Don't skip the CopyMI when removing kill markers.
[llvm/msp430.git] / tools / bugpoint / Miscompilation.cpp
blob7e8ff78a9cf2404cb367886436899e23d233e874
1 //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements optimizer and code generation miscompilation debugging
11 // support.
13 //===----------------------------------------------------------------------===//
15 #include "BugDriver.h"
16 #include "ListReducer.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Linker.h"
21 #include "llvm/Module.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Analysis/Verifier.h"
24 #include "llvm/Support/Mangler.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/FileUtilities.h"
28 #include "llvm/Config/config.h" // for HAVE_LINK_R
29 using namespace llvm;
31 namespace llvm {
32 extern cl::list<std::string> InputArgv;
35 namespace {
36 static llvm::cl::opt<bool>
37 DisableLoopExtraction("disable-loop-extraction",
38 cl::desc("Don't extract loops when searching for miscompilations"),
39 cl::init(false));
41 class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
42 BugDriver &BD;
43 public:
44 ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
46 virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
47 std::vector<const PassInfo*> &Suffix);
51 /// TestResult - After passes have been split into a test group and a control
52 /// group, see if they still break the program.
53 ///
54 ReduceMiscompilingPasses::TestResult
55 ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
56 std::vector<const PassInfo*> &Suffix) {
57 // First, run the program with just the Suffix passes. If it is still broken
58 // with JUST the kept passes, discard the prefix passes.
59 std::cout << "Checking to see if '" << getPassesString(Suffix)
60 << "' compile correctly: ";
62 std::string BitcodeResult;
63 if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
64 std::cerr << " Error running this sequence of passes"
65 << " on the input program!\n";
66 BD.setPassesToRun(Suffix);
67 BD.EmitProgressBitcode("pass-error", false);
68 exit(BD.debugOptimizerCrash());
71 // Check to see if the finished program matches the reference output...
72 if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
73 std::cout << " nope.\n";
74 if (Suffix.empty()) {
75 std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
76 << "no passes are run, nondeterministic program?\n";
77 exit(1);
79 return KeepSuffix; // Miscompilation detected!
81 std::cout << " yup.\n"; // No miscompilation!
83 if (Prefix.empty()) return NoFailure;
85 // Next, see if the program is broken if we run the "prefix" passes first,
86 // then separately run the "kept" passes.
87 std::cout << "Checking to see if '" << getPassesString(Prefix)
88 << "' compile correctly: ";
90 // If it is not broken with the kept passes, it's possible that the prefix
91 // passes must be run before the kept passes to break it. If the program
92 // WORKS after the prefix passes, but then fails if running the prefix AND
93 // kept passes, we can update our bitcode file to include the result of the
94 // prefix passes, then discard the prefix passes.
96 if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
97 std::cerr << " Error running this sequence of passes"
98 << " on the input program!\n";
99 BD.setPassesToRun(Prefix);
100 BD.EmitProgressBitcode("pass-error", false);
101 exit(BD.debugOptimizerCrash());
104 // If the prefix maintains the predicate by itself, only keep the prefix!
105 if (BD.diffProgram(BitcodeResult)) {
106 std::cout << " nope.\n";
107 sys::Path(BitcodeResult).eraseFromDisk();
108 return KeepPrefix;
110 std::cout << " yup.\n"; // No miscompilation!
112 // Ok, so now we know that the prefix passes work, try running the suffix
113 // passes on the result of the prefix passes.
115 Module *PrefixOutput = ParseInputFile(BitcodeResult);
116 if (PrefixOutput == 0) {
117 std::cerr << BD.getToolName() << ": Error reading bitcode file '"
118 << BitcodeResult << "'!\n";
119 exit(1);
121 sys::Path(BitcodeResult).eraseFromDisk(); // No longer need the file on disk
123 // Don't check if there are no passes in the suffix.
