Oops...I committed too much.
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blob671c85e6d7875f91c6115a2f03dd3c1270eada1e
1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "dagcombine"
16 #include "llvm/CodeGen/SelectionDAG.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Target/TargetFrameInfo.h"
24 #include "llvm/Target/TargetLowering.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <algorithm>
34 #include <set>
35 using namespace llvm;
37 STATISTIC(NodesCombined , "Number of dag nodes combined");
38 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
39 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
41 namespace {
42 static cl::opt<bool>
43 CombinerAA("combiner-alias-analysis", cl::Hidden,
44 cl::desc("Turn on alias analysis during testing"));
46 static cl::opt<bool>
47 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
48 cl::desc("Include global information in alias analysis"));
50 //------------------------------ DAGCombiner ---------------------------------//
52 class VISIBILITY_HIDDEN DAGCombiner {
53 SelectionDAG &DAG;
54 const TargetLowering &TLI;
55 CombineLevel Level;
56 bool LegalOperations;
57 bool LegalTypes;
58 bool Fast;
60 // Worklist of all of the nodes that need to be simplified.
61 std::vector<SDNode*> WorkList;
63 // AA - Used for DAG load/store alias analysis.
64 AliasAnalysis &AA;
66 /// AddUsersToWorkList - When an instruction is simplified, add all users of
67 /// the instruction to the work lists because they might get more simplified
68 /// now.
69 ///
70 void AddUsersToWorkList(SDNode *N) {
71 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
72 UI != UE; ++UI)
73 AddToWorkList(*UI);
76 /// visit - call the node-specific routine that knows how to fold each
77 /// particular type of node.
78 SDValue visit(SDNode *N);
80 public:
81 /// AddToWorkList - Add to the work list making sure it's instance is at the
82 /// the back (next to be processed.)
83 void AddToWorkList(SDNode *N) {
84 removeFromWorkList(N);
85 WorkList.push_back(N);
88 /// removeFromWorkList - remove all instances of N from the worklist.
89 ///
90 void removeFromWorkList(SDNode *N) {
91 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
92 WorkList.end());
95 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
96 bool AddTo = true);
98 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
99 return CombineTo(N, &Res, 1, AddTo);
102 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
103 bool AddTo = true) {
104 SDValue To[] = { Res0, Res1 };
105 return CombineTo(N, To, 2, AddTo);
108 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
110 private:
112 /// SimplifyDemandedBits - Check the specified integer node value to see if
113 /// it can be simplified or if things it uses can be simplified by bit
114 /// propagation. If so, return true.
115 bool SimplifyDemandedBits(SDValue Op) {
116 APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
117 return SimplifyDemandedBits(Op, Demanded);
120 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
122 bool CombineToPreIndexedLoadStore(SDNode *N);
123 bool CombineToPostIndexedLoadStore(SDNode *N);
126 /// combine - call the node-specific routine that knows how to fold each
127 /// particular type of node. If that doesn't do anything, try the
128 /// target-specific DAG combines.
129 SDValue combine(SDNode *N);
131 // Visitation implementation - Implement dag node combining for different
132 // node types. The semantics are as follows:
133 // Return Value:
134 // SDValue.getNode() == 0 - No change was made
135 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
136 // otherwise - N should be replaced by the returned Operand.
138 SDValue visitTokenFactor(SDNode *N);
139 SDValue visitMERGE_VALUES(SDNode *N);
140 SDValue visitADD(SDNode *N);
141 SDValue visitSUB(SDNode *N);
142 SDValue visitADDC(SDNode *N);
143 SDValue visitADDE(SDNode *N);
144 SDValue visitMUL(SDNode *N);
145 SDValue visitSDIV(SDNode *N);
146 SDValue visitUDIV(SDNode *N);
147 SDValue visitSREM(SDNode *N);
148 SDValue visitUREM(SDNode *N);
149 SDValue visitMULHU(SDNode *N);
150 SDValue visitMULHS(SDNode *N);
151 SDValue visitSMUL_LOHI(SDNode *N);
152 SDValue visitUMUL_LOHI(SDNode *N);
153 SDValue visitSDIVREM(SDNode *N);
154 SDValue visitUDIVREM(SDNode *N);
155 SDValue visitAND(SDNode *N);
156 SDValue visitOR(SDNode *N);
157 SDValue visitXOR(SDNode *N);
158 SDValue SimplifyVBinOp(SDNode *N);
159 SDValue visitSHL(SDNode *N);
160 SDValue visitSRA(SDNode *N);
161 SDValue visitSRL(SDNode *N);
162 SDValue visitCTLZ(SDNode *N);
163 SDValue visitCTTZ(SDNode *N);
164 SDValue visitCTPOP(SDNode *N);
165 SDValue visitSELECT(SDNode *N);
166 SDValue visitSELECT_CC(SDNode *N);
167 SDValue visitSETCC(SDNode *N);
168 SDValue visitSIGN_EXTEND(SDNode *N);
169 SDValue visitZERO_EXTEND(SDNode *N);
170 SDValue visitANY_EXTEND(SDNode *N);
171 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
172 SDValue visitTRUNCATE(SDNode *N);
173 SDValue visitBIT_CONVERT(SDNode *N);
174 SDValue visitBUILD_PAIR(SDNode *N);
175 SDValue visitFADD(SDNode *N);
176 SDValue visitFSUB(SDNode *N);
177 SDValue visitFMUL(SDNode *N);
178 SDValue visitFDIV(SDNode *N);
179 SDValue visitFREM(SDNode *N);
180 SDValue visitFCOPYSIGN(SDNode *N);
181 SDValue visitSINT_TO_FP(SDNode *N);
182 SDValue visitUINT_TO_FP(SDNode *N);
183 SDValue visitFP_TO_SINT(SDNode *N);
184 SDValue visitFP_TO_UINT(SDNode *N);
185 SDValue visitFP_ROUND(SDNode *N);
186 SDValue visitFP_ROUND_INREG(SDNode *N);
187 SDValue visitFP_EXTEND(SDNode *N);
188 SDValue visitFNEG(SDNode *N);
189 SDValue visitFABS(SDNode *N);
190 SDValue visitBRCOND(SDNode *N);
191 SDValue visitBR_CC(SDNode *N);
192 SDValue visitLOAD(SDNode *N);
193 SDValue visitSTORE(SDNode *N);
194 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
195 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
196 SDValue visitBUILD_VECTOR(SDNode *N);
197 SDValue visitCONCAT_VECTORS(SDNode *N);
198 SDValue visitVECTOR_SHUFFLE(SDNode *N);
200 SDValue XformToShuffleWithZero(SDNode *N);
201 SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
203 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
205 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
206 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
207 SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
208 SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
209 SDValue N3, ISD::CondCode CC,
210 bool NotExtCompare = false);
211 SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
212 DebugLoc DL, bool foldBooleans = true);
213 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
214 unsigned HiOp);
215 SDValue CombineConsecutiveLoads(SDNode *N, MVT VT);
216 SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT);
217 SDValue BuildSDIV(SDNode *N);
218 SDValue BuildUDIV(SDNode *N);
219 SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
220 SDValue ReduceLoadWidth(SDNode *N);
222 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
224 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
225 /// looking for aliasing nodes and adding them to the Aliases vector.
226 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
227 SmallVector<SDValue, 8> &Aliases);
229 /// isAlias - Return true if there is any possibility that the two addresses
230 /// overlap.
231 bool isAlias(SDValue Ptr1, int64_t Size1,
232 const Value *SrcValue1, int SrcValueOffset1,
233 SDValue Ptr2, int64_t Size2,
234 const Value *SrcValue2, int SrcValueOffset2) const;
236 /// FindAliasInfo - Extracts the relevant alias information from the memory
237 /// node. Returns true if the operand was a load.
238 bool FindAliasInfo(SDNode *N,
239 SDValue &Ptr, int64_t &Size,
240 const Value *&SrcValue, int &SrcValueOffset) const;
242 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
243 /// looking for a better chain (aliasing node.)
244 SDValue FindBetterChain(SDNode *N, SDValue Chain);
246 /// getShiftAmountTy - Returns a type large enough to hold any valid
247 /// shift amount - before type legalization these can be huge.
248 MVT getShiftAmountTy() {
249 return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
252 public:
253 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, bool fast)
254 : DAG(D),
255 TLI(D.getTargetLoweringInfo()),
256 Level(Unrestricted),
257 LegalOperations(false),
258 LegalTypes(false),
259 Fast(fast),
260 AA(A) {}
262 /// Run - runs the dag combiner on all nodes in the work list
263 void Run(CombineLevel AtLevel);
268 namespace {
269 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
270 /// nodes from the worklist.
271 class VISIBILITY_HIDDEN WorkListRemover :
272 public SelectionDAG::DAGUpdateListener {
273 DAGCombiner &DC;
274 public:
275 explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
277 virtual void NodeDeleted(SDNode *N, SDNode *E) {
278 DC.removeFromWorkList(N);
281 virtual void NodeUpdated(SDNode *N) {
282 // Ignore updates.
287 //===----------------------------------------------------------------------===//
288 // TargetLowering::DAGCombinerInfo implementation
289 //===----------------------------------------------------------------------===//
291 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
292 ((DAGCombiner*)DC)->AddToWorkList(N);
295 SDValue TargetLowering::DAGCombinerInfo::
296 CombineTo(SDNode *N, const std::vector<SDValue> &To) {
297 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
300 SDValue TargetLowering::DAGCombinerInfo::
301 CombineTo(SDNode *N, SDValue Res) {
302 return ((DAGCombiner*)DC)->CombineTo(N, Res);
306 SDValue TargetLowering::DAGCombinerInfo::
307 CombineTo(SDNode *N, SDValue Res0, SDValue Res1) {
308 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
311 void TargetLowering::DAGCombinerInfo::
312 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
313 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
316 //===----------------------------------------------------------------------===//
317 // Helper Functions
318 //===----------------------------------------------------------------------===//
320 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
321 /// specified expression for the same cost as the expression itself, or 2 if we
322 /// can compute the negated form more cheaply than the expression itself.
323 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
324 unsigned Depth = 0) {
325 // No compile time optimizations on this type.
326 if (Op.getValueType() == MVT::ppcf128)
327 return 0;
329 // fneg is removable even if it has multiple uses.
330 if (Op.getOpcode() == ISD::FNEG) return 2;
332 // Don't allow anything with multiple uses.
333 if (!Op.hasOneUse()) return 0;
335 // Don't recurse exponentially.
336 if (Depth > 6) return 0;
338 switch (Op.getOpcode()) {
339 default: return false;
340 case ISD::ConstantFP:
341 // Don't invert constant FP values after legalize. The negated constant
342 // isn't necessarily legal.
