Proper name 16 bit libcalls
[llvm/msp430.git] / utils / TableGen / DAGISelEmitter.cpp
blobe3858cc3fcbc62fae247b039d8efb4b4de540d9d
1 //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a DAG instruction selector.
12 //===----------------------------------------------------------------------===//
14 #include "DAGISelEmitter.h"
15 #include "Record.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/MathExtras.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Streams.h"
22 #include <algorithm>
23 #include <deque>
24 using namespace llvm;
26 namespace {
27 cl::opt<bool>
28 GenDebug("gen-debug", cl::desc("Generate debug code"),
29 cl::init(false));
32 //===----------------------------------------------------------------------===//
33 // DAGISelEmitter Helper methods
36 /// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
37 /// ComplexPattern.
38 static bool NodeIsComplexPattern(TreePatternNode *N) {
39 return (N->isLeaf() &&
40 dynamic_cast<DefInit*>(N->getLeafValue()) &&
41 static_cast<DefInit*>(N->getLeafValue())->getDef()->
42 isSubClassOf("ComplexPattern"));
45 /// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
46 /// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
47 static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
48 CodeGenDAGPatterns &CGP) {
49 if (N->isLeaf() &&
50 dynamic_cast<DefInit*>(N->getLeafValue()) &&
51 static_cast<DefInit*>(N->getLeafValue())->getDef()->
52 isSubClassOf("ComplexPattern")) {
53 return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
54 ->getDef());
56 return NULL;
59 /// getPatternSize - Return the 'size' of this pattern. We want to match large
60 /// patterns before small ones. This is used to determine the size of a
61 /// pattern.
62 static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
63 assert((EMVT::isExtIntegerInVTs(P->getExtTypes()) ||
64 EMVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
65 P->getExtTypeNum(0) == MVT::isVoid ||
66 P->getExtTypeNum(0) == MVT::Flag ||
67 P->getExtTypeNum(0) == MVT::iPTR ||
68 P->getExtTypeNum(0) == MVT::iPTRAny) &&
69 "Not a valid pattern node to size!");
70 unsigned Size = 3; // The node itself.
71 // If the root node is a ConstantSDNode, increases its size.
72 // e.g. (set R32:$dst, 0).
73 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
74 Size += 2;
76 // FIXME: This is a hack to statically increase the priority of patterns
77 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
78 // Later we can allow complexity / cost for each pattern to be (optionally)
79 // specified. To get best possible pattern match we'll need to dynamically
80 // calculate the complexity of all patterns a dag can potentially map to.
81 const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
82 if (AM)
83 Size += AM->getNumOperands() * 3;
85 // If this node has some predicate function that must match, it adds to the
86 // complexity of this node.
87 if (!P->getPredicateFns().empty())
88 ++Size;
90 // Count children in the count if they are also nodes.
91 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
92 TreePatternNode *Child = P->getChild(i);
93 if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
94 Size += getPatternSize(Child, CGP);
95 else if (Child->isLeaf()) {
96 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
97 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
98 else if (NodeIsComplexPattern(Child))
99 Size += getPatternSize(Child, CGP);
100 else if (!Child->getPredicateFns().empty())
101 ++Size;
105 return Size;
108 /// getResultPatternCost - Compute the number of instructions for this pattern.
109 /// This is a temporary hack. We should really include the instruction
110 /// latencies in this calculation.
111 static unsigned getResultPatternCost(TreePatternNode *P,
112 CodeGenDAGPatterns &CGP) {
113 if (P->isLeaf()) return 0;
115 unsigned Cost = 0;
116 Record *Op = P->getOperator();
117 if (Op->isSubClassOf("Instruction")) {
118 Cost++;
119 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
120 if (II.usesCustomDAGSchedInserter)
121 Cost += 10;
123 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
124 Cost += getResultPatternCost(P->getChild(i), CGP);
125 return Cost;
128 /// getResultPatternCodeSize - Compute the code size of instructions for this
129 /// pattern.
130 static unsigned getResultPatternSize(TreePatternNode *P,
131 CodeGenDAGPatterns &CGP) {
132 if (P->isLeaf()) return 0;
134 unsigned Cost = 0;
135 Record *Op = P->getOperator();
136 if (Op->isSubClassOf("Instruction")) {
137 Cost += Op->getValueAsInt("CodeSize");
139 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
140 Cost += getResultPatternSize(P->getChild(i), CGP);
141 return Cost;
144 // PatternSortingPredicate - return true if we prefer to match LHS before RHS.
145 // In particular, we want to match maximal patterns first and lowest cost within
146 // a particular complexity first.
147 struct PatternSortingPredicate {
148 PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
149 CodeGenDAGPatterns &CGP;
151 typedef std::pair<unsigned, std::string> CodeLine;
152 typedef std::vector<CodeLine> CodeList;
153 typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
155 bool operator()(const std::pair<const PatternToMatch*, CodeList> &LHSPair,
156 const std::pair<const PatternToMatch*, CodeList> &RHSPair) {
157 const PatternToMatch *LHS = LHSPair.first;
158 const PatternToMatch *RHS = RHSPair.first;
160 unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
161 unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
162 LHSSize += LHS->getAddedComplexity();
163 RHSSize += RHS->getAddedComplexity();
164 if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
165 if (LHSSize < RHSSize) return false;
167 // If the patterns have equal complexity, compare generated instruction cost
168 unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
169 unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
170 if (LHSCost < RHSCost) return true;
171 if (LHSCost > RHSCost) return false;
173 return getResultPatternSize(LHS->getDstPattern(), CGP) <
174 getResultPatternSize(RHS->getDstPattern(), CGP);
178 /// getRegisterValueType - Look up and return the ValueType of the specified
179 /// register. If the register is a member of multiple register classes which
180 /// have different associated types, return MVT::Other.
181 static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
182 bool FoundRC = false;
183 MVT::SimpleValueType VT = MVT::Other;
184 const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
185 std::vector<CodeGenRegisterClass>::const_iterator RC;
186 std::vector<Record*>::const_iterator Element;
188 for (RC = RCs.begin() ; RC != RCs.end() ; RC++) {
189 Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R);
190 if (Element != (*RC).Elements.end()) {
191 if (!FoundRC) {
192 FoundRC = true;
193 VT = (*RC).getValueTypeNum(0);
194 } else {
195 // In multiple RC's
196 if (VT != (*RC).getValueTypeNum(0)) {
197 // Types of the RC's do not agree. Return MVT::Other. The
198 // target is responsible for handling this.
199 return MVT::Other;
204 return VT;
208 /// RemoveAllTypes - A quick recursive walk over a pattern which removes all
209 /// type information from it.
210 static void RemoveAllTypes(TreePatternNode *N) {
211 N->removeTypes();
212 if (!N->isLeaf())
213 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
214 RemoveAllTypes(N->getChild(i));
217 /// NodeHasProperty - return true if TreePatternNode has the specified
218 /// property.
219 static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
220 CodeGenDAGPatterns &CGP) {
221 if (N->isLeaf()) {
222 const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
223 if (CP)
224 return CP->hasProperty(Property);
225 return false;
227 Record *Operator = N->getOperator();
228 if (!Operator->isSubClassOf("SDNode")) return false;
230 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
233 static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
234 CodeGenDAGPatterns &CGP) {
235 if (NodeHasProperty(N, Property, CGP))
236 return true;
238 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
239 TreePatternNode *Child = N->getChild(i);
240 if (PatternHasProperty(Child, Property, CGP))
241 return true;
244 return false;
247 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
248 return CGP.getSDNodeInfo(Op).getEnumName();
251 static
252 bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) {
253 bool isStore = !N->isLeaf() &&
254 getOpcodeName(N->getOperator(), CGP) == "ISD::STORE";
255 if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP))
256 return false;
258 bool HasChain = false;
259 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
260 TreePatternNode *Child = N->getChild(i);
261 if (PatternHasProperty(Child, SDNPHasChain, CGP)) {
262 HasChain = true;
263 break;
266 return HasChain;
269 //===----------------------------------------------------------------------===//
270 // Node Transformation emitter implementation.
272 void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) {
273 // Walk the pattern fragments, adding them to a map, which sorts them by
274 // name.
275 typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
276 NXsByNameTy NXsByName;
278 for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
279 I != E; ++I)
280 NXsByName.insert(std::make_pair(I->first->getName(), I->second));
282 OS << "\n// Node transformations.\n";
284 for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
285 I != E; ++I) {
286 Record *SDNode = I->second.first;
287 std::string Code = I->second.second;
289 if (Code.empty()) continue; // Empty code? Skip it.
291 std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
292 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
294 OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2
295 << ") {\n";
296 if (ClassName != "SDNode")
297 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
298 OS << Code << "\n}\n";
302 //===----------------------------------------------------------------------===//
303 // Predicate emitter implementation.
306 void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) {
307 OS << "\n// Predicate functions.\n";
309 // Walk the pattern fragments, adding them to a map, which sorts them by
310 // name.
311 typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
312 PFsByNameTy PFsByName;
314 for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
315 I != E; ++I)
316 PFsByName.insert(std::make_pair(I->first->getName(), *I));
319 for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
320 I != E; ++I) {
321 Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
322 TreePattern *P = I->second.second;
324 // If there is a code init for this fragment, emit the predicate code.
