Proper name 16 bit libcalls
[llvm/msp430.git] / utils / TableGen / CodeGenDAGPatterns.cpp
blobdb76dabb537583f27b7987762a0fcd27ba40ef80
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenDAGPatterns.h"
16 #include "Record.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/Streams.h"
20 #include <set>
21 #include <algorithm>
22 using namespace llvm;
24 //===----------------------------------------------------------------------===//
25 // Helpers for working with extended types.
27 /// FilterVTs - Filter a list of VT's according to a predicate.
28 ///
29 template<typename T>
30 static std::vector<MVT::SimpleValueType>
31 FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
32 std::vector<MVT::SimpleValueType> Result;
33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
34 if (Filter(InVTs[i]))
35 Result.push_back(InVTs[i]);
36 return Result;
39 template<typename T>
40 static std::vector<unsigned char>
41 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
42 std::vector<unsigned char> Result;
43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
44 if (Filter((MVT::SimpleValueType)InVTs[i]))
45 Result.push_back(InVTs[i]);
46 return Result;
49 static std::vector<unsigned char>
50 ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
51 std::vector<unsigned char> Result;
52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
53 Result.push_back(InVTs[i]);
54 return Result;
57 static inline bool isInteger(MVT::SimpleValueType VT) {
58 return MVT(VT).isInteger();
61 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
62 return MVT(VT).isFloatingPoint();
65 static inline bool isVector(MVT::SimpleValueType VT) {
66 return MVT(VT).isVector();
69 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
70 const std::vector<unsigned char> &RHS) {
71 if (LHS.size() > RHS.size()) return false;
72 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
73 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
74 return false;
75 return true;
78 namespace llvm {
79 namespace EMVT {
80 /// isExtIntegerInVTs - Return true if the specified extended value type vector
81 /// contains isInt or an integer value type.
82 bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
83 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
84 return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
87 /// isExtFloatingPointInVTs - Return true if the specified extended value type
88 /// vector contains isFP or a FP value type.
89 bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
90 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
91 return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
93 } // end namespace EMVT.
94 } // end namespace llvm.
97 /// Dependent variable map for CodeGenDAGPattern variant generation
98 typedef std::map<std::string, int> DepVarMap;
100 /// Const iterator shorthand for DepVarMap
101 typedef DepVarMap::const_iterator DepVarMap_citer;
103 namespace {
104 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
105 if (N->isLeaf()) {
106 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
107 DepMap[N->getName()]++;
109 } else {
110 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
111 FindDepVarsOf(N->getChild(i), DepMap);
115 //! Find dependent variables within child patterns
118 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
119 DepVarMap depcounts;
120 FindDepVarsOf(N, depcounts);
121 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
122 if (i->second > 1) { // std::pair<std::string, int>
123 DepVars.insert(i->first);
128 //! Dump the dependent variable set:
129 void DumpDepVars(MultipleUseVarSet &DepVars) {
130 if (DepVars.empty()) {
131 DOUT << "<empty set>";
132 } else {
133 DOUT << "[ ";
134 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
135 i != e; ++i) {
136 DOUT << (*i) << " ";
138 DOUT << "]";
143 //===----------------------------------------------------------------------===//
144 // PatternToMatch implementation
147 /// getPredicateCheck - Return a single string containing all of this
148 /// pattern's predicates concatenated with "&&" operators.
150 std::string PatternToMatch::getPredicateCheck() const {
151 std::string PredicateCheck;
152 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
153 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
154 Record *Def = Pred->getDef();
155 if (!Def->isSubClassOf("Predicate")) {
156 #ifndef NDEBUG
157 Def->dump();
158 #endif
159 assert(0 && "Unknown predicate type!");
161 if (!PredicateCheck.empty())
162 PredicateCheck += " && ";
163 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
167 return PredicateCheck;
170 //===----------------------------------------------------------------------===//
171 // SDTypeConstraint implementation
174 SDTypeConstraint::SDTypeConstraint(Record *R) {
175 OperandNo = R->getValueAsInt("OperandNum");
177 if (R->isSubClassOf("SDTCisVT")) {
178 ConstraintType = SDTCisVT;
179 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
180 } else if (R->isSubClassOf("SDTCisPtrTy")) {
181 ConstraintType = SDTCisPtrTy;
182 } else if (R->isSubClassOf("SDTCisInt")) {
183 ConstraintType = SDTCisInt;
184 } else if (R->isSubClassOf("SDTCisFP")) {
185 ConstraintType = SDTCisFP;
186 } else if (R->isSubClassOf("SDTCisSameAs")) {
187 ConstraintType = SDTCisSameAs;
188 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
189 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
190 ConstraintType = SDTCisVTSmallerThanOp;
191 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
192 R->getValueAsInt("OtherOperandNum");
193 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
194 ConstraintType = SDTCisOpSmallerThanOp;
195 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
196 R->getValueAsInt("BigOperandNum");
197 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
198 ConstraintType = SDTCisEltOfVec;
199 x.SDTCisEltOfVec_Info.OtherOperandNum =
200 R->getValueAsInt("OtherOpNum");
201 } else {
202 cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
203 exit(1);
207 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
208 /// N, which has NumResults results.
209 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
210 TreePatternNode *N,
211 unsigned NumResults) const {
212 assert(NumResults <= 1 &&
213 "We only work with nodes with zero or one result so far!");
215 if (OpNo >= (NumResults + N->getNumChildren())) {
216 cerr << "Invalid operand number " << OpNo << " ";
217 N->dump();
218 cerr << '\n';
219 exit(1);
222 if (OpNo < NumResults)
223 return N; // FIXME: need value #
224 else
225 return N->getChild(OpNo-NumResults);
228 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
229 /// constraint to the nodes operands. This returns true if it makes a
230 /// change, false otherwise. If a type contradiction is found, throw an
231 /// exception.
232 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
233 const SDNodeInfo &NodeInfo,
234 TreePattern &TP) const {
235 unsigned NumResults = NodeInfo.getNumResults();
236 assert(NumResults <= 1 &&
237 "We only work with nodes with zero or one result so far!");
239 // Check that the number of operands is sane. Negative operands -> varargs.
240 if (NodeInfo.getNumOperands() >= 0) {
241 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
242 TP.error(N->getOperator()->getName() + " node requires exactly " +
243 itostr(NodeInfo.getNumOperands()) + " operands!");
246 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
248 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
250 switch (ConstraintType) {
251 default: assert(0 && "Unknown constraint type!");
252 case SDTCisVT:
253 // Operand must be a particular type.
254 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
255 case SDTCisPtrTy: {
256 // Operand must be same as target pointer type.
257 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
259 case SDTCisInt: {
260 // If there is only one integer type supported, this must be it.
261 std::vector<MVT::SimpleValueType> IntVTs =
262 FilterVTs(CGT.getLegalValueTypes(), isInteger);
264 // If we found exactly one supported integer type, apply it.
265 if (IntVTs.size() == 1)
266 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
267 return NodeToApply->UpdateNodeType(EMVT::isInt, TP);
269 case SDTCisFP: {
270 // If there is only one FP type supported, this must be it.
271 std::vector<MVT::SimpleValueType> FPVTs =
272 FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
274 // If we found exactly one supported FP type, apply it.
275 if (FPVTs.size() == 1)
276 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
277 return NodeToApply->UpdateNodeType(EMVT::isFP, TP);
279 case SDTCisSameAs: {
280 TreePatternNode *OtherNode =
281 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
282 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
283 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
285 case SDTCisVTSmallerThanOp: {
286 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
287 // have an integer type that is smaller than the VT.
288 if (!NodeToApply->isLeaf() ||
289 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
290 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
291 ->isSubClassOf("ValueType"))
292 TP.error(N->getOperator()->getName() + " expects a VT operand!");
293 MVT::SimpleValueType VT =
294 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
295 if (!isInteger(VT))
296 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
298 TreePatternNode *OtherNode =
299 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
301 // It must be integer.
302 bool MadeChange = false;
303 MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP);
305 // This code only handles nodes that have one type set. Assert here so
306 // that we can change this if we ever need to deal with multiple value
307 // types at this point.
308 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
309 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
310 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
311 return false;
313 case SDTCisOpSmallerThanOp: {
314 TreePatternNode *BigOperand =
315 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
317 // Both operands must be integer or FP, but we don't care which.
318 bool MadeChange = false;
320 // This code does not currently handle nodes which have multiple types,
321 // where some types are integer, and some are fp. Assert that this is not
322 // the case.
323 assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
324 EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
325 !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
326 EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
327 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
328 if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
329 MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP);
330 else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
331 MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP);
332 if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
333 MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP);
334 else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
335 MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP);
337 std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
339 if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
340 VTs = FilterVTs(VTs, isInteger);
341 } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
342 VTs = FilterVTs(VTs, isFloatingPoint);
343 } else {
344 VTs.clear();
347 switch (VTs.size()) {
348 default: // Too many VT's to pick from.
349 case 0: break; // No info yet.
350 case 1:
351 // Only one VT of this flavor. Cannot ever satisfy the constraints.