343 return LegalOperations ? 0 : 1;
344 case ISD::FADD:
345 // FIXME: determine better conditions for this xform.
346 if (!UnsafeFPMath) return 0;
348 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
349 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
350 return V;
351 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
352 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
353 case ISD::FSUB:
354 // We can't turn -(A-B) into B-A when we honor signed zeros.
355 if (!UnsafeFPMath) return 0;
357 // fold (fneg (fsub A, B)) -> (fsub B, A)
358 return 1;
360 case ISD::FMUL:
361 case ISD::FDIV:
362 if (HonorSignDependentRoundingFPMath()) return 0;
364 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
365 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
366 return V;
368 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
370 case ISD::FP_EXTEND:
371 case ISD::FP_ROUND:
372 case ISD::FSIN:
373 return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
377 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
378 /// returns the newly negated expression.
379 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
380 bool LegalOperations, unsigned Depth = 0) {
381 // fneg is removable even if it has multiple uses.
382 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
384 // Don't allow anything with multiple uses.
385 assert(Op.hasOneUse() && "Unknown reuse!");
387 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
388 switch (Op.getOpcode()) {
389 default: assert(0 && "Unknown code");
390 case ISD::ConstantFP: {
391 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
392 V.changeSign();
393 return DAG.getConstantFP(V, Op.getValueType());
395 case ISD::FADD:
396 // FIXME: determine better conditions for this xform.
397 assert(UnsafeFPMath);
399 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
400 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
401 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
402 GetNegatedExpression(Op.getOperand(0), DAG,
403 LegalOperations, Depth+1),
404 Op.getOperand(1));
405 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
406 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
407 GetNegatedExpression(Op.getOperand(1), DAG,
408 LegalOperations, Depth+1),
409 Op.getOperand(0));
410 case ISD::FSUB:
411 // We can't turn -(A-B) into B-A when we honor signed zeros.
412 assert(UnsafeFPMath);
414 // fold (fneg (fsub 0, B)) -> B
415 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
416 if (N0CFP->getValueAPF().isZero())
417 return Op.getOperand(1);
419 // fold (fneg (fsub A, B)) -> (fsub B, A)
420 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
421 Op.getOperand(1), Op.getOperand(0));
423 case ISD::FMUL:
424 case ISD::FDIV:
425 assert(!HonorSignDependentRoundingFPMath());
427 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
428 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
429 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
430 GetNegatedExpression(Op.getOperand(0), DAG,
431 LegalOperations, Depth+1),
432 Op.getOperand(1));
434 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
435 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
436 Op.getOperand(0),
437 GetNegatedExpression(Op.getOperand(1), DAG,
438 LegalOperations, Depth+1));
440 case ISD::FP_EXTEND:
441 case ISD::FSIN:
442 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
443 GetNegatedExpression(Op.getOperand(0), DAG,
444 LegalOperations, Depth+1));
445 case ISD::FP_ROUND:
446 return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
447 GetNegatedExpression(Op.getOperand(0), DAG,
448 LegalOperations, Depth+1),
449 Op.getOperand(1));
454 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
455 // that selects between the values 1 and 0, making it equivalent to a setcc.
456 // Also, set the incoming LHS, RHS, and CC references to the appropriate
457 // nodes based on the type of node we are checking. This simplifies life a
458 // bit for the callers.
459 static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
460 SDValue &CC) {
461 if (N.getOpcode() == ISD::SETCC) {
462 LHS = N.getOperand(0);
463 RHS = N.getOperand(1);
464 CC = N.getOperand(2);
465 return true;
467 if (N.getOpcode() == ISD::SELECT_CC &&
468 N.getOperand(2).getOpcode() == ISD::Constant &&
469 N.getOperand(3).getOpcode() == ISD::Constant &&
470 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
471 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
472 LHS = N.getOperand(0);
473 RHS = N.getOperand(1);
474 CC = N.getOperand(4);
475 return true;
477 return false;
480 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
481 // one use. If this is true, it allows the users to invert the operation for
482 // free when it is profitable to do so.
483 static bool isOneUseSetCC(SDValue N) {
484 SDValue N0, N1, N2;
485 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
486 return true;
487 return false;
490 SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
491 SDValue N0, SDValue N1) {
492 MVT VT = N0.getValueType();
493 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
494 if (isa<ConstantSDNode>(N1)) {
495 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
496 SDValue OpNode =
497 DAG.FoldConstantArithmetic(Opc, VT,
498 cast<ConstantSDNode>(N0.getOperand(1)),
499 cast<ConstantSDNode>(N1));
500 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
501 } else if (N0.hasOneUse()) {
502 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
503 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
504 N0.getOperand(0), N1);
505 AddToWorkList(OpNode.getNode());
506 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
510 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
511 if (isa<ConstantSDNode>(N0)) {
512 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
513 SDValue OpNode =
514 DAG.FoldConstantArithmetic(Opc, VT,
515 cast<ConstantSDNode>(N1.getOperand(1)),
516 cast<ConstantSDNode>(N0));
517 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
518 } else if (N1.hasOneUse()) {
519 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
520 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
521 N1.getOperand(0), N0);
522 AddToWorkList(OpNode.getNode());
523 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
527 return SDValue();
530 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
531 bool AddTo) {
532 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
533 ++NodesCombined;
534 DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
535 DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG));
536 DOUT << " and " << NumTo-1 << " other values\n";
537 DEBUG(for (unsigned i = 0, e = NumTo; i != e; ++i)
538 assert(N->getValueType(i) == To[i].getValueType() &&
539 "Cannot combine value to value of different type!"));
540 WorkListRemover DeadNodes(*this);
541 DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
543 if (AddTo) {
544 // Push the new nodes and any users onto the worklist
545 for (unsigned i = 0, e = NumTo; i != e; ++i) {
546 if (To[i].getNode()) {
547 AddToWorkList(To[i].getNode());
548 AddUsersToWorkList(To[i].getNode());
553 // Finally, if the node is now dead, remove it from the graph. The node
554 // may not be dead if the replacement process recursively simplified to
555 // something else needing this node.
556 if (N->use_empty()) {
557 // Nodes can be reintroduced into the worklist. Make sure we do not
558 // process a node that has been replaced.
559 removeFromWorkList(N);
561 // Finally, since the node is now dead, remove it from the graph.
562 DAG.DeleteNode(N);
564 return SDValue(N, 0);
567 void
568 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &
569 TLO) {
570 // Replace all uses. If any nodes become isomorphic to other nodes and
571 // are deleted, make sure to remove them from our worklist.
572 WorkListRemover DeadNodes(*this);
573 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
575 // Push the new node and any (possibly new) users onto the worklist.
576 AddToWorkList(TLO.New.getNode());
577 AddUsersToWorkList(TLO.New.getNode());
579 // Finally, if the node is now dead, remove it from the graph. The node
580 // may not be dead if the replacement process recursively simplified to
581 // something else needing this node.
582 if (TLO.Old.getNode()->use_empty()) {
583 removeFromWorkList(TLO.Old.getNode());
585 // If the operands of this node are only used by the node, they will now
586 // be dead. Make sure to visit them first to delete dead nodes early.
587 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
588 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
589 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
591 DAG.DeleteNode(TLO.Old.getNode());
595 /// SimplifyDemandedBits - Check the specified integer node value to see if
596 /// it can be simplified or if things it uses can be simplified by bit
597 /// propagation. If so, return true.
598 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
599 TargetLowering::TargetLoweringOpt TLO(DAG);
600 APInt KnownZero, KnownOne;
601 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
602 return false;
604 // Revisit the node.
605 AddToWorkList(Op.getNode());
607 // Replace the old value with the new one.
608 ++NodesCombined;
609 DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG));
610 DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG));
611 DOUT << '\n';
613 CommitTargetLoweringOpt(TLO);
614 return true;
617 //===----------------------------------------------------------------------===//
618 // Main DAG Combiner implementation
619 //===----------------------------------------------------------------------===//
621 void DAGCombiner::Run(CombineLevel AtLevel) {
622 // set the instance variables, so that the various visit routines may use it.
623 Level = AtLevel;
624 LegalOperations = Level >= NoIllegalOperations;
625 LegalTypes = Level >= NoIllegalTypes;
627 // Add all the dag nodes to the worklist.
628 WorkList.reserve(DAG.allnodes_size());
629 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
630 E = DAG.allnodes_end(); I != E; ++I)
631 WorkList.push_back(I);
633 // Create a dummy node (which is not added to allnodes), that adds a reference
634 // to the root node, preventing it from being deleted, and tracking any
635 // changes of the root.
636 HandleSDNode Dummy(DAG.getRoot());
638 // The root of the dag may dangle to deleted nodes until the dag combiner is
639 // done. Set it to null to avoid confusion.
640 DAG.setRoot(SDValue());
642 // while the worklist isn't empty, inspect the node on the end of it and
643 // try and combine it.
644 while (!WorkList.empty()) {
645 SDNode *N = WorkList.back();
646 WorkList.pop_back();
648 // If N has no uses, it is dead. Make sure to revisit all N's operands once
649 // N is deleted from the DAG, since they too may now be dead or may have a
650 // reduced number of uses, allowing other xforms.
651 if (N->use_empty() && N != &Dummy) {
652 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
653 AddToWorkList(N->getOperand(i).getNode());
655 DAG.DeleteNode(N);
656 continue;
659 SDValue RV = combine(N);
661 if (RV.getNode() == 0)
662 continue;
664 ++NodesCombined;
666 // If we get back the same node we passed in, rather than a new node or
667 // zero, we know that the node must have defined multiple values and
668 // CombineTo was used. Since CombineTo takes care of the worklist
669 // mechanics for us, we have no work to do in this case.
670 if (RV.getNode() == N)
671 continue;
673 assert(N->getOpcode() != ISD::DELETED_NODE &&
674 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
675 "Node was deleted but visit returned new node!");
677 DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
678 DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG));
679 DOUT << '\n';
680 WorkListRemover DeadNodes(*this);
681 if (N->getNumValues() == RV.getNode()->getNumValues())
682 DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
683 else {
684 assert(N->getValueType(0) == RV.getValueType() &&
685 N->getNumValues() == 1 && "Type mismatch");
686 SDValue OpV = RV;
687 DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
690 // Push the new node and any users onto the worklist
691 AddToWorkList(RV.getNode());
692 AddUsersToWorkList(RV.getNode());
694 // Add any uses of the old node to the worklist in case this node is the
695 // last one that uses them. They may become dead after this node is
696 // deleted.
697 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
698 AddToWorkList(N->getOperand(i).getNode());
700 // Finally, if the node is now dead, remove it from the graph. The node
701 // may not be dead if the replacement process recursively simplified to
702 // something else needing this node.
703 if (N->use_empty()) {
704 // Nodes can be reintroduced into the worklist. Make sure we do not
705 // process a node that has been replaced.