325 std::string Code = PatFragRecord->getValueAsCode("Predicate");
326 if (Code.empty()) continue;
328 if (P->getOnlyTree()->isLeaf())
329 OS << "inline bool Predicate_" << PatFragRecord->getName()
330 << "(SDNode *N) {\n";
331 else {
332 std::string ClassName =
333 CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
334 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
336 OS << "inline bool Predicate_" << PatFragRecord->getName()
337 << "(SDNode *" << C2 << ") {\n";
338 if (ClassName != "SDNode")
339 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
341 OS << Code << "\n}\n";
344 OS << "\n\n";
348 //===----------------------------------------------------------------------===//
349 // PatternCodeEmitter implementation.
351 class PatternCodeEmitter {
352 private:
353 CodeGenDAGPatterns &CGP;
355 // Predicates.
356 std::string PredicateCheck;
357 // Pattern cost.
358 unsigned Cost;
359 // Instruction selector pattern.
360 TreePatternNode *Pattern;
361 // Matched instruction.
362 TreePatternNode *Instruction;
364 // Node to name mapping
365 std::map<std::string, std::string> VariableMap;
366 // Node to operator mapping
367 std::map<std::string, Record*> OperatorMap;
368 // Name of the folded node which produces a flag.
369 std::pair<std::string, unsigned> FoldedFlag;
370 // Names of all the folded nodes which produce chains.
371 std::vector<std::pair<std::string, unsigned> > FoldedChains;
372 // Original input chain(s).
373 std::vector<std::pair<std::string, std::string> > OrigChains;
374 std::set<std::string> Duplicates;
376 /// LSI - Load/Store information.
377 /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode
378 /// for each memory access. This facilitates the use of AliasAnalysis in
379 /// the backend.
380 std::vector<std::string> LSI;
382 /// GeneratedCode - This is the buffer that we emit code to. The first int
383 /// indicates whether this is an exit predicate (something that should be
384 /// tested, and if true, the match fails) [when 1], or normal code to emit
385 /// [when 0], or initialization code to emit [when 2].
386 std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
387 /// GeneratedDecl - This is the set of all SDValue declarations needed for
388 /// the set of patterns for each top-level opcode.
389 std::set<std::string> &GeneratedDecl;
390 /// TargetOpcodes - The target specific opcodes used by the resulting
391 /// instructions.
392 std::vector<std::string> &TargetOpcodes;
393 std::vector<std::string> &TargetVTs;
394 /// OutputIsVariadic - Records whether the instruction output pattern uses
395 /// variable_ops. This requires that the Emit function be passed an
396 /// additional argument to indicate where the input varargs operands
397 /// begin.
398 bool &OutputIsVariadic;
399 /// NumInputRootOps - Records the number of operands the root node of the
400 /// input pattern has. This information is used in the generated code to
401 /// pass to Emit functions when variable_ops processing is needed.
402 unsigned &NumInputRootOps;
404 std::string ChainName;
405 unsigned TmpNo;
406 unsigned OpcNo;
407 unsigned VTNo;
409 void emitCheck(const std::string &S) {
410 if (!S.empty())
411 GeneratedCode.push_back(std::make_pair(1, S));
413 void emitCode(const std::string &S) {
414 if (!S.empty())
415 GeneratedCode.push_back(std::make_pair(0, S));
417 void emitInit(const std::string &S) {
418 if (!S.empty())
419 GeneratedCode.push_back(std::make_pair(2, S));
421 void emitDecl(const std::string &S) {
422 assert(!S.empty() && "Invalid declaration");
423 GeneratedDecl.insert(S);
425 void emitOpcode(const std::string &Opc) {
426 TargetOpcodes.push_back(Opc);
427 OpcNo++;
429 void emitVT(const std::string &VT) {
430 TargetVTs.push_back(VT);
431 VTNo++;
433 public:
434 PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck,
435 TreePatternNode *pattern, TreePatternNode *instr,
436 std::vector<std::pair<unsigned, std::string> > &gc,
437 std::set<std::string> &gd,
438 std::vector<std::string> &to,
439 std::vector<std::string> &tv,
440 bool &oiv,
441 unsigned &niro)
442 : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr),
443 GeneratedCode(gc), GeneratedDecl(gd),
444 TargetOpcodes(to), TargetVTs(tv),
445 OutputIsVariadic(oiv), NumInputRootOps(niro),
446 TmpNo(0), OpcNo(0), VTNo(0) {}
448 /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
449 /// if the match fails. At this point, we already know that the opcode for N
450 /// matches, and the SDNode for the result has the RootName specified name.
451 void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
452 const std::string &RootName, const std::string &ChainSuffix,
453 bool &FoundChain) {
455 // Save loads/stores matched by a pattern.
456 if (!N->isLeaf() && N->getName().empty()) {
457 if (NodeHasProperty(N, SDNPMemOperand, CGP))
458 LSI.push_back(RootName);
461 bool isRoot = (P == NULL);
462 // Emit instruction predicates. Each predicate is just a string for now.
463 if (isRoot) {
464 // Record input varargs info.
465 NumInputRootOps = N->getNumChildren();
467 if (DisablePatternForFastISel(N, CGP))
468 emitCheck("OptLevel != CodeGenOpt::None");
470 emitCheck(PredicateCheck);
473 if (N->isLeaf()) {
474 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
475 emitCheck("cast<ConstantSDNode>(" + RootName +
476 ")->getSExtValue() == INT64_C(" +
477 itostr(II->getValue()) + ")");
478 return;
479 } else if (!NodeIsComplexPattern(N)) {
480 assert(0 && "Cannot match this as a leaf value!");
481 abort();
485 // If this node has a name associated with it, capture it in VariableMap. If
486 // we already saw this in the pattern, emit code to verify dagness.
487 if (!N->getName().empty()) {
488 std::string &VarMapEntry = VariableMap[N->getName()];
489 if (VarMapEntry.empty()) {
490 VarMapEntry = RootName;
491 } else {
492 // If we get here, this is a second reference to a specific name. Since
493 // we already have checked that the first reference is valid, we don't
494 // have to recursively match it, just check that it's the same as the
495 // previously named thing.
496 emitCheck(VarMapEntry + " == " + RootName);
497 return;
500 if (!N->isLeaf())
501 OperatorMap[N->getName()] = N->getOperator();
505 // Emit code to load the child nodes and match their contents recursively.
506 unsigned OpNo = 0;
507 bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
508 bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
509 bool EmittedUseCheck = false;
510 if (HasChain) {
511 if (NodeHasChain)
512 OpNo = 1;
513 if (!isRoot) {
514 // Multiple uses of actual result?
515 emitCheck(RootName + ".hasOneUse()");
516 EmittedUseCheck = true;
517 if (NodeHasChain) {
518 // If the immediate use can somehow reach this node through another
519 // path, then can't fold it either or it will create a cycle.
520 // e.g. In the following diagram, XX can reach ld through YY. If
521 // ld is folded into XX, then YY is both a predecessor and a successor
522 // of XX.
524 // [ld]
525 // ^ ^
526 // | |
527 // / \---
528 // / [YY]
529 // | ^
530 // [XX]-------|
531 bool NeedCheck = P != Pattern;
532 if (!NeedCheck) {
533 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
534 NeedCheck =
535 P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
536 P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
537 P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
538 PInfo.getNumOperands() > 1 ||
539 PInfo.hasProperty(SDNPHasChain) ||
540 PInfo.hasProperty(SDNPInFlag) ||
541 PInfo.hasProperty(SDNPOptInFlag);
544 if (NeedCheck) {
545 std::string ParentName(RootName.begin(), RootName.end()-1);
546 emitCheck("IsLegalAndProfitableToFold(" + RootName +
547 ".getNode(), " + ParentName + ".getNode(), N.getNode())");
552 if (NodeHasChain) {
553 if (FoundChain) {
554 emitCheck("(" + ChainName + ".getNode() == " + RootName + ".getNode() || "
555 "IsChainCompatible(" + ChainName + ".getNode(), " +
556 RootName + ".getNode()))");
557 OrigChains.push_back(std::make_pair(ChainName, RootName));
558 } else
559 FoundChain = true;
560 ChainName = "Chain" + ChainSuffix;
561 emitInit("SDValue " + ChainName + " = " + RootName +
562 ".getOperand(0);");
566 // Don't fold any node which reads or writes a flag and has multiple uses.
567 // FIXME: We really need to separate the concepts of flag and "glue". Those
568 // real flag results, e.g. X86CMP output, can have multiple uses.
569 // FIXME: If the optional incoming flag does not exist. Then it is ok to
570 // fold it.
571 if (!isRoot &&
572 (PatternHasProperty(N, SDNPInFlag, CGP) ||
573 PatternHasProperty(N, SDNPOptInFlag, CGP) ||
574 PatternHasProperty(N, SDNPOutFlag, CGP))) {
575 if (!EmittedUseCheck) {
576 // Multiple uses of actual result?
577 emitCheck(RootName + ".hasOneUse()");
581 // If there are node predicates for this, emit the calls.
582 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
583 emitCheck(N->getPredicateFns()[i] + "(" + RootName + ".getNode())");
585 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
586 // a constant without a predicate fn that has more that one bit set, handle
587 // this as a special case. This is usually for targets that have special
588 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
589 // handling stuff). Using these instructions is often far more efficient
590 // than materializing the constant. Unfortunately, both the instcombiner
591 // and the dag combiner can often infer that bits are dead, and thus drop
592 // them from the mask in the dag. For example, it might turn 'AND X, 255'
593 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
594 // to handle this.