124 if (Suffix.empty())
125 return NoFailure;
127 std::cout << "Checking to see if '" << getPassesString(Suffix)
128 << "' passes compile correctly after the '"
129 << getPassesString(Prefix) << "' passes: ";
131 Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
132 if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
133 std::cerr << " Error running this sequence of passes"
134 << " on the input program!\n";
135 BD.setPassesToRun(Suffix);
136 BD.EmitProgressBitcode("pass-error", false);
137 exit(BD.debugOptimizerCrash());
140 // Run the result...
141 if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
142 std::cout << " nope.\n";
143 delete OriginalInput; // We pruned down the original input...
144 return KeepSuffix;
147 // Otherwise, we must not be running the bad pass anymore.
148 std::cout << " yup.\n"; // No miscompilation!
149 delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
150 return NoFailure;
153 namespace {
154 class ReduceMiscompilingFunctions : public ListReducer<Function*> {
155 BugDriver &BD;
156 bool (*TestFn)(BugDriver &, Module *, Module *);
157 public:
158 ReduceMiscompilingFunctions(BugDriver &bd,
159 bool (*F)(BugDriver &, Module *, Module *))
160 : BD(bd), TestFn(F) {}
162 virtual TestResult doTest(std::vector<Function*> &Prefix,
163 std::vector<Function*> &Suffix) {
164 if (!Suffix.empty() && TestFuncs(Suffix))
165 return KeepSuffix;
166 if (!Prefix.empty() && TestFuncs(Prefix))
167 return KeepPrefix;
168 return NoFailure;
171 bool TestFuncs(const std::vector<Function*> &Prefix);
175 /// TestMergedProgram - Given two modules, link them together and run the
176 /// program, checking to see if the program matches the diff. If the diff
177 /// matches, return false, otherwise return true. If the DeleteInputs argument
178 /// is set to true then this function deletes both input modules before it
179 /// returns.
181 static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
182 bool DeleteInputs) {
183 // Link the two portions of the program back to together.
184 std::string ErrorMsg;
185 if (!DeleteInputs) {
186 M1 = CloneModule(M1);
187 M2 = CloneModule(M2);
189 if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
190 std::cerr << BD.getToolName() << ": Error linking modules together:"
191 << ErrorMsg << '\n';
192 exit(1);
194 delete M2; // We are done with this module.
196 Module *OldProgram = BD.swapProgramIn(M1);
198 // Execute the program. If it does not match the expected output, we must
199 // return true.
200 bool Broken = BD.diffProgram();
202 // Delete the linked module & restore the original
203 BD.swapProgramIn(OldProgram);
204 delete M1;
205 return Broken;
208 /// TestFuncs - split functions in a Module into two groups: those that are
209 /// under consideration for miscompilation vs. those that are not, and test
210 /// accordingly. Each group of functions becomes a separate Module.
212 bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
213 // Test to see if the function is misoptimized if we ONLY run it on the
214 // functions listed in Funcs.
215 std::cout << "Checking to see if the program is misoptimized when "
216 << (Funcs.size()==1 ? "this function is" : "these functions are")
217 << " run through the pass"
218 << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
219 PrintFunctionList(Funcs);
220 std::cout << '\n';
222 // Split the module into the two halves of the program we want.
223 DenseMap<const Value*, Value*> ValueMap;
224 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
225 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
226 ValueMap);
228 // Run the predicate, note that the predicate will delete both input modules.
229 return TestFn(BD, ToOptimize, ToNotOptimize);
232 /// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
233 /// modifying predominantly internal symbols rather than external ones.
235 static void DisambiguateGlobalSymbols(Module *M) {
236 // Try not to cause collisions by minimizing chances of renaming an
237 // already-external symbol, so take in external globals and functions as-is.
238 // The code should work correctly without disambiguation (assuming the same
239 // mangler is used by the two code generators), but having symbols with the
240 // same name causes warnings to be emitted by the code generator.