352 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
353 case 2:
354 // If we have exactly two possible types, the little operand must be the
355 // small one, the big operand should be the big one. Common with
356 // float/double for example.
357 assert(VTs[0] < VTs[1] && "Should be sorted!");
358 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
359 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
360 break;
362 return MadeChange;
364 case SDTCisEltOfVec: {
365 TreePatternNode *OtherOperand =
366 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
367 N, NumResults);
368 if (OtherOperand->hasTypeSet()) {
369 if (!isVector(OtherOperand->getTypeNum(0)))
370 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
371 MVT IVT = OtherOperand->getTypeNum(0);
372 IVT = IVT.getVectorElementType();
373 return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
375 return false;
378 return false;
381 //===----------------------------------------------------------------------===//
382 // SDNodeInfo implementation
384 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
385 EnumName = R->getValueAsString("Opcode");
386 SDClassName = R->getValueAsString("SDClass");
387 Record *TypeProfile = R->getValueAsDef("TypeProfile");
388 NumResults = TypeProfile->getValueAsInt("NumResults");
389 NumOperands = TypeProfile->getValueAsInt("NumOperands");
391 // Parse the properties.
392 Properties = 0;
393 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
394 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
395 if (PropList[i]->getName() == "SDNPCommutative") {
396 Properties |= 1 << SDNPCommutative;
397 } else if (PropList[i]->getName() == "SDNPAssociative") {
398 Properties |= 1 << SDNPAssociative;
399 } else if (PropList[i]->getName() == "SDNPHasChain") {
400 Properties |= 1 << SDNPHasChain;
401 } else if (PropList[i]->getName() == "SDNPOutFlag") {
402 Properties |= 1 << SDNPOutFlag;
403 } else if (PropList[i]->getName() == "SDNPInFlag") {
404 Properties |= 1 << SDNPInFlag;
405 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
406 Properties |= 1 << SDNPOptInFlag;
407 } else if (PropList[i]->getName() == "SDNPMayStore") {
408 Properties |= 1 << SDNPMayStore;
409 } else if (PropList[i]->getName() == "SDNPMayLoad") {
410 Properties |= 1 << SDNPMayLoad;
411 } else if (PropList[i]->getName() == "SDNPSideEffect") {
412 Properties |= 1 << SDNPSideEffect;
413 } else if (PropList[i]->getName() == "SDNPMemOperand") {
414 Properties |= 1 << SDNPMemOperand;
415 } else {
416 cerr << "Unknown SD Node property '" << PropList[i]->getName()
417 << "' on node '" << R->getName() << "'!\n";
418 exit(1);
423 // Parse the type constraints.
424 std::vector<Record*> ConstraintList =
425 TypeProfile->getValueAsListOfDefs("Constraints");
426 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
429 //===----------------------------------------------------------------------===//
430 // TreePatternNode implementation
433 TreePatternNode::~TreePatternNode() {
434 #if 0 // FIXME: implement refcounted tree nodes!
435 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
436 delete getChild(i);
437 #endif
440 /// UpdateNodeType - Set the node type of N to VT if VT contains
441 /// information. If N already contains a conflicting type, then throw an
442 /// exception. This returns true if any information was updated.
444 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
445 TreePattern &TP) {
446 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
448 if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
449 return false;
450 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
451 setTypes(ExtVTs);
452 return true;
455 if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
456 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
457 ExtVTs[0] == EMVT::isInt)
458 return false;
459 if (EMVT::isExtIntegerInVTs(ExtVTs)) {
460 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
461 if (FVTs.size()) {
462 setTypes(ExtVTs);
463 return true;
468 if ((ExtVTs[0] == EMVT::isInt || ExtVTs[0] == MVT::iAny) &&
469 EMVT::isExtIntegerInVTs(getExtTypes())) {
470 assert(hasTypeSet() && "should be handled above!");
471 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
472 if (getExtTypes() == FVTs)
473 return false;
474 setTypes(FVTs);
475 return true;
477 if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
478 EMVT::isExtIntegerInVTs(getExtTypes())) {
479 //assert(hasTypeSet() && "should be handled above!");
480 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
481 if (getExtTypes() == FVTs)
482 return false;
483 if (FVTs.size()) {
484 setTypes(FVTs);
485 return true;
488 if ((ExtVTs[0] == EMVT::isFP || ExtVTs[0] == MVT::fAny) &&
489 EMVT::isExtFloatingPointInVTs(getExtTypes())) {
490 assert(hasTypeSet() && "should be handled above!");
491 std::vector<unsigned char> FVTs =
492 FilterEVTs(getExtTypes(), isFloatingPoint);
493 if (getExtTypes() == FVTs)
494 return false;
495 setTypes(FVTs);
496 return true;
499 // If we know this is an int or fp type, and we are told it is a specific one,
500 // take the advice.
502 // Similarly, we should probably set the type here to the intersection of
503 // {isInt|isFP} and ExtVTs
504 if (((getExtTypeNum(0) == EMVT::isInt || getExtTypeNum(0) == MVT::iAny) &&
505 EMVT::isExtIntegerInVTs(ExtVTs)) ||
506 ((getExtTypeNum(0) == EMVT::isFP || getExtTypeNum(0) == MVT::fAny) &&
507 EMVT::isExtFloatingPointInVTs(ExtVTs))) {
508 setTypes(ExtVTs);
509 return true;
511 if (getExtTypeNum(0) == EMVT::isInt &&
512 (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
513 setTypes(ExtVTs);
514 return true;
517 if (isLeaf()) {
518 dump();
519 cerr << " ";
520 TP.error("Type inference contradiction found in node!");
521 } else {
522 TP.error("Type inference contradiction found in node " +
523 getOperator()->getName() + "!");
525 return true; // unreachable
529 void TreePatternNode::print(std::ostream &OS) const {
530 if (isLeaf()) {
531 OS << *getLeafValue();
532 } else {
533 OS << "(" << getOperator()->getName();
536 // FIXME: At some point we should handle printing all the value types for
537 // nodes that are multiply typed.
538 switch (getExtTypeNum(0)) {
539 case MVT::Other: OS << ":Other"; break;
540 case EMVT::isInt: OS << ":isInt"; break;
541 case EMVT::isFP : OS << ":isFP"; break;
542 case EMVT::isUnknown: ; /*OS << ":?";*/ break;
543 case MVT::iPTR: OS << ":iPTR"; break;
544 case MVT::iPTRAny: OS << ":iPTRAny"; break;
545 default: {
546 std::string VTName = llvm::getName(getTypeNum(0));
547 // Strip off MVT:: prefix if present.
548 if (VTName.substr(0,5) == "MVT::")
549 VTName = VTName.substr(5);
550 OS << ":" << VTName;
551 break;
555 if (!isLeaf()) {
556 if (getNumChildren() != 0) {
557 OS << " ";
558 getChild(0)->print(OS);
559 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
560 OS << ", ";
561 getChild(i)->print(OS);
564 OS << ")";
567 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
568 OS << "<<P:" << PredicateFns[i] << ">>";
569 if (TransformFn)
570 OS << "<<X:" << TransformFn->getName() << ">>";
571 if (!getName().empty())
572 OS << ":$" << getName();
575 void TreePatternNode::dump() const {
576 print(*cerr.stream());
579 /// isIsomorphicTo - Return true if this node is recursively
580 /// isomorphic to the specified node. For this comparison, the node's
581 /// entire state is considered. The assigned name is ignored, since
582 /// nodes with differing names are considered isomorphic. However, if
583 /// the assigned name is present in the dependent variable set, then
584 /// the assigned name is considered significant and the node is
585 /// isomorphic if the names match.
586 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
587 const MultipleUseVarSet &DepVars) const {
588 if (N == this) return true;
589 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
590 getPredicateFns() != N->getPredicateFns() ||
591 getTransformFn() != N->getTransformFn())
592 return false;
594 if (isLeaf()) {
595 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
596 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
597 return ((DI->getDef() == NDI->getDef())
598 && (DepVars.find(getName()) == DepVars.end()
599 || getName() == N->getName()));
602 return getLeafValue() == N->getLeafValue();
605 if (N->getOperator() != getOperator() ||
606 N->getNumChildren() != getNumChildren()) return false;
607 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
608 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
609 return false;
610 return true;
613 /// clone - Make a copy of this tree and all of its children.
615 TreePatternNode *TreePatternNode::clone() const {
616 TreePatternNode *New;
617 if (isLeaf()) {
618 New = new TreePatternNode(getLeafValue());
619 } else {
620 std::vector<TreePatternNode*> CChildren;
621 CChildren.reserve(Children.size());
622 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
623 CChildren.push_back(getChild(i)->clone());
624 New = new TreePatternNode(getOperator(), CChildren);
626 New->setName(getName());
627 New->setTypes(getExtTypes());
628 New->setPredicateFns(getPredicateFns());
629 New->setTransformFn(getTransformFn());
630 return New;
633 /// SubstituteFormalArguments - Replace the formal arguments in this tree
634 /// with actual values specified by ArgMap.