595 if (!N->isLeaf() &&
596 (N->getOperator()->getName() == "and" ||
597 N->getOperator()->getName() == "or") &&
598 N->getChild(1)->isLeaf() &&
599 N->getChild(1)->getPredicateFns().empty()) {
600 if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
601 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
602 emitInit("SDValue " + RootName + "0" + " = " +
603 RootName + ".getOperand(" + utostr(0) + ");");
604 emitInit("SDValue " + RootName + "1" + " = " +
605 RootName + ".getOperand(" + utostr(1) + ");");
607 unsigned NTmp = TmpNo++;
608 emitCode("ConstantSDNode *Tmp" + utostr(NTmp) +
609 " = dyn_cast<ConstantSDNode>(" + RootName + "1);");
610 emitCheck("Tmp" + utostr(NTmp));
611 const char *MaskPredicate = N->getOperator()->getName() == "or"
612 ? "CheckOrMask(" : "CheckAndMask(";
613 emitCheck(MaskPredicate + RootName + "0, Tmp" + utostr(NTmp) +
614 ", INT64_C(" + itostr(II->getValue()) + "))");
616 EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName,
617 ChainSuffix + utostr(0), FoundChain);
618 return;
623 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
624 emitInit("SDValue " + RootName + utostr(OpNo) + " = " +
625 RootName + ".getOperand(" +utostr(OpNo) + ");");
627 EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName,
628 ChainSuffix + utostr(OpNo), FoundChain);
631 // Handle cases when root is a complex pattern.
632 const ComplexPattern *CP;
633 if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
634 std::string Fn = CP->getSelectFunc();
635 unsigned NumOps = CP->getNumOperands();
636 for (unsigned i = 0; i < NumOps; ++i) {
637 emitDecl("CPTmp" + RootName + "_" + utostr(i));
638 emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
640 if (CP->hasProperty(SDNPHasChain)) {
641 emitDecl("CPInChain");
642 emitDecl("Chain" + ChainSuffix);
643 emitCode("SDValue CPInChain;");
644 emitCode("SDValue Chain" + ChainSuffix + ";");
647 std::string Code = Fn + "(" + RootName + ", " + RootName;
648 for (unsigned i = 0; i < NumOps; i++)
649 Code += ", CPTmp" + RootName + "_" + utostr(i);
650 if (CP->hasProperty(SDNPHasChain)) {
651 ChainName = "Chain" + ChainSuffix;
652 Code += ", CPInChain, Chain" + ChainSuffix;
654 emitCheck(Code + ")");
658 void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
659 const std::string &RootName,
660 const std::string &ParentRootName,
661 const std::string &ChainSuffix, bool &FoundChain) {
662 if (!Child->isLeaf()) {
663 // If it's not a leaf, recursively match.
664 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
665 emitCheck(RootName + ".getOpcode() == " +
666 CInfo.getEnumName());
667 EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
668 bool HasChain = false;
669 if (NodeHasProperty(Child, SDNPHasChain, CGP)) {
670 HasChain = true;
671 FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
673 if (NodeHasProperty(Child, SDNPOutFlag, CGP)) {
674 assert(FoldedFlag.first == "" && FoldedFlag.second == 0 &&
675 "Pattern folded multiple nodes which produce flags?");
676 FoldedFlag = std::make_pair(RootName,
677 CInfo.getNumResults() + (unsigned)HasChain);
679 } else {
680 // If this child has a name associated with it, capture it in VarMap. If
681 // we already saw this in the pattern, emit code to verify dagness.
682 if (!Child->getName().empty()) {
683 std::string &VarMapEntry = VariableMap[Child->getName()];
684 if (VarMapEntry.empty()) {
685 VarMapEntry = RootName;
686 } else {
687 // If we get here, this is a second reference to a specific name.
688 // Since we already have checked that the first reference is valid,
689 // we don't have to recursively match it, just check that it's the
690 // same as the previously named thing.
691 emitCheck(VarMapEntry + " == " + RootName);
692 Duplicates.insert(RootName);
693 return;
697 // Handle leaves of various types.
698 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
699 Record *LeafRec = DI->getDef();
700 if (LeafRec->isSubClassOf("RegisterClass") ||
701 LeafRec->getName() == "ptr_rc") {
702 // Handle register references. Nothing to do here.
703 } else if (LeafRec->isSubClassOf("Register")) {
704 // Handle register references.
705 } else if (LeafRec->isSubClassOf("ComplexPattern")) {
706 // Handle complex pattern.
707 const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
708 std::string Fn = CP->getSelectFunc();
709 unsigned NumOps = CP->getNumOperands();
710 for (unsigned i = 0; i < NumOps; ++i) {
711 emitDecl("CPTmp" + RootName + "_" + utostr(i));
712 emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
714 if (CP->hasProperty(SDNPHasChain)) {
715 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
716 FoldedChains.push_back(std::make_pair("CPInChain",
717 PInfo.getNumResults()));
718 ChainName = "Chain" + ChainSuffix;
719 emitDecl("CPInChain");
720 emitDecl(ChainName);
721 emitCode("SDValue CPInChain;");
722 emitCode("SDValue " + ChainName + ";");
725 std::string Code = Fn + "(";
726 if (CP->hasAttribute(CPAttrParentAsRoot)) {
727 Code += ParentRootName + ", ";
728 } else {
729 Code += "N, ";
731 if (CP->hasProperty(SDNPHasChain)) {
732 std::string ParentName(RootName.begin(), RootName.end()-1);
733 Code += ParentName + ", ";
735 Code += RootName;
736 for (unsigned i = 0; i < NumOps; i++)
737 Code += ", CPTmp" + RootName + "_" + utostr(i);
738 if (CP->hasProperty(SDNPHasChain))
739 Code += ", CPInChain, Chain" + ChainSuffix;
740 emitCheck(Code + ")");
741 } else if (LeafRec->getName() == "srcvalue") {
742 // Place holder for SRCVALUE nodes. Nothing to do here.
743 } else if (LeafRec->isSubClassOf("ValueType")) {
744 // Make sure this is the specified value type.
745 emitCheck("cast<VTSDNode>(" + RootName +
746 ")->getVT() == MVT::" + LeafRec->getName());
747 } else if (LeafRec->isSubClassOf("CondCode")) {
748 // Make sure this is the specified cond code.
749 emitCheck("cast<CondCodeSDNode>(" + RootName +
750 ")->get() == ISD::" + LeafRec->getName());
751 } else {
752 #ifndef NDEBUG
753 Child->dump();
754 cerr << " ";
755 #endif
756 assert(0 && "Unknown leaf type!");
759 // If there are node predicates for this, emit the calls.
760 for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i)
761 emitCheck(Child->getPredicateFns()[i] + "(" + RootName +
762 ".getNode())");
763 } else if (IntInit *II =
764 dynamic_cast<IntInit*>(Child->getLeafValue())) {
765 unsigned NTmp = TmpNo++;
766 emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) +
767 " = dyn_cast<ConstantSDNode>("+
768 RootName + ");");
769 emitCheck("Tmp" + utostr(NTmp));
770 unsigned CTmp = TmpNo++;
771 emitCode("int64_t CN"+ utostr(CTmp) +
772 " = Tmp" + utostr(NTmp) + "->getSExtValue();");
773 emitCheck("CN" + utostr(CTmp) + " == "
774 "INT64_C(" +itostr(II->getValue()) + ")");
775 } else {
776 #ifndef NDEBUG
777 Child->dump();
778 #endif
779 assert(0 && "Unknown leaf type!");
784 /// EmitResultCode - Emit the action for a pattern. Now that it has matched
785 /// we actually have to build a DAG!
786 std::vector<std::string>
787 EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
788 bool InFlagDecled, bool ResNodeDecled,
789 bool LikeLeaf = false, bool isRoot = false) {
790 // List of arguments of getTargetNode() or SelectNodeTo().
791 std::vector<std::string> NodeOps;
792 // This is something selected from the pattern we matched.
793 if (!N->getName().empty()) {
794 const std::string &VarName = N->getName();
795 std::string Val = VariableMap[VarName];
796 bool ModifiedVal = false;
797 if (Val.empty()) {
798 cerr << "Variable '" << VarName << " referenced but not defined "
799 << "and not caught earlier!\n";
800 abort();
802 if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
803 // Already selected this operand, just return the tmpval.
804 NodeOps.push_back(Val);
805 return NodeOps;
808 const ComplexPattern *CP;
809 unsigned ResNo = TmpNo++;
810 if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
811 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
812 std::string CastType;
813 std::string TmpVar = "Tmp" + utostr(ResNo);
814 switch (N->getTypeNum(0)) {
815 default:
816 cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
817 << " type as an immediate constant. Aborting\n";
818 abort();
819 case MVT::i1: CastType = "bool"; break;
820 case MVT::i8: CastType = "unsigned char"; break;
821 case MVT::i16: CastType = "unsigned short"; break;
822 case MVT::i32: CastType = "unsigned"; break;
823 case MVT::i64: CastType = "uint64_t"; break;
825 emitCode("SDValue " + TmpVar +
826 " = CurDAG->getTargetConstant(((" + CastType +
827 ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " +
828 getEnumName(N->getTypeNum(0)) + ");");
829 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
830 // value if used multiple times by this pattern result.