241 Mangler Mang(*M);
242 // Agree with the CBE on symbol naming
243 Mang.markCharUnacceptable('.');
244 Mang.setPreserveAsmNames(true);
245 for (Module::global_iterator I = M->global_begin(), E = M->global_end();
246 I != E; ++I)
247 I->setName(Mang.getValueName(I));
248 for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
249 I->setName(Mang.getValueName(I));
252 /// ExtractLoops - Given a reduced list of functions that still exposed the bug,
253 /// check to see if we can extract the loops in the region without obscuring the
254 /// bug. If so, it reduces the amount of code identified.
256 static bool ExtractLoops(BugDriver &BD,
257 bool (*TestFn)(BugDriver &, Module *, Module *),
258 std::vector<Function*> &MiscompiledFunctions) {
259 bool MadeChange = false;
260 while (1) {
261 if (BugpointIsInterrupted) return MadeChange;
263 DenseMap<const Value*, Value*> ValueMap;
264 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
265 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
266 MiscompiledFunctions,
267 ValueMap);
268 Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
269 if (!ToOptimizeLoopExtracted) {
270 // If the loop extractor crashed or if there were no extractible loops,
271 // then this chapter of our odyssey is over with.
272 delete ToNotOptimize;
273 delete ToOptimize;
274 return MadeChange;
277 std::cerr << "Extracted a loop from the breaking portion of the program.\n";
279 // Bugpoint is intentionally not very trusting of LLVM transformations. In
280 // particular, we're not going to assume that the loop extractor works, so
281 // we're going to test the newly loop extracted program to make sure nothing
282 // has broken. If something broke, then we'll inform the user and stop
283 // extraction.
284 AbstractInterpreter *AI = BD.switchToSafeInterpreter();
285 if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
286 BD.switchToInterpreter(AI);
288 // Merged program doesn't work anymore!
289 std::cerr << " *** ERROR: Loop extraction broke the program. :("
290 << " Please report a bug!\n";
291 std::cerr << " Continuing on with un-loop-extracted version.\n";
293 BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
294 BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
295 BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
296 ToOptimizeLoopExtracted);
298 std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
299 delete ToOptimize;
300 delete ToNotOptimize;
301 delete ToOptimizeLoopExtracted;
302 return MadeChange;
304 delete ToOptimize;
305 BD.switchToInterpreter(AI);
307 std::cout << " Testing after loop extraction:\n";
308 // Clone modules, the tester function will free them.
309 Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
310 Module *TNOBackup = CloneModule(ToNotOptimize);
311 if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
312 std::cout << "*** Loop extraction masked the problem. Undoing.\n";
313 // If the program is not still broken, then loop extraction did something
314 // that masked the error. Stop loop extraction now.
315 delete TOLEBackup;
316 delete TNOBackup;
317 return MadeChange;
319 ToOptimizeLoopExtracted = TOLEBackup;
320 ToNotOptimize = TNOBackup;
322 std::cout << "*** Loop extraction successful!\n";
324 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
325 for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
326 E = ToOptimizeLoopExtracted->end(); I != E; ++I)
327 if (!I->isDeclaration())
328 MisCompFunctions.push_back(std::make_pair(I->getName(),
329 I->getFunctionType()));
331 // Okay, great! Now we know that we extracted a loop and that loop
332 // extraction both didn't break the program, and didn't mask the problem.
333 // Replace the current program with the loop extracted version, and try to
334 // extract another loop.
335 std::string ErrorMsg;
336 if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
337 std::cerr << BD.getToolName() << ": Error linking modules together:"
338 << ErrorMsg << '\n';
339 exit(1);
341 delete ToOptimizeLoopExtracted;
343 // All of the Function*'s in the MiscompiledFunctions list are in the old
344 // module. Update this list to include all of the functions in the
345 // optimized and loop extracted module.