635 void TreePatternNode::
636 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
637 if (isLeaf()) return;
639 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
640 TreePatternNode *Child = getChild(i);
641 if (Child->isLeaf()) {
642 Init *Val = Child->getLeafValue();
643 if (dynamic_cast<DefInit*>(Val) &&
644 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
645 // We found a use of a formal argument, replace it with its value.
646 TreePatternNode *NewChild = ArgMap[Child->getName()];
647 assert(NewChild && "Couldn't find formal argument!");
648 assert((Child->getPredicateFns().empty() ||
649 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
650 "Non-empty child predicate clobbered!");
651 setChild(i, NewChild);
653 } else {
654 getChild(i)->SubstituteFormalArguments(ArgMap);
660 /// InlinePatternFragments - If this pattern refers to any pattern
661 /// fragments, inline them into place, giving us a pattern without any
662 /// PatFrag references.
663 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
664 if (isLeaf()) return this; // nothing to do.
665 Record *Op = getOperator();
667 if (!Op->isSubClassOf("PatFrag")) {
668 // Just recursively inline children nodes.
669 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
670 TreePatternNode *Child = getChild(i);
671 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
673 assert((Child->getPredicateFns().empty() ||
674 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
675 "Non-empty child predicate clobbered!");
677 setChild(i, NewChild);
679 return this;
682 // Otherwise, we found a reference to a fragment. First, look up its
683 // TreePattern record.
684 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
686 // Verify that we are passing the right number of operands.
687 if (Frag->getNumArgs() != Children.size())
688 TP.error("'" + Op->getName() + "' fragment requires " +
689 utostr(Frag->getNumArgs()) + " operands!");
691 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
693 std::string Code = Op->getValueAsCode("Predicate");
694 if (!Code.empty())
695 FragTree->addPredicateFn("Predicate_"+Op->getName());
697 // Resolve formal arguments to their actual value.
698 if (Frag->getNumArgs()) {
699 // Compute the map of formal to actual arguments.
700 std::map<std::string, TreePatternNode*> ArgMap;
701 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
702 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
704 FragTree->SubstituteFormalArguments(ArgMap);
707 FragTree->setName(getName());
708 FragTree->UpdateNodeType(getExtTypes(), TP);
710 // Transfer in the old predicates.
711 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
712 FragTree->addPredicateFn(getPredicateFns()[i]);
714 // Get a new copy of this fragment to stitch into here.
715 //delete this; // FIXME: implement refcounting!
717 // The fragment we inlined could have recursive inlining that is needed. See
718 // if there are any pattern fragments in it and inline them as needed.
719 return FragTree->InlinePatternFragments(TP);
722 /// getImplicitType - Check to see if the specified record has an implicit
723 /// type which should be applied to it. This infer the type of register
724 /// references from the register file information, for example.
726 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
727 TreePattern &TP) {
728 // Some common return values
729 std::vector<unsigned char> Unknown(1, EMVT::isUnknown);
730 std::vector<unsigned char> Other(1, MVT::Other);
732 // Check to see if this is a register or a register class...
733 if (R->isSubClassOf("RegisterClass")) {
734 if (NotRegisters)
735 return Unknown;
736 const CodeGenRegisterClass &RC =
737 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
738 return ConvertVTs(RC.getValueTypes());
739 } else if (R->isSubClassOf("PatFrag")) {
740 // Pattern fragment types will be resolved when they are inlined.
741 return Unknown;
742 } else if (R->isSubClassOf("Register")) {
743 if (NotRegisters)
744 return Unknown;
745 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
746 return T.getRegisterVTs(R);
747 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
748 // Using a VTSDNode or CondCodeSDNode.
749 return Other;
750 } else if (R->isSubClassOf("ComplexPattern")) {
751 if (NotRegisters)
752 return Unknown;
753 std::vector<unsigned char>
754 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
755 return ComplexPat;
756 } else if (R->getName() == "ptr_rc") {
757 Other[0] = MVT::iPTR;
758 return Other;
759 } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
760 R->getName() == "zero_reg") {
761 // Placeholder.
762 return Unknown;
765 TP.error("Unknown node flavor used in pattern: " + R->getName());
766 return Other;
770 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
771 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
772 const CodeGenIntrinsic *TreePatternNode::
773 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
774 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
775 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
776 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
777 return 0;
779 unsigned IID =
780 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
781 return &CDP.getIntrinsicInfo(IID);
784 /// isCommutativeIntrinsic - Return true if the node corresponds to a
785 /// commutative intrinsic.
786 bool
787 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
788 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
789 return Int->isCommutative;
790 return false;
794 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
795 /// this node and its children in the tree. This returns true if it makes a
796 /// change, false otherwise. If a type contradiction is found, throw an
797 /// exception.
798 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
799 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
800 if (isLeaf()) {
801 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
802 // If it's a regclass or something else known, include the type.
803 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
804 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
805 // Int inits are always integers. :)
806 bool MadeChange = UpdateNodeType(EMVT::isInt, TP);
808 if (hasTypeSet()) {
809 // At some point, it may make sense for this tree pattern to have
810 // multiple types. Assert here that it does not, so we revisit this
811 // code when appropriate.
812 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
813 MVT::SimpleValueType VT = getTypeNum(0);
814 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
815 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
817 VT = getTypeNum(0);
818 if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
819 unsigned Size = MVT(VT).getSizeInBits();
820 // Make sure that the value is representable for this type.
821 if (Size < 32) {
822 int Val = (II->getValue() << (32-Size)) >> (32-Size);
823 if (Val != II->getValue()) {
824 // If sign-extended doesn't fit, does it fit as unsigned?
825 unsigned ValueMask;
826 unsigned UnsignedVal;
827 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
828 UnsignedVal = unsigned(II->getValue());
830 if ((ValueMask & UnsignedVal) != UnsignedVal) {
831 TP.error("Integer value '" + itostr(II->getValue())+
832 "' is out of range for type '" +
833 getEnumName(getTypeNum(0)) + "'!");
840 return MadeChange;
842 return false;
845 // special handling for set, which isn't really an SDNode.
846 if (getOperator()->getName() == "set") {
847 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
848 unsigned NC = getNumChildren();
849 bool MadeChange = false;
850 for (unsigned i = 0; i < NC-1; ++i) {
851 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
852 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
854 // Types of operands must match.
855 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
856 TP);
857 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
858 TP);
859 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
861 return MadeChange;
862 } else if (getOperator()->getName() == "implicit" ||
863 getOperator()->getName() == "parallel") {
864 bool MadeChange = false;
865 for (unsigned i = 0; i < getNumChildren(); ++i)
866 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
867 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
868 return MadeChange;
869 } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
870 bool MadeChange = false;
871 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
872 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
873 MadeChange |= UpdateNodeType(getChild(1)->getTypeNum(0), TP);
874 return MadeChange;
875 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
876 bool MadeChange = false;
878 // Apply the result type to the node.
879 unsigned NumRetVTs = Int->IS.RetVTs.size();
880 unsigned NumParamVTs = Int->IS.ParamVTs.size();
882 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
883 MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
885 if (getNumChildren() != NumParamVTs + NumRetVTs)
886 TP.error("Intrinsic '" + Int->Name + "' expects " +
887 utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
888 utostr(getNumChildren() - 1) + " operands!");
890 // Apply type info to the intrinsic ID.
891 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
893 for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
894 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
895 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
896 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
898 return MadeChange;
899 } else if (getOperator()->isSubClassOf("SDNode")) {
900 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
902 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
903 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
904 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
905 // Branch, etc. do not produce results and top-level forms in instr pattern
906 // must have void types.
907 if (NI.getNumResults() == 0)
908 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
910 return MadeChange;
911 } else if (getOperator()->isSubClassOf("Instruction")) {
912 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
913 bool MadeChange = false;
914 unsigned NumResults = Inst.getNumResults();
916 assert(NumResults <= 1 &&
917 "Only supports zero or one result instrs!");
919 CodeGenInstruction &InstInfo =
920 CDP.getTargetInfo().getInstruction(getOperator()->getName());
921 // Apply the result type to the node
922 if (NumResults == 0 || InstInfo.NumDefs == 0) {
923 MadeChange = UpdateNodeType(MVT::isVoid, TP);
924 } else {
925 Record *ResultNode = Inst.getResult(0);
927 if (ResultNode->getName() == "ptr_rc") {
928 std::vector<unsigned char> VT;
929 VT.push_back(MVT::iPTR);
930 MadeChange = UpdateNodeType(VT, TP);
931 } else if (ResultNode->getName() == "unknown") {
932 std::vector<unsigned char> VT;
933 VT.push_back(EMVT::isUnknown);
934 MadeChange = UpdateNodeType(VT, TP);
935 } else {
936 assert(ResultNode->isSubClassOf("RegisterClass") &&
937 "Operands should be register classes!");
939 const CodeGenRegisterClass &RC =
940 CDP.getTargetInfo().getRegisterClass(ResultNode);
941 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
945 unsigned ChildNo = 0;
946 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
947 Record *OperandNode = Inst.getOperand(i);
949 // If the instruction expects a predicate or optional def operand, we
950 // codegen this by setting the operand to it's default value if it has a
951 // non-empty DefaultOps field.