831 Val = TmpVar;
832 ModifiedVal = true;
833 NodeOps.push_back(Val);
834 } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") {
835 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
836 std::string TmpVar = "Tmp" + utostr(ResNo);
837 emitCode("SDValue " + TmpVar +
838 " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" +
839 Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" +
840 Val + ")->getValueType(0));");
841 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
842 // value if used multiple times by this pattern result.
843 Val = TmpVar;
844 ModifiedVal = true;
845 NodeOps.push_back(Val);
846 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
847 Record *Op = OperatorMap[N->getName()];
848 // Transform ExternalSymbol to TargetExternalSymbol
849 if (Op && Op->getName() == "externalsym") {
850 std::string TmpVar = "Tmp"+utostr(ResNo);
851 emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
852 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
853 Val + ")->getSymbol(), " +
854 getEnumName(N->getTypeNum(0)) + ");");
855 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
856 // this value if used multiple times by this pattern result.
857 Val = TmpVar;
858 ModifiedVal = true;
860 NodeOps.push_back(Val);
861 } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
862 || N->getOperator()->getName() == "tglobaltlsaddr")) {
863 Record *Op = OperatorMap[N->getName()];
864 // Transform GlobalAddress to TargetGlobalAddress
865 if (Op && (Op->getName() == "globaladdr" ||
866 Op->getName() == "globaltlsaddr")) {
867 std::string TmpVar = "Tmp" + utostr(ResNo);
868 emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
869 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
870 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
871 ");");
872 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
873 // this value if used multiple times by this pattern result.
874 Val = TmpVar;
875 ModifiedVal = true;
877 NodeOps.push_back(Val);
878 } else if (!N->isLeaf()
879 && (N->getOperator()->getName() == "texternalsym"
880 || N->getOperator()->getName() == "tconstpool")) {
881 // Do not rewrite the variable name, since we don't generate a new
882 // temporary.
883 NodeOps.push_back(Val);
884 } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
885 for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
886 NodeOps.push_back("CPTmp" + Val + "_" + utostr(i));
888 } else {
889 // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
890 // node even if it isn't one. Don't select it.
891 if (!LikeLeaf) {
892 if (isRoot && N->isLeaf()) {
893 emitCode("ReplaceUses(N, " + Val + ");");
894 emitCode("return NULL;");
897 NodeOps.push_back(Val);
900 if (ModifiedVal) {
901 VariableMap[VarName] = Val;
903 return NodeOps;
905 if (N->isLeaf()) {
906 // If this is an explicit register reference, handle it.
907 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
908 unsigned ResNo = TmpNo++;
909 if (DI->getDef()->isSubClassOf("Register")) {
910 emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
911 getQualifiedName(DI->getDef()) + ", " +
912 getEnumName(N->getTypeNum(0)) + ");");
913 NodeOps.push_back("Tmp" + utostr(ResNo));
914 return NodeOps;
915 } else if (DI->getDef()->getName() == "zero_reg") {
916 emitCode("SDValue Tmp" + utostr(ResNo) +
917 " = CurDAG->getRegister(0, " +
918 getEnumName(N->getTypeNum(0)) + ");");
919 NodeOps.push_back("Tmp" + utostr(ResNo));
920 return NodeOps;
921 } else if (DI->getDef()->isSubClassOf("RegisterClass")) {
922 // Handle a reference to a register class. This is used
923 // in COPY_TO_SUBREG instructions.
924 emitCode("SDValue Tmp" + utostr(ResNo) +
925 " = CurDAG->getTargetConstant(" +
926 getQualifiedName(DI->getDef()) + "RegClassID, " +
927 "MVT::i32);");
928 NodeOps.push_back("Tmp" + utostr(ResNo));
929 return NodeOps;
931 } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
932 unsigned ResNo = TmpNo++;
933 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
934 emitCode("SDValue Tmp" + utostr(ResNo) +
935 " = CurDAG->getTargetConstant(0x" + itohexstr(II->getValue()) +
936 "ULL, " + getEnumName(N->getTypeNum(0)) + ");");
937 NodeOps.push_back("Tmp" + utostr(ResNo));
938 return NodeOps;
941 #ifndef NDEBUG
942 N->dump();
943 #endif
944 assert(0 && "Unknown leaf type!");
945 return NodeOps;
948 Record *Op = N->getOperator();
949 if (Op->isSubClassOf("Instruction")) {
950 const CodeGenTarget &CGT = CGP.getTargetInfo();
951 CodeGenInstruction &II = CGT.getInstruction(Op->getName());
952 const DAGInstruction &Inst = CGP.getInstruction(Op);
953 const TreePattern *InstPat = Inst.getPattern();
954 // FIXME: Assume actual pattern comes before "implicit".
955 TreePatternNode *InstPatNode =
956 isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
957 : (InstPat ? InstPat->getTree(0) : NULL);
958 if (InstPatNode && !InstPatNode->isLeaf() &&
959 InstPatNode->getOperator()->getName() == "set") {
960 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
962 bool IsVariadic = isRoot && II.isVariadic;
963 // FIXME: fix how we deal with physical register operands.
964 bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
965 bool HasImpResults = isRoot && DstRegs.size() > 0;
966 bool NodeHasOptInFlag = isRoot &&
967 PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
968 bool NodeHasInFlag = isRoot &&
969 PatternHasProperty(Pattern, SDNPInFlag, CGP);
970 bool NodeHasOutFlag = isRoot &&
971 PatternHasProperty(Pattern, SDNPOutFlag, CGP);
972 bool NodeHasChain = InstPatNode &&
973 PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
974 bool InputHasChain = isRoot &&
975 NodeHasProperty(Pattern, SDNPHasChain, CGP);
976 unsigned NumResults = Inst.getNumResults();
977 unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
979 // Record output varargs info.
980 OutputIsVariadic = IsVariadic;
982 if (NodeHasOptInFlag) {
983 emitCode("bool HasInFlag = "
984 "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
986 if (IsVariadic)
987 emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";");
989 // How many results is this pattern expected to produce?
990 unsigned NumPatResults = 0;
991 for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
992 MVT::SimpleValueType VT = Pattern->getTypeNum(i);
993 if (VT != MVT::isVoid && VT != MVT::Flag)
994 NumPatResults++;
997 if (OrigChains.size() > 0) {
998 // The original input chain is being ignored. If it is not just
999 // pointing to the op that's being folded, we should create a
1000 // TokenFactor with it and the chain of the folded op as the new chain.
1001 // We could potentially be doing multiple levels of folding, in that
1002 // case, the TokenFactor can have more operands.
1003 emitCode("SmallVector<SDValue, 8> InChains;");
1004 for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
1005 emitCode("if (" + OrigChains[i].first + ".getNode() != " +
1006 OrigChains[i].second + ".getNode()) {");
1007 emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
1008 emitCode("}");
1010 emitCode("InChains.push_back(" + ChainName + ");");
1011 emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, "
1012 "N.getDebugLoc(), MVT::Other, "
1013 "&InChains[0], InChains.size());");
1014 if (GenDebug) {
1015 emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");");
1016 emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");");
1020 // Loop over all of the operands of the instruction pattern, emitting code
1021 // to fill them all in. The node 'N' usually has number children equal to
1022 // the number of input operands of the instruction. However, in cases
1023 // where there are predicate operands for an instruction, we need to fill
1024 // in the 'execute always' values. Match up the node operands to the
1025 // instruction operands to do this.
1026 std::vector<std::string> AllOps;
1027 for (unsigned ChildNo = 0, InstOpNo = NumResults;
1028 InstOpNo != II.OperandList.size(); ++InstOpNo) {
1029 std::vector<std::string> Ops;
1031 // Determine what to emit for this operand.
1032 Record *OperandNode = II.OperandList[InstOpNo].Rec;
1033 if ((OperandNode->isSubClassOf("PredicateOperand") ||
1034 OperandNode->isSubClassOf("OptionalDefOperand")) &&
1035 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
1036 // This is a predicate or optional def operand; emit the
1037 // 'default ops' operands.
1038 const DAGDefaultOperand &DefaultOp =
1039 CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
1040 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
1041 Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
1042 InFlagDecled, ResNodeDecled);
1043 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
1045 } else {
1046 // Otherwise this is a normal operand or a predicate operand without
1047 // 'execute always'; emit it.
1048 Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
1049 InFlagDecled, ResNodeDecled);
1050 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
1051 ++ChildNo;
1055 // Emit all the chain and CopyToReg stuff.