346 MiscompiledFunctions.clear();
347 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
348 Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
350 assert(NewF && "Function not found??");
351 assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
352 "found wrong function type?");
353 MiscompiledFunctions.push_back(NewF);
356 BD.setNewProgram(ToNotOptimize);
357 MadeChange = true;
361 namespace {
362 class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
363 BugDriver &BD;
364 bool (*TestFn)(BugDriver &, Module *, Module *);
365 std::vector<Function*> FunctionsBeingTested;
366 public:
367 ReduceMiscompiledBlocks(BugDriver &bd,
368 bool (*F)(BugDriver &, Module *, Module *),
369 const std::vector<Function*> &Fns)
370 : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
372 virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
373 std::vector<BasicBlock*> &Suffix) {
374 if (!Suffix.empty() && TestFuncs(Suffix))
375 return KeepSuffix;
376 if (TestFuncs(Prefix))
377 return KeepPrefix;
378 return NoFailure;
381 bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
385 /// TestFuncs - Extract all blocks for the miscompiled functions except for the
386 /// specified blocks. If the problem still exists, return true.
388 bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
389 // Test to see if the function is misoptimized if we ONLY run it on the
390 // functions listed in Funcs.
391 std::cout << "Checking to see if the program is misoptimized when all ";
392 if (!BBs.empty()) {
393 std::cout << "but these " << BBs.size() << " blocks are extracted: ";
394 for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
395 std::cout << BBs[i]->getName() << " ";
396 if (BBs.size() > 10) std::cout << "...";
397 } else {
398 std::cout << "blocks are extracted.";
400 std::cout << '\n';
402 // Split the module into the two halves of the program we want.
403 DenseMap<const Value*, Value*> ValueMap;
404 Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
405 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
406 FunctionsBeingTested,
407 ValueMap);
409 // Try the extraction. If it doesn't work, then the block extractor crashed
410 // or something, in which case bugpoint can't chase down this possibility.
411 if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
412 delete ToOptimize;
413 // Run the predicate, not that the predicate will delete both input modules.
414 return TestFn(BD, New, ToNotOptimize);
416 delete ToOptimize;
417 delete ToNotOptimize;
418 return false;
422 /// ExtractBlocks - Given a reduced list of functions that still expose the bug,
423 /// extract as many basic blocks from the region as possible without obscuring
424 /// the bug.
426 static bool ExtractBlocks(BugDriver &BD,
427 bool (*TestFn)(BugDriver &, Module *, Module *),
428 std::vector<Function*> &MiscompiledFunctions) {
429 if (BugpointIsInterrupted) return false;
431 std::vector<BasicBlock*> Blocks;
432 for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
433 for (Function::iterator I = MiscompiledFunctions[i]->begin(),
434 E = MiscompiledFunctions[i]->end(); I != E; ++I)
435 Blocks.push_back(I);
437 // Use the list reducer to identify blocks that can be extracted without
438 // obscuring the bug. The Blocks list will end up containing blocks that must
439 // be retained from the original program.
440 unsigned OldSize = Blocks.size();
442 // Check to see if all blocks are extractible first.
443 if (ReduceMiscompiledBlocks(BD, TestFn,
444 MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
445 Blocks.clear();
446 } else {
447 ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
448 if (Blocks.size() == OldSize)
449 return false;
452 DenseMap<const Value*, Value*> ValueMap;
453 Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
454 Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
455 MiscompiledFunctions,
456 ValueMap);
457 Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
458 if (Extracted == 0) {
459 // Weird, extraction should have worked.
460 std::cerr << "Nondeterministic problem extracting blocks??\n";
461 delete ProgClone;
462 delete ToExtract;
463 return false;
466 // Otherwise, block extraction succeeded. Link the two program fragments back
467 // together.