952 if ((OperandNode->isSubClassOf("PredicateOperand") ||
953 OperandNode->isSubClassOf("OptionalDefOperand")) &&
954 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
955 continue;
957 // Verify that we didn't run out of provided operands.
958 if (ChildNo >= getNumChildren())
959 TP.error("Instruction '" + getOperator()->getName() +
960 "' expects more operands than were provided.");
962 MVT::SimpleValueType VT;
963 TreePatternNode *Child = getChild(ChildNo++);
964 if (OperandNode->isSubClassOf("RegisterClass")) {
965 const CodeGenRegisterClass &RC =
966 CDP.getTargetInfo().getRegisterClass(OperandNode);
967 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
968 } else if (OperandNode->isSubClassOf("Operand")) {
969 VT = getValueType(OperandNode->getValueAsDef("Type"));
970 MadeChange |= Child->UpdateNodeType(VT, TP);
971 } else if (OperandNode->getName() == "ptr_rc") {
972 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
973 } else if (OperandNode->getName() == "unknown") {
974 MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP);
975 } else {
976 assert(0 && "Unknown operand type!");
977 abort();
979 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
982 if (ChildNo != getNumChildren())
983 TP.error("Instruction '" + getOperator()->getName() +
984 "' was provided too many operands!");
986 return MadeChange;
987 } else {
988 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
990 // Node transforms always take one operand.
991 if (getNumChildren() != 1)
992 TP.error("Node transform '" + getOperator()->getName() +
993 "' requires one operand!");
995 // If either the output or input of the xform does not have exact
996 // type info. We assume they must be the same. Otherwise, it is perfectly
997 // legal to transform from one type to a completely different type.
998 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
999 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
1000 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
1001 return MadeChange;
1003 return false;
1007 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1008 /// RHS of a commutative operation, not the on LHS.
1009 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1010 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1011 return true;
1012 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1013 return true;
1014 return false;
1018 /// canPatternMatch - If it is impossible for this pattern to match on this
1019 /// target, fill in Reason and return false. Otherwise, return true. This is
1020 /// used as a sanity check for .td files (to prevent people from writing stuff
1021 /// that can never possibly work), and to prevent the pattern permuter from
1022 /// generating stuff that is useless.
1023 bool TreePatternNode::canPatternMatch(std::string &Reason,
1024 const CodeGenDAGPatterns &CDP) {
1025 if (isLeaf()) return true;
1027 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1028 if (!getChild(i)->canPatternMatch(Reason, CDP))
1029 return false;
1031 // If this is an intrinsic, handle cases that would make it not match. For
1032 // example, if an operand is required to be an immediate.
1033 if (getOperator()->isSubClassOf("Intrinsic")) {
1034 // TODO:
1035 return true;
1038 // If this node is a commutative operator, check that the LHS isn't an
1039 // immediate.
1040 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1041 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1042 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1043 // Scan all of the operands of the node and make sure that only the last one
1044 // is a constant node, unless the RHS also is.
1045 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1046 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1047 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1048 if (OnlyOnRHSOfCommutative(getChild(i))) {
1049 Reason="Immediate value must be on the RHS of commutative operators!";
1050 return false;
1055 return true;
1058 //===----------------------------------------------------------------------===//
1059 // TreePattern implementation
1062 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1063 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1064 isInputPattern = isInput;
1065 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1066 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
1069 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1070 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1071 isInputPattern = isInput;
1072 Trees.push_back(ParseTreePattern(Pat));
1075 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1076 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1077 isInputPattern = isInput;
1078 Trees.push_back(Pat);
1083 void TreePattern::error(const std::string &Msg) const {
1084 dump();
1085 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1088 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
1089 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1090 if (!OpDef) error("Pattern has unexpected operator type!");
1091 Record *Operator = OpDef->getDef();
1093 if (Operator->isSubClassOf("ValueType")) {
1094 // If the operator is a ValueType, then this must be "type cast" of a leaf
1095 // node.
1096 if (Dag->getNumArgs() != 1)
1097 error("Type cast only takes one operand!");
1099 Init *Arg = Dag->getArg(0);
1100 TreePatternNode *New;
1101 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
1102 Record *R = DI->getDef();
1103 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1104 Dag->setArg(0, new DagInit(DI, "",
1105 std::vector<std::pair<Init*, std::string> >()));
1106 return ParseTreePattern(Dag);
1108 New = new TreePatternNode(DI);
1109 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1110 New = ParseTreePattern(DI);
1111 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1112 New = new TreePatternNode(II);
1113 if (!Dag->getArgName(0).empty())
1114 error("Constant int argument should not have a name!");
1115 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1116 // Turn this into an IntInit.
1117 Init *II = BI->convertInitializerTo(new IntRecTy());
1118 if (II == 0 || !dynamic_cast<IntInit*>(II))
1119 error("Bits value must be constants!");
1121 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
1122 if (!Dag->getArgName(0).empty())
1123 error("Constant int argument should not have a name!");
1124 } else {
1125 Arg->dump();
1126 error("Unknown leaf value for tree pattern!");
1127 return 0;
1130 // Apply the type cast.
1131 New->UpdateNodeType(getValueType(Operator), *this);
1132 if (New->getNumChildren() == 0)
1133 New->setName(Dag->getArgName(0));
1134 return New;
1137 // Verify that this is something that makes sense for an operator.
1138 if (!Operator->isSubClassOf("PatFrag") &&
1139 !Operator->isSubClassOf("SDNode") &&
1140 !Operator->isSubClassOf("Instruction") &&
1141 !Operator->isSubClassOf("SDNodeXForm") &&
1142 !Operator->isSubClassOf("Intrinsic") &&
1143 Operator->getName() != "set" &&
1144 Operator->getName() != "implicit" &&
1145 Operator->getName() != "parallel")
1146 error("Unrecognized node '" + Operator->getName() + "'!");
1148 // Check to see if this is something that is illegal in an input pattern.
1149 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
1150 Operator->isSubClassOf("SDNodeXForm")))
1151 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1153 std::vector<TreePatternNode*> Children;
1155 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
1156 Init *Arg = Dag->getArg(i);
1157 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1158 Children.push_back(ParseTreePattern(DI));
1159 if (Children.back()->getName().empty())
1160 Children.back()->setName(Dag->getArgName(i));
1161 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
1162 Record *R = DefI->getDef();
1163 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1164 // TreePatternNode if its own.
1165 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1166 Dag->setArg(i, new DagInit(DefI, "",
1167 std::vector<std::pair<Init*, std::string> >()));
1168 --i; // Revisit this node...
1169 } else {
1170 TreePatternNode *Node = new TreePatternNode(DefI);
1171 Node->setName(Dag->getArgName(i));
1172 Children.push_back(Node);
1174 // Input argument?
1175 if (R->getName() == "node") {
1176 if (Dag->getArgName(i).empty())
1177 error("'node' argument requires a name to match with operand list");
1178 Args.push_back(Dag->getArgName(i));
1181 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1182 TreePatternNode *Node = new TreePatternNode(II);
1183 if (!Dag->getArgName(i).empty())
1184 error("Constant int argument should not have a name!");
1185 Children.push_back(Node);
1186 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1187 // Turn this into an IntInit.
1188 Init *II = BI->convertInitializerTo(new IntRecTy());
1189 if (II == 0 || !dynamic_cast<IntInit*>(II))
1190 error("Bits value must be constants!");
1192 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1193 if (!Dag->getArgName(i).empty())
1194 error("Constant int argument should not have a name!");
1195 Children.push_back(Node);
1196 } else {
1197 cerr << '"';
1198 Arg->dump();
1199 cerr << "\": ";
1200 error("Unknown leaf value for tree pattern!");
1204 // If the operator is an intrinsic, then this is just syntactic sugar for for
1205 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1206 // convert the intrinsic name to a number.
1207 if (Operator->isSubClassOf("Intrinsic")) {
1208 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1209 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1211 // If this intrinsic returns void, it must have side-effects and thus a
1212 // chain.
1213 if (Int.IS.RetVTs[0] == MVT::isVoid) {
1214 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1215 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1216 // Has side-effects, requires chain.
1217 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1218 } else {
1219 // Otherwise, no chain.
1220 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1223 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1224 Children.insert(Children.begin(), IIDNode);
1227 TreePatternNode *Result = new TreePatternNode(Operator, Children);
1228 Result->setName(Dag->getName());
1229 return Result;
1232 /// InferAllTypes - Infer/propagate as many types throughout the expression
1233 /// patterns as possible. Return true if all types are inferred, false
1234 /// otherwise. Throw an exception if a type contradiction is found.