1056 bool ChainEmitted = NodeHasChain;
1057 if (NodeHasInFlag || HasImpInputs)
1058 EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
1059 InFlagDecled, ResNodeDecled, true);
1060 if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
1061 if (!InFlagDecled) {
1062 emitCode("SDValue InFlag(0, 0);");
1063 InFlagDecled = true;
1065 if (NodeHasOptInFlag) {
1066 emitCode("if (HasInFlag) {");
1067 emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
1068 emitCode("}");
1072 unsigned ResNo = TmpNo++;
1074 unsigned OpsNo = OpcNo;
1075 std::string CodePrefix;
1076 bool ChainAssignmentNeeded = NodeHasChain && !isRoot;
1077 std::deque<std::string> After;
1078 std::string NodeName;
1079 if (!isRoot) {
1080 NodeName = "Tmp" + utostr(ResNo);
1081 CodePrefix = "SDValue " + NodeName + "(";
1082 } else {
1083 NodeName = "ResNode";
1084 if (!ResNodeDecled) {
1085 CodePrefix = "SDNode *" + NodeName + " = ";
1086 ResNodeDecled = true;
1087 } else
1088 CodePrefix = NodeName + " = ";
1091 std::string Code = "Opc" + utostr(OpcNo);
1093 if (!isRoot || (InputHasChain && !NodeHasChain))
1094 // For call to "getTargetNode()".
1095 Code += ", N.getDebugLoc()";
1097 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
1099 // Output order: results, chain, flags
1100 // Result types.
1101 if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
1102 Code += ", VT" + utostr(VTNo);
1103 emitVT(getEnumName(N->getTypeNum(0)));
1105 // Add types for implicit results in physical registers, scheduler will
1106 // care of adding copyfromreg nodes.
1107 for (unsigned i = 0; i < NumDstRegs; i++) {
1108 Record *RR = DstRegs[i];
1109 if (RR->isSubClassOf("Register")) {
1110 MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT);
1111 Code += ", " + getEnumName(RVT);
1114 if (NodeHasChain)
1115 Code += ", MVT::Other";
1116 if (NodeHasOutFlag)
1117 Code += ", MVT::Flag";
1119 // Inputs.
1120 if (IsVariadic) {
1121 for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
1122 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
1123 AllOps.clear();
1125 // Figure out whether any operands at the end of the op list are not
1126 // part of the variable section.
1127 std::string EndAdjust;
1128 if (NodeHasInFlag || HasImpInputs)
1129 EndAdjust = "-1"; // Always has one flag.
1130 else if (NodeHasOptInFlag)
1131 EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
1133 emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) +
1134 ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
1136 emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
1137 emitCode("}");
1140 // Generate MemOperandSDNodes nodes for each memory accesses covered by
1141 // this pattern.
1142 if (II.mayLoad | II.mayStore) {
1143 std::vector<std::string>::const_iterator mi, mie;
1144 for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) {
1145 std::string LSIName = "LSI_" + *mi;
1146 emitCode("SDValue " + LSIName + " = "
1147 "CurDAG->getMemOperand(cast<MemSDNode>(" +
1148 *mi + ")->getMemOperand());");
1149 if (GenDebug) {
1150 emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"yellow\");");
1151 emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"black\");");
1153 if (IsVariadic)
1154 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + LSIName + ");");
1155 else
1156 AllOps.push_back(LSIName);
1160 if (NodeHasChain) {
1161 if (IsVariadic)
1162 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
1163 else
1164 AllOps.push_back(ChainName);
1167 if (IsVariadic) {
1168 if (NodeHasInFlag || HasImpInputs)
1169 emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
1170 else if (NodeHasOptInFlag) {
1171 emitCode("if (HasInFlag)");
1172 emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
1174 Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
1175 ".size()";
1176 } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
1177 AllOps.push_back("InFlag");
1179 unsigned NumOps = AllOps.size();
1180 if (NumOps) {
1181 if (!NodeHasOptInFlag && NumOps < 4) {
1182 for (unsigned i = 0; i != NumOps; ++i)
1183 Code += ", " + AllOps[i];
1184 } else {
1185 std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { ";
1186 for (unsigned i = 0; i != NumOps; ++i) {
1187 OpsCode += AllOps[i];
1188 if (i != NumOps-1)
1189 OpsCode += ", ";
1191 emitCode(OpsCode + " };");
1192 Code += ", Ops" + utostr(OpsNo) + ", ";
1193 if (NodeHasOptInFlag) {
1194 Code += "HasInFlag ? ";
1195 Code += utostr(NumOps) + " : " + utostr(NumOps-1);
1196 } else
1197 Code += utostr(NumOps);
1201 if (!isRoot)
1202 Code += "), 0";
1204 std::vector<std::string> ReplaceFroms;
1205 std::vector<std::string> ReplaceTos;
1206 if (!isRoot) {
1207 NodeOps.push_back("Tmp" + utostr(ResNo));
1208 } else {
1210 if (NodeHasOutFlag) {
1211 if (!InFlagDecled) {
1212 After.push_back("SDValue InFlag(ResNode, " +
1213 utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
1214 ");");
1215 InFlagDecled = true;
1216 } else
1217 After.push_back("InFlag = SDValue(ResNode, " +
1218 utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
1219 ");");
1222 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) {
1223 ReplaceFroms.push_back("SDValue(" +
1224 FoldedChains[j].first + ".getNode(), " +
1225 utostr(FoldedChains[j].second) +
1226 ")");
1227 ReplaceTos.push_back("SDValue(ResNode, " +
1228 utostr(NumResults+NumDstRegs) + ")");
1231 if (NodeHasOutFlag) {
1232 if (FoldedFlag.first != "") {
1233 ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " +
1234 utostr(FoldedFlag.second) + ")");
1235 ReplaceTos.push_back("InFlag");
1236 } else {
1237 assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP));
1238 ReplaceFroms.push_back("SDValue(N.getNode(), " +
1239 utostr(NumPatResults + (unsigned)InputHasChain)
1240 + ")");
1241 ReplaceTos.push_back("InFlag");
1245 if (!ReplaceFroms.empty() && InputHasChain) {
1246 ReplaceFroms.push_back("SDValue(N.getNode(), " +
1247 utostr(NumPatResults) + ")");
1248 ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " +
1249 ChainName + ".getResNo()" + ")");
1250 ChainAssignmentNeeded |= NodeHasChain;
1253 // User does not expect the instruction would produce a chain!
1254 if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
1256 } else if (InputHasChain && !NodeHasChain) {
1257 // One of the inner node produces a chain.
1258 if (NodeHasOutFlag) {
1259 ReplaceFroms.push_back("SDValue(N.getNode(), " +
1260 utostr(NumPatResults+1) +
1261 ")");
1262 ReplaceTos.push_back("SDValue(ResNode, N.getResNo()-1)");
1264 ReplaceFroms.push_back("SDValue(N.getNode(), " +
1265 utostr(NumPatResults) + ")");
1266 ReplaceTos.push_back(ChainName);
1270 if (ChainAssignmentNeeded) {
1271 // Remember which op produces the chain.
1272 std::string ChainAssign;
1273 if (!isRoot)
1274 ChainAssign = ChainName + " = SDValue(" + NodeName +
1275 ".getNode(), " + utostr(NumResults+NumDstRegs) + ");";
1276 else
1277 ChainAssign = ChainName + " = SDValue(" + NodeName +
1278 ", " + utostr(NumResults+NumDstRegs) + ");";
1280 After.push_front(ChainAssign);
1283 if (ReplaceFroms.size() == 1) {
1284 After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " +
1285 ReplaceTos[0] + ");");
1286 } else if (!ReplaceFroms.empty()) {
1287 After.push_back("const SDValue Froms[] = {");
1288 for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
1289 After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : ""));
1290 After.push_back("};");
1291 After.push_back("const SDValue Tos[] = {");
1292 for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
1293 After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : ""));
1294 After.push_back("};");
1295 After.push_back("ReplaceUses(Froms, Tos, " +
1296 itostr(ReplaceFroms.size()) + ");");
1299 // We prefer to use SelectNodeTo since it avoids allocation when
1300 // possible and it avoids CSE map recalculation for the node's
1301 // users, however it's tricky to use in a non-root context.
1303 // We also don't use if the pattern replacement is being used to
1304 // jettison a chain result, since morphing the node in place
1305 // would leave users of the chain dangling.
1307 if (!isRoot || (InputHasChain && !NodeHasChain)) {
1308 Code = "CurDAG->getTargetNode(" + Code;
1309 } else {
1310 Code = "CurDAG->SelectNodeTo(N.getNode(), " + Code;
1312 if (isRoot) {
1313 if (After.empty())
1314 CodePrefix = "return ";
1315 else
1316 After.push_back("return ResNode;");
1319 emitCode(CodePrefix + Code + ");");
1321 if (GenDebug) {
1322 if (!isRoot) {
1323 emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"yellow\");");
1324 emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"black\");");
1326 else {
1327 emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");");
1328 emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");");
1332 for (unsigned i = 0, e = After.size(); i != e; ++i)
1333 emitCode(After[i]);
1335 return NodeOps;
1337 if (Op->isSubClassOf("SDNodeXForm")) {
1338 assert(N->getNumChildren() == 1 && "node xform should have one child!");
1339 // PatLeaf node - the operand may or may not be a leaf node. But it should
1340 // behave like one.
1341 std::vector<std::string> Ops =
1342 EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
1343 ResNodeDecled, true);
1344 unsigned ResNo = TmpNo++;
1345 emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
1346 + "(" + Ops.back() + ".getNode());");
1347 NodeOps.push_back("Tmp" + utostr(ResNo));
1348 if (isRoot)
1349 emitCode("return Tmp" + utostr(ResNo) + ".getNode();");
1350 return NodeOps;
1353 N->dump();
1354 cerr << "\n";
1355 throw std::string("Unknown node in result pattern!");
1358 /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
1359 /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
1360 /// 'Pat' may be missing types. If we find an unresolved type to add a check
1361 /// for, this returns true otherwise false if Pat has all types.