706 removeFromWorkList(N);
708 // Finally, since the node is now dead, remove it from the graph.
709 DAG.DeleteNode(N);
713 // If the root changed (e.g. it was a dead load, update the root).
714 DAG.setRoot(Dummy.getValue());
717 SDValue DAGCombiner::visit(SDNode *N) {
718 switch(N->getOpcode()) {
719 default: break;
720 case ISD::TokenFactor: return visitTokenFactor(N);
721 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
722 case ISD::ADD: return visitADD(N);
723 case ISD::SUB: return visitSUB(N);
724 case ISD::ADDC: return visitADDC(N);
725 case ISD::ADDE: return visitADDE(N);
726 case ISD::MUL: return visitMUL(N);
727 case ISD::SDIV: return visitSDIV(N);
728 case ISD::UDIV: return visitUDIV(N);
729 case ISD::SREM: return visitSREM(N);
730 case ISD::UREM: return visitUREM(N);
731 case ISD::MULHU: return visitMULHU(N);
732 case ISD::MULHS: return visitMULHS(N);
733 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
734 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
735 case ISD::SDIVREM: return visitSDIVREM(N);
736 case ISD::UDIVREM: return visitUDIVREM(N);
737 case ISD::AND: return visitAND(N);
738 case ISD::OR: return visitOR(N);
739 case ISD::XOR: return visitXOR(N);
740 case ISD::SHL: return visitSHL(N);
741 case ISD::SRA: return visitSRA(N);
742 case ISD::SRL: return visitSRL(N);
743 case ISD::CTLZ: return visitCTLZ(N);
744 case ISD::CTTZ: return visitCTTZ(N);
745 case ISD::CTPOP: return visitCTPOP(N);
746 case ISD::SELECT: return visitSELECT(N);
747 case ISD::SELECT_CC: return visitSELECT_CC(N);
748 case ISD::SETCC: return visitSETCC(N);
749 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
750 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
751 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
752 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
753 case ISD::TRUNCATE: return visitTRUNCATE(N);
754 case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
755 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
756 case ISD::FADD: return visitFADD(N);
757 case ISD::FSUB: return visitFSUB(N);
758 case ISD::FMUL: return visitFMUL(N);
759 case ISD::FDIV: return visitFDIV(N);
760 case ISD::FREM: return visitFREM(N);
761 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
762 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
763 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
764 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
765 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
766 case ISD::FP_ROUND: return visitFP_ROUND(N);
767 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
768 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
769 case ISD::FNEG: return visitFNEG(N);
770 case ISD::FABS: return visitFABS(N);
771 case ISD::BRCOND: return visitBRCOND(N);
772 case ISD::BR_CC: return visitBR_CC(N);
773 case ISD::LOAD: return visitLOAD(N);
774 case ISD::STORE: return visitSTORE(N);
775 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
776 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
777 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
778 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
779 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
781 return SDValue();
784 SDValue DAGCombiner::combine(SDNode *N) {
785 SDValue RV = visit(N);
787 // If nothing happened, try a target-specific DAG combine.
788 if (RV.getNode() == 0) {
789 assert(N->getOpcode() != ISD::DELETED_NODE &&
790 "Node was deleted but visit returned NULL!");
792 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
793 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
795 // Expose the DAG combiner to the target combiner impls.
796 TargetLowering::DAGCombinerInfo
797 DagCombineInfo(DAG, Level == Unrestricted, false, this);
799 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
803 // If N is a commutative binary node, try commuting it to enable more
804 // sdisel CSE.
805 if (RV.getNode() == 0 &&
806 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
807 N->getNumValues() == 1) {
808 SDValue N0 = N->getOperand(0);
809 SDValue N1 = N->getOperand(1);
811 // Constant operands are canonicalized to RHS.
812 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
813 SDValue Ops[] = { N1, N0 };
814 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
815 Ops, 2);
816 if (CSENode)
817 return SDValue(CSENode, 0);
821 return RV;
824 /// getInputChainForNode - Given a node, return its input chain if it has one,
825 /// otherwise return a null sd operand.
826 static SDValue getInputChainForNode(SDNode *N) {
827 if (unsigned NumOps = N->getNumOperands()) {
828 if (N->getOperand(0).getValueType() == MVT::Other)
829 return N->getOperand(0);
830 else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
831 return N->getOperand(NumOps-1);
832 for (unsigned i = 1; i < NumOps-1; ++i)
833 if (N->getOperand(i).getValueType() == MVT::Other)
834 return N->getOperand(i);
836 return SDValue();
839 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
840 // If N has two operands, where one has an input chain equal to the other,
841 // the 'other' chain is redundant.
842 if (N->getNumOperands() == 2) {
843 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
844 return N->getOperand(0);
845 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
846 return N->getOperand(1);
849 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
850 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
851 SmallPtrSet<SDNode*, 16> SeenOps;
852 bool Changed = false; // If we should replace this token factor.
854 // Start out with this token factor.
855 TFs.push_back(N);
857 // Iterate through token factors. The TFs grows when new token factors are
858 // encountered.
859 for (unsigned i = 0; i < TFs.size(); ++i) {
860 SDNode *TF = TFs[i];
862 // Check each of the operands.
863 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
864 SDValue Op = TF->getOperand(i);
866 switch (Op.getOpcode()) {
867 case ISD::EntryToken:
868 // Entry tokens don't need to be added to the list. They are
869 // rededundant.
870 Changed = true;
871 break;
873 case ISD::TokenFactor:
874 if ((CombinerAA || Op.hasOneUse()) &&
875 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
876 // Queue up for processing.
877 TFs.push_back(Op.getNode());
878 // Clean up in case the token factor is removed.
879 AddToWorkList(Op.getNode());
880 Changed = true;
881 break;
883 // Fall thru
885 default:
886 // Only add if it isn't already in the list.
887 if (SeenOps.insert(Op.getNode()))
888 Ops.push_back(Op);
889 else
890 Changed = true;
891 break;
896 SDValue Result;
898 // If we've change things around then replace token factor.
899 if (Changed) {
900 if (Ops.empty()) {
901 // The entry token is the only possible outcome.
902 Result = DAG.getEntryNode();
903 } else {
904 // New and improved token factor.
905 Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
906 MVT::Other, &Ops[0], Ops.size());
909 // Don't add users to work list.
910 return CombineTo(N, Result, false);
913 return Result;
916 /// MERGE_VALUES can always be eliminated.
917 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
918 WorkListRemover DeadNodes(*this);
919 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
920 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
921 &DeadNodes);
922 removeFromWorkList(N);
923 DAG.DeleteNode(N);
924 return SDValue(N, 0); // Return N so it doesn't get rechecked!
927 static
928 SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
929 SelectionDAG &DAG) {
930 MVT VT = N0.getValueType();
931 SDValue N00 = N0.getOperand(0);
932 SDValue N01 = N0.getOperand(1);
933 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
935 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
936 isa<ConstantSDNode>(N00.getOperand(1))) {
937 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
938 N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
939 DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
940 N00.getOperand(0), N01),
941 DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
942 N00.getOperand(1), N01));
943 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
946 return SDValue();
949 SDValue DAGCombiner::visitADD(SDNode *N) {
950 SDValue N0 = N->getOperand(0);
951 SDValue N1 = N->getOperand(1);
952 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
953 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
954 MVT VT = N0.getValueType();
956 // fold vector ops
957 if (VT.isVector()) {
958 SDValue FoldedVOp = SimplifyVBinOp(N);
959 if (FoldedVOp.getNode()) return FoldedVOp;
962 // fold (add x, undef) -> undef
963 if (N0.getOpcode() == ISD::UNDEF)
964 return N0;
965 if (N1.getOpcode() == ISD::UNDEF)
966 return N1;
967 // fold (add c1, c2) -> c1+c2
968 if (N0C && N1C)
969 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
970 // canonicalize constant to RHS
971 if (N0C && !N1C)
972 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
973 // fold (add x, 0) -> x
974 if (N1C && N1C->isNullValue())
975 return N0;
976 // fold (add Sym, c) -> Sym+c
977 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
978 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
979 GA->getOpcode() == ISD::GlobalAddress)
980 return DAG.getGlobalAddress(GA->getGlobal(), VT,
981 GA->getOffset() +
982 (uint64_t)N1C->getSExtValue());
983 // fold ((c1-A)+c2) -> (c1+c2)-A
984 if (N1C && N0.getOpcode() == ISD::SUB)
985 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
986 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
987 DAG.getConstant(N1C->getAPIntValue()+
988 N0C->getAPIntValue(), VT),
989 N0.getOperand(1));
990 // reassociate add
991 SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
992 if (RADD.getNode() != 0)
993 return RADD;
994 // fold ((0-A) + B) -> B-A
995 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
996 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
997 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
998 // fold (A + (0-B)) -> A-B
999 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1000 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1001 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1002 // fold (A+(B-A)) -> B
1003 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1004 return N1.getOperand(0);
1005 // fold ((B-A)+A) -> B
1006 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1007 return N0.getOperand(0);
1008 // fold (A+(B-(A+C))) to (B-C)
1009 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1010 N0 == N1.getOperand(1).getOperand(0))
1011 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1012 N1.getOperand(1).getOperand(1));
1013 // fold (A+(B-(C+A))) to (B-C)
1014 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1015 N0 == N1.getOperand(1).getOperand(1))
1016 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1017 N1.getOperand(1).getOperand(0));
1018 // fold (A+((B-A)+or-C)) to (B+or-C)
1019 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1020 N1.getOperand(0).getOpcode() == ISD::SUB &&
1021 N0 == N1.getOperand(0).getOperand(1))
1022 return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1023 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1025 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1026 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1027 SDValue N00 = N0.getOperand(0);
1028 SDValue N01 = N0.getOperand(1);
1029 SDValue N10 = N1.getOperand(0);
1030 SDValue N11 = N1.getOperand(1);
1032 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1033 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1034 DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1035 DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1038 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1039 return SDValue(N, 0);
1041 // fold (a+b) -> (a|b) iff a and b share no bits.
1042 if (VT.isInteger() && !VT.isVector()) {
1043 APInt LHSZero, LHSOne;
1044 APInt RHSZero, RHSOne;
1045 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1046 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1048 if (LHSZero.getBoolValue()) {
1049 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1051 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1052 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1053 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1054 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1055 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1059 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1060 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1061 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1062 if (Result.getNode()) return Result;
1064 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1065 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1066 if (Result.getNode()) return Result;
1069 return SDValue();
1072 SDValue DAGCombiner::visitADDC(SDNode *N) {
1073 SDValue N0 = N->getOperand(0);
1074 SDValue N1 = N->getOperand(1);
1075 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1076 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1077 MVT VT = N0.getValueType();
1079 // If the flag result is dead, turn this into an ADD.