1235 bool TreePattern::InferAllTypes() {
1236 bool MadeChange = true;
1237 while (MadeChange) {
1238 MadeChange = false;
1239 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1240 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1243 bool HasUnresolvedTypes = false;
1244 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1245 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1246 return !HasUnresolvedTypes;
1249 void TreePattern::print(std::ostream &OS) const {
1250 OS << getRecord()->getName();
1251 if (!Args.empty()) {
1252 OS << "(" << Args[0];
1253 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1254 OS << ", " << Args[i];
1255 OS << ")";
1257 OS << ": ";
1259 if (Trees.size() > 1)
1260 OS << "[\n";
1261 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1262 OS << "\t";
1263 Trees[i]->print(OS);
1264 OS << "\n";
1267 if (Trees.size() > 1)
1268 OS << "]\n";
1271 void TreePattern::dump() const { print(*cerr.stream()); }
1273 //===----------------------------------------------------------------------===//
1274 // CodeGenDAGPatterns implementation
1277 // FIXME: REMOVE OSTREAM ARGUMENT
1278 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
1279 Intrinsics = LoadIntrinsics(Records, false);
1280 TgtIntrinsics = LoadIntrinsics(Records, true);
1281 ParseNodeInfo();
1282 ParseNodeTransforms();
1283 ParseComplexPatterns();
1284 ParsePatternFragments();
1285 ParseDefaultOperands();
1286 ParseInstructions();
1287 ParsePatterns();
1289 // Generate variants. For example, commutative patterns can match
1290 // multiple ways. Add them to PatternsToMatch as well.
1291 GenerateVariants();
1293 // Infer instruction flags. For example, we can detect loads,
1294 // stores, and side effects in many cases by examining an
1295 // instruction's pattern.
1296 InferInstructionFlags();
1299 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1300 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1301 E = PatternFragments.end(); I != E; ++I)
1302 delete I->second;
1306 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
1307 Record *N = Records.getDef(Name);
1308 if (!N || !N->isSubClassOf("SDNode")) {
1309 cerr << "Error getting SDNode '" << Name << "'!\n";
1310 exit(1);
1312 return N;
1315 // Parse all of the SDNode definitions for the target, populating SDNodes.
1316 void CodeGenDAGPatterns::ParseNodeInfo() {
1317 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1318 while (!Nodes.empty()) {
1319 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1320 Nodes.pop_back();
1323 // Get the builtin intrinsic nodes.
1324 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1325 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1326 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1329 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1330 /// map, and emit them to the file as functions.
1331 void CodeGenDAGPatterns::ParseNodeTransforms() {
1332 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1333 while (!Xforms.empty()) {
1334 Record *XFormNode = Xforms.back();
1335 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1336 std::string Code = XFormNode->getValueAsCode("XFormFunction");
1337 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
1339 Xforms.pop_back();
1343 void CodeGenDAGPatterns::ParseComplexPatterns() {
1344 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1345 while (!AMs.empty()) {
1346 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1347 AMs.pop_back();
1352 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1353 /// file, building up the PatternFragments map. After we've collected them all,
1354 /// inline fragments together as necessary, so that there are no references left
1355 /// inside a pattern fragment to a pattern fragment.
1357 void CodeGenDAGPatterns::ParsePatternFragments() {
1358 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1360 // First step, parse all of the fragments.
1361 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1362 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1363 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1364 PatternFragments[Fragments[i]] = P;
1366 // Validate the argument list, converting it to set, to discard duplicates.
1367 std::vector<std::string> &Args = P->getArgList();
1368 std::set<std::string> OperandsSet(Args.begin(), Args.end());
1370 if (OperandsSet.count(""))
1371 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1373 // Parse the operands list.
1374 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1375 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1376 // Special cases: ops == outs == ins. Different names are used to
1377 // improve readability.
1378 if (!OpsOp ||
1379 (OpsOp->getDef()->getName() != "ops" &&
1380 OpsOp->getDef()->getName() != "outs" &&
1381 OpsOp->getDef()->getName() != "ins"))
1382 P->error("Operands list should start with '(ops ... '!");
1384 // Copy over the arguments.
1385 Args.clear();
1386 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1387 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1388 static_cast<DefInit*>(OpsList->getArg(j))->
1389 getDef()->getName() != "node")
1390 P->error("Operands list should all be 'node' values.");
1391 if (OpsList->getArgName(j).empty())
1392 P->error("Operands list should have names for each operand!");
1393 if (!OperandsSet.count(OpsList->getArgName(j)))
1394 P->error("'" + OpsList->getArgName(j) +
1395 "' does not occur in pattern or was multiply specified!");
1396 OperandsSet.erase(OpsList->getArgName(j));
1397 Args.push_back(OpsList->getArgName(j));
1400 if (!OperandsSet.empty())
1401 P->error("Operands list does not contain an entry for operand '" +
1402 *OperandsSet.begin() + "'!");
1404 // If there is a code init for this fragment, keep track of the fact that
1405 // this fragment uses it.
1406 std::string Code = Fragments[i]->getValueAsCode("Predicate");
1407 if (!Code.empty())
1408 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
1410 // If there is a node transformation corresponding to this, keep track of
1411 // it.
1412 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1413 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1414 P->getOnlyTree()->setTransformFn(Transform);
1417 // Now that we've parsed all of the tree fragments, do a closure on them so
1418 // that there are not references to PatFrags left inside of them.
1419 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1420 TreePattern *ThePat = PatternFragments[Fragments[i]];
1421 ThePat->InlinePatternFragments();
1423 // Infer as many types as possible. Don't worry about it if we don't infer
1424 // all of them, some may depend on the inputs of the pattern.
1425 try {
1426 ThePat->InferAllTypes();
1427 } catch (...) {
1428 // If this pattern fragment is not supported by this target (no types can
1429 // satisfy its constraints), just ignore it. If the bogus pattern is
1430 // actually used by instructions, the type consistency error will be
1431 // reported there.
1434 // If debugging, print out the pattern fragment result.
1435 DEBUG(ThePat->dump());
1439 void CodeGenDAGPatterns::ParseDefaultOperands() {
1440 std::vector<Record*> DefaultOps[2];
1441 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1442 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1444 // Find some SDNode.
1445 assert(!SDNodes.empty() && "No SDNodes parsed?");
1446 Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1448 for (unsigned iter = 0; iter != 2; ++iter) {
1449 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1450 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1452 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1453 // SomeSDnode so that we can parse this.
1454 std::vector<std::pair<Init*, std::string> > Ops;
1455 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1456 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1457 DefaultInfo->getArgName(op)));
1458 DagInit *DI = new DagInit(SomeSDNode, "", Ops);
1460 // Create a TreePattern to parse this.
1461 TreePattern P(DefaultOps[iter][i], DI, false, *this);
1462 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1464 // Copy the operands over into a DAGDefaultOperand.
1465 DAGDefaultOperand DefaultOpInfo;
1467 TreePatternNode *T = P.getTree(0);
1468 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1469 TreePatternNode *TPN = T->getChild(op);
1470 while (TPN->ApplyTypeConstraints(P, false))
1471 /* Resolve all types */;
1473 if (TPN->ContainsUnresolvedType()) {
1474 if (iter == 0)
1475 throw "Value #" + utostr(i) + " of PredicateOperand '" +
1476 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1477 else
1478 throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1479 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1481 DefaultOpInfo.DefaultOps.push_back(TPN);
1484 // Insert it into the DefaultOperands map so we can find it later.
1485 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1490 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1491 /// instruction input. Return true if this is a real use.
1492 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1493 std::map<std::string, TreePatternNode*> &InstInputs,
1494 std::vector<Record*> &InstImpInputs) {
1495 // No name -> not interesting.
1496 if (Pat->getName().empty()) {
1497 if (Pat->isLeaf()) {
1498 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1499 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1500 I->error("Input " + DI->getDef()->getName() + " must be named!");
1501 else if (DI && DI->getDef()->isSubClassOf("Register"))
1502 InstImpInputs.push_back(DI->getDef());
1504 return false;
1507 Record *Rec;
1508 if (Pat->isLeaf()) {
1509 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1510 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1511 Rec = DI->getDef();
1512 } else {
1513 Rec = Pat->getOperator();
1516 // SRCVALUE nodes are ignored.
1517 if (Rec->getName() == "srcvalue")
1518 return false;
1520 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1521 if (!Slot) {
1522 Slot = Pat;
1523 } else {
1524 Record *SlotRec;
1525 if (Slot->isLeaf()) {
1526 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1527 } else {
1528 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1529 SlotRec = Slot->getOperator();
1532 // Ensure that the inputs agree if we've already seen this input.
1533 if (Rec != SlotRec)
1534 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1535 if (Slot->getExtTypes() != Pat->getExtTypes())
1536 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1538 return true;
1541 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1542 /// part of "I", the instruction), computing the set of inputs and outputs of
1543 /// the pattern. Report errors if we see anything naughty.