1362 bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
1363 const std::string &Prefix, bool isRoot = false) {
1364 // Did we find one?
1365 if (Pat->getExtTypes() != Other->getExtTypes()) {
1366 // Move a type over from 'other' to 'pat'.
1367 Pat->setTypes(Other->getExtTypes());
1368 // The top level node type is checked outside of the select function.
1369 if (!isRoot)
1370 emitCheck(Prefix + ".getNode()->getValueType(0) == " +
1371 getName(Pat->getTypeNum(0)));
1372 return true;
1375 unsigned OpNo =
1376 (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
1377 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
1378 if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
1379 Prefix + utostr(OpNo)))
1380 return true;
1381 return false;
1384 private:
1385 /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
1386 /// being built.
1387 void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
1388 bool &ChainEmitted, bool &InFlagDecled,
1389 bool &ResNodeDecled, bool isRoot = false) {
1390 const CodeGenTarget &T = CGP.getTargetInfo();
1391 unsigned OpNo =
1392 (unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
1393 bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
1394 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
1395 TreePatternNode *Child = N->getChild(i);
1396 if (!Child->isLeaf()) {
1397 EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
1398 InFlagDecled, ResNodeDecled);
1399 } else {
1400 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1401 if (!Child->getName().empty()) {
1402 std::string Name = RootName + utostr(OpNo);
1403 if (Duplicates.find(Name) != Duplicates.end())
1404 // A duplicate! Do not emit a copy for this node.
1405 continue;
1408 Record *RR = DI->getDef();
1409 if (RR->isSubClassOf("Register")) {
1410 MVT::SimpleValueType RVT = getRegisterValueType(RR, T);
1411 if (RVT == MVT::Flag) {
1412 if (!InFlagDecled) {
1413 emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";");
1414 InFlagDecled = true;
1415 } else
1416 emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
1417 } else {
1418 if (!ChainEmitted) {
1419 emitCode("SDValue Chain = CurDAG->getEntryNode();");
1420 ChainName = "Chain";
1421 ChainEmitted = true;
1423 if (!InFlagDecled) {
1424 emitCode("SDValue InFlag(0, 0);");
1425 InFlagDecled = true;
1427 std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
1428 emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
1429 ", " + RootName + ".getDebugLoc()" +
1430 ", " + getQualifiedName(RR) +
1431 ", " + RootName + utostr(OpNo) + ", InFlag).getNode();");
1432 ResNodeDecled = true;
1433 emitCode(ChainName + " = SDValue(ResNode, 0);");
1434 emitCode("InFlag = SDValue(ResNode, 1);");
1441 if (HasInFlag) {
1442 if (!InFlagDecled) {
1443 emitCode("SDValue InFlag = " + RootName +
1444 ".getOperand(" + utostr(OpNo) + ");");
1445 InFlagDecled = true;
1446 } else
1447 emitCode("InFlag = " + RootName +
1448 ".getOperand(" + utostr(OpNo) + ");");
1453 /// EmitCodeForPattern - Given a pattern to match, emit code to the specified
1454 /// stream to match the pattern, and generate the code for the match if it
1455 /// succeeds. Returns true if the pattern is not guaranteed to match.
1456 void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
1457 std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
1458 std::set<std::string> &GeneratedDecl,
1459 std::vector<std::string> &TargetOpcodes,
1460 std::vector<std::string> &TargetVTs,
1461 bool &OutputIsVariadic,
1462 unsigned &NumInputRootOps) {
1463 OutputIsVariadic = false;
1464 NumInputRootOps = 0;
1466 PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(),
1467 Pattern.getSrcPattern(), Pattern.getDstPattern(),
1468 GeneratedCode, GeneratedDecl,
1469 TargetOpcodes, TargetVTs,
1470 OutputIsVariadic, NumInputRootOps);
1472 // Emit the matcher, capturing named arguments in VariableMap.
1473 bool FoundChain = false;
1474 Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
1476 // TP - Get *SOME* tree pattern, we don't care which.
1477 TreePattern &TP = *CGP.pf_begin()->second;
1479 // At this point, we know that we structurally match the pattern, but the
1480 // types of the nodes may not match. Figure out the fewest number of type
1481 // comparisons we need to emit. For example, if there is only one integer
1482 // type supported by a target, there should be no type comparisons at all for
1483 // integer patterns!
1485 // To figure out the fewest number of type checks needed, clone the pattern,
1486 // remove the types, then perform type inference on the pattern as a whole.
1487 // If there are unresolved types, emit an explicit check for those types,
1488 // apply the type to the tree, then rerun type inference. Iterate until all
1489 // types are resolved.
1491 TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
1492 RemoveAllTypes(Pat);
1494 do {
1495 // Resolve/propagate as many types as possible.
1496 try {
1497 bool MadeChange = true;
1498 while (MadeChange)
1499 MadeChange = Pat->ApplyTypeConstraints(TP,
1500 true/*Ignore reg constraints*/);
1501 } catch (...) {
1502 assert(0 && "Error: could not find consistent types for something we"
1503 " already decided was ok!");
1504 abort();
1507 // Insert a check for an unresolved type and add it to the tree. If we find
1508 // an unresolved type to add a check for, this returns true and we iterate,
1509 // otherwise we are done.
1510 } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
1512 Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
1513 false, false, false, true);
1514 delete Pat;
1517 /// EraseCodeLine - Erase one code line from all of the patterns. If removing
1518 /// a line causes any of them to be empty, remove them and return true when
1519 /// done.
1520 static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*,
1521 std::vector<std::pair<unsigned, std::string> > > >
1522 &Patterns) {
1523 bool ErasedPatterns = false;
1524 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1525 Patterns[i].second.pop_back();
1526 if (Patterns[i].second.empty()) {
1527 Patterns.erase(Patterns.begin()+i);
1528 --i; --e;
1529 ErasedPatterns = true;
1532 return ErasedPatterns;
1535 /// EmitPatterns - Emit code for at least one pattern, but try to group common
1536 /// code together between the patterns.
1537 void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*,
1538 std::vector<std::pair<unsigned, std::string> > > >
1539 &Patterns, unsigned Indent,
1540 std::ostream &OS) {
1541 typedef std::pair<unsigned, std::string> CodeLine;
1542 typedef std::vector<CodeLine> CodeList;
1543 typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
1545 if (Patterns.empty()) return;
1547 // Figure out how many patterns share the next code line. Explicitly copy
1548 // FirstCodeLine so that we don't invalidate a reference when changing
1549 // Patterns.
1550 const CodeLine FirstCodeLine = Patterns.back().second.back();
1551 unsigned LastMatch = Patterns.size()-1;
1552 while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
1553 --LastMatch;
1555 // If not all patterns share this line, split the list into two pieces. The
1556 // first chunk will use this line, the second chunk won't.
1557 if (LastMatch != 0) {
1558 PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
1559 PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
1561 // FIXME: Emit braces?
1562 if (Shared.size() == 1) {
1563 const PatternToMatch &Pattern = *Shared.back().first;
1564 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
1565 Pattern.getSrcPattern()->print(OS);
1566 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
1567 Pattern.getDstPattern()->print(OS);
1568 OS << "\n";
1569 unsigned AddedComplexity = Pattern.getAddedComplexity();
1570 OS << std::string(Indent, ' ') << "// Pattern complexity = "
1571 << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
1572 << " cost = "
1573 << getResultPatternCost(Pattern.getDstPattern(), CGP)
1574 << " size = "
1575 << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
1577 if (FirstCodeLine.first != 1) {
1578 OS << std::string(Indent, ' ') << "{\n";
1579 Indent += 2;
1581 EmitPatterns(Shared, Indent, OS);
1582 if (FirstCodeLine.first != 1) {
1583 Indent -= 2;
1584 OS << std::string(Indent, ' ') << "}\n";
1587 if (Other.size() == 1) {
1588 const PatternToMatch &Pattern = *Other.back().first;
1589 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
1590 Pattern.getSrcPattern()->print(OS);
1591 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
1592 Pattern.getDstPattern()->print(OS);
1593 OS << "\n";
1594 unsigned AddedComplexity = Pattern.getAddedComplexity();
1595 OS << std::string(Indent, ' ') << "// Pattern complexity = "
1596 << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
1597 << " cost = "
1598 << getResultPatternCost(Pattern.getDstPattern(), CGP)
1599 << " size = "
1600 << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
1602 EmitPatterns(Other, Indent, OS);
1603 return;
1606 // Remove this code from all of the patterns that share it.
1607 bool ErasedPatterns = EraseCodeLine(Patterns);
1609 bool isPredicate = FirstCodeLine.first == 1;
1611 // Otherwise, every pattern in the list has this line. Emit it.
1612 if (!isPredicate) {
1613 // Normal code.
1614 OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
1615 } else {
1616 OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
1618 // If the next code line is another predicate, and if all of the pattern
1619 // in this group share the same next line, emit it inline now. Do this
1620 // until we run out of common predicates.
1621 while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
1622 // Check that all of the patterns in Patterns end with the same predicate.
1623 bool AllEndWithSamePredicate = true;
1624 for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
1625 if (Patterns[i].second.back() != Patterns.back().second.back()) {
1626 AllEndWithSamePredicate = false;
1627 break;
1629 // If all of the predicates aren't the same, we can't share them.
