->getType() == getOperand(i)->getType() &&
912 "Operand type mismatch!");
913 AnyChange |= Ops[i] != getOperand(i);
915 if (!AnyChange) // No operands changed, return self.
916 return const_cast<ConstantExpr*>(this);
918 switch (getOpcode()) {
919 case Instruction::Trunc:
920 case Instruction::ZExt:
921 case Instruction::SExt:
922 case Instruction::FPTrunc:
923 case Instruction::FPExt:
924 case Instruction::UIToFP:
925 case Instruction::SIToFP:
926 case Instruction::FPToUI:
927 case Instruction::FPToSI:
928 case Instruction::PtrToInt:
929 case Instruction::IntToPtr:
930 case Instruction::BitCast:
931 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
932 case Instruction::Select:
933 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
934 case Instruction::InsertElement:
935 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
936 case Instruction::ExtractElement:
937 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
938 case Instruction::ShuffleVector:
939 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
940 case Instruction::GetElementPtr:
941 return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
942 case Instruction::ICmp:
943 case Instruction::FCmp:
944 case Instruction::VICmp:
945 case Instruction::VFCmp:
946 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
947 default:
948 assert(getNumOperands() == 2 && "Must be binary operator?");
949 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
954 //===----------------------------------------------------------------------===//
955 // isValueValidForType implementations
957 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
958 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
959 if (Ty == Type::Int1Ty)
960 return Val == 0 || Val == 1;
961 if (NumBits >= 64)
962 return true; // always true, has to fit in largest type
963 uint64_t Max = (1ll << NumBits) - 1;
964 return Val <= Max;
967 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
968 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
969 if (Ty == Type::Int1Ty)
970 return Val == 0 || Val == 1 || Val == -1;
971 if (NumBits >= 64)
972 return true; // always true, has to fit in largest type
973 int64_t Min = -(1ll << (NumBits-1));
974 int64_t Max = (1ll << (NumBits-1)) - 1;
975 return (Val >= Min && Val <= Max);
978 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
979 // convert modifies in place, so make a copy.
980 APFloat Val2 = APFloat(Val);
981 bool losesInfo;
982 switch (Ty->getTypeID()) {
983 default:
984 return false; // These can't be represented as floating point!
986 // FIXME rounding mode needs to be more flexible
987 case Type::FloatTyID: {
988 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
989 return true;
990 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
991 return !losesInfo;
993 case Type::DoubleTyID: {
994 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
995 &Val2.getSemantics() == &APFloat::IEEEdouble)
996 return true;
997 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
998 return !losesInfo;
1000 case Type::X86_FP80TyID:
1001 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
1002 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1003 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1004 case Type::FP128TyID:
1005 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
1006 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1007 &Val2.getSemantics() == &APFloat::IEEEquad;
1008 case Type::PPC_FP128TyID:
1009 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
1010 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1011 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1015 //===----------------------------------------------------------------------===//
1016 // Factory Function Implementation
1019 // The number of operands for each ConstantCreator::create method is
1020 // determined by the ConstantTraits template.
1021 // ConstantCreator - A class that is used to create constants by
1022 // ValueMap*. This class should be partially specialized if there is
1023 // something strange that needs to be done to interface to the ctor for the
1024 // constant.
1026 namespace llvm {
1027 template<class ValType>
1028 struct ConstantTraits;
1030 template<typename T, typename Alloc>
1031 struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
1032 static unsigned uses(const std::vector<T, Alloc>& v) {
1033 return v.size();
1037 template<class ConstantClass, class TypeClass, class ValType>
1038 struct VISIBILITY_HIDDEN ConstantCreator {
1039 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
1040 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
1044 template<class ConstantClass, class TypeClass>
1045 struct VISIBILITY_HIDDEN ConvertConstantType {
1046 static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
1047 assert(0 && "This type cannot be converted!\n");
1048 abort();
1052 template<class ValType, class TypeClass, class ConstantClass,
1053 bool HasLargeKey = false /*true for arrays and structs*/ >
1054 class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
1055 public:
1056 typedef std::pair<const Type*, ValType> MapKey;
1057 typedef std::map<MapKey, Constant *> MapTy;
1058 typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
1059 typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
1060 private:
1061 /// Map - This is the main map from the element descriptor to the Constants.
1062 /// This is the primary way we avoid creating two of the same shape
1063 /// constant.
1064 MapTy Map;
1066 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
1067 /// from the constants to their element in Map. This is important for
1068 /// removal of constants from the array, which would otherwise have to scan
1069 /// through the map with very large keys.
1070 InverseMapTy InverseMap;
1072 /// AbstractTypeMap - Map for abstract type constants.
1074 AbstractTypeMapTy AbstractTypeMap;
1076 public:
1077 typename MapTy::iterator map_end() { return Map.end(); }
1079 /// InsertOrGetItem - Return an iterator for the specified element.
1080 /// If the element exists in the map, the returned iterator points to the
1081 /// entry and Exists=true. If not, the iterator points to the newly
1082 /// inserted entry and returns Exists=false. Newly inserted entries have
1083 /// I->second == 0, and should be filled in.
1084 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
1085 &InsertVal,
1086 bool &Exists) {
1087 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
1088 Exists = !IP.second;
1089 return IP.first;
1092 private:
1093 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
1094 if (HasLargeKey) {
1095 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
1096 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
1097 IMI->second->second == CP &&
1098 "InverseMap corrupt!");
1099 return IMI->second;
1102 typename MapTy::iterator I =
1103 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
1104 getValType(CP)));
1105 if (I == Map.end() || I->second != CP) {
1106 // FIXME: This should not use a linear scan. If this gets to be a
1107 // performance problem, someone should look at this.
1108 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
1109 /* empty */;
1111 return I;
1113 public:
1115 /// getOrCreate - Return the specified constant from the map, creating it if
1116 /// necessary.
1117 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
1118 MapKey Lookup(Ty, V);
1119 typename MapTy::iterator I = Map.find(Lookup);
1120 // Is it in the map?
1121 if (I != Map.end())
1122 return static_cast<ConstantClass *>(I->second);
1124 // If no preexisting value, create one now...
1125 ConstantClass *Result =
1126 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
1128 assert(Result->getType() == Ty && "Type specified is not correct!");
1129 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
1131 if (HasLargeKey) // Remember the reverse mapping if needed.
1132 InverseMap.insert(std::make_pair(Result, I));
1134 // If the type of the constant is abstract, make sure that an entry exists
1135 // for it in the AbstractTypeMap.
1136 if (Ty->isAbstract()) {
1137 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty);
1139 if (TI == AbstractTypeMap.end()) {
1140 // Add ourselves to the ATU list of the type.
1141 cast<DerivedType>(Ty)->addAbstractTypeUser(this);
1143 AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
1146 return Result;
1149 void remove(ConstantClass *CP) {
1150 typename MapTy::iterator I = FindExistingElement(CP);
1151 assert(I != Map.end() && "Constant not found in constant table!");
1152 assert(I->second == CP && "Didn't find correct element?");
1154 if (HasLargeKey) // Remember the reverse mapping if needed.
1155 InverseMap.erase(CP);
1157 // Now that we found the entry, make sure this isn't the entry that
1158 // the AbstractTypeMap points to.
1159 const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
1160 if (Ty->isAbstract()) {
1161 assert(AbstractTypeMap.count(Ty) &&
1162 "Abstract type not in AbstractTypeMap?");
1163 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
1164 if (ATMEntryIt == I) {
1165 // Yes, we are removing the representative entry for this type.
1166 // See if there are any other entries of the same type.
1167 typename MapTy::iterator TmpIt = ATMEntryIt;
1169 // First check the entry before this one...