1544 void CodeGenDAGPatterns::
1545 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1546 std::map<std::string, TreePatternNode*> &InstInputs,
1547 std::map<std::string, TreePatternNode*>&InstResults,
1548 std::vector<Record*> &InstImpInputs,
1549 std::vector<Record*> &InstImpResults) {
1550 if (Pat->isLeaf()) {
1551 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1552 if (!isUse && Pat->getTransformFn())
1553 I->error("Cannot specify a transform function for a non-input value!");
1554 return;
1555 } else if (Pat->getOperator()->getName() == "implicit") {
1556 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1557 TreePatternNode *Dest = Pat->getChild(i);
1558 if (!Dest->isLeaf())
1559 I->error("implicitly defined value should be a register!");
1561 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1562 if (!Val || !Val->getDef()->isSubClassOf("Register"))
1563 I->error("implicitly defined value should be a register!");
1564 InstImpResults.push_back(Val->getDef());
1566 return;
1567 } else if (Pat->getOperator()->getName() != "set") {
1568 // If this is not a set, verify that the children nodes are not void typed,
1569 // and recurse.
1570 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1571 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1572 I->error("Cannot have void nodes inside of patterns!");
1573 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1574 InstImpInputs, InstImpResults);
1577 // If this is a non-leaf node with no children, treat it basically as if
1578 // it were a leaf. This handles nodes like (imm).
1579 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1581 if (!isUse && Pat->getTransformFn())
1582 I->error("Cannot specify a transform function for a non-input value!");
1583 return;
1586 // Otherwise, this is a set, validate and collect instruction results.
1587 if (Pat->getNumChildren() == 0)
1588 I->error("set requires operands!");
1590 if (Pat->getTransformFn())
1591 I->error("Cannot specify a transform function on a set node!");
1593 // Check the set destinations.
1594 unsigned NumDests = Pat->getNumChildren()-1;
1595 for (unsigned i = 0; i != NumDests; ++i) {
1596 TreePatternNode *Dest = Pat->getChild(i);
1597 if (!Dest->isLeaf())
1598 I->error("set destination should be a register!");
1600 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1601 if (!Val)
1602 I->error("set destination should be a register!");
1604 if (Val->getDef()->isSubClassOf("RegisterClass") ||
1605 Val->getDef()->getName() == "ptr_rc") {
1606 if (Dest->getName().empty())
1607 I->error("set destination must have a name!");
1608 if (InstResults.count(Dest->getName()))
1609 I->error("cannot set '" + Dest->getName() +"' multiple times");
1610 InstResults[Dest->getName()] = Dest;
1611 } else if (Val->getDef()->isSubClassOf("Register")) {
1612 InstImpResults.push_back(Val->getDef());
1613 } else {
1614 I->error("set destination should be a register!");
1618 // Verify and collect info from the computation.
1619 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1620 InstInputs, InstResults,
1621 InstImpInputs, InstImpResults);
1624 //===----------------------------------------------------------------------===//
1625 // Instruction Analysis
1626 //===----------------------------------------------------------------------===//
1628 class InstAnalyzer {
1629 const CodeGenDAGPatterns &CDP;
1630 bool &mayStore;
1631 bool &mayLoad;
1632 bool &HasSideEffects;
1633 public:
1634 InstAnalyzer(const CodeGenDAGPatterns &cdp,
1635 bool &maystore, bool &mayload, bool &hse)
1636 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
1639 /// Analyze - Analyze the specified instruction, returning true if the
1640 /// instruction had a pattern.
1641 bool Analyze(Record *InstRecord) {
1642 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
1643 if (Pattern == 0) {
1644 HasSideEffects = 1;
1645 return false; // No pattern.
1648 // FIXME: Assume only the first tree is the pattern. The others are clobber
1649 // nodes.
1650 AnalyzeNode(Pattern->getTree(0));
1651 return true;
1654 private:
1655 void AnalyzeNode(const TreePatternNode *N) {
1656 if (N->isLeaf()) {
1657 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1658 Record *LeafRec = DI->getDef();
1659 // Handle ComplexPattern leaves.
1660 if (LeafRec->isSubClassOf("ComplexPattern")) {
1661 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
1662 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
1663 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
1664 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1667 return;
1670 // Analyze children.
1671 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1672 AnalyzeNode(N->getChild(i));
1674 // Ignore set nodes, which are not SDNodes.
1675 if (N->getOperator()->getName() == "set")
1676 return;
1678 // Get information about the SDNode for the operator.
1679 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
1681 // Notice properties of the node.
1682 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
1683 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
1684 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1686 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
1687 // If this is an intrinsic, analyze it.
1688 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
1689 mayLoad = true;// These may load memory.
1691 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
1692 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
1694 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
1695 // WriteMem intrinsics can have other strange effects.
1696 HasSideEffects = true;
1702 static void InferFromPattern(const CodeGenInstruction &Inst,
1703 bool &MayStore, bool &MayLoad,
1704 bool &HasSideEffects,
1705 const CodeGenDAGPatterns &CDP) {
1706 MayStore = MayLoad = HasSideEffects = false;
1708 bool HadPattern =
1709 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
1711 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
1712 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
1713 // If we decided that this is a store from the pattern, then the .td file
1714 // entry is redundant.
1715 if (MayStore)
1716 fprintf(stderr,
1717 "Warning: mayStore flag explicitly set on instruction '%s'"
1718 " but flag already inferred from pattern.\n",
1719 Inst.TheDef->getName().c_str());
1720 MayStore = true;
1723 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it.
1724 // If we decided that this is a load from the pattern, then the .td file
1725 // entry is redundant.
1726 if (MayLoad)
1727 fprintf(stderr,
1728 "Warning: mayLoad flag explicitly set on instruction '%s'"
1729 " but flag already inferred from pattern.\n",
1730 Inst.TheDef->getName().c_str());
1731 MayLoad = true;
1734 if (Inst.neverHasSideEffects) {
1735 if (HadPattern)
1736 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
1737 "which already has a pattern\n", Inst.TheDef->getName().c_str());
1738 HasSideEffects = false;
1741 if (Inst.hasSideEffects) {
1742 if (HasSideEffects)
1743 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
1744 "which already inferred this.\n", Inst.TheDef->getName().c_str());
1745 HasSideEffects = true;
1749 /// ParseInstructions - Parse all of the instructions, inlining and resolving
1750 /// any fragments involved. This populates the Instructions list with fully
1751 /// resolved instructions.
1752 void CodeGenDAGPatterns::ParseInstructions() {
1753 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1755 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1756 ListInit *LI = 0;
1758 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1759 LI = Instrs[i]->getValueAsListInit("Pattern");
1761 // If there is no pattern, only collect minimal information about the
1762 // instruction for its operand list. We have to assume that there is one
1763 // result, as we have no detailed info.
1764 if (!LI || LI->getSize() == 0) {
1765 std::vector<Record*> Results;
1766 std::vector<Record*> Operands;
1768 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1770 if (InstInfo.OperandList.size() != 0) {
1771 if (InstInfo.NumDefs == 0) {
1772 // These produce no results
1773 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1774 Operands.push_back(InstInfo.OperandList[j].Rec);
1775 } else {
1776 // Assume the first operand is the result.
1777 Results.push_back(InstInfo.OperandList[0].Rec);
1779 // The rest are inputs.
1780 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1781 Operands.push_back(InstInfo.OperandList[j].Rec);
1785 // Create and insert the instruction.
1786 std::vector<Record*> ImpResults;
1787 std::vector<Record*> ImpOperands;
1788 Instructions.insert(std::make_pair(Instrs[i],
1789 DAGInstruction(0, Results, Operands, ImpResults,
1790 ImpOperands)));
1791 continue; // no pattern.
1794 // Parse the instruction.
1795 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1796 // Inline pattern fragments into it.
1797 I->InlinePatternFragments();
1799 // Infer as many types as possible. If we cannot infer all of them, we can
1800 // never do anything with this instruction pattern: report it to the user.
1801 if (!I->InferAllTypes())
1802 I->error("Could not infer all types in pattern!");
1804 // InstInputs - Keep track of all of the inputs of the instruction, along
1805 // with the record they are declared as.
1806 std::map<std::string, TreePatternNode*> InstInputs;
1808 // InstResults - Keep track of all the virtual registers that are 'set'
1809 // in the instruction, including what reg class they are.
1810 std::map<std::string, TreePatternNode*> InstResults;
1812 std::vector<Record*> InstImpInputs;
1813 std::vector<Record*> InstImpResults;
1815 // Verify that the top-level forms in the instruction are of void type, and
1816 // fill in the InstResults map.
1817 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1818 TreePatternNode *Pat = I->getTree(j);
1819 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1820 I->error("Top-level forms in instruction pattern should have"
1821 " void types");
1823 // Find inputs and outputs, and verify the structure of the uses/defs.
1824 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1825 InstImpInputs, InstImpResults);
1828 // Now that we have inputs and outputs of the pattern, inspect the operands
1829 // list for the instruction. This determines the order that operands are
1830 // added to the machine instruction the node corresponds to.
1831 unsigned NumResults = InstResults.size();
1833 // Parse the operands list from the (ops) list, validating it.
1834 assert(I->getArgList().empty() && "Args list should still be empty here!");
1835 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1837 // Check that all of the results occur first in the list.