1630 if (!AllEndWithSamePredicate) break;
1632 // Otherwise we can. Emit it shared now.
1633 OS << " &&\n" << std::string(Indent+4, ' ')
1634 << Patterns.back().second.back().second;
1635 ErasedPatterns = EraseCodeLine(Patterns);
1638 OS << ") {\n";
1639 Indent += 2;
1642 EmitPatterns(Patterns, Indent, OS);
1644 if (isPredicate)
1645 OS << std::string(Indent-2, ' ') << "}\n";
1648 static std::string getLegalCName(std::string OpName) {
1649 std::string::size_type pos = OpName.find("::");
1650 if (pos != std::string::npos)
1651 OpName.replace(pos, 2, "_");
1652 return OpName;
1655 void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
1656 const CodeGenTarget &Target = CGP.getTargetInfo();
1658 // Get the namespace to insert instructions into.
1659 std::string InstNS = Target.getInstNamespace();
1660 if (!InstNS.empty()) InstNS += "::";
1662 // Group the patterns by their top-level opcodes.
1663 std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
1664 // All unique target node emission functions.
1665 std::map<std::string, unsigned> EmitFunctions;
1666 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
1667 E = CGP.ptm_end(); I != E; ++I) {
1668 const PatternToMatch &Pattern = *I;
1670 TreePatternNode *Node = Pattern.getSrcPattern();
1671 if (!Node->isLeaf()) {
1672 PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
1673 push_back(&Pattern);
1674 } else {
1675 const ComplexPattern *CP;
1676 if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
1677 PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
1678 push_back(&Pattern);
1679 } else if ((CP = NodeGetComplexPattern(Node, CGP))) {
1680 std::vector<Record*> OpNodes = CP->getRootNodes();
1681 for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
1682 PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
1683 .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
1684 &Pattern);
1686 } else {
1687 cerr << "Unrecognized opcode '";
1688 Node->dump();
1689 cerr << "' on tree pattern '";
1690 cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
1691 exit(1);
1696 // For each opcode, there might be multiple select functions, one per
1697 // ValueType of the node (or its first operand if it doesn't produce a
1698 // non-chain result.
1699 std::map<std::string, std::vector<std::string> > OpcodeVTMap;
1701 // Emit one Select_* method for each top-level opcode. We do this instead of
1702 // emitting one giant switch statement to support compilers where this will
1703 // result in the recursive functions taking less stack space.
1704 for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
1705 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
1706 PBOI != E; ++PBOI) {
1707 const std::string &OpName = PBOI->first;
1708 std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
1709 assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
1711 // Split them into groups by type.
1712 std::map<MVT::SimpleValueType,
1713 std::vector<const PatternToMatch*> > PatternsByType;
1714 for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
1715 const PatternToMatch *Pat = PatternsOfOp[i];
1716 TreePatternNode *SrcPat = Pat->getSrcPattern();
1717 PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat);
1720 for (std::map<MVT::SimpleValueType,
1721 std::vector<const PatternToMatch*> >::iterator
1722 II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
1723 ++II) {
1724 MVT::SimpleValueType OpVT = II->first;
1725 std::vector<const PatternToMatch*> &Patterns = II->second;
1726 typedef std::pair<unsigned, std::string> CodeLine;
1727 typedef std::vector<CodeLine> CodeList;
1728 typedef CodeList::iterator CodeListI;
1730 std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
1731 std::vector<std::vector<std::string> > PatternOpcodes;
1732 std::vector<std::vector<std::string> > PatternVTs;
1733 std::vector<std::set<std::string> > PatternDecls;
1734 std::vector<bool> OutputIsVariadicFlags;
1735 std::vector<unsigned> NumInputRootOpsCounts;
1736 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1737 CodeList GeneratedCode;
1738 std::set<std::string> GeneratedDecl;
1739 std::vector<std::string> TargetOpcodes;
1740 std::vector<std::string> TargetVTs;
1741 bool OutputIsVariadic;
1742 unsigned NumInputRootOps;
1743 GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
1744 TargetOpcodes, TargetVTs,
1745 OutputIsVariadic, NumInputRootOps);
1746 CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
1747 PatternDecls.push_back(GeneratedDecl);
1748 PatternOpcodes.push_back(TargetOpcodes);
1749 PatternVTs.push_back(TargetVTs);
1750 OutputIsVariadicFlags.push_back(OutputIsVariadic);
1751 NumInputRootOpsCounts.push_back(NumInputRootOps);
1754 // Factor target node emission code (emitted by EmitResultCode) into
1755 // separate functions. Uniquing and share them among all instruction
1756 // selection routines.
1757 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1758 CodeList &GeneratedCode = CodeForPatterns[i].second;
1759 std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
1760 std::vector<std::string> &TargetVTs = PatternVTs[i];
1761 std::set<std::string> Decls = PatternDecls[i];
1762 bool OutputIsVariadic = OutputIsVariadicFlags[i];
1763 unsigned NumInputRootOps = NumInputRootOpsCounts[i];
1764 std::vector<std::string> AddedInits;
1765 int CodeSize = (int)GeneratedCode.size();
1766 int LastPred = -1;
1767 for (int j = CodeSize-1; j >= 0; --j) {
1768 if (LastPred == -1 && GeneratedCode[j].first == 1)
1769 LastPred = j;
1770 else if (LastPred != -1 && GeneratedCode[j].first == 2)
1771 AddedInits.push_back(GeneratedCode[j].second);
1774 std::string CalleeCode = "(const SDValue &N";
1775 std::string CallerCode = "(N";
1776 for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
1777 CalleeCode += ", unsigned Opc" + utostr(j);
1778 CallerCode += ", " + TargetOpcodes[j];
1780 for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
1781 CalleeCode += ", MVT VT" + utostr(j);
1782 CallerCode += ", " + TargetVTs[j];
1784 for (std::set<std::string>::iterator
1785 I = Decls.begin(), E = Decls.end(); I != E; ++I) {
1786 std::string Name = *I;
1787 CalleeCode += ", SDValue &" + Name;
1788 CallerCode += ", " + Name;
1791 if (OutputIsVariadic) {
1792 CalleeCode += ", unsigned NumInputRootOps";
1793 CallerCode += ", " + utostr(NumInputRootOps);
1796 CallerCode += ");";
1797 CalleeCode += ") ";
1798 // Prevent emission routines from being inlined to reduce selection
1799 // routines stack frame sizes.
1800 CalleeCode += "DISABLE_INLINE ";
1801 CalleeCode += "{\n";
1803 for (std::vector<std::string>::const_reverse_iterator
1804 I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
1805 CalleeCode += " " + *I + "\n";
1807 for (int j = LastPred+1; j < CodeSize; ++j)
1808 CalleeCode += " " + GeneratedCode[j].second + "\n";
1809 for (int j = LastPred+1; j < CodeSize; ++j)
1810 GeneratedCode.pop_back();
1811 CalleeCode += "}\n";
1813 // Uniquing the emission routines.
1814 unsigned EmitFuncNum;
1815 std::map<std::string, unsigned>::iterator EFI =
1816 EmitFunctions.find(CalleeCode);
1817 if (EFI != EmitFunctions.end()) {
1818 EmitFuncNum = EFI->second;
1819 } else {
1820 EmitFuncNum = EmitFunctions.size();
1821 EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
1822 OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
1825 // Replace the emission code within selection routines with calls to the
1826 // emission functions.
1827 if (GenDebug) {
1828 GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"red\");"));
1830 CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode;
1831 GeneratedCode.push_back(std::make_pair(3, CallerCode));
1832 if (GenDebug) {
1833 GeneratedCode.push_back(std::make_pair(0, "if(Result) {"));
1834 GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"yellow\");"));
1835 GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"black\");"));
1836 GeneratedCode.push_back(std::make_pair(0, "}"));
1837 //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"black\");"));
1839 GeneratedCode.push_back(std::make_pair(0, "return Result;"));
1842 // Print function.
1843 std::string OpVTStr;
1844 if (OpVT == MVT::iPTR) {
1845 OpVTStr = "_iPTR";
1846 } else if (OpVT == MVT::iPTRAny) {
1847 OpVTStr = "_iPTRAny";
1848 } else if (OpVT == MVT::isVoid) {
1849 // Nodes with a void result actually have a first result type of either
1850 // Other (a chain) or Flag. Since there is no one-to-one mapping from
1851 // void to this case, we handle it specially here.
1852 } else {
1853 OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
1855 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
1856 OpcodeVTMap.find(OpName);
1857 if (OpVTI == OpcodeVTMap.end()) {
1858 std::vector<std::string> VTSet;
1859 VTSet.push_back(OpVTStr);
1860 OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
1861 } else
1862 OpVTI->second.push_back(OpVTStr);
1864 // We want to emit all of the matching code now. However, we want to emit
1865 // the matches in order of minimal cost. Sort the patterns so the least
1866 // cost one is at the start.
1867 std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(),
1868 PatternSortingPredicate(CGP));
1870 // Scan the code to see if all of the patterns are reachable and if it is
1871 // possible that the last one might not match.
1872 bool mightNotMatch = true;
1873 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1874 CodeList &GeneratedCode = CodeForPatterns[i].second;
1875 mightNotMatch = false;
1877 for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
1878 if (GeneratedCode[j].first == 1) { // predicate.