1170 if (TmpIt != Map.begin()) {
1171 --TmpIt;
1172 if (TmpIt->first.first != Ty) // Not the same type, move back...
1173 ++TmpIt;
1176 // If we didn't find the same type, try to move forward...
1177 if (TmpIt == ATMEntryIt) {
1178 ++TmpIt;
1179 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
1180 --TmpIt; // No entry afterwards with the same type
1183 // If there is another entry in the map of the same abstract type,
1184 // update the AbstractTypeMap entry now.
1185 if (TmpIt != ATMEntryIt) {
1186 ATMEntryIt = TmpIt;
1187 } else {
1188 // Otherwise, we are removing the last instance of this type
1189 // from the table. Remove from the ATM, and from user list.
1190 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
1191 AbstractTypeMap.erase(Ty);
1196 Map.erase(I);
1200 /// MoveConstantToNewSlot - If we are about to change C to be the element
1201 /// specified by I, update our internal data structures to reflect this
1202 /// fact.
1203 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
1204 // First, remove the old location of the specified constant in the map.
1205 typename MapTy::iterator OldI = FindExistingElement(C);
1206 assert(OldI != Map.end() && "Constant not found in constant table!");
1207 assert(OldI->second == C && "Didn't find correct element?");
1209 // If this constant is the representative element for its abstract type,
1210 // update the AbstractTypeMap so that the representative element is I.
1211 if (C->getType()->isAbstract()) {
1212 typename AbstractTypeMapTy::iterator ATI =
1213 AbstractTypeMap.find(C->getType());
1214 assert(ATI != AbstractTypeMap.end() &&
1215 "Abstract type not in AbstractTypeMap?");
1216 if (ATI->second == OldI)
1217 ATI->second = I;
1220 // Remove the old entry from the map.
1221 Map.erase(OldI);
1223 // Update the inverse map so that we know that this constant is now
1224 // located at descriptor I.
1225 if (HasLargeKey) {
1226 assert(I->second == C && "Bad inversemap entry!");
1227 InverseMap[C] = I;
1231 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
1232 typename AbstractTypeMapTy::iterator I =
1233 AbstractTypeMap.find(cast<Type>(OldTy));
1235 assert(I != AbstractTypeMap.end() &&
1236 "Abstract type not in AbstractTypeMap?");
1238 // Convert a constant at a time until the last one is gone. The last one
1239 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
1240 // eliminated eventually.
1241 do {
1242 ConvertConstantType<ConstantClass,
1243 TypeClass>::convert(
1244 static_cast<ConstantClass *>(I->second->second),
1245 cast<TypeClass>(NewTy));
1247 I = AbstractTypeMap.find(cast<Type>(OldTy));
1248 } while (I != AbstractTypeMap.end());
1251 // If the type became concrete without being refined to any other existing
1252 // type, we just remove ourselves from the ATU list.
1253 void typeBecameConcrete(const DerivedType *AbsTy) {
1254 AbsTy->removeAbstractTypeUser(this);
1257 void dump() const {
1258 DOUT << "Constant.cpp: ValueMap\n";
1265 //---- ConstantAggregateZero::get() implementation...
1267 namespace llvm {
1268 // ConstantAggregateZero does not take extra "value" argument...
1269 template<class ValType>
1270 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
1271 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
1272 return new ConstantAggregateZero(Ty);
1276 template<>
1277 struct ConvertConstantType<ConstantAggregateZero, Type> {
1278 static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
1279 // Make everyone now use a constant of the new type...
1280 Constant *New = ConstantAggregateZero::get(NewTy);
1281 assert(New != OldC && "Didn't replace constant??");
1282 OldC->uncheckedReplaceAllUsesWith(New);
1283 OldC->destroyConstant(); // This constant is now dead, destroy it.
1288 static ManagedStatic<ValueMap<char, Type,
1289 ConstantAggregateZero> > AggZeroConstants;
1291 static char getValType(ConstantAggregateZero *CPZ) { return 0; }
1293 ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
1294 assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
1295 "Cannot create an aggregate zero of non-aggregate type!");
1296 return AggZeroConstants->getOrCreate(Ty, 0);
1299 /// destroyConstant - Remove the constant from the constant table...
1301 void ConstantAggregateZero::destroyConstant() {
1302 AggZeroConstants->remove(this);
1303 destroyConstantImpl();
1306 //---- ConstantArray::get() implementation...
1308 namespace llvm {
1309 template<>
1310 struct ConvertConstantType<ConstantArray, ArrayType> {
1311 static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
1312 // Make everyone now use a constant of the new type...
1313 std::vector<Constant*> C;
1314 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1315 C.push_back(cast<Constant>(OldC->getOperand(i)));
1316 Constant *New = ConstantArray::get(NewTy, C);
1317 assert(New != OldC && "Didn't replace constant??");
1318 OldC->uncheckedReplaceAllUsesWith(New);
1319 OldC->destroyConstant(); // This constant is now dead, destroy it.
1324 static std::vector<Constant*> getValType(ConstantArray *CA) {
1325 std::vector<Constant*> Elements;
1326 Elements.reserve(CA->getNumOperands());
1327 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1328 Elements.push_back(cast<Constant>(CA->getOperand(i)));
1329 return Elements;
1332 typedef ValueMap<std::vector<Constant*>, ArrayType,
1333 ConstantArray, true /*largekey*/> ArrayConstantsTy;
1334 static ManagedStatic<ArrayConstantsTy> ArrayConstants;
1336 Constant *ConstantArray::get(const ArrayType *Ty,
1337 const std::vector<Constant*> &V) {
1338 // If this is an all-zero array, return a ConstantAggregateZero object
1339 if (!V.empty()) {
1340 Constant *C = V[0];
1341 if (!C->isNullValue())
1342 return ArrayConstants->getOrCreate(Ty, V);
1343 for (unsigned i = 1, e = V.size(); i != e; ++i)
1344 if (V[i] != C)
1345 return ArrayConstants->getOrCreate(Ty, V);
1347 return ConstantAggregateZero::get(Ty);
1350 /// destroyConstant - Remove the constant from the constant table...
1352 void ConstantArray::destroyConstant() {
1353 ArrayConstants->remove(this);
1354 destroyConstantImpl();
1357 /// ConstantArray::get(const string&) - Return an array that is initialized to
1358 /// contain the specified string. If length is zero then a null terminator is
1359 /// added to the specified string so that it may be used in a natural way.
1360 /// Otherwise, the length parameter specifies how much of the string to use
1361 /// and it won't be null terminated.
1363 Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
1364 std::vector<Constant*> ElementVals;
1365 for (unsigned i = 0; i < Str.length(); ++i)
1366 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
1368 // Add a null terminator to the string...
1369 if (AddNull) {
1370 ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
1373 ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
1374 return ConstantArray::get(ATy, ElementVals);
1377 /// isString - This method returns true if the array is an array of i8, and
1378 /// if the elements of the array are all ConstantInt's.
1379 bool ConstantArray::isString() const {
1380 // Check the element type for i8...
1381 if (getType()->getElementType() != Type::Int8Ty)
1382 return false;
1383 // Check the elements to make sure they are all integers, not constant
1384 // expressions.
1385 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1386 if (!isa<ConstantInt>(getOperand(i)))
1387 return false;
1388 return true;
1391 /// isCString - This method returns true if the array is a string (see
1392 /// isString) and it ends in a null byte \\0 and does not contains any other
1393 /// null bytes except its terminator.
1394 bool ConstantArray::isCString() const {
1395 // Check the element type for i8...
1396 if (getType()->getElementType() != Type::Int8Ty)
1397 return false;
1398 Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
1399 // Last element must be a null.
1400 if (getOperand(getNumOperands()-1) != Zero)
1401 return false;
1402 // Other elements must be non-null integers.