1838 std::vector<Record*> Results;
1839 TreePatternNode *Res0Node = NULL;
1840 for (unsigned i = 0; i != NumResults; ++i) {
1841 if (i == CGI.OperandList.size())
1842 I->error("'" + InstResults.begin()->first +
1843 "' set but does not appear in operand list!");
1844 const std::string &OpName = CGI.OperandList[i].Name;
1846 // Check that it exists in InstResults.
1847 TreePatternNode *RNode = InstResults[OpName];
1848 if (RNode == 0)
1849 I->error("Operand $" + OpName + " does not exist in operand list!");
1851 if (i == 0)
1852 Res0Node = RNode;
1853 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1854 if (R == 0)
1855 I->error("Operand $" + OpName + " should be a set destination: all "
1856 "outputs must occur before inputs in operand list!");
1858 if (CGI.OperandList[i].Rec != R)
1859 I->error("Operand $" + OpName + " class mismatch!");
1861 // Remember the return type.
1862 Results.push_back(CGI.OperandList[i].Rec);
1864 // Okay, this one checks out.
1865 InstResults.erase(OpName);
1868 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1869 // the copy while we're checking the inputs.
1870 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1872 std::vector<TreePatternNode*> ResultNodeOperands;
1873 std::vector<Record*> Operands;
1874 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1875 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1876 const std::string &OpName = Op.Name;
1877 if (OpName.empty())
1878 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1880 if (!InstInputsCheck.count(OpName)) {
1881 // If this is an predicate operand or optional def operand with an
1882 // DefaultOps set filled in, we can ignore this. When we codegen it,
1883 // we will do so as always executed.
1884 if (Op.Rec->isSubClassOf("PredicateOperand") ||
1885 Op.Rec->isSubClassOf("OptionalDefOperand")) {
1886 // Does it have a non-empty DefaultOps field? If so, ignore this
1887 // operand.
1888 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1889 continue;
1891 I->error("Operand $" + OpName +
1892 " does not appear in the instruction pattern");
1894 TreePatternNode *InVal = InstInputsCheck[OpName];
1895 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1897 if (InVal->isLeaf() &&
1898 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1899 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1900 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1901 I->error("Operand $" + OpName + "'s register class disagrees"
1902 " between the operand and pattern");
1904 Operands.push_back(Op.Rec);
1906 // Construct the result for the dest-pattern operand list.
1907 TreePatternNode *OpNode = InVal->clone();
1909 // No predicate is useful on the result.
1910 OpNode->clearPredicateFns();
1912 // Promote the xform function to be an explicit node if set.
1913 if (Record *Xform = OpNode->getTransformFn()) {
1914 OpNode->setTransformFn(0);
1915 std::vector<TreePatternNode*> Children;
1916 Children.push_back(OpNode);
1917 OpNode = new TreePatternNode(Xform, Children);
1920 ResultNodeOperands.push_back(OpNode);
1923 if (!InstInputsCheck.empty())
1924 I->error("Input operand $" + InstInputsCheck.begin()->first +
1925 " occurs in pattern but not in operands list!");
1927 TreePatternNode *ResultPattern =
1928 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1929 // Copy fully inferred output node type to instruction result pattern.
1930 if (NumResults > 0)
1931 ResultPattern->setTypes(Res0Node->getExtTypes());
1933 // Create and insert the instruction.
1934 // FIXME: InstImpResults and InstImpInputs should not be part of
1935 // DAGInstruction.
1936 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1937 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1939 // Use a temporary tree pattern to infer all types and make sure that the
1940 // constructed result is correct. This depends on the instruction already
1941 // being inserted into the Instructions map.
1942 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1943 Temp.InferAllTypes();
1945 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1946 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1948 DEBUG(I->dump());
1951 // If we can, convert the instructions to be patterns that are matched!
1952 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1953 E = Instructions.end(); II != E; ++II) {
1954 DAGInstruction &TheInst = II->second;
1955 const TreePattern *I = TheInst.getPattern();
1956 if (I == 0) continue; // No pattern.
1958 // FIXME: Assume only the first tree is the pattern. The others are clobber
1959 // nodes.
1960 TreePatternNode *Pattern = I->getTree(0);
1961 TreePatternNode *SrcPattern;
1962 if (Pattern->getOperator()->getName() == "set") {
1963 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1964 } else{
1965 // Not a set (store or something?)
1966 SrcPattern = Pattern;
1969 std::string Reason;
1970 if (!SrcPattern->canPatternMatch(Reason, *this))
1971 I->error("Instruction can never match: " + Reason);
1973 Record *Instr = II->first;
1974 TreePatternNode *DstPattern = TheInst.getResultPattern();
1975 PatternsToMatch.
1976 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1977 SrcPattern, DstPattern, TheInst.getImpResults(),
1978 Instr->getValueAsInt("AddedComplexity")));
1983 void CodeGenDAGPatterns::InferInstructionFlags() {
1984 std::map<std::string, CodeGenInstruction> &InstrDescs =
1985 Target.getInstructions();
1986 for (std::map<std::string, CodeGenInstruction>::iterator
1987 II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
1988 CodeGenInstruction &InstInfo = II->second;
1989 // Determine properties of the instruction from its pattern.
1990 bool MayStore, MayLoad, HasSideEffects;
1991 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
1992 InstInfo.mayStore = MayStore;
1993 InstInfo.mayLoad = MayLoad;
1994 InstInfo.hasSideEffects = HasSideEffects;
1998 void CodeGenDAGPatterns::ParsePatterns() {
1999 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2001 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2002 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
2003 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
2004 Record *Operator = OpDef->getDef();
2005 TreePattern *Pattern;
2006 if (Operator->getName() != "parallel")
2007 Pattern = new TreePattern(Patterns[i], Tree, true, *this);
2008 else {
2009 std::vector<Init*> Values;
2010 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
2011 Values.push_back(Tree->getArg(j));
2012 ListInit *LI = new ListInit(Values);
2013 Pattern = new TreePattern(Patterns[i], LI, true, *this);
2016 // Inline pattern fragments into it.
2017 Pattern->InlinePatternFragments();
2019 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
2020 if (LI->getSize() == 0) continue; // no pattern.
2022 // Parse the instruction.
2023 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
2025 // Inline pattern fragments into it.
2026 Result->InlinePatternFragments();
2028 if (Result->getNumTrees() != 1)
2029 Result->error("Cannot handle instructions producing instructions "
2030 "with temporaries yet!");
2032 bool IterateInference;
2033 bool InferredAllPatternTypes, InferredAllResultTypes;
2034 do {
2035 // Infer as many types as possible. If we cannot infer all of them, we
2036 // can never do anything with this pattern: report it to the user.
2037 InferredAllPatternTypes = Pattern->InferAllTypes();
2039 // Infer as many types as possible. If we cannot infer all of them, we
2040 // can never do anything with this pattern: report it to the user.
2041 InferredAllResultTypes = Result->InferAllTypes();
2043 // Apply the type of the result to the source pattern. This helps us
2044 // resolve cases where the input type is known to be a pointer type (which
2045 // is considered resolved), but the result knows it needs to be 32- or
2046 // 64-bits. Infer the other way for good measure.
2047 IterateInference = Pattern->getTree(0)->
2048 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
2049 IterateInference |= Result->getTree(0)->
2050 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
2051 } while (IterateInference);
2053 // Verify that we inferred enough types that we can do something with the
2054 // pattern and result. If these fire the user has to add type casts.
2055 if (!InferredAllPatternTypes)
2056 Pattern->error("Could not infer all types in pattern!");
2057 if (!InferredAllResultTypes)
2058 Result->error("Could not infer all types in pattern result!");
2060 // Validate that the input pattern is correct.
2061 std::map<std::string, TreePatternNode*> InstInputs;
2062 std::map<std::string, TreePatternNode*> InstResults;
2063 std::vector<Record*> InstImpInputs;
2064 std::vector<Record*> InstImpResults;
2065 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2066 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2067 InstInputs, InstResults,
2068 InstImpInputs, InstImpResults);
2070 // Promote the xform function to be an explicit node if set.
2071 TreePatternNode *DstPattern = Result->getOnlyTree();
2072 std::vector<TreePatternNode*> ResultNodeOperands;
2073 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2074 TreePatternNode *OpNode = DstPattern->getChild(ii);
2075 if (Record *Xform = OpNode->getTransformFn()) {
2076 OpNode->setTransformFn(0);
2077 std::vector<TreePatternNode*> Children;
2078 Children.push_back(OpNode);
2079 OpNode = new TreePatternNode(Xform, Children);
2081 ResultNodeOperands.push_back(OpNode);
2083 DstPattern = Result->getOnlyTree();
2084 if (!DstPattern->isLeaf())
2085 DstPattern = new TreePatternNode(DstPattern->getOperator(),
2086 ResultNodeOperands);
2087 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
2088 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
2089 Temp.InferAllTypes();
2091 std::string Reason;
2092 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
2093 Pattern->error("Pattern can never match: " + Reason);
2095 PatternsToMatch.
2096 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
2097 Pattern->getTree(0),
2098 Temp.getOnlyTree(), InstImpResults,
2099 Patterns[i]->getValueAsInt("AddedComplexity")));
2103 /// CombineChildVariants - Given a bunch of permutations of each child of the
2104 /// 'operator' node, put them together in all possible ways.
2105 static void CombineChildVariants(TreePatternNode *Orig,
2106 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
2107 std::vector<TreePatternNode*> &OutVariants,
2108 CodeGenDAGPatterns &CDP,
2109 const MultipleUseVarSet &DepVars) {
2110 // Make sure that each operand has at least one variant to choose from.
2111 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2112 if (ChildVariants[i].empty())
2113 return;
2115 // The end result is an all-pairs construction of the resultant pattern.
2116 std::vector<unsigned> Idxs;
2117 Idxs.resize(ChildVariants.size());
2118 bool NotDone;
2119 do {
2120 #ifndef NDEBUG
2121 if (DebugFlag && !Idxs.empty()) {
2122 cerr << Orig->getOperator()->getName() << ": Idxs = [ ";
2123 for (unsigned i = 0; i < Idxs.size(); ++i) {
2124 cerr << Idxs[i] << " ";
2126 cerr << "]\n";
2128 #endif
2129 // Create the variant and add it to the output list.
2130 std::vector<TreePatternNode*> NewChildren;
2131 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2132 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
2133 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
2135 // Copy over properties.
2136 R->setName(Orig->getName());
2137 R->setPredicateFns(Orig->getPredicateFns());
2138 R->setTransformFn(Orig->getTransformFn());
2139 R->setTypes(Orig->getExtTypes());
2141 // If this pattern cannot match, do not include it as a variant.
2142 std::string ErrString;
2143 if (!R->canPatternMatch(ErrString, CDP)) {
2144 delete R;
2145 } else {
2146 bool AlreadyExists = false;
2148 // Scan to see if this pattern has already been emitted. We can get
2149 // duplication due to things like commuting:
2150 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2151 // which are the same pattern. Ignore the dups.
2152 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
2153 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
2154 AlreadyExists = true;
2155 break;
2158 if (AlreadyExists)
2159 delete R;
2160 else
2161 OutVariants.push_back(R);
2164 // Increment indices to the next permutation by incrementing the
2165 // indicies from last index backward, e.g., generate the sequence
2166 // [0, 0], [0, 1], [1, 0], [1, 1].
2167 int IdxsIdx;
2168 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2169 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
2170 Idxs[IdxsIdx] = 0;
2171 else
2172 break;
2174 NotDone = (IdxsIdx >= 0);
2175 } while (NotDone);
2178 /// CombineChildVariants - A helper function for binary operators.
2180 static void CombineChildVariants(TreePatternNode *Orig,
2181 const std::vector<TreePatternNode*> &LHS,
2182 const std::vector<TreePatternNode*> &RHS,
2183 std::vector<TreePatternNode*> &OutVariants,
2184 CodeGenDAGPatterns &CDP,
2185 const MultipleUseVarSet &DepVars) {
2186 std::vector<std::vector<TreePatternNode*> > ChildVariants;
2187 ChildVariants.push_back(LHS);
2188 ChildVariants.push_back(RHS);
2189 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
2193 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
2194 std::vector<TreePatternNode *> &Children) {
2195 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2196 Record *Operator = N->getOperator();
2198 // Only permit raw nodes.
2199 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
2200 N->getTransformFn()) {
2201 Children.push_back(N);
2202 return;
2205 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
2206 Children.push_back(N->getChild(0));
2207 else
2208 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
2210 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
2211 Children.push_back(N->getChild(1));
2212 else
2213 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
2216 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2217 /// the (potentially recursive) pattern by using algebraic laws.
2219 static void GenerateVariantsOf(TreePatternNode *N,
2220 std::vector<TreePatternNode*> &OutVariants,
2221 CodeGenDAGPatterns &CDP,
2222 const MultipleUseVarSet &DepVars) {
2223 // We cannot permute leaves.
2224 if (N->isLeaf()) {
2225 OutVariants.push_back(N);
2226 return;
2229 // Look up interesting info about the node.
2230 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
2232 // If this node is associative, re-associate.
2233 if (NodeInfo.hasProperty(SDNPAssociative)) {
2234 // Re-associate by pulling together all of the linked operators
2235 std::vector<TreePatternNode*> MaximalChildren;
2236 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
2238 // Only handle child sizes of 3. Otherwise we'll end up trying too many
2239 // permutations.
2240 if (MaximalChildren.size() == 3) {
2241 // Find the variants of all of our maximal children.
2242 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
2243 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
2244 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
2245 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
2247 // There are only two ways we can permute the tree:
2248 // (A op B) op C and A op (B op C)
2249 // Within these forms, we can also permute A/B/C.
2251 // Generate legal pair permutations of A/B/C.
2252 std::vector<TreePatternNode*> ABVariants;
2253 std::vector<TreePatternNode*> BAVariants;
2254 std::vector<TreePatternNode*> ACVariants;
2255 std::vector<TreePatternNode*> CAVariants;
2256 std::vector<TreePatternNode*> BCVariants;
2257 std::vector<TreePatternNode*> CBVariants;
2258 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
2259 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
2260 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
2261 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
2262 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
2263 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
2265 // Combine those into the result: (x op x) op x
2266 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
2267 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
2268 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
2269 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
2270 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
2271 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
2273 // Combine those into the result: x op (x op x)
2274 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
2275 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
2276 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
2277 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
2278 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
2279 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
2280 return;
2284 // Compute permutations of all children.
2285 std::vector<std::vector<TreePatternNode*> > ChildVariants;
2286 ChildVariants.resize(N->getNumChildren());
2287 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2288 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
2290 // Build all permutations based on how the children were formed.
2291 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
2293 // If this node is commutative, consider the commuted order.
2294 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
2295 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2296 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
2297 "Commutative but doesn't have 2 children!");
2298 // Don't count children which are actually register references.
2299 unsigned NC = 0;
2300 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2301 TreePatternNode *Child = N->getChild(i);
2302 if (Child->isLeaf())
2303 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2304 Record *RR = DI->getDef();
2305 if (RR->isSubClassOf("Register"))
2306 continue;
2308 NC++;
2310 // Consider the commuted order.
2311 if (isCommIntrinsic) {
2312 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
2313 // operands are the commutative operands, and there might be more operands
2314 // after those.
2315 assert(NC >= 3 &&
2316 "Commutative intrinsic should have at least 3 childrean!");
2317 std::vector<std::vector<TreePatternNode*> > Variants;
2318 Variants.push_back(ChildVariants[0]); // Intrinsic id.
2319 Variants.push_back(ChildVariants[2]);
2320 Variants.push_back(ChildVariants[1]);
2321 for (unsigned i = 3; i != NC; ++i)
2322 Variants.push_back(ChildVariants[i]);
2323 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
2324 } else if (NC == 2)
2325 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
2326 OutVariants, CDP, DepVars);
2331 // GenerateVariants - Generate variants. For example, commutative patterns can
2332 // match multiple ways. Add them to PatternsToMatch as well.
2333 void CodeGenDAGPatterns::GenerateVariants() {
2334 DOUT << "Generating instruction variants.\n";
2336 // Loop over all of the patterns we've collected, checking to see if we can
2337 // generate variants of the instruction, through the exploitation of
2338 // identities. This permits the target to provide aggressive matching without
2339 // the .td file having to contain tons of variants of instructions.
2341 // Note that this loop adds new patterns to the PatternsToMatch list, but we
2342 // intentionally do not reconsider these. Any variants of added patterns have
2343 // already been added.
2345 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2346 MultipleUseVarSet DepVars;
2347 std::vector<TreePatternNode*> Variants;
2348 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
2349 DOUT << "Dependent/multiply used variables: ";
2350 DEBUG(DumpDepVars(DepVars));
2351 DOUT << "\n";
2352 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
2354 assert(!Variants.empty() && "Must create at least original variant!");
2355 Variants.erase(Variants.begin()); // Remove the original pattern.
2357 if (Variants.empty()) // No variants for this pattern.
2358 continue;
2360 DOUT << "FOUND VARIANTS OF: ";
2361 DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2362 DOUT << "\n";
2364 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2365 TreePatternNode *Variant = Variants[v];
2367 DOUT << " VAR#" << v << ": ";
2368 DEBUG(Variant->dump());
2369 DOUT << "\n";
2371 // Scan to see if an instruction or explicit pattern already matches this.
2372 bool AlreadyExists = false;
2373 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2374 // Check to see if this variant already exists.
2375 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
2376 DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
2377 AlreadyExists = true;
2378 break;
2381 // If we already have it, ignore the variant.
2382 if (AlreadyExists) continue;
2384 // Otherwise, add it to the list of patterns we have.
2385 PatternsToMatch.
2386 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2387 Variant, PatternsToMatch[i].getDstPattern(),
2388 PatternsToMatch[i].getDstRegs(),
2389 PatternsToMatch[i].getAddedComplexity()));
2392 DOUT << "\n";