1879 mightNotMatch = true;
1880 break;
1884 // If this pattern definitely matches, and if it isn't the last one, the
1885 // patterns after it CANNOT ever match. Error out.
1886 if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
1887 cerr << "Pattern '";
1888 CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
1889 cerr << "' is impossible to select!\n";
1890 exit(1);
1894 // Loop through and reverse all of the CodeList vectors, as we will be
1895 // accessing them from their logical front, but accessing the end of a
1896 // vector is more efficient.
1897 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1898 CodeList &GeneratedCode = CodeForPatterns[i].second;
1899 std::reverse(GeneratedCode.begin(), GeneratedCode.end());
1902 // Next, reverse the list of patterns itself for the same reason.
1903 std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
1905 OS << "SDNode *Select_" << getLegalCName(OpName)
1906 << OpVTStr << "(const SDValue &N) {\n";
1908 // Emit all of the patterns now, grouped together to share code.
1909 EmitPatterns(CodeForPatterns, 2, OS);
1911 // If the last pattern has predicates (which could fail) emit code to
1912 // catch the case where nothing handles a pattern.
1913 if (mightNotMatch) {
1914 OS << "\n";
1915 if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
1916 OpName != "ISD::INTRINSIC_WO_CHAIN" &&
1917 OpName != "ISD::INTRINSIC_VOID")
1918 OS << " CannotYetSelect(N);\n";
1919 else
1920 OS << " CannotYetSelectIntrinsic(N);\n";
1922 OS << " return NULL;\n";
1924 OS << "}\n\n";
1928 // Emit boilerplate.
1929 OS << "SDNode *Select_INLINEASM(SDValue N) {\n"
1930 << " std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());\n"
1931 << " SelectInlineAsmMemoryOperands(Ops);\n\n"
1933 << " std::vector<MVT> VTs;\n"
1934 << " VTs.push_back(MVT::Other);\n"
1935 << " VTs.push_back(MVT::Flag);\n"
1936 << " SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(), "
1937 "VTs, &Ops[0], Ops.size());\n"
1938 << " return New.getNode();\n"
1939 << "}\n\n";
1941 OS << "SDNode *Select_UNDEF(const SDValue &N) {\n"
1942 << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,\n"
1943 << " N.getValueType());\n"
1944 << "}\n\n";
1946 OS << "SDNode *Select_DBG_LABEL(const SDValue &N) {\n"
1947 << " SDValue Chain = N.getOperand(0);\n"
1948 << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
1949 << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
1950 << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,\n"
1951 << " MVT::Other, Tmp, Chain);\n"
1952 << "}\n\n";
1954 OS << "SDNode *Select_EH_LABEL(const SDValue &N) {\n"
1955 << " SDValue Chain = N.getOperand(0);\n"
1956 << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
1957 << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
1958 << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,\n"
1959 << " MVT::Other, Tmp, Chain);\n"
1960 << "}\n\n";
1962 OS << "SDNode *Select_DECLARE(const SDValue &N) {\n"
1963 << " SDValue Chain = N.getOperand(0);\n"
1964 << " SDValue N1 = N.getOperand(1);\n"
1965 << " SDValue N2 = N.getOperand(2);\n"
1966 << " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n"
1967 << " CannotYetSelect(N);\n"
1968 << " }\n"
1969 << " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n"
1970 << " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n"
1971 << " SDValue Tmp1 = "
1972 << "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n"
1973 << " SDValue Tmp2 = "
1974 << "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n"
1975 << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DECLARE,\n"
1976 << " MVT::Other, Tmp1, Tmp2, Chain);\n"
1977 << "}\n\n";
1979 OS << "// The main instruction selector code.\n"
1980 << "SDNode *SelectCode(SDValue N) {\n"
1981 << " MVT::SimpleValueType NVT = N.getNode()->getValueType(0).getSimpleVT();\n"
1982 << " switch (N.getOpcode()) {\n"
1983 << " default:\n"
1984 << " assert(!N.isMachineOpcode() && \"Node already selected!\");\n"
1985 << " break;\n"
1986 << " case ISD::EntryToken: // These nodes remain the same.\n"
1987 << " case ISD::MEMOPERAND:\n"
1988 << " case ISD::BasicBlock:\n"
1989 << " case ISD::Register:\n"
1990 << " case ISD::HANDLENODE:\n"
1991 << " case ISD::TargetConstant:\n"
1992 << " case ISD::TargetConstantFP:\n"
1993 << " case ISD::TargetConstantPool:\n"
1994 << " case ISD::TargetFrameIndex:\n"
1995 << " case ISD::TargetExternalSymbol:\n"
1996 << " case ISD::TargetJumpTable:\n"
1997 << " case ISD::TargetGlobalTLSAddress:\n"
1998 << " case ISD::TargetGlobalAddress:\n"
1999 << " case ISD::TokenFactor:\n"
2000 << " case ISD::CopyFromReg:\n"
2001 << " case ISD::CopyToReg: {\n"
2002 << " return NULL;\n"
2003 << " }\n"
2004 << " case ISD::AssertSext:\n"
2005 << " case ISD::AssertZext: {\n"
2006 << " ReplaceUses(N, N.getOperand(0));\n"
2007 << " return NULL;\n"
2008 << " }\n"
2009 << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
2010 << " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n"
2011 << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n"
2012 << " case ISD::DECLARE: return Select_DECLARE(N);\n"
2013 << " case ISD::UNDEF: return Select_UNDEF(N);\n";
2015 // Loop over all of the case statements, emiting a call to each method we
2016 // emitted above.
2017 for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
2018 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
2019 PBOI != E; ++PBOI) {
2020 const std::string &OpName = PBOI->first;
2021 // Potentially multiple versions of select for this opcode. One for each
2022 // ValueType of the node (or its first true operand if it doesn't produce a
2023 // result.
2024 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
2025 OpcodeVTMap.find(OpName);
2026 std::vector<std::string> &OpVTs = OpVTI->second;
2027 OS << " case " << OpName << ": {\n";
2028 // Keep track of whether we see a pattern that has an iPtr result.
2029 bool HasPtrPattern = false;
2030 bool HasDefaultPattern = false;
2032 OS << " switch (NVT) {\n";
2033 for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
2034 std::string &VTStr = OpVTs[i];
2035 if (VTStr.empty()) {
2036 HasDefaultPattern = true;
2037 continue;
2040 // If this is a match on iPTR: don't emit it directly, we need special
2041 // code.
2042 if (VTStr == "_iPTR") {
2043 HasPtrPattern = true;
2044 continue;
2046 OS << " case MVT::" << VTStr.substr(1) << ":\n"
2047 << " return Select_" << getLegalCName(OpName)
2048 << VTStr << "(N);\n";
2050 OS << " default:\n";
2052 // If there is an iPTR result version of this pattern, emit it here.
2053 if (HasPtrPattern) {
2054 OS << " if (TLI.getPointerTy() == NVT)\n";
2055 OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
2057 if (HasDefaultPattern) {
2058 OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
2060 OS << " break;\n";
2061 OS << " }\n";
2062 OS << " break;\n";
2063 OS << " }\n";
2066 OS << " } // end of big switch.\n\n"
2067 << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
2068 << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
2069 << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
2070 << " CannotYetSelect(N);\n"
2071 << " } else {\n"
2072 << " CannotYetSelectIntrinsic(N);\n"
2073 << " }\n"
2074 << " return NULL;\n"
2075 << "}\n\n";
2077 OS << "void CannotYetSelect(SDValue N) DISABLE_INLINE {\n"
2078 << " cerr << \"Cannot yet select: \";\n"
2079 << " N.getNode()->dump(CurDAG);\n"
2080 << " cerr << '\\n';\n"
2081 << " abort();\n"
2082 << "}\n\n";
2084 OS << "void CannotYetSelectIntrinsic(SDValue N) DISABLE_INLINE {\n"
2085 << " cerr << \"Cannot yet select: \";\n"
2086 << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
2087 << "N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();\n"
2088 << " cerr << \"intrinsic %\"<< "
2089 << "Intrinsic::getName((Intrinsic::ID)iid);\n"
2090 << " cerr << '\\n';\n"
2091 << " abort();\n"
2092 << "}\n\n";
2095 void DAGISelEmitter::run(std::ostream &OS) {
2096 EmitSourceFileHeader("DAG Instruction Selector for the " +
2097 CGP.getTargetInfo().getName() + " target", OS);
2099 OS << "// *** NOTE: This file is #included into the middle of the target\n"
2100 << "// *** instruction selector class. These functions are really "
2101 << "methods.\n\n";
2103 OS << "// Include standard, target-independent definitions and methods used\n"
2104 << "// by the instruction selector.\n";
2105 OS << "#include <llvm/CodeGen/DAGISelHeader.h>\n\n";
2107 EmitNodeTransforms(OS);
2108 EmitPredicateFunctions(OS);
2110 DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
2111 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
2112 I != E; ++I) {
2113 DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
2114 DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
2115 DOUT << "\n";
2118 // At this point, we have full information about the 'Patterns' we need to
2119 // parse, both implicitly from instructions as well as from explicit pattern
2120 // definitions. Emit the resultant instruction selector.
2121 EmitInstructionSelector(OS);