1080 if (N->hasNUsesOfValue(0, 1))
1081 return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
1082 DAG.getNode(ISD::CARRY_FALSE,
1083 N->getDebugLoc(), MVT::Flag));
1085 // canonicalize constant to RHS.
1086 if (N0C && !N1C)
1087 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1089 // fold (addc x, 0) -> x + no carry out
1090 if (N1C && N1C->isNullValue())
1091 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1092 N->getDebugLoc(), MVT::Flag));
1094 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1095 APInt LHSZero, LHSOne;
1096 APInt RHSZero, RHSOne;
1097 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1098 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1100 if (LHSZero.getBoolValue()) {
1101 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1103 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1104 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1105 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1106 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1107 return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1108 DAG.getNode(ISD::CARRY_FALSE,
1109 N->getDebugLoc(), MVT::Flag));
1112 return SDValue();
1115 SDValue DAGCombiner::visitADDE(SDNode *N) {
1116 SDValue N0 = N->getOperand(0);
1117 SDValue N1 = N->getOperand(1);
1118 SDValue CarryIn = N->getOperand(2);
1119 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1120 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1122 // canonicalize constant to RHS
1123 if (N0C && !N1C)
1124 return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1125 N1, N0, CarryIn);
1127 // fold (adde x, y, false) -> (addc x, y)
1128 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1129 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1131 return SDValue();
1134 SDValue DAGCombiner::visitSUB(SDNode *N) {
1135 SDValue N0 = N->getOperand(0);
1136 SDValue N1 = N->getOperand(1);
1137 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1138 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1139 MVT VT = N0.getValueType();
1141 // fold vector ops
1142 if (VT.isVector()) {
1143 SDValue FoldedVOp = SimplifyVBinOp(N);
1144 if (FoldedVOp.getNode()) return FoldedVOp;
1147 // fold (sub x, x) -> 0
1148 if (N0 == N1)
1149 return DAG.getConstant(0, N->getValueType(0));
1150 // fold (sub c1, c2) -> c1-c2
1151 if (N0C && N1C)
1152 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1153 // fold (sub x, c) -> (add x, -c)
1154 if (N1C)
1155 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1156 DAG.getConstant(-N1C->getAPIntValue(), VT));
1157 // fold (A+B)-A -> B
1158 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1159 return N0.getOperand(1);
1160 // fold (A+B)-B -> A
1161 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1162 return N0.getOperand(0);
1163 // fold ((A+(B+or-C))-B) -> A+or-C
1164 if (N0.getOpcode() == ISD::ADD &&
1165 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1166 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1167 N0.getOperand(1).getOperand(0) == N1)
1168 return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1169 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1170 // fold ((A+(C+B))-B) -> A+C
1171 if (N0.getOpcode() == ISD::ADD &&
1172 N0.getOperand(1).getOpcode() == ISD::ADD &&
1173 N0.getOperand(1).getOperand(1) == N1)
1174 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1175 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1176 // fold ((A-(B-C))-C) -> A-B
1177 if (N0.getOpcode() == ISD::SUB &&
1178 N0.getOperand(1).getOpcode() == ISD::SUB &&
1179 N0.getOperand(1).getOperand(1) == N1)
1180 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1181 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1183 // If either operand of a sub is undef, the result is undef
1184 if (N0.getOpcode() == ISD::UNDEF)
1185 return N0;
1186 if (N1.getOpcode() == ISD::UNDEF)
1187 return N1;
1189 // If the relocation model supports it, consider symbol offsets.
1190 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1191 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1192 // fold (sub Sym, c) -> Sym-c
1193 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1194 return DAG.getGlobalAddress(GA->getGlobal(), VT,
1195 GA->getOffset() -
1196 (uint64_t)N1C->getSExtValue());
1197 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1198 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1199 if (GA->getGlobal() == GB->getGlobal())
1200 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1201 VT);
1204 return SDValue();
1207 SDValue DAGCombiner::visitMUL(SDNode *N) {
1208 SDValue N0 = N->getOperand(0);
1209 SDValue N1 = N->getOperand(1);
1210 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1211 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1212 MVT VT = N0.getValueType();
1214 // fold vector ops
1215 if (VT.isVector()) {
1216 SDValue FoldedVOp = SimplifyVBinOp(N);
1217 if (FoldedVOp.getNode()) return FoldedVOp;
1220 // fold (mul x, undef) -> 0
1221 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1222 return DAG.getConstant(0, VT);
1223 // fold (mul c1, c2) -> c1*c2
1224 if (N0C && N1C)
1225 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1226 // canonicalize constant to RHS
1227 if (N0C && !N1C)
1228 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1229 // fold (mul x, 0) -> 0
1230 if (N1C && N1C->isNullValue())
1231 return N1;
1232 // fold (mul x, -1) -> 0-x
1233 if (N1C && N1C->isAllOnesValue())
1234 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1235 DAG.getConstant(0, VT), N0);
1236 // fold (mul x, (1 << c)) -> x << c
1237 if (N1C && N1C->getAPIntValue().isPowerOf2())
1238 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1239 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1240 getShiftAmountTy()));
1241 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1242 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1243 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1244 // FIXME: If the input is something that is easily negated (e.g. a
1245 // single-use add), we should put the negate there.
1246 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1247 DAG.getConstant(0, VT),
1248 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1249 DAG.getConstant(Log2Val, getShiftAmountTy())));
1251 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1252 if (N1C && N0.getOpcode() == ISD::SHL &&
1253 isa<ConstantSDNode>(N0.getOperand(1))) {
1254 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1255 N1, N0.getOperand(1));
1256 AddToWorkList(C3.getNode());
1257 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1258 N0.getOperand(0), C3);
1261 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1262 // use.
1264 SDValue Sh(0,0), Y(0,0);
1265 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1266 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1267 N0.getNode()->hasOneUse()) {
1268 Sh = N0; Y = N1;
1269 } else if (N1.getOpcode() == ISD::SHL &&
1270 isa<ConstantSDNode>(N1.getOperand(1)) &&
1271 N1.getNode()->hasOneUse()) {
1272 Sh = N1; Y = N0;
1275 if (Sh.getNode()) {
1276 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1277 Sh.getOperand(0), Y);
1278 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1279 Mul, Sh.getOperand(1));
1283 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1284 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1285 isa<ConstantSDNode>(N0.getOperand(1)))
1286 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1287 DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1288 N0.getOperand(0), N1),
1289 DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1290 N0.getOperand(1), N1));
1292 // reassociate mul
1293 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1294 if (RMUL.getNode() != 0)
1295 return RMUL;
1297 return SDValue();
1300 SDValue DAGCombiner::visitSDIV(SDNode *N) {
1301 SDValue N0 = N->getOperand(0);
1302 SDValue N1 = N->getOperand(1);
1303 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1304 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1305 MVT VT = N->getValueType(0);
1307 // fold vector ops
1308 if (VT.isVector()) {
1309 SDValue FoldedVOp = SimplifyVBinOp(N);
1310 if (FoldedVOp.getNode()) return FoldedVOp;
1313 // fold (sdiv c1, c2) -> c1/c2
1314 if (N0C && N1C && !N1C->isNullValue())
1315 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1316 // fold (sdiv X, 1) -> X
1317 if (N1C && N1C->getSExtValue() == 1LL)
1318 return N0;
1319 // fold (sdiv X, -1) -> 0-X
1320 if (N1C && N1C->isAllOnesValue())
1321 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1322 DAG.getConstant(0, VT), N0);
1323 // If we know the sign bits of both operands are zero, strength reduce to a
1324 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1325 if (!VT.isVector()) {
1326 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1327 return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1328 N0, N1);
1330 // fold (sdiv X, pow2) -> simple ops after legalize
1331 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1332 (isPowerOf2_64(N1C->getSExtValue()) ||
1333 isPowerOf2_64(-N1C->getSExtValue()))) {
1334 // If dividing by powers of two is cheap, then don't perform the following
1335 // fold.
1336 if (TLI.isPow2DivCheap())
1337 return SDValue();
1339 int64_t pow2 = N1C->getSExtValue();
1340 int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1341 unsigned lg2 = Log2_64(abs2);
1343 // Splat the sign bit into the register
1344 SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1345 DAG.getConstant(VT.getSizeInBits()-1,
1346 getShiftAmountTy()));
1347 AddToWorkList(SGN.getNode());
1349 // Add (N0 < 0) ? abs2 - 1 : 0;
1350 SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1351 DAG.getConstant(VT.getSizeInBits() - lg2,
1352 getShiftAmountTy()));
1353 SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1354 AddToWorkList(SRL.getNode());
1355 AddToWorkList(ADD.getNode()); // Divide by pow2
1356 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1357 DAG.getConstant(lg2, getShiftAmountTy()));
1359 // If we're dividing by a positive value, we're done. Otherwise, we must
1360 // negate the result.
1361 if (pow2 > 0)
1362 return SRA;
1364 AddToWorkList(SRA.getNode());
1365 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1366 DAG.getConstant(0, VT), SRA);
1369 // if integer divide is expensive and we satisfy the requirements, emit an
1370 // alternate sequence.
1371 if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
1372 !TLI.isIntDivCheap()) {
1373 SDValue Op = BuildSDIV(N);
1374 if (Op.getNode()) return Op;
1377 // undef / X -> 0
1378 if (N0.getOpcode() == ISD::UNDEF)
1379 return DAG.getConstant(0, VT);
1380 // X / undef -> undef
1381 if (N1.getOpcode() == ISD::UNDEF)
1382 return N1;
1384 return SDValue();
1387 SDValue DAGCombiner::visitUDIV(SDNode *N) {
1388 SDValue N0 = N->getOperand(0);
1389 SDValue N1 = N->getOperand(1);
1390 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1391 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1392 MVT VT = N->getValueType(0);
1394 // fold vector ops
1395 if (VT.isVector()) {
1396 SDValue FoldedVOp = SimplifyVBinOp(N);
1397 if (FoldedVOp.getNode()) return FoldedVOp;
1400 // fold (udiv c1, c2) -> c1/c2
1401 if (N0C && N1C && !N1C->isNullValue())
1402 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1403 // fold (udiv x, (1 << c)) -> x >>u c
1404 if (N1C && N1C->getAPIntValue().isPowerOf2())
1405 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1406 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1407 getShiftAmountTy()));
1408 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1409 if (N1.getOpcode() == ISD::SHL) {
1410 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1411 if (SHC->getAPIntValue().isPowerOf2()) {
1412 MVT ADDVT = N1.getOperand(1).getValueType();
1413 SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1414 N1.getOperand(1),
1415 DAG.getConstant(SHC->getAPIntValue()
1416 .logBase2(),
1417 ADDVT));
1418 AddToWorkList(Add.getNode());
1419 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1423 // fold (udiv x, c) -> alternate
1424 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1425 SDValue Op = BuildUDIV(N);
1426 if (Op.getNode()) return Op;
1429 // undef / X -> 0
1430 if (N0.getOpcode() == ISD::UNDEF)
1431 return DAG.getConstant(0, VT);
1432 // X / undef -> undef
1433 if (N1.getOpcode() == ISD::UNDEF)
1434 return N1;
1436 return SDValue();
1439 SDValue DAGCombiner::visitSREM(SDNode *N) {
1440 SDValue N0 = N->getOperand(0);
1441 SDValue N1 = N->getOperand(1);
1442 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1443 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1444 MVT VT = N->getValueType(0);
1446 // fold (srem c1, c2) -> c1%c2
1447 if (N0C && N1C && !N1C->isNullValue())
1448 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1449 // If we know the sign bits of both operands are zero, strength reduce to a
1450 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1451 if (!VT.isVector()) {
1452 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1453 return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1456 // If X/C can be simplified by the division-by-constant logic, lower
1457 // X%C to the equivalent of X-X/C*C.