468 delete ToExtract;
470 std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
471 for (Module::iterator I = Extracted->begin(), E = Extracted->end();
472 I != E; ++I)
473 if (!I->isDeclaration())
474 MisCompFunctions.push_back(std::make_pair(I->getName(),
475 I->getFunctionType()));
477 std::string ErrorMsg;
478 if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
479 std::cerr << BD.getToolName() << ": Error linking modules together:"
480 << ErrorMsg << '\n';
481 exit(1);
483 delete Extracted;
485 // Set the new program and delete the old one.
486 BD.setNewProgram(ProgClone);
488 // Update the list of miscompiled functions.
489 MiscompiledFunctions.clear();
491 for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
492 Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
493 assert(NewF && "Function not found??");
494 assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
495 "Function has wrong type??");
496 MiscompiledFunctions.push_back(NewF);
499 return true;
503 /// DebugAMiscompilation - This is a generic driver to narrow down
504 /// miscompilations, either in an optimization or a code generator.
506 static std::vector<Function*>
507 DebugAMiscompilation(BugDriver &BD,
508 bool (*TestFn)(BugDriver &, Module *, Module *)) {
509 // Okay, now that we have reduced the list of passes which are causing the
510 // failure, see if we can pin down which functions are being
511 // miscompiled... first build a list of all of the non-external functions in
512 // the program.
513 std::vector<Function*> MiscompiledFunctions;
514 Module *Prog = BD.getProgram();
515 for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
516 if (!I->isDeclaration())
517 MiscompiledFunctions.push_back(I);
519 // Do the reduction...
520 if (!BugpointIsInterrupted)
521 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
523 std::cout << "\n*** The following function"
524 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
525 << " being miscompiled: ";
526 PrintFunctionList(MiscompiledFunctions);
527 std::cout << '\n';
529 // See if we can rip any loops out of the miscompiled functions and still
530 // trigger the problem.
532 if (!BugpointIsInterrupted && !DisableLoopExtraction &&
533 ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
534 // Okay, we extracted some loops and the problem still appears. See if we
535 // can eliminate some of the created functions from being candidates.
537 // Loop extraction can introduce functions with the same name (foo_code).
538 // Make sure to disambiguate the symbols so that when the program is split
539 // apart that we can link it back together again.
540 DisambiguateGlobalSymbols(BD.getProgram());
542 // Do the reduction...
543 if (!BugpointIsInterrupted)
544 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
546 std::cout << "\n*** The following function"
547 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
548 << " being miscompiled: ";
549 PrintFunctionList(MiscompiledFunctions);
550 std::cout << '\n';
553 if (!BugpointIsInterrupted &&
554 ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
555 // Okay, we extracted some blocks and the problem still appears. See if we
556 // can eliminate some of the created functions from being candidates.
558 // Block extraction can introduce functions with the same name (foo_code).
559 // Make sure to disambiguate the symbols so that when the program is split
560 // apart that we can link it back together again.
561 DisambiguateGlobalSymbols(BD.getProgram());
563 // Do the reduction...
564 ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
566 std::cout << "\n*** The following function"
567 << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
568 << " being miscompiled: ";
569 PrintFunctionList(MiscompiledFunctions);
570 std::cout << '\n';
573 return MiscompiledFunctions;
576 /// TestOptimizer - This is the predicate function used to check to see if the
577 /// "Test" portion of the program is misoptimized. If so, return true. In any
578 /// case, both module arguments are deleted.
580 static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
581 // Run the optimization passes on ToOptimize, producing a transformed version
582 // of the functions being tested.
583 std::cout << " Optimizing functions being tested: ";
584 Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
585 /*AutoDebugCrashes*/true);
586 std::cout << "done.\n";
587 delete Test;
589 std::cout << " Checking to see if the merged program executes correctly: ";
590 bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
591 std::cout << (Broken ? " nope.\n" : " yup.\n");
592 return Broken;
596 /// debugMiscompilation - This method is used when the passes selected are not
597 /// crashing, but the generated output is semantically different from the
598 /// input.