1403 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1404 if (!isa<ConstantInt>(getOperand(i)))
1405 return false;
1406 if (getOperand(i) == Zero)
1407 return false;
1409 return true;
1413 /// getAsString - If the sub-element type of this array is i8
1414 /// then this method converts the array to an std::string and returns it.
1415 /// Otherwise, it asserts out.
1417 std::string ConstantArray::getAsString() const {
1418 assert(isString() && "Not a string!");
1419 std::string Result;
1420 Result.reserve(getNumOperands());
1421 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1422 Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
1423 return Result;
1427 //---- ConstantStruct::get() implementation...
1430 namespace llvm {
1431 template<>
1432 struct ConvertConstantType<ConstantStruct, StructType> {
1433 static void convert(ConstantStruct *OldC, const StructType *NewTy) {
1434 // Make everyone now use a constant of the new type...
1435 std::vector<Constant*> C;
1436 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1437 C.push_back(cast<Constant>(OldC->getOperand(i)));
1438 Constant *New = ConstantStruct::get(NewTy, C);
1439 assert(New != OldC && "Didn't replace constant??");
1441 OldC->uncheckedReplaceAllUsesWith(New);
1442 OldC->destroyConstant(); // This constant is now dead, destroy it.
1447 typedef ValueMap<std::vector<Constant*>, StructType,
1448 ConstantStruct, true /*largekey*/> StructConstantsTy;
1449 static ManagedStatic<StructConstantsTy> StructConstants;
1451 static std::vector<Constant*> getValType(ConstantStruct *CS) {
1452 std::vector<Constant*> Elements;
1453 Elements.reserve(CS->getNumOperands());
1454 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1455 Elements.push_back(cast<Constant>(CS->getOperand(i)));
1456 return Elements;
1459 Constant *ConstantStruct::get(const StructType *Ty,
1460 const std::vector<Constant*> &V) {
1461 // Create a ConstantAggregateZero value if all elements are zeros...
1462 for (unsigned i = 0, e = V.size(); i != e; ++i)
1463 if (!V[i]->isNullValue())
1464 return StructConstants->getOrCreate(Ty, V);
1466 return ConstantAggregateZero::get(Ty);
1469 Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
1470 std::vector<const Type*> StructEls;
1471 StructEls.reserve(V.size());
1472 for (unsigned i = 0, e = V.size(); i != e; ++i)
1473 StructEls.push_back(V[i]->getType());
1474 return get(StructType::get(StructEls, packed), V);
1477 // destroyConstant - Remove the constant from the constant table...
1479 void ConstantStruct::destroyConstant() {
1480 StructConstants->remove(this);
1481 destroyConstantImpl();
1484 //---- ConstantVector::get() implementation...
1486 namespace llvm {
1487 template<>
1488 struct ConvertConstantType<ConstantVector, VectorType> {
1489 static void convert(ConstantVector *OldC, const VectorType *NewTy) {
1490 // Make everyone now use a constant of the new type...
1491 std::vector<Constant*> C;
1492 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
1493 C.push_back(cast<Constant>(OldC->getOperand(i)));
1494 Constant *New = ConstantVector::get(NewTy, C);
1495 assert(New != OldC && "Didn't replace constant??");
1496 OldC->uncheckedReplaceAllUsesWith(New);
1497 OldC->destroyConstant(); // This constant is now dead, destroy it.
1502 static std::vector<Constant*> getValType(ConstantVector *CP) {
1503 std::vector<Constant*> Elements;
1504 Elements.reserve(CP->getNumOperands());
1505 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1506 Elements.push_back(CP->getOperand(i));
1507 return Elements;
1510 static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
1511 ConstantVector> > VectorConstants;
1513 Constant *ConstantVector::get(const VectorType *Ty,
1514 const std::vector<Constant*> &V) {
1515 assert(!V.empty() && "Vectors can't be empty");
1516 // If this is an all-undef or alll-zero vector, return a
1517 // ConstantAggregateZero or UndefValue.
1518 Constant *C = V[0];
1519 bool isZero = C->isNullValue();
1520 bool isUndef = isa<UndefValue>(C);
1522 if (isZero || isUndef) {
1523 for (unsigned i = 1, e = V.size(); i != e; ++i)
1524 if (V[i] != C) {
1525 isZero = isUndef = false;
1526 break;
1530 if (isZero)
1531 return ConstantAggregateZero::get(Ty);
1532 if (isUndef)
1533 return UndefValue::get(Ty);
1534 return VectorConstants->getOrCreate(Ty, V);
1537 Constant *ConstantVector::get(const std::vector<Constant*> &V) {
1538 assert(!V.empty() && "Cannot infer type if V is empty");
1539 return get(VectorType::get(V.front()->getType(),V.size()), V);
1542 // destroyConstant - Remove the constant from the constant table...
1544 void ConstantVector::destroyConstant() {
1545 VectorConstants->remove(this);
1546 destroyConstantImpl();
1549 /// This function will return true iff every element in this vector constant
1550 /// is set to all ones.
1551 /// @returns true iff this constant's emements are all set to all ones.
1552 /// @brief Determine if the value is all ones.
1553 bool ConstantVector::isAllOnesValue() const {
1554 // Check out first element.
1555 const Constant *Elt = getOperand(0);
1556 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1557 if (!CI || !CI->isAllOnesValue()) return false;
1558 // Then make sure all remaining elements point to the same value.
1559 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1560 if (getOperand(I) != Elt) return false;
1562 return true;
1565 /// getSplatValue - If this is a splat constant, where all of the
1566 /// elements have the same value, return that value. Otherwise return null.
1567 Constant *ConstantVector::getSplatValue() {
1568 // Check out first element.
1569 Constant *Elt = getOperand(0);
1570 // Then make sure all remaining elements point to the same value.
1571 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1572 if (getOperand(I) != Elt) return 0;
1573 return Elt;
1576 //---- ConstantPointerNull::get() implementation...
1579 namespace llvm {
1580 // ConstantPointerNull does not take extra "value" argument...
1581 template<class ValType>
1582 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
1583 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
1584 return new ConstantPointerNull(Ty);
1588 template<>
1589 struct ConvertConstantType<ConstantPointerNull, PointerType> {
1590 static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
1591 // Make everyone now use a constant of the new type...
1592 Constant *New = ConstantPointerNull::get(NewTy);
1593 assert(New != OldC && "Didn't replace constant??");
1594 OldC->uncheckedReplaceAllUsesWith(New);
1595 OldC->destroyConstant(); // This constant is now dead, destroy it.
1600 static ManagedStatic<ValueMap<char, PointerType,
1601 ConstantPointerNull> > NullPtrConstants;
1603 static char getValType(ConstantPointerNull *) {
1604 return 0;
1608 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
1609 return NullPtrConstants->getOrCreate(Ty, 0);
1612 // destroyConstant - Remove the constant from the constant table...
1614 void ConstantPointerNull::destroyConstant() {
1615 NullPtrConstants->remove(this);
1616 destroyConstantImpl();
1620 //---- UndefValue::get() implementation...
1623 namespace llvm {
1624 // UndefValue does not take extra "value" argument...
1625 template<class ValType>
1626 struct ConstantCreator<UndefValue, Type, ValType> {
1627 static UndefValue *create(const Type *Ty, const ValType &V) {
1628 return new UndefValue(Ty);
1632 template<>
1633 struct ConvertConstantType<UndefValue, Type> {
1634 static void convert(UndefValue *OldC, const Type *NewTy) {
1635 // Make everyone now use a constant of the new type.