1458 if (N1C && !N1C->isNullValue()) {
1459 SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1460 AddToWorkList(Div.getNode());
1461 SDValue OptimizedDiv = combine(Div.getNode());
1462 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1463 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1464 OptimizedDiv, N1);
1465 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1466 AddToWorkList(Mul.getNode());
1467 return Sub;
1471 // undef % X -> 0
1472 if (N0.getOpcode() == ISD::UNDEF)
1473 return DAG.getConstant(0, VT);
1474 // X % undef -> undef
1475 if (N1.getOpcode() == ISD::UNDEF)
1476 return N1;
1478 return SDValue();
1481 SDValue DAGCombiner::visitUREM(SDNode *N) {
1482 SDValue N0 = N->getOperand(0);
1483 SDValue N1 = N->getOperand(1);
1484 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1485 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1486 MVT VT = N->getValueType(0);
1488 // fold (urem c1, c2) -> c1%c2
1489 if (N0C && N1C && !N1C->isNullValue())
1490 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
1491 // fold (urem x, pow2) -> (and x, pow2-1)
1492 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1493 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
1494 DAG.getConstant(N1C->getAPIntValue()-1,VT));
1495 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1496 if (N1.getOpcode() == ISD::SHL) {
1497 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1498 if (SHC->getAPIntValue().isPowerOf2()) {
1499 SDValue Add =
1500 DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
1501 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
1502 VT));
1503 AddToWorkList(Add.getNode());
1504 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
1509 // If X/C can be simplified by the division-by-constant logic, lower
1510 // X%C to the equivalent of X-X/C*C.
1511 if (N1C && !N1C->isNullValue()) {
1512 SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
1513 AddToWorkList(Div.getNode());
1514 SDValue OptimizedDiv = combine(Div.getNode());
1515 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1516 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1517 OptimizedDiv, N1);
1518 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1519 AddToWorkList(Mul.getNode());
1520 return Sub;
1524 // undef % X -> 0
1525 if (N0.getOpcode() == ISD::UNDEF)
1526 return DAG.getConstant(0, VT);
1527 // X % undef -> undef
1528 if (N1.getOpcode() == ISD::UNDEF)
1529 return N1;
1531 return SDValue();
1534 SDValue DAGCombiner::visitMULHS(SDNode *N) {
1535 SDValue N0 = N->getOperand(0);
1536 SDValue N1 = N->getOperand(1);
1537 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1538 MVT VT = N->getValueType(0);
1540 // fold (mulhs x, 0) -> 0
1541 if (N1C && N1C->isNullValue())
1542 return N1;
1543 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1544 if (N1C && N1C->getAPIntValue() == 1)
1545 return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
1546 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
1547 getShiftAmountTy()));
1548 // fold (mulhs x, undef) -> 0
1549 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1550 return DAG.getConstant(0, VT);
1552 return SDValue();
1555 SDValue DAGCombiner::visitMULHU(SDNode *N) {
1556 SDValue N0 = N->getOperand(0);
1557 SDValue N1 = N->getOperand(1);
1558 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1559 MVT VT = N->getValueType(0);
1561 // fold (mulhu x, 0) -> 0
1562 if (N1C && N1C->isNullValue())
1563 return N1;
1564 // fold (mulhu x, 1) -> 0
1565 if (N1C && N1C->getAPIntValue() == 1)
1566 return DAG.getConstant(0, N0.getValueType());
1567 // fold (mulhu x, undef) -> 0
1568 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1569 return DAG.getConstant(0, VT);
1571 return SDValue();
1574 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1575 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1576 /// that are being performed. Return true if a simplification was made.
1578 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1579 unsigned HiOp) {
1580 // If the high half is not needed, just compute the low half.
1581 bool HiExists = N->hasAnyUseOfValue(1);
1582 if (!HiExists &&
1583 (!LegalOperations ||
1584 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1585 SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1586 N->op_begin(), N->getNumOperands());
1587 return CombineTo(N, Res, Res);
1590 // If the low half is not needed, just compute the high half.
1591 bool LoExists = N->hasAnyUseOfValue(0);
1592 if (!LoExists &&
1593 (!LegalOperations ||
1594 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1595 SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1596 N->op_begin(), N->getNumOperands());
1597 return CombineTo(N, Res, Res);
1600 // If both halves are used, return as it is.
1601 if (LoExists && HiExists)
1602 return SDValue();
1604 // If the two computed results can be simplified separately, separate them.
1605 if (LoExists) {
1606 SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1607 N->op_begin(), N->getNumOperands());
1608 AddToWorkList(Lo.getNode());
1609 SDValue LoOpt = combine(Lo.getNode());
1610 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
1611 (!LegalOperations ||
1612 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
1613 return CombineTo(N, LoOpt, LoOpt);
1616 if (HiExists) {
1617 SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1618 N->op_begin(), N->getNumOperands());
1619 AddToWorkList(Hi.getNode());
1620 SDValue HiOpt = combine(Hi.getNode());
1621 if (HiOpt.getNode() && HiOpt != Hi &&
1622 (!LegalOperations ||
1623 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
1624 return CombineTo(N, HiOpt, HiOpt);
1627 return SDValue();
1630 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1631 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1632 if (Res.getNode()) return Res;
1634 return SDValue();
1637 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1638 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1639 if (Res.getNode()) return Res;
1641 return SDValue();
1644 SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
1645 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1646 if (Res.getNode()) return Res;
1648 return SDValue();
1651 SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
1652 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1653 if (Res.getNode()) return Res;
1655 return SDValue();
1658 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1659 /// two operands of the same opcode, try to simplify it.
1660 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1661 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1662 MVT VT = N0.getValueType();
1663 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1665 // For each of OP in AND/OR/XOR:
1666 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1667 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1668 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1669 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1670 if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1671 N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1672 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1673 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1674 N0.getOperand(0).getValueType(),
1675 N0.getOperand(0), N1.getOperand(0));
1676 AddToWorkList(ORNode.getNode());
1677 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
1680 // For each of OP in SHL/SRL/SRA/AND...
1681 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1682 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1683 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1684 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1685 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1686 N0.getOperand(1) == N1.getOperand(1)) {
1687 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1688 N0.getOperand(0).getValueType(),
1689 N0.getOperand(0), N1.getOperand(0));
1690 AddToWorkList(ORNode.getNode());
1691 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
1692 ORNode, N0.getOperand(1));
1695 return SDValue();
1698 SDValue DAGCombiner::visitAND(SDNode *N) {
1699 SDValue N0 = N->getOperand(0);
1700 SDValue N1 = N->getOperand(1);
1701 SDValue LL, LR, RL, RR, CC0, CC1;
1702 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1703 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1704 MVT VT = N1.getValueType();
1705 unsigned BitWidth = VT.getSizeInBits();
1707 // fold vector ops
1708 if (VT.isVector()) {
1709 SDValue FoldedVOp = SimplifyVBinOp(N);
1710 if (FoldedVOp.getNode()) return FoldedVOp;
1713 // fold (and x, undef) -> 0
1714 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1715 return DAG.getConstant(0, VT);
1716 // fold (and c1, c2) -> c1&c2
1717 if (N0C && N1C)
1718 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
1719 // canonicalize constant to RHS
1720 if (N0C && !N1C)
1721 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
1722 // fold (and x, -1) -> x
1723 if (N1C && N1C->isAllOnesValue())
1724 return N0;
1725 // if (and x, c) is known to be zero, return 0
1726 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
1727 APInt::getAllOnesValue(BitWidth)))
1728 return DAG.getConstant(0, VT);
1729 // reassociate and
1730 SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
1731 if (RAND.getNode() != 0)
1732 return RAND;
1733 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1734 if (N1C && N0.getOpcode() == ISD::OR)
1735 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1736 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1737 return N1;
1738 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1739 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1740 SDValue N0Op0 = N0.getOperand(0);
1741 APInt Mask = ~N1C->getAPIntValue();
1742 Mask.trunc(N0Op0.getValueSizeInBits());
1743 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1744 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
1745 N0.getValueType(), N0Op0);
1747 // Replace uses of the AND with uses of the Zero extend node.
1748 CombineTo(N, Zext);
1750 // We actually want to replace all uses of the any_extend with the
1751 // zero_extend, to avoid duplicating things. This will later cause this
1752 // AND to be folded.
1753 CombineTo(N0.getNode(), Zext);
1754 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1757 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1758 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1759 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1760 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1762 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1763 LL.getValueType().isInteger()) {
1764 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1765 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1766 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1767 LR.getValueType(), LL, RL);
1768 AddToWorkList(ORNode.getNode());
1769 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1771 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1772 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1773 SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
1774 LR.getValueType(), LL, RL);
1775 AddToWorkList(ANDNode.getNode());
1776 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1778 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1779 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1780 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1781 LR.getValueType(), LL, RL);
1782 AddToWorkList(ORNode.getNode());
1783 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1786 // canonicalize equivalent to ll == rl
1787 if (LL == RR && LR == RL) {
1788 Op1 = ISD::getSetCCSwappedOperands(Op1);
1789 std::swap(RL, RR);
1791 if (LL == RL && LR == RR) {
1792 bool isInteger = LL.getValueType().isInteger();
1793 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1794 if (Result != ISD::SETCC_INVALID &&
1795 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
1796 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
1797 LL, LR, Result);
1801 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1802 if (N0.getOpcode() == N1.getOpcode()) {
1803 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1804 if (Tmp.getNode()) return Tmp;
1807 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1808 // fold (and (sra)) -> (and (srl)) when possible.