600 bool BugDriver::debugMiscompilation() {
601 // Make sure something was miscompiled...
602 if (!BugpointIsInterrupted)
603 if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
604 std::cerr << "*** Optimized program matches reference output! No problem"
605 << " detected...\nbugpoint can't help you with your problem!\n";
606 return false;
609 std::cout << "\n*** Found miscompiling pass"
610 << (getPassesToRun().size() == 1 ? "" : "es") << ": "
611 << getPassesString(getPassesToRun()) << '\n';
612 EmitProgressBitcode("passinput");
614 std::vector<Function*> MiscompiledFunctions =
615 DebugAMiscompilation(*this, TestOptimizer);
617 // Output a bunch of bitcode files for the user...
618 std::cout << "Outputting reduced bitcode files which expose the problem:\n";
619 DenseMap<const Value*, Value*> ValueMap;
620 Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
621 Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
622 MiscompiledFunctions,
623 ValueMap);
625 std::cout << " Non-optimized portion: ";
626 ToNotOptimize = swapProgramIn(ToNotOptimize);
627 EmitProgressBitcode("tonotoptimize", true);
628 setNewProgram(ToNotOptimize); // Delete hacked module.
630 std::cout << " Portion that is input to optimizer: ";
631 ToOptimize = swapProgramIn(ToOptimize);
632 EmitProgressBitcode("tooptimize");
633 setNewProgram(ToOptimize); // Delete hacked module.
635 return false;
638 /// CleanupAndPrepareModules - Get the specified modules ready for code
639 /// generator testing.
641 static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
642 Module *Safe) {
643 // Clean up the modules, removing extra cruft that we don't need anymore...
644 Test = BD.performFinalCleanups(Test);
646 // If we are executing the JIT, we have several nasty issues to take care of.
647 if (!BD.isExecutingJIT()) return;
649 // First, if the main function is in the Safe module, we must add a stub to
650 // the Test module to call into it. Thus, we create a new function `main'
651 // which just calls the old one.
652 if (Function *oldMain = Safe->getFunction("main"))
653 if (!oldMain->isDeclaration()) {
654 // Rename it
655 oldMain->setName("llvm_bugpoint_old_main");
656 // Create a NEW `main' function with same type in the test module.
657 Function *newMain = Function::Create(oldMain->getFunctionType(),
658 GlobalValue::ExternalLinkage,
659 "main", Test);
660 // Create an `oldmain' prototype in the test module, which will
661 // corresponds to the real main function in the same module.
662 Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
663 GlobalValue::ExternalLinkage,
664 oldMain->getName(), Test);
665 // Set up and remember the argument list for the main function.
666 std::vector<Value*> args;
667 for (Function::arg_iterator
668 I = newMain->arg_begin(), E = newMain->arg_end(),
669 OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
670 I->setName(OI->getName()); // Copy argument names from oldMain
671 args.push_back(I);
674 // Call the old main function and return its result
675 BasicBlock *BB = BasicBlock::Create("entry", newMain);
676 CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
677 "", BB);
679 // If the type of old function wasn't void, return value of call
680 ReturnInst::Create(call, BB);
683 // The second nasty issue we must deal with in the JIT is that the Safe
684 // module cannot directly reference any functions defined in the test
685 // module. Instead, we use a JIT API call to dynamically resolve the
686 // symbol.
688 // Add the resolver to the Safe module.
689 // Prototype: void *getPointerToNamedFunction(const char* Name)
690 Constant *resolverFunc =
691 Safe->getOrInsertFunction("getPointerToNamedFunction",
692 PointerType::getUnqual(Type::Int8Ty),
693 PointerType::getUnqual(Type::Int8Ty), (Type *)0);
695 // Use the function we just added to get addresses of functions we need.
696 for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
697 if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
698 !F->isIntrinsic() /* ignore intrinsics */) {
699 Function *TestFn = Test->getFunction(F->getName());
701 // Don't forward functions which are external in the test module too.