1636 Constant *New = UndefValue::get(NewTy);
1637 assert(New != OldC && "Didn't replace constant??");
1638 OldC->uncheckedReplaceAllUsesWith(New);
1639 OldC->destroyConstant(); // This constant is now dead, destroy it.
1644 static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
1646 static char getValType(UndefValue *) {
1647 return 0;
1651 UndefValue *UndefValue::get(const Type *Ty) {
1652 return UndefValueConstants->getOrCreate(Ty, 0);
1655 // destroyConstant - Remove the constant from the constant table.
1657 void UndefValue::destroyConstant() {
1658 UndefValueConstants->remove(this);
1659 destroyConstantImpl();
1662 //---- MDString::get() implementation
1665 MDString::MDString(const char *begin, const char *end)
1666 : Constant(Type::EmptyStructTy, MDStringVal, 0, 0),
1667 StrBegin(begin), StrEnd(end) {}
1669 static ManagedStatic<StringMap<MDString*> > MDStringCache;
1671 MDString *MDString::get(const char *StrBegin, const char *StrEnd) {
1672 StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue(StrBegin,
1673 StrEnd);
1674 MDString *&S = Entry.getValue();
1675 if (!S) S = new MDString(Entry.getKeyData(),
1676 Entry.getKeyData() + Entry.getKeyLength());
1677 return S;
1680 void MDString::destroyConstant() {
1681 MDStringCache->erase(MDStringCache->find(StrBegin, StrEnd));
1682 destroyConstantImpl();
1685 //---- MDNode::get() implementation
1688 static ManagedStatic<FoldingSet<MDNode> > MDNodeSet;
1690 MDNode::MDNode(Constant*const* Vals, unsigned NumVals)
1691 : Constant(Type::EmptyStructTy, MDNodeVal,
1692 OperandTraits<MDNode>::op_end(this) - NumVals, NumVals) {
1693 std::copy(Vals, Vals + NumVals, OperandList);
1696 void MDNode::Profile(FoldingSetNodeID &ID) {
1697 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
1698 ID.AddPointer(*I);
1701 MDNode *MDNode::get(Constant*const* Vals, unsigned NumVals) {
1702 FoldingSetNodeID ID;
1703 for (unsigned i = 0; i != NumVals; ++i)
1704 ID.AddPointer(Vals[i]);
1706 void *InsertPoint;
1707 if (MDNode *N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint))
1708 return N;
1710 // InsertPoint will have been set by the FindNodeOrInsertPos call.
1711 MDNode *N = new(NumVals) MDNode(Vals, NumVals);
1712 MDNodeSet->InsertNode(N, InsertPoint);
1713 return N;
1716 void MDNode::destroyConstant() {
1717 destroyConstantImpl();
1720 //---- ConstantExpr::get() implementations...
1723 namespace {
1725 struct ExprMapKeyType {
1726 typedef SmallVector<unsigned, 4> IndexList;
1728 ExprMapKeyType(unsigned opc,
1729 const std::vector<Constant*> &ops,
1730 unsigned short pred = 0,
1731 const IndexList &inds = IndexList())
1732 : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
1733 uint16_t opcode;
1734 uint16_t predicate;
1735 std::vector<Constant*> operands;
1736 IndexList indices;
1737 bool operator==(const ExprMapKeyType& that) const {
1738 return this->opcode == that.opcode &&
1739 this->predicate == that.predicate &&
1740 this->operands == that.operands &&
1741 this->indices == that.indices;
1743 bool operator<(const ExprMapKeyType & that) const {
1744 return this->opcode < that.opcode ||
1745 (this->opcode == that.opcode && this->predicate < that.predicate) ||
1746 (this->opcode == that.opcode && this->predicate == that.predicate &&
1747 this->operands < that.operands) ||
1748 (this->opcode == that.opcode && this->predicate == that.predicate &&
1749 this->operands == that.operands && this->indices < that.indices);
1752 bool operator!=(const ExprMapKeyType& that) const {
1753 return !(*this == that);
1759 namespace llvm {
1760 template<>
1761 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
1762 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
1763 unsigned short pred = 0) {
1764 if (Instruction::isCast(V.opcode))
1765 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
1766 if ((V.opcode >= Instruction::BinaryOpsBegin &&
1767 V.opcode < Instruction::BinaryOpsEnd))
1768 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
1769 if (V.opcode == Instruction::Select)
1770 return new SelectConstantExpr(V.operands[0], V.operands[1],
1771 V.operands[2]);
1772 if (V.opcode == Instruction::ExtractElement)
1773 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
1774 if (V.opcode == Instruction::InsertElement)
1775 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
1776 V.operands[2]);
1777 if (V.opcode == Instruction::ShuffleVector)
1778 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
1779 V.operands[2]);
1780 if (V.opcode == Instruction::InsertValue)
1781 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
1782 V.indices, Ty);
1783 if (V.opcode == Instruction::ExtractValue)
1784 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
1785 if (V.opcode == Instruction::GetElementPtr) {
1786 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
1787 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
1790 // The compare instructions are weird. We have to encode the predicate
1791 // value and it is combined with the instruction opcode by multiplying
1792 // the opcode by one hundred. We must decode this to get the predicate.
1793 if (V.opcode == Instruction::ICmp)
1794 return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
1795 V.operands[0], V.operands[1]);
1796 if (V.opcode == Instruction::FCmp)
1797 return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
1798 V.operands[0], V.operands[1]);
1799 if (V.opcode == Instruction::VICmp)
1800 return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate,
1801 V.operands[0], V.operands[1]);
1802 if (V.opcode == Instruction::VFCmp)
1803 return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate,
1804 V.operands[0], V.operands[1]);
1805 assert(0 && "Invalid ConstantExpr!");
1806 return 0;
1810 template<>
1811 struct ConvertConstantType<ConstantExpr, Type> {
1812 static void convert(ConstantExpr *OldC, const Type *NewTy) {
1813 Constant *New;
1814 switch (OldC->getOpcode()) {
1815 case Instruction::Trunc:
1816 case Instruction::ZExt:
1817 case Instruction::SExt:
1818 case Instruction::FPTrunc:
1819 case Instruction::FPExt:
1820 case Instruction::UIToFP:
1821 case Instruction::SIToFP:
1822 case Instruction::FPToUI:
1823 case Instruction::FPToSI:
1824 case Instruction::PtrToInt:
1825 case Instruction::IntToPtr:
1826 case Instruction::BitCast:
1827 New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
1828 NewTy);
1829 break;
1830 case Instruction::Select:
1831 New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
1832 OldC->getOperand(1),
1833 OldC->getOperand(2));
1834 break;
1835 default:
1836 assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
1837 OldC->getOpcode() < Instruction::BinaryOpsEnd);
1838 New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
1839 OldC->getOperand(1));
1840 break;
1841 case Instruction::GetElementPtr:
1842 // Make everyone now use a constant of the new type...
1843 std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
1844 New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
1845 &Idx[0], Idx.size());
1846 break;
1849 assert(New != OldC && "Didn't replace constant??");
1850 OldC->uncheckedReplaceAllUsesWith(New);
1851 OldC->destroyConstant(); // This constant is now dead, destroy it.
1854 } // end namespace llvm
1857 static ExprMapKeyType getValType(ConstantExpr *CE) {
1858 std::vector<Constant*> Operands;
1859 Operands.reserve(CE->getNumOperands());
1860 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
1861 Operands.push_back(cast<Constant>(CE->getOperand(i)));
1862 return ExprMapKeyType(CE->getOpcode(), Operands,
1863 CE->isCompare() ? CE->getPredicate() : 0,
1864 CE->hasIndices() ?
1865 CE->getIndices() : SmallVector<unsigned, 4>());
1868 static ManagedStatic<ValueMap<ExprMapKeyType, Type,
1869 ConstantExpr> > ExprConstants;
1871 /// This is a utility function to handle folding of casts and lookup of the
1872 /// cast in the ExprConstants map. It is used by the various get* methods below.
1873 static inline Constant *getFoldedCast(
1874 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1875 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1876 // Fold a few common cases
1877 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1878 return FC;
1880 // Look up the constant in the table first to ensure uniqueness
1881 std::vector<Constant*> argVec(1, C);
1882 ExprMapKeyType Key(opc, argVec);
1883 return ExprConstants->getOrCreate(Ty, Key);
1886 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1887 Instruction::CastOps opc = Instruction::CastOps(oc);
1888 assert(Instruction::isCast(opc) && "opcode out of range");
1889 assert(C && Ty && "Null arguments to getCast");
1890 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1892 switch (opc) {
1893 default:
1894 assert(0 && "Invalid cast opcode");
1895 break;
1896 case Instruction::Trunc: return getTrunc(C, Ty);
1897 case Instruction::ZExt: return getZExt(C, Ty);
1898 case Instruction::SExt: return getSExt(C, Ty);
1899 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1900 case Instruction::FPExt: return getFPExtend(C, Ty);
1901 case Instruction::UIToFP: return getUIToFP(C, Ty);
1902 case Instruction::SIToFP: return getSIToFP(C, Ty);
1903 case Instruction::FPToUI: return getFPToUI(C, Ty);
1904 case Instruction::FPToSI: return getFPToSI(C, Ty);
1905 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1906 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1907 case Instruction::BitCast: return getBitCast(C, Ty);
1909 return 0;
1912 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1913 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1914 return getCast(Instruction::BitCast, C, Ty);
1915 return getCast(Instruction::ZExt, C, Ty);
1918 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1919 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1920 return getCast(Instruction::BitCast, C, Ty);
1921 return getCast(Instruction::SExt, C, Ty);
1924 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1925 if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1926 return getCast(Instruction::BitCast, C, Ty);
1927 return getCast(Instruction::Trunc, C, Ty);
1930 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1931 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1932 assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
1934 if (Ty->isInteger())
1935 return getCast(Instruction::PtrToInt, S, Ty);
1936 return getCast(Instruction::BitCast, S, Ty);
1939 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1940 bool isSigned) {
1941 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1942 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1943 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1944 Instruction::CastOps opcode =
1945 (SrcBits == DstBits ? Instruction::BitCast :
1946 (SrcBits > DstBits ? Instruction::Trunc :
1947 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1948 return getCast(opcode, C, Ty);
1951 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1952 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1953 "Invalid cast");
1954 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1955 unsigned DstBits = Ty->getPrimitiveSizeInBits();
1956 if (SrcBits == DstBits)
1957 return C; // Avoid a useless cast
1958 Instruction::CastOps opcode =
1959 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1960 return getCast(opcode, C, Ty);
1963 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1964 assert(C->getType()->isInteger() && "Trunc operand must be integer");
1965 assert(Ty->isInteger() && "Trunc produces only integral");
1966 assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
1967 "SrcTy must be larger than DestTy for Trunc!");
1969 return getFoldedCast(Instruction::Trunc, C, Ty);
1972 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1973 assert(C->getType()->isInteger() && "SEXt operand must be integral");
1974 assert(Ty->isInteger() && "SExt produces only integer");
1975 assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
1976 "SrcTy must be smaller than DestTy for SExt!");
1978 return getFoldedCast(Instruction::SExt, C, Ty);
1981 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1982 assert(C->getType()->isInteger() && "ZEXt operand must be integral");
1983 assert(Ty->isInteger() && "ZExt produces only integer");
1984 assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
1985 "SrcTy must be smaller than DestTy for ZExt!");
1987 return getFoldedCast(Instruction::ZExt, C, Ty);
1990 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1991 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1992 C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
1993 "This is an illegal floating point truncation!");
1994 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1997 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1998 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1999 C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
2000 "This is an illegal floating point extension!");
2001 return getFoldedCast(Instruction::FPExt, C, Ty);
2004 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
2005 #ifndef NDEBUG
2006 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
2007 bool toVec = Ty->getTypeID() == Type::VectorTyID;
2008 #endif
2009 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2010 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
2011 "This is an illegal uint to floating point cast!");
2012 return getFoldedCast(Instruction::UIToFP, C, Ty);
2015 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
2016 #ifndef NDEBUG
2017 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
2018 bool toVec = Ty->getTypeID() == Type::VectorTyID;
2019 #endif
2020 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2021 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
2022 "This is an illegal sint to floating point cast!");
2023 return getFoldedCast(Instruction::SIToFP, C, Ty);
2026 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
2027 #ifndef NDEBUG
2028 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
2029 bool toVec = Ty->getTypeID() == Type::VectorTyID;
2030 #endif
2031 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2032 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
2033 "This is an illegal floating point to uint cast!");
2034 return getFoldedCast(Instruction::FPToUI, C, Ty);
2037 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
2038 #ifndef NDEBUG
2039 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
2040 bool toVec = Ty->getTypeID() == Type::VectorTyID;
2041 #endif
2042 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2043 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
2044 "This is an illegal floating point to sint cast!");
2045 return getFoldedCast(Instruction::FPToSI, C, Ty);
2048 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
2049 assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
2050 assert(DstTy->isInteger() && "PtrToInt destination must be integral");
2051 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
2054 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
2055 assert(C->getType()->isInteger() && "IntToPtr source must be integral");
2056 assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
2057 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
2060 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
2061 // BitCast implies a no-op cast of type only. No bits change. However, you
2062 // can't cast pointers to anything but pointers.
2063 #ifndef NDEBUG
2064 const Type *SrcTy = C->getType();
2065 assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
2066 "BitCast cannot cast pointer to non-pointer and vice versa");
2068 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
2069 // or nonptr->ptr). For all the other types, the cast is okay if source and
2070 // destination bit widths are identical.
2071 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
2072 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
2073 #endif
2074 assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
2076 // It is common to ask for a bitcast of a value to its own type, handle this
2077 // speedily.
2078 if (C->getType() == DstTy) return C;
2080 return getFoldedCast(Instruction::BitCast, C, DstTy);
2083 Constant *ConstantExpr::getSizeOf(const Type *Ty) {
2084 // sizeof is implemented as: (i64) gep (Ty*)null, 1
2085 Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
2086 Constant *GEP =
2087 getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
2088 return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
2091 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
2092 Constant *C1, Constant *C2) {
2093 // Check the operands for consistency first
2094 assert(Opcode >= Instruction::BinaryOpsBegin &&
2095 Opcode < Instruction::BinaryOpsEnd &&
2096 "Invalid opcode in binary constant expression");
2097 assert(C1->getType() == C2->getType() &&
2098 "Operand types in binary constant expression should match");
2100 if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
2101 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2102 return FC; // Fold a few common cases...
2104 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
2105 ExprMapKeyType Key(Opcode, argVec);
2106 return ExprConstants->getOrCreate(ReqTy, Key);
2109 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
2110 Constant *C1, Constant *C2) {
2111 bool isVectorType = C1->getType()->getTypeID() == Type::VectorTyID;
2112 switch (predicate) {
2113 default: assert(0 && "Invalid CmpInst predicate");
2114 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2115 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2116 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2117 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2118 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2119 case CmpInst::FCMP_TRUE:
2120 return isVectorType ? getVFCmp(predicate, C1, C2)
2121 : getFCmp(predicate, C1, C2);
2122 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
2123 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2124 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2125 case CmpInst::ICMP_SLE:
2126 return isVectorType ? getVICmp(predicate, C1, C2)
2127 : getICmp(predicate, C1, C2);
2131 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
2132 #ifndef NDEBUG
2133 switch (Opcode) {
2134 case Instruction::Add:
2135 case Instruction::Sub:
2136 case Instruction::Mul:
2137 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2138 assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
2139 isa<VectorType>(C1->getType())) &&
2140 "Tried to create an arithmetic operation on a non-arithmetic type!");
2141 break;
2142 case Instruction::UDiv:
2143 case Instruction::SDiv:
2144 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2145 assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
2146 cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
2147 "Tried to create an arithmetic operation on a non-arithmetic type!");
2148 break;
2149 case Instruction::FDiv:
2150 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2151 assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
2152 && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
2153 && "Tried to create an arithmetic operation on a non-arithmetic type!");
2154 break;
2155 case Instruction::URem:
2156 case Instruction::SRem:
2157 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2158 assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
2159 cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
2160 "Tried to create an arithmetic operation on a non-arithmetic type!");
2161 break;
2162 case Instruction::FRem:
2163 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2164 assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
2165 && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint()))
2166 && "Tried to create an arithmetic operation on a non-arithmetic type!");
2167 break;
2168 case Instruction::And:
2169 case Instruction::Or:
2170 case Instruction::Xor:
2171 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2172 assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
2173 "Tried to create a logical operation on a non-integral type!");
2174 break;
2175 case Instruction::Shl:
2176 case Instruction::LShr:
2177 case Instruction::AShr:
2178 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2179 assert(C1->getType()->isIntOrIntVector() &&
2180 "Tried to create a shift operation on a non-integer type!");
2181 break;
2182 default:
2183 break;
2185 #endif
2187 return getTy(C1->getType(), Opcode, C1, C2);
2190 Constant *ConstantExpr::getCompare(unsigned short pred,
2191 Constant *C1, Constant *C2) {
2192 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2193 return getCompareTy(pred, C1, C2);
2196 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
2197 Constant *V1, Constant *V2) {
2198 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2200 if (ReqTy == V1->getType())
2201 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2202 return SC; // Fold common cases
2204 std::vector<Constant*> argVec(3, C);
2205 argVec[1] = V1;
2206 argVec[2] = V2;
2207 ExprMapKeyType Key(Instruction::Select, argVec);
2208 return ExprConstants->getOrCreate(ReqTy, Key);
2211 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
2212 Value* const *Idxs,
2213 unsigned NumIdx) {
2214 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
2215 Idxs+NumIdx) ==
2216 cast<PointerType>(ReqTy)->getElementType() &&
2217 "GEP indices invalid!");
2219 if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
2220 return FC; // Fold a few common cases...
2222 assert(isa<PointerType>(C->getType()) &&
2223 "Non-pointer type for constant GetElementPtr expression");
2224 // Look up the constant in the table first to ensure uniqueness
2225 std::vector<Constant*> ArgVec;
2226 ArgVec.reserve(NumIdx+1);
2227 ArgVec.push_back(C);
2228 for (unsigned i = 0; i != NumIdx; ++i)
2229 ArgVec.push_back(cast<Constant>(Idxs[i]));
2230 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
2231 return ExprConstants->getOrCreate(ReqTy, Key);
2234 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
2235 unsigned NumIdx) {
2236 // Get the result type of the getelementptr!
2237 const Type *Ty =
2238 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
2239 assert(Ty && "GEP indices invalid!");
2240 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
2241 return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
2244 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
2245 unsigned NumIdx) {
2246 return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
2250 Constant *
2251 ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
2252 assert(LHS->getType() == RHS->getType());
2253 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2254 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2256 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2257 return FC; // Fold a few common cases...
2259 // Look up the constant in the table first to ensure uniqueness
2260 std::vector<Constant*> ArgVec;
2261 ArgVec.push_back(LHS);
2262 ArgVec.push_back(RHS);
2263 // Get the key type with both the opcode and predicate
2264 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
2265 return ExprConstants->getOrCreate(Type::Int1Ty, Key);
2268 Constant *
2269 ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
2270 assert(LHS->getType() == RHS->getType());
2271 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2273 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2274 return FC; // Fold a few common cases...
2276 // Look up the constant in the table first to ensure uniqueness
2277 std::vector<Constant*> ArgVec;
2278 ArgVec.push_back(LHS);
2279 ArgVec.push_back(RHS);
2280 // Get the key type with both the opcode and predicate
2281 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
2282 return ExprConstants->getOrCreate(Type::Int1Ty, Key);
2285 Constant *
2286 ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
2287 assert(isa<VectorType>(LHS->getType()) && LHS->getType() == RHS->getType() &&
2288 "Tried to create vicmp operation on non-vector type!");
2289 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2290 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate");
2292 const VectorType *VTy = cast<VectorType>(LHS->getType());
2293 const Type *EltTy = VTy->getElementType();
2294 unsigned NumElts = VTy->getNumElements();
2296 // See if we can fold the element-wise comparison of the LHS and RHS.
2297 SmallVector<Constant *, 16> LHSElts, RHSElts;
2298 LHS->getVectorElements(LHSElts);
2299 RHS->getVectorElements(RHSElts);
2301 if (!LHSElts.empty() && !RHSElts.empty()) {
2302 SmallVector<Constant *, 16> Elts;
2303 for (unsigned i = 0; i != NumElts; ++i) {
2304 Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
2305 RHSElts[i]);
2306 if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
2307 if (FCI->getZExtValue())
2308 Elts.push_back(ConstantInt::getAllOnesValue(EltTy));
2309 else
2310 Elts.push_back(ConstantInt::get(EltTy, 0ULL));
2311 } else if (FC && isa<UndefValue>(FC)) {
2312 Elts.push_back(UndefValue::get(EltTy));
2313 } else {
2314 break;
2317 if (Elts.size() == NumElts)
2318 return ConstantVector::get(&Elts[0], Elts.size());
2321 // Look up the constant in the table first to ensure uniqueness
2322 std::vector<Constant*> ArgVec;
2323 ArgVec.push_back(LHS);
2324 ArgVec.push_back(RHS);
2325 // Get the key type with both the opcode and predicate
2326 const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
2327 return ExprConstants->getOrCreate(LHS->getType(), Key);
2330 Constant *
2331 ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
2332 assert(isa<VectorType>(LHS->getType()) &&
2333 "Tried to create vfcmp operation on non-vector type!");
2334 assert(LHS->getType() == RHS->getType());
2335 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate");
2337 const VectorType *VTy = cast<VectorType>(LHS->getType());
2338 unsigned NumElts = VTy->getNumElements();
2339 const Type *EltTy = VTy->getElementType();
2340 const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits());
2341 const Type *ResultTy = VectorType::get(REltTy, NumElts);
2343 // See if we can fold the element-wise comparison of the LHS and RHS.
2344 SmallVector<Constant *, 16> LHSElts, RHSElts;
2345 LHS->getVectorElements(LHSElts);
2346 RHS->getVectorElements(RHSElts);
2348 if (!LHSElts.empty() && !RHSElts.empty()) {
2349 SmallVector<Constant *, 16> Elts;
2350 for (unsigned i = 0; i != NumElts; ++i) {
2351 Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
2352 RHSElts[i]);
2353 if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
2354 if (FCI->getZExtValue())
2355 Elts.push_back(ConstantInt::getAllOnesValue(REltTy));
2356 else
2357 Elts.push_back(ConstantInt::get(REltTy, 0ULL));
2358 } else if (FC && isa<UndefValue>(FC)) {
2359 Elts.push_back(UndefValue::get(REltTy));
2360 } else {
2361 break;
2364 if (Elts.size() == NumElts)
2365 return ConstantVector::get(&Elts[0], Elts.size());
2368 // Look up the constant in the table first to ensure uniqueness
2369 std::vector<Constant*> ArgVec;
2370 ArgVec.push_back(LHS);
2371 ArgVec.push_back(RHS);
2372 // Get the key type with both the opcode and predicate
2373 const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
2374 return ExprConstants->getOrCreate(ResultTy, Key);
2377 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
2378 Constant *Idx) {
2379 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2380 return FC; // Fold a few common cases...
2381 // Look up the constant in the table first to ensure uniqueness
2382 std::vector<Constant*> ArgVec(1, Val);
2383 ArgVec.push_back(Idx);
2384 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
2385 return ExprConstants->getOrCreate(ReqTy, Key);
2388 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
2389 assert(isa<VectorType>(Val->getType()) &&
2390 "Tried to create extractelement operation on non-vector type!");
2391 assert(Idx->getType() == Type::Int32Ty &&
2392 "Extractelement index must be i32 type!");
2393 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
2394 Val, Idx);
2397 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
2398 Constant *Elt, Constant *Idx) {
2399 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2400 return FC; // Fold a few common cases...
2401 // Look up the constant in the table first to ensure uniqueness
2402 std::vector<Constant*> ArgVec(1, Val);
2403 ArgVec.push_back(Elt);
2404 ArgVec.push_back(Idx);
2405 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
2406 return ExprConstants->getOrCreate(ReqTy, Key);
2409 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2410 Constant *Idx) {
2411 assert(isa<VectorType>(Val->getType()) &&
2412 "Tried to create insertelement operation on non-vector type!");
2413 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
2414 && "Insertelement types must match!");
2415 assert(Idx->getType() == Type::Int32Ty &&
2416 "Insertelement index must be i32 type!");
2417 return getInsertElementTy(Val->getType(), Val, Elt, Idx);
2420 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
2421 Constant *V2, Constant *Mask) {
2422 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2423 return FC; // Fold a few common cases...
2424 // Look up the constant in the table first to ensure uniqueness
2425 std::vector<Constant*> ArgVec(1, V1);
2426 ArgVec.push_back(V2);
2427 ArgVec.push_back(Mask);
2428 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
2429 return ExprConstants->getOrCreate(ReqTy, Key);
2432 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2433 Constant *Mask) {
2434 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2435 "Invalid shuffle vector constant expr operands!");
2437 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
2438 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
2439 const Type *ShufTy = VectorType::get(EltTy, NElts);
2440 return getShuffleVectorTy(ShufTy, V1, V2, Mask);
2443 Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
2444 Constant *Val,
2445 const unsigned *Idxs, unsigned NumIdx) {
2446 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
2447 Idxs+NumIdx) == Val->getType() &&
2448 "insertvalue indices invalid!");
2449 assert(Agg->getType() == ReqTy &&
2450 "insertvalue type invalid!");
2451 assert(Agg->getType()->isFirstClassType() &&
2452 "Non-first-class type for constant InsertValue expression");
2453 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
2454 assert(FC && "InsertValue constant expr couldn't be folded!");
2455 return FC;
2458 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2459 const unsigned *IdxList, unsigned NumIdx) {
2460 assert(Agg->getType()->isFirstClassType() &&
2461 "Tried to create insertelement operation on non-first-class type!");
2463 const Type *ReqTy = Agg->getType();
2464 #ifndef NDEBUG
2465 const Type *ValTy =
2466 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
2467 #endif
2468 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
2469 return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
2472 Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
2473 const unsigned *Idxs, unsigned NumIdx) {
2474 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
2475 Idxs+NumIdx) == ReqTy &&
2476 "extractvalue indices invalid!");
2477 assert(Agg->getType()->isFirstClassType() &&
2478 "Non-first-class type for constant extractvalue expression");
2479 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
2480 assert(FC && "ExtractValue constant expr couldn't be folded!");
2481 return FC;
2484 Constant *ConstantExpr::getExtractValue(Constant *Agg,
2485 const unsigned *IdxList, unsigned NumIdx) {
2486 assert(Agg->getType()->isFirstClassType() &&
2487 "Tried to create extractelement operation on non-first-class type!");
2489 const Type *ReqTy =
2490 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
2491 assert(ReqTy && "extractvalue indices invalid!");
2492 return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
2495 Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
2496 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
2497 if (PTy->getElementType()->isFloatingPoint()) {
2498 std::vector<Constant*> zeros(PTy->getNumElements(),
2499 ConstantFP::getNegativeZero(PTy->getElementType()));
2500 return ConstantVector::get(PTy, zeros);
2503 if (Ty->isFloatingPoint())
2504 return ConstantFP::getNegativeZero(Ty);
2506 return Constant::getNullValue(Ty);
2509 // destroyConstant - Remove the constant from the constant table...
2511 void ConstantExpr::destroyConstant() {
2512 ExprConstants->remove(this);
2513 destroyConstantImpl();
2516 const char *ConstantExpr::getOpcodeName() const {
2517 return Instruction::getOpcodeName(getOpcode());
2520 //===----------------------------------------------------------------------===//
2521 // replaceUsesOfWithOnConstant implementations
2523 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2524 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2525 /// etc.
2527 /// Note that we intentionally replace all uses of From with To here. Consider
2528 /// a large array that uses 'From' 1000 times. By handling this case all here,
2529 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2530 /// single invocation handles all 1000 uses. Handling them one at a time would
2531 /// work, but would be really slow because it would have to unique each updated
2532 /// array instance.
2533 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2534 Use *U) {
2535 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2536 Constant *ToC = cast<Constant>(To);
2538 std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
2539 Lookup.first.first = getType();
2540 Lookup.second = this;
2542 std::vector<Constant*> &Values = Lookup.first.second;
2543 Values.reserve(getNumOperands()); // Build replacement array.
2545 // Fill values with the modified operands of the constant array. Also,
2546 // compute whether this turns into an all-zeros array.
2547 bool isAllZeros = false;
2548 unsigned NumUpdated = 0;
2549 if (!ToC->isNullValue()) {
2550 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2551 Constant *Val = cast<Constant>(O->get());
2552 if (Val == From) {
2553 Val = ToC;
2554 ++NumUpdated;
2556 Values.push_back(Val);
2558 } else {
2559 isAllZeros = true;
2560 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2561 Constant *Val = cast<Constant>(O->get());
2562 if (Val == From) {
2563 Val = ToC;
2564 ++NumUpdated;
2566 Values.push_back(Val);
2567 if (isAllZeros) isAllZeros = Val->isNullValue();
2571 Constant *Replacement = 0;
2572 if (isAllZeros) {
2573 Replacement = ConstantAggregateZero::get(getType());
2574 } else {
2575 // Check to see if we have this array type already.
2576 bool Exists;
2577 ArrayConstantsTy::MapTy::iterator I =
2578 ArrayConstants->InsertOrGetItem(Lookup, Exists);
2580 if (Exists) {
2581 Replacement = I->second;
2582 } else {
2583 // Okay, the new shape doesn't exist in the system yet. Instead of
2584 // creating a new constant array, inserting it, replaceallusesof'ing the
2585 // old with the new, then deleting the old... just update the current one
2586 // in place!
2587 ArrayConstants->MoveConstantToNewSlot(this, I);
2589 // Update to the new value. Optimize for the case when we have a single
2590 // operand that we're changing, but handle bulk updates efficiently.
2591 if (NumUpdated == 1) {
2592 unsigned OperandToUpdate = U-OperandList;
2593 assert(getOperand(OperandToUpdate) == From &&
2594 "ReplaceAllUsesWith broken!");
2595 setOperand(OperandToUpdate, ToC);
2596 } else {
2597 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2598 if (getOperand(i) == From)
2599 setOperand(i, ToC);
2601 return;
2605 // Otherwise, I do need to replace this with an existing value.
2606 assert(Replacement != this && "I didn't contain From!");
2608 // Everyone using this now uses the replacement.
2609 uncheckedReplaceAllUsesWith(Replacement);
2611 // Delete the old constant!
2612 destroyConstant();
2615 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2616 Use *U) {
2617 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2618 Constant *ToC = cast<Constant>(To);
2620 unsigned OperandToUpdate = U-OperandList;
2621 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2623 std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
2624 Lookup.first.first = getType();
2625 Lookup.second = this;
2626 std::vector<Constant*> &Values = Lookup.first.second;
2627 Values.reserve(getNumOperands()); // Build replacement struct.
2630 // Fill values with the modified operands of the constant struct. Also,
2631 // compute whether this turns into an all-zeros struct.
2632 bool isAllZeros = false;
2633 if (!ToC->isNullValue()) {
2634 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
2635 Values.push_back(cast<Constant>(O->get()));
2636 } else {
2637 isAllZeros = true;
2638 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2639 Constant *Val = cast<Constant>(O->get());
2640 Values.push_back(Val);
2641 if (isAllZeros) isAllZeros = Val->isNullValue();
2644 Values[OperandToUpdate] = ToC;
2646 Constant *Replacement = 0;
2647 if (isAllZeros) {
2648 Replacement = ConstantAggregateZero::get(getType());
2649 } else {
2650 // Check to see if we have this array type already.
2651 bool Exists;
2652 StructConstantsTy::MapTy::iterator I =
2653 StructConstants->InsertOrGetItem(Lookup, Exists);
2655 if (Exists) {
2656 Replacement = I->second;
2657 } else {
2658 // Okay, the new shape doesn't exist in the system yet. Instead of
2659 // creating a new constant struct, inserting it, replaceallusesof'ing the
2660 // old with the new, then deleting the old... just update the current one
2661 // in place!
2662 StructConstants->MoveConstantToNewSlot(this, I);
2664 // Update to the new value.
2665 setOperand(OperandToUpdate, ToC);
2666 return;
2670 assert(Replacement != this && "I didn't contain From!");
2672 // Everyone using this now uses the replacement.
2673 uncheckedReplaceAllUsesWith(Replacement);
2675 // Delete the old constant!
2676 destroyConstant();
2679 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2680 Use *U) {
2681 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2683 std::vector<Constant*> Values;
2684 Values.reserve(getNumOperands()); // Build replacement array...
2685 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2686 Constant *Val = getOperand(i);
2687 if (Val == From) Val = cast<Constant>(To);
2688 Values.push_back(Val);
2691 Constant *Replacement = ConstantVector::get(getType(), Values);
2692 assert(Replacement != this && "I didn't contain From!");
2694 // Everyone using this now uses the replacement.
2695 uncheckedReplaceAllUsesWith(Replacement);
2697 // Delete the old constant!
2698 destroyConstant();
2701 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2702 Use *U) {
2703 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2704 Constant *To = cast<Constant>(ToV);
2706 Constant *Replacement = 0;
2707 if (getOpcode() == Instruction::GetElementPtr) {
2708 SmallVector<Constant*, 8> Indices;
2709 Constant *Pointer = getOperand(0);
2710 Indices.reserve(getNumOperands()-1);
2711 if (Pointer == From) Pointer = To;
2713 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2714 Constant *Val = getOperand(i);
2715 if (Val == From) Val = To;
2716 Indices.push_back(Val);
2718 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2719 &Indices[0], Indices.size());
2720 } else if (getOpcode() == Instruction::ExtractValue) {
2721 Constant *Agg = getOperand(0);
2722 if (Agg == From) Agg = To;
2724 const SmallVector<unsigned, 4> &Indices = getIndices();
2725 Replacement = ConstantExpr::getExtractValue(Agg,
2726 &Indices[0], Indices.size());
2727 } else if (getOpcode() == Instruction::InsertValue) {
2728 Constant *Agg = getOperand(0);
2729 Constant *Val = getOperand(1);
2730 if (Agg == From) Agg = To;
2731 if (Val == From) Val = To;
2733 const SmallVector<unsigned, 4> &Indices = getIndices();
2734 Replacement = ConstantExpr::getInsertValue(Agg, Val,
2735 &Indices[0], Indices.size());
2736 } else if (isCast()) {
2737 assert(getOperand(0) == From && "Cast only has one use!");
2738 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2739 } else if (getOpcode() == Instruction::Select) {
2740 Constant *C1 = getOperand(0);
2741 Constant *C2 = getOperand(1);
2742 Constant *C3 = getOperand(2);
2743 if (C1 == From) C1 = To;
2744 if (C2 == From) C2 = To;
2745 if (C3 == From) C3 = To;
2746 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2747 } else if (getOpcode() == Instruction::ExtractElement) {
2748 Constant *C1 = getOperand(0);
2749 Constant *C2 = getOperand(1);
2750 if (C1 == From) C1 = To;
2751 if (C2 == From) C2 = To;
2752 Replacement = ConstantExpr::getExtractElement(C1, C2);
2753 } else if (getOpcode() == Instruction::InsertElement) {
2754 Constant *C1 = getOperand(0);
2755 Constant *C2 = getOperand(1);
2756 Constant *C3 = getOperand(1);
2757 if (C1 == From) C1 = To;
2758 if (C2 == From) C2 = To;
2759 if (C3 == From) C3 = To;
2760 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2761 } else if (getOpcode() == Instruction::ShuffleVector) {
2762 Constant *C1 = getOperand(0);
2763 Constant *C2 = getOperand(1);
2764 Constant *C3 = getOperand(2);
2765 if (C1 == From) C1 = To;
2766 if (C2 == From) C2 = To;
2767 if (C3 == From) C3 = To;
2768 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2769 } else if (isCompare()) {
2770 Constant *C1 = getOperand(0);
2771 Constant *C2 = getOperand(1);
2772 if (C1 == From) C1 = To;
2773 if (C2 == From) C2 = To;
2774 if (getOpcode() == Instruction::ICmp)
2775 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2776 else if (getOpcode() == Instruction::FCmp)
2777 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2778 else if (getOpcode() == Instruction::VICmp)
2779 Replacement = ConstantExpr::getVICmp(getPredicate(), C1, C2);
2780 else {
2781 assert(getOpcode() == Instruction::VFCmp);
2782 Replacement = ConstantExpr::getVFCmp(getPredicate(), C1, C2);
2784 } else if (getNumOperands() == 2) {
2785 Constant *C1 = getOperand(0);
2786 Constant *C2 = getOperand(1);
2787 if (C1 == From) C1 = To;
2788 if (C2 == From) C2 = To;
2789 Replacement = ConstantExpr::get(getOpcode(), C1, C2);
2790 } else {
2791 assert(0 && "Unknown ConstantExpr type!");
2792 return;
2795 assert(Replacement != this && "I didn't contain From!");
2797 // Everyone using this now uses the replacement.
2798 uncheckedReplaceAllUsesWith(Replacement);
2800 // Delete the old constant!
2801 destroyConstant();
2804 void MDNode::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
2805 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2807 SmallVector<Constant*, 8> Values;
2808 Values.reserve(getNumOperands()); // Build replacement array...
2809 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2810 Constant *Val = getOperand(i);
2811 if (Val == From) Val = cast<Constant>(To);
2812 Values.push_back(Val);
2815 Constant *Replacement = MDNode::get(&Values[0], Values.size());
2816 assert(Replacement != this && "I didn't contain From!");
2818 // Everyone using this now uses the replacement.
2819 uncheckedReplaceAllUsesWith(Replacement);
2821 // Delete the old constant!
2822 destroyConstant();