1809 if (!VT.isVector() &&
1810 SimplifyDemandedBits(SDValue(N, 0)))
1811 return SDValue(N, 0);
1812 // fold (zext_inreg (extload x)) -> (zextload x)
1813 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
1814 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1815 MVT EVT = LN0->getMemoryVT();
1816 // If we zero all the possible extended bits, then we can turn this into
1817 // a zextload if we are running before legalize or the operation is legal.
1818 unsigned BitWidth = N1.getValueSizeInBits();
1819 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1820 BitWidth - EVT.getSizeInBits())) &&
1821 ((!LegalOperations && !LN0->isVolatile()) ||
1822 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1823 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1824 LN0->getChain(), LN0->getBasePtr(),
1825 LN0->getSrcValue(),
1826 LN0->getSrcValueOffset(), EVT,
1827 LN0->isVolatile(), LN0->getAlignment());
1828 AddToWorkList(N);
1829 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1830 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1833 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1834 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
1835 N0.hasOneUse()) {
1836 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1837 MVT EVT = LN0->getMemoryVT();
1838 // If we zero all the possible extended bits, then we can turn this into
1839 // a zextload if we are running before legalize or the operation is legal.
1840 unsigned BitWidth = N1.getValueSizeInBits();
1841 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1842 BitWidth - EVT.getSizeInBits())) &&
1843 ((!LegalOperations && !LN0->isVolatile()) ||
1844 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1845 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1846 LN0->getChain(),
1847 LN0->getBasePtr(), LN0->getSrcValue(),
1848 LN0->getSrcValueOffset(), EVT,
1849 LN0->isVolatile(), LN0->getAlignment());
1850 AddToWorkList(N);
1851 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1852 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1856 // fold (and (load x), 255) -> (zextload x, i8)
1857 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1858 if (N1C && N0.getOpcode() == ISD::LOAD) {
1859 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1860 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1861 LN0->isUnindexed() && N0.hasOneUse() &&
1862 // Do not change the width of a volatile load.
1863 !LN0->isVolatile()) {
1864 MVT EVT = MVT::Other;
1865 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
1866 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
1867 EVT = MVT::getIntegerVT(ActiveBits);
1869 MVT LoadedVT = LN0->getMemoryVT();
1871 // Do not generate loads of non-round integer types since these can
1872 // be expensive (and would be wrong if the type is not byte sized).
1873 if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() &&
1874 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1875 MVT PtrType = N0.getOperand(1).getValueType();
1877 // For big endian targets, we need to add an offset to the pointer to
1878 // load the correct bytes. For little endian systems, we merely need to
1879 // read fewer bytes from the same pointer.
1880 unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8;
1881 unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8;
1882 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1883 unsigned Alignment = LN0->getAlignment();
1884 SDValue NewPtr = LN0->getBasePtr();
1886 if (TLI.isBigEndian()) {
1887 NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
1888 NewPtr, DAG.getConstant(PtrOff, PtrType));
1889 Alignment = MinAlign(Alignment, PtrOff);
1892 AddToWorkList(NewPtr.getNode());
1893 SDValue Load =
1894 DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
1895 NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
1896 EVT, LN0->isVolatile(), Alignment);
1897 AddToWorkList(N);
1898 CombineTo(N0.getNode(), Load, Load.getValue(1));
1899 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1904 return SDValue();
1907 SDValue DAGCombiner::visitOR(SDNode *N) {
1908 SDValue N0 = N->getOperand(0);
1909 SDValue N1 = N->getOperand(1);
1910 SDValue LL, LR, RL, RR, CC0, CC1;
1911 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1912 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1913 MVT VT = N1.getValueType();
1915 // fold vector ops
1916 if (VT.isVector()) {
1917 SDValue FoldedVOp = SimplifyVBinOp(N);
1918 if (FoldedVOp.getNode()) return FoldedVOp;
1921 // fold (or x, undef) -> -1
1922 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1923 return DAG.getConstant(~0ULL, VT);
1924 // fold (or c1, c2) -> c1|c2
1925 if (N0C && N1C)
1926 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
1927 // canonicalize constant to RHS
1928 if (N0C && !N1C)
1929 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
1930 // fold (or x, 0) -> x
1931 if (N1C && N1C->isNullValue())
1932 return N0;
1933 // fold (or x, -1) -> -1
1934 if (N1C && N1C->isAllOnesValue())
1935 return N1;
1936 // fold (or x, c) -> c iff (x & ~c) == 0
1937 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1938 return N1;
1939 // reassociate or
1940 SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
1941 if (ROR.getNode() != 0)
1942 return ROR;
1943 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1944 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1945 isa<ConstantSDNode>(N0.getOperand(1))) {
1946 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1947 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
1948 DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
1949 N0.getOperand(0), N1),
1950 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
1952 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1953 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1954 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1955 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1957 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1958 LL.getValueType().isInteger()) {
1959 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1960 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1961 if (cast<ConstantSDNode>(LR)->isNullValue() &&
1962 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1963 SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
1964 LR.getValueType(), LL, RL);
1965 AddToWorkList(ORNode.getNode());
1966 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1968 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1969 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1970 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1971 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1972 SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
1973 LR.getValueType(), LL, RL);
1974 AddToWorkList(ANDNode.getNode());
1975 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1978 // canonicalize equivalent to ll == rl
1979 if (LL == RR && LR == RL) {
1980 Op1 = ISD::getSetCCSwappedOperands(Op1);
1981 std::swap(RL, RR);
1983 if (LL == RL && LR == RR) {
1984 bool isInteger = LL.getValueType().isInteger();
1985 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1986 if (Result != ISD::SETCC_INVALID &&
1987 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
1988 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
1989 LL, LR, Result);
1993 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
1994 if (N0.getOpcode() == N1.getOpcode()) {
1995 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1996 if (Tmp.getNode()) return Tmp;
1999 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2000 if (N0.getOpcode() == ISD::AND &&
2001 N1.getOpcode() == ISD::AND &&
2002 N0.getOperand(1).getOpcode() == ISD::Constant &&
2003 N1.getOperand(1).getOpcode() == ISD::Constant &&
2004 // Don't increase # computations.
2005 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
2006 // We can only do this xform if we know that bits from X that are set in C2
2007 // but not in C1 are already zero. Likewise for Y.
2008 const APInt &LHSMask =
2009 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2010 const APInt &RHSMask =
2011 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
2013 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
2014 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
2015 SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
2016 N0.getOperand(0), N1.getOperand(0));
2017 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
2018 DAG.getConstant(LHSMask | RHSMask, VT));
2022 // See if this is some rotate idiom.
2023 if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
2024 return SDValue(Rot, 0);
2026 return SDValue();
2029 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2030 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
2031 if (Op.getOpcode() == ISD::AND) {
2032 if (isa<ConstantSDNode>(Op.getOperand(1))) {
2033 Mask = Op.getOperand(1);
2034 Op = Op.getOperand(0);
2035 } else {
2036 return false;
2040 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
2041 Shift = Op;
2042 return true;
2045 return false;
2048 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2049 // idioms for rotate, and if the target supports rotation instructions, generate
2050 // a rot[lr].
2051 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
2052 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2053 MVT VT = LHS.getValueType();
2054 if (!TLI.isTypeLegal(VT)) return 0;
2056 // The target must have at least one rotate flavor.
2057 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
2058 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
2059 if (!HasROTL && !HasROTR) return 0;
2061 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2062 SDValue LHSShift; // The shift.
2063 SDValue LHSMask; // AND value if any.
2064 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
2065 return 0; // Not part of a rotate.
2067 SDValue RHSShift; // The shift.
2068 SDValue RHSMask; // AND value if any.
2069 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
2070 return 0; // Not part of a rotate.
2072 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
2073 return 0; // Not shifting the same value.
2075 if (LHSShift.getOpcode() == RHSShift.getOpcode())
2076 return 0; // Shifts must disagree.
2078 // Canonicalize shl to left side in a shl/srl pair.
2079 if (RHSShift.getOpcode() == ISD::SHL) {
2080 std::swap(LHS, RHS);
2081 std::swap(LHSShift, RHSShift);
2082 std::swap(LHSMask , RHSMask );
2085 unsigned OpSizeInBits = VT.getSizeInBits();
2086 SDValue LHSShiftArg = LHSShift.getOperand(0);
2087 SDValue LHSShiftAmt = LHSShift.getOperand(1);
2088 SDValue RHSShiftAmt = RHSShift.getOperand(1);
2090 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2091 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2092 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
2093 RHSShiftAmt.getOpcode() == ISD::Constant) {
2094 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
2095 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
2096 if ((LShVal + RShVal) != OpSizeInBits)
2097 return 0;
2099 SDValue Rot;
2100 if (HasROTL)
2101 Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
2102 else
2103 Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
2105 // If there is an AND of either shifted operand, apply it to the result.
2106 if (LHSMask.getNode() || RHSMask.getNode()) {
2107 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2109 if (LHSMask.getNode()) {
2110 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2111 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2113 if (RHSMask.getNode()) {
2114 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2115 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2118 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
2121 return Rot.getNode();
2124 // If there is a mask here, and we have a variable shift, we can't be sure
2125 // that we're masking out the right stuff.
2126 if (LHSMask.getNode() || RHSMask.getNode())
2127 return 0;
2129 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2130 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2131 if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2132 LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2133 if (ConstantSDNode *SUBC =
2134 dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2135 if (SUBC->getAPIntValue() == OpSizeInBits) {
2136 if (HasROTL)
2137 return DAG.getNode(ISD::ROTL, DL, VT,
2138 LHSShiftArg, LHSShiftAmt).getNode();
2139 else
2140 return DAG.getNode(ISD::ROTR, DL, VT,
2141 LHSShiftArg, RHSShiftAmt).getNode();
2146 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2147 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2148 if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2149 RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2150 if (ConstantSDNode *SUBC =
2151 dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2152 if (SUBC->getAPIntValue() == OpSizeInBits) {
2153 if (HasROTR)
2154 return DAG.getNode(ISD::ROTR, DL, VT,
2155 LHSShiftArg, RHSShiftAmt).getNode();
2156 else
2157 return DAG.getNode(ISD::ROTL, DL, VT,
2158 LHSShiftArg, LHSShiftAmt).getNode();
2163 // Look for sign/zext/any-extended or truncate cases:
2164 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2165 || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2166 || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2167 || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
2168 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2169 || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2170 || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2171 || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
2172 SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
2173 SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
2174 if (RExtOp0.getOpcode() == ISD::SUB &&
2175 RExtOp0.getOperand(1) == LExtOp0) {
2176 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2177 // (rotl x, y)
2178 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2179 // (rotr x, (sub 32, y))
2180 if (ConstantSDNode *SUBC =
2181 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2182 if (SUBC->getAPIntValue() == OpSizeInBits) {
2183 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
2184 LHSShiftArg,
2185 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
2188 } else if (LExtOp0.getOpcode() == ISD::SUB &&
2189 RExtOp0 == LExtOp0.getOperand(1)) {
2190 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2191 // (rotr x, y)
2192 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2193 // (rotl x, (sub 32, y))
2194 if (ConstantSDNode *SUBC =
2195 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2196 if (SUBC->getAPIntValue() == OpSizeInBits) {
2197 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
2198 LHSShiftArg,
2199 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
2205 return 0;
2208 SDValue DAGCombiner::visitXOR(SDNode *N) {
2209 SDValue N0 = N->getOperand(0);
2210 SDValue N1 = N->getOperand(1);
2211 SDValue LHS, RHS, CC;
2212 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2213 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2214 MVT VT = N0.getValueType();
2216 // fold vector ops
2217 if (VT.isVector()) {
2218 SDValue FoldedVOp = SimplifyVBinOp(N);
2219 if (FoldedVOp.getNode()) return FoldedVOp;
2222 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2223 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
2224 return DAG.getConstant(0, VT);
2225 // fold (xor x, undef) -> undef
2226 if (N0.getOpcode() == ISD::UNDEF)
2227 return N0;
2228 if (N1.getOpcode() == ISD::UNDEF)
2229 return N1;
2230 // fold (xor c1, c2) -> c1^c2
2231 if (N0C && N1C)
2232 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
2233 // canonicalize constant to RHS
2234 if (N0C && !N1C)
2235 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
2236 // fold (xor x, 0) -> x
2237 if (N1C && N1C->isNullValue())
2238 return N0;
2239 // reassociate xor
2240 SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
2241 if (RXOR.getNode() != 0)
2242 return RXOR;
2244 // fold !(x cc y) -> (x !cc y)
2245 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2246 bool isInt = LHS.getValueType().isInteger();
2247 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2248 isInt);
2250 if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
2251 switch (N0.getOpcode()) {
2252 default:
2253 assert(0 && "Unhandled SetCC Equivalent!");
2254 abort();
2255 case ISD::SETCC:
2256 return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
2257 case ISD::SELECT_CC:
2258 return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
2259 N0.getOperand(3), NotCC);
2264 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2265 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2266 N0.getNode()->hasOneUse() &&
2267 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2268 SDValue V = N0.getOperand(0);
2269 V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
2270 DAG.getConstant(1, V.getValueType()));
2271 AddToWorkList(V.getNode());
2272 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
2275 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2276 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2277 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2278 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2279 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2280 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2281 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2282 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2283 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2284 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2287 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2288 if (N1C && N1C->isAllOnesValue() &&
2289 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2290 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2291 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2292 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2293 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2294 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2295 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2296 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2299 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2300 if (N1C && N0.getOpcode() == ISD::XOR) {
2301 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2302 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2303 if (N00C)
2304 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
2305 DAG.getConstant(N1C->getAPIntValue() ^
2306 N00C->getAPIntValue(), VT));
2307 if (N01C)
2308 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
2309 DAG.getConstant(N1C->getAPIntValue() ^
2310 N01C->getAPIntValue(), VT));
2312 // fold (xor x, x) -> 0
2313 if (N0 == N1) {
2314 if (!VT.isVector()) {
2315 return DAG.getConstant(0, VT);
2316 } else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){
2317 // Produce a vector of zeros.
2318 SDValue El = DAG.getConstant(0, VT.getVectorElementType());
2319 std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
2320 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
2321 &Ops[0], Ops.size());
2325 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2326 if (N0.getOpcode() == N1.getOpcode()) {
2327 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2328 if (Tmp.getNode()) return Tmp;
2331 // Simplify the expression using non-local knowledge.
2332 if (!VT.isVector() &&
2333 SimplifyDemandedBits(SDValue(N, 0)))
2334 return SDValue(N, 0);
2336 return SDValue();
2339 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2340 /// the shift amount is a constant.
2341 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2342 SDNode *LHS = N->getOperand(0).getNode();
2343 if (!LHS->hasOneUse()) return SDValue();
2345 // We want to pull some binops through shifts, so that we have (and (shift))
2346 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2347 // thing happens with address calculations, so it's important to canonicalize
2348 // it.
2349 bool HighBitSet = false; // Can we transform this if the high bit is set?
2351 switch (LHS->getOpcode()) {
2352 default: return SDValue();
2353 case ISD::OR:
2354 case ISD::XOR:
2355 HighBitSet = false; // We can only transform sra if the high bit is clear.
2356 break;
2357 case ISD::AND:
2358 HighBitSet = true; // We can only transform sra if the high bit is set.
2359 break;
2360 case ISD::ADD:
2361 if (N->getOpcode() != ISD::SHL)
2362 return SDValue(); // only shl(add) not sr[al](add).
2363 HighBitSet = false; // We can only transform sra if the high bit is clear.
2364 break;
2367 // We require the RHS of the binop to be a constant as well.
2368 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2369 if (!BinOpCst) return SDValue();
2371 // FIXME: disable this unless the input to the binop is a shift by a constant.
2372 // If it is not a shift, it pessimizes some common cases like:
2374 // void foo(int *X, int i) { X[i & 1235] = 1; }
2375 // int bar(int *X, int i) { return X[i & 255]; }
2376 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
2377 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2378 BinOpLHSVal->getOpcode() != ISD::SRA &&
2379 BinOpLHSVal->getOpcode() != ISD::SRL) ||
2380 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2381 return SDValue();
2383 MVT VT = N->getValueType(0);
2385 // If this is a signed shift right, and the high bit is modified by the
2386 // logical operation, do not perform the transformation. The highBitSet
2387 // boolean indicates the value of the high bit of the constant which would
2388 // cause it to be modified for this operation.
2389 if (N->getOpcode() == ISD::SRA) {
2390 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2391 if (BinOpRHSSignSet != HighBitSet)
2392 return SDValue();
2395 // Fold the constants, shifting the binop RHS by the shift amount.
2396 SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
2397 N->getValueType(0),
2398 LHS->getOperand(1), N->getOperand(1));
2400 // Create the new shift.
2401 SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(),
2402 VT, LHS->getOperand(0), N->getOperand(1));
2404 // Create the new binop.
2405 return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
2408 SDValue DAGCombiner::visitSHL(SDNode *N) {
2409 SDValue N0 = N->getOperand(0);
2410 SDValue N1 = N->getOperand(1);
2411 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2412 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2413 MVT VT = N0.getValueType();
2414 unsigned OpSizeInBits = VT.getSizeInBits();
2416 // fold (shl c1, c2) -> c1<<c2
2417 if (N0C && N1C)
2418 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
2419 // fold (shl 0, x) -> 0
2420 if (N0C && N0C->isNullValue())
2421 return N0;
2422 // fold (shl x, c >= size(x)) -> undef
2423 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2424 return DAG.getUNDEF(VT);
2425 // fold (shl x, 0) -> x
2426 if (N1C && N1C->isNullValue())
2427 return N0;
2428 // if (shl x, c) is known to be zero, return 0
2429 if (DAG.MaskedValueIsZero(SDValue(N, 0),
2430 APInt::getAllOnesValue(VT.getSizeInBits())))
2431 return DAG.getConstant(0, VT);
2432 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2433 if (N1.getOpcode() == ISD::TRUNCATE &&
2434 N1.getOperand(0).getOpcode() == ISD::AND &&
2435 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2436 SDValue N101 = N1.getOperand(0).getOperand(1);
2437 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2438 MVT TruncVT = N1.getValueType();
2439 SDValue N100 = N1.getOperand(0).getOperand(0);
2440 APInt TruncC = N101C->getAPIntValue();
2441 TruncC.trunc(TruncVT.getSizeInBits());
2442 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
2443 DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
2444 DAG.getNode(ISD::TRUNCATE,
2445 N->getDebugLoc(),
2446 TruncVT, N100),
2447 DAG.getConstant(TruncC, TruncVT)));
2451 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2452 return SDValue(N, 0);
2454 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2455 if (N1C && N0.getOpcode() == ISD::SHL &&
2456 N0.getOperand(1).getOpcode() == ISD::Constant) {
2457 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2458 uint64_t c2 = N1C->getZExtValue();
2459 if (c1 + c2 > OpSizeInBits)
2460 return DAG.getConstant(0, VT);
2461 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
2462 DAG.getConstant(c1 + c2, N1.getValueType()));
2464 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2465 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2466 if (N1C && N0.getOpcode() == ISD::SRL &&
2467 N0.getOperand(1).getOpcode() == ISD::Constant) {
2468 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2469 uint64_t c2 = N1C->getZExtValue();
2470 SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, N0.getOperand(0),
2471 DAG.getConstant(~0ULL << c1, VT));
2472 if (c2 > c1)
2473 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
2474 DAG.getConstant(c2-c1, N1.getValueType()));
2475 else
2476 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
2477 DAG.getConstant(c1-c2, N1.getValueType()));
2479 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2480 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2481 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
2482 DAG.getConstant(~0ULL << N1C->getZExtValue(), VT));
2484 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2487 SDValue DAGCombiner::visitSRA(SDNode *N) {
2488 SDValue N0 = N->getOperand(0);
2489 SDValue N1 = N->getOperand(1);
2490 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2491 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2492 MVT VT = N0.getValueType();
2494 // fold (sra c1, c2) -> (sra c1, c2)
2495 if (N0C && N1C)
2496 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
2497 // fold (sra 0, x) -> 0
2498 if (N0C && N0C->isNullValue())
2499 return N0;
2500 // fold (sra -1, x) -> -1
2501 if (N0C && N0C->isAllOnesValue())
2502 return N0;
2503 // fold (sra x, (setge c, size(x))) -> undef
2504 if (N1C && N1C->getZExtValue() >= VT.getSizeInBits())
2505 return DAG.getUNDEF(VT);
2506 // fold (sra x, 0) -> x
2507 if (N1C && N1C->isNullValue())
2508 return N0;
2509 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2510 // sext_inreg.
2511 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2512 unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getZExtValue();
2513 MVT EVT = MVT::getIntegerVT(LowBits);
2514 if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
2515 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
2516 N0.getOperand(0), DAG.getValueType(EVT));
2519 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2520 if (N1C && N0.getOpcode() == ISD::SRA) {
2521 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2522 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
2523 if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1;
2524 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
2525 DAG.getConstant(Sum, N1C->getValueType(0)));
2529 // fold (sra (shl X, m), (sub result_size, n))
2530 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2531 // result_size - n != m.
2532 // If truncate is free for the target sext(shl) is likely to result in better
2533 // code.
2534 if (N0.getOpcode() == ISD::SHL) {
2535 // Get the two constanst of the shifts, CN0 = m, CN = n.
2536 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2537 if (N01C && N1C) {
2538 // Determine what the truncate's result bitsize and type would be.
2539 unsigned VTValSize = VT.getSizeInBits();
2540 MVT TruncVT =
2541 MVT::getIntegerVT(VTValSize - N1C->getZExtValue());
2542 // Determine the residual right-shift amount.
2543 unsigned ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
2545 // If the shift is not a no-op (in which case this should be just a sign
2546 // extend already), the truncated to type is legal, sign_extend is legal
2547 // on that type, and the the truncate to that type is both legal and free,
2548 // perform the transform.
2549 if (ShiftAmt &&
2550 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
2551 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
2552 TLI.isTruncateFree(VT, TruncVT)) {
2554 SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy());
2555 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
2556 N0.getOperand(0), Amt);
2557 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
2558 Shift);
2559 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
2560 N->getValueType(0), Trunc);
2565 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2566 if (N1.getOpcode() == ISD::TRUNCATE &&
2567 N1.getOperand(0).getOpcode() == ISD::AND &&
2568 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2569 SDValue N101 = N1.getOperand(0).getOperand(1);
2570 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2571 MVT TruncVT = N1.getValueType();
2572 SDValue N100 = N1.getOperand(0).getOperand(0);
2573 APInt TruncC = N101C->getAPIntValue();
2574 TruncC.trunc(TruncVT.getSizeInBits());
2575 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
2576 DAG.getNode(ISD::AND, N->getDebugLoc(),
2577 TruncVT,
2578 DAG.getNode(ISD::TRUNCATE,
2579 N->getDebugLoc(),
2580 TruncVT, N100),
2581 DAG.getConstant(TruncC, TruncVT)));
2585 // Simplify, based on bits shifted out of the LHS.
2586 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2587 return SDValue(N, 0);
2590 // If the sign bit is known to be zero, switch this to a SRL.
2591 if (DAG.SignBitIsZero(N0))
2592 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
2594 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2597 SDValue DAGCombiner::visitSRL(SDNode *N) {
2598 SDValue N0 = N->getOperand(0);
2599 SDValue N1 = N->getOperand(1);
2600 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2601 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2602 MVT VT = N0.getValueType();
2603 unsigned OpSizeInBits = VT.getSizeInBits();
2605 // fold (srl c1, c2) -> c1 >>u c2
2606 if (N0C && N1C)
2607 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
2608 // fold (srl 0, x) -> 0
2609 if (N0C && N0C->isNullValue())
2610 return N0;
2611 // fold (srl x, c >= size(x)) -> undef
2612 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2613 return DAG.getUNDEF(VT);
2614 // fold (srl x, 0) -> x
2615 if (N1C && N1C->isNullValue())
2616 return N0;
2617 // if (srl x, c) is known to be zero, return 0
2618 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2619 APInt::getAllOnesValue(OpSizeInBits)))
2620 return DAG.getConstant(0, VT);
2622 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2623 if (N1C && N0.getOpcode() == ISD::SRL &&
2624 N0.getOperand(1).getOpcode() == ISD::Constant) {
2625 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2626 uint64_t c2 = N1C->getZExtValue();
2627 if (c1 + c2 > OpSizeInBits)
2628 return DAG.getConstant(0, VT);
2629 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
2630 DAG.getConstant(c1 + c2, N1.getValueType()));
2633 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2634 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2635 // Shifting in all undef bits?
2636 MVT SmallVT = N0.getOperand(0).getValueType();
2637 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
2638 return DAG.getUNDEF(VT);
2640 SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
2641 N0.getOperand(0), N1);
2642 AddToWorkList(SmallShift.getNode());
2643 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
2646 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2647 // bit, which is unmodified by sra.
2648 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
2649 if (N0.getOpcode() == ISD::SRA)
2650 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
2653 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2654 if (N1C && N0.getOpcode() == ISD::CTLZ &&
2655 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
2656 APInt KnownZero, KnownOne;
2657 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
2658 DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2660 // If any of the input bits are KnownOne, then the input couldn't be all
2661 // zeros, thus the result of the srl will always be zero.
2662 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2664 // If all of the bits input the to ctlz node are known to be zero, then
2665 // the result of the ctlz is "32" and the result of the shift is one.
2666 APInt UnknownBits = ~KnownZero & Mask;
2667 if (UnknownBits == 0) return DAG.getConstant(1, VT);
2669 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2670 if ((UnknownBits & (UnknownBits - 1)) == 0) {
2671 // Okay, we know that only that the single bit specified by UnknownBits
2672 // could be set on input to the CTLZ node. If this bit is set, the SRL
2673 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2674 // to an SRL/XOR pair, which is likely to simplify more.
2675 unsigned ShAmt = UnknownBits.countTrailingZeros();
2676 SDValue Op = N0.getOperand(0);
2678 if (ShAmt) {
2679 Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
2680 DAG.getConstant(ShAmt, getShiftAmountTy()));
2681 AddToWorkList(Op.getNode());
2684 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
2685 Op, DAG.getConstant(1, VT));
2689 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2690 if (N1.getOpcode() == ISD::TRUNCATE &&
2691 N1.getOperand(0).getOpcode() == ISD::AND &&
2692 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2693 SDValue N101 = N1.getOperand(0).getOperand(1);
2694 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2695 MVT TruncVT = N1.getValueType();
2696 SDValue N100 = N1.getOperand(0).getOperand(0);
2697 APInt TruncC = N101C->getAPIntValue();
2698 TruncC.trunc(TruncVT.getSizeInBits());
2699 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
2700 DAG.getNode(ISD::AND, N->getDebugLoc(),
2701 TruncVT,
2702 DAG.getNode(ISD::TRUNCATE,
2703 N->getDebugLoc(),
2704 TruncVT, N100),
2705 DAG.getConstant(TruncC, TruncVT)));
2709 // fold operands of srl based on knowledge that the low bits are not
2710 // demanded.
2711 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2712 return SDValue(N, 0);
2714 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2717 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
2718 SDValue N0 = N->getOperand(0);
2719 MVT VT = N->getValueType(0);
2721 // fold (ctlz c1) -> c2
2722 if (isa<ConstantSDNode>(N0))
2723 return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
2724 return SDValue();
2727 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
2728 SDValue N0 = N->getOperand(0);
2729 MVT VT = N->getValueType(0);
2731 // fold (cttz c1) -> c2
2732 if (isa<ConstantSDNode>(N0))
2733 return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
2734 return SDValue();
2737 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
2738 SDValue N0 = N->getOperand(0);
2739 MVT VT = N->getValueType(0);
2741 // fold (ctpop c1) -> c2
2742 if (isa<ConstantSDNode>(N0))
2743 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
2744 return SDValue();
2747 SDValue DAGCombiner::visitSELECT(SDNode *N) {
2748 SDValue N0 = N->getOperand(0);
2749 SDValue N1 = N->getOperand(1);
2750 SDValue N2 = N->getOperand(2);
2751 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2752 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2753 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2754 MVT VT = N->getValueType(0);
2755 MVT VT0 = N0.getValueType();
2757 // fold (select C, X, X) -> X
2758 if (N1 == N2)
2759 return N1;
2760 // fold (select true, X, Y) -> X
2761 if (N0C && !N0C->isNullValue())
2762 return N1;
2763 // fold (select false, X, Y) -> Y
2764 if (N0C && N0C->isNullValue())
2765 return N2;
2766 // fold (select C, 1, X) -> (or C, X)
2767 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
2768 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2769 // fold (select C, 0, 1) -> (xor C, 1)
2770 if (VT.isInteger() &&
2771 (VT0 == MVT::i1 ||
2772 (VT0.isInteger() &&
2773 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) &&
2774 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2775 SDValue XORNode;
2776 if (VT == VT0)
2777 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
2778 N0, DAG.getConstant(1, VT0));
2779 XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
2780 N0, DAG.getConstant(1, VT0));
2781 AddToWorkList(XORNode.getNode());
2782 if (VT.bitsGT(VT0))
2783 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
2784 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
2786 // fold (select C, 0, X) -> (and (not C), X)
2787 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2788 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2789 AddToWorkList(NOTNode.getNode());
2790 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
2792 // fold (select C, X, 1) -> (or (not C), X)
2793 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2794 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2795 AddToWorkList(NOTNode.getNode());
2796 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
2798 // fold (select C, X, 0) -> (and C, X)
2799 if (VT == MVT::i1 && N2C && N2C->isNullValue())
2800 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2801 // fold (select X, X, Y) -> (or X, Y)
2802 // fold (select X, 1, Y) -> (or X, Y)
2803 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
2804 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2805 // fold (select X, Y, X) -> (and X, Y)
2806 // fold (select X, Y, 0) -> (and X, Y)
2807 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
2808 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2810 // If we can fold this based on the true/false value, do so.
2811 if (SimplifySelectOps(N, N1, N2))
2812 return SDValue(N, 0); // Don't revisit N.
2814 // fold selects based on a setcc into other things, such as min/max/abs
2815 if (N0.getOpcode() == ISD::SETCC) {
2816 // FIXME:
2817 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2818 // having to say they don't support SELECT_CC on every type the DAG knows
2819 // about, since there is no way to mark an opcode illegal at all value types
2820 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other))
2821 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
2822 N0.getOperand(0), N0.getOperand(1),
2823 N1, N2, N0.getOperand(2));
2824 return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
2827 return SDValue();
2830 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
2831 SDValue N0 = N->getOperand(0);
2832 SDValue N1 = N->getOperand(1);
2833 SDValue N2 = N->getOperand(2);
2834 SDValue N3 = N->getOperand(3);
2835 SDValue N4 = N->getOperand(4);
2836 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2838 // fold select_cc lhs, rhs, x, x, cc -> x
2839 if (N2 == N3)
2840 return N2;
2842 // Determine if the condition we're dealing with is constant
2843 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
2844 N0, N1, CC, N->getDebugLoc(), false);
2845 if (SCC.getNode()) AddToWorkList(SCC.getNode());
2847 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
2848 if (!SCCC->isNullValue())
2849 return N2; // cond always true -> true val
2850 else
2851 return N3; // cond always false -> false val
2854 // Fold to a simpler select_cc
2855 if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
2856 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
2857 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2858 SCC.getOperand(2));
2860 // If we can fold this based on the true/false value, do so.
2861 if (SimplifySelectOps(N, N2, N3))
2862 return SDValue(N, 0); // Don't revisit N.
2864 // fold select_cc into other things, such as min/max/abs
2865 return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
2868 SDValue DAGCombiner::visitSETCC(SDNode *N) {
2869 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2870 cast<CondCodeSDNode>(N->getOperand(2))->get(),
2871 N->getDebugLoc());
2874 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2875 // "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2876 // transformation. Returns true if extension are possible and the above
2877 // mentioned transformation is profitable.
2878 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
2879 unsigned ExtOpc,
2880 SmallVector<SDNode*, 4> &ExtendNodes,
2