702 if (TestFn && !TestFn->isDeclaration()) {
703 // 1. Add a string constant with its name to the global file
704 Constant *InitArray = ConstantArray::get(F->getName());
705 GlobalVariable *funcName =
706 new GlobalVariable(InitArray->getType(), true /*isConstant*/,
707 GlobalValue::InternalLinkage, InitArray,
708 F->getName() + "_name", Safe);
710 // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
711 // sbyte* so it matches the signature of the resolver function.
713 // GetElementPtr *funcName, ulong 0, ulong 0
714 std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::Int32Ty));
715 Value *GEP = ConstantExpr::getGetElementPtr(funcName, &GEPargs[0], 2);
716 std::vector<Value*> ResolverArgs;
717 ResolverArgs.push_back(GEP);
719 // Rewrite uses of F in global initializers, etc. to uses of a wrapper
720 // function that dynamically resolves the calls to F via our JIT API
721 if (!F->use_empty()) {
722 // Create a new global to hold the cached function pointer.
723 Constant *NullPtr = ConstantPointerNull::get(F->getType());
724 GlobalVariable *Cache =
725 new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
726 NullPtr,F->getName()+".fpcache", F->getParent());
728 // Construct a new stub function that will re-route calls to F
729 const FunctionType *FuncTy = F->getFunctionType();
730 Function *FuncWrapper = Function::Create(FuncTy,
731 GlobalValue::InternalLinkage,
732 F->getName() + "_wrapper",
733 F->getParent());
734 BasicBlock *EntryBB = BasicBlock::Create("entry", FuncWrapper);
735 BasicBlock *DoCallBB = BasicBlock::Create("usecache", FuncWrapper);
736 BasicBlock *LookupBB = BasicBlock::Create("lookupfp", FuncWrapper);
738 // Check to see if we already looked up the value.
739 Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
740 Value *IsNull = new ICmpInst(ICmpInst::ICMP_EQ, CachedVal,
741 NullPtr, "isNull", EntryBB);
742 BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
744 // Resolve the call to function F via the JIT API:
746 // call resolver(GetElementPtr...)
747 CallInst *Resolver =
748 CallInst::Create(resolverFunc, ResolverArgs.begin(),
749 ResolverArgs.end(), "resolver", LookupBB);
751 // Cast the result from the resolver to correctly-typed function.
752 CastInst *CastedResolver =
753 new BitCastInst(Resolver,
754 PointerType::getUnqual(F->getFunctionType()),
755 "resolverCast", LookupBB);
757 // Save the value in our cache.
758 new StoreInst(CastedResolver, Cache, LookupBB);
759 BranchInst::Create(DoCallBB, LookupBB);
761 PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
762 "fp", DoCallBB);
763 FuncPtr->addIncoming(CastedResolver, LookupBB);
764 FuncPtr->addIncoming(CachedVal, EntryBB);
766 // Save the argument list.
767 std::vector<Value*> Args;
768 for (Function::arg_iterator i = FuncWrapper->arg_begin(),
769 e = FuncWrapper->arg_end(); i != e; ++i)
770 Args.push_back(i);
772 // Pass on the arguments to the real function, return its result
773 if (F->getReturnType() == Type::VoidTy) {
774 CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
775 ReturnInst::Create(DoCallBB);
776 } else {
777 CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
778 "retval", DoCallBB);
779 ReturnInst::Create(Call, DoCallBB);
782 // Use the wrapper function instead of the old function
783 F->replaceAllUsesWith(FuncWrapper);
789 if (verifyModule(*Test) || verifyModule(*Safe)) {
790 std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
791 abort();
797 /// TestCodeGenerator - This is the predicate function used to check to see if
798 /// the "Test" portion of the program is miscompiled by the code generator under
799 /// test. If so, return true. In any case, both module arguments are deleted.
801 static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
802 CleanupAndPrepareModules(BD, Test, Safe);
804 sys::Path TestModuleBC("bugpoint.test.bc");
805 std::string ErrMsg;
806 if (TestModuleBC.makeUnique(true, &ErrMsg)) {
807 std::cerr << BD.getToolName() << "Error making unique filename: "
808 << ErrMsg << "\n";
809 exit(1);
811 if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
812 std::cerr << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
813 exit(1);
815 delete Test;
817 // Make the shared library
818 sys::Path SafeModuleBC("bugpoint.safe.bc");
819 if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
820 std::cerr << BD.getToolName() << "Error making unique filename: "
821 << ErrMsg << "\n";
822 exit(1);
825 if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
826 std::cerr << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
827 exit(1);
829 std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
830 delete Safe;
832 // Run the code generator on the `Test' code, loading the shared library.
833 // The function returns whether or not the new output differs from reference.
834 int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
836 if (Result)
837 std::cerr << ": still failing!\n";
838 else
839 std::cerr << ": didn't fail.\n";
840 TestModuleBC.eraseFromDisk();
841 SafeModuleBC.eraseFromDisk();
842 sys::Path(SharedObject).eraseFromDisk();
844 return Result;
848 /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
850 bool BugDriver::debugCodeGenerator() {
851 if ((void*)SafeInterpreter == (void*)Interpreter) {
852 std::string Result = executeProgramSafely("bugpoint.safe.out");
853 std::cout << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
854 << "the reference diff. This may be due to a\n front-end "
855 << "bug or a bug in the original program, but this can also "
856 << "happen if bugpoint isn't running the program with the "
857 << "right flags or input.\n I left the result of executing "
858 << "the program with the \"safe\" backend in this file for "
859 << "you: '"
860 << Result << "'.\n";
861 return true;
864 DisambiguateGlobalSymbols(Program);
866 std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
868 // Split the module into the two halves of the program we want.
869 DenseMap<const Value*, Value*> ValueMap;
870 Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
871 Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
873 // Condition the modules
874 CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
876 sys::Path TestModuleBC("bugpoint.test.bc");
877 std::string ErrMsg;
878 if (TestModuleBC.makeUnique(true, &ErrMsg)) {
879 std::cerr << getToolName() << "Error making unique filename: "
880 << ErrMsg << "\n";
881 exit(1);
884 if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
885 std::cerr << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
886 exit(1);
888 delete ToCodeGen;
890 // Make the shared library
891 sys::Path SafeModuleBC("bugpoint.safe.bc");
892 if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
893 std::cerr << getToolName() << "Error making unique filename: "
894 << ErrMsg << "\n";
895 exit(1);
898 if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
899 std::cerr << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
900 exit(1);
902 std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
903 delete ToNotCodeGen;
905 std::cout << "You can reproduce the problem with the command line: \n";
906 if (isExecutingJIT()) {
907 std::cout << " lli -load " << SharedObject << " " << TestModuleBC;
908 } else {
909 std::cout << " llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
910 std::cout << " gcc " << SharedObject << " " << TestModuleBC
911 << ".s -o " << TestModuleBC << ".exe";
912 #if defined (HAVE_LINK_R)
913 std::cout << " -Wl,-R.";
914 #endif
915 std::cout << "\n";
916 std::cout << " " << TestModuleBC << ".exe";
918 for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
919 std::cout << " " << InputArgv[i];
920 std::cout << '\n';
921 std::cout << "The shared object was created with:\n llc -march=c "
922 << SafeModuleBC << " -o temporary.c\n"
923 << " gcc -xc temporary.c -O2 -o " << SharedObject
924 #if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
925 << " -G" // Compile a shared library, `-G' for Sparc
926 #else
927 << " -fPIC -shared" // `-shared' for Linux/X86, maybe others
928 #endif
929 << " -fno-strict-aliasing\n";
931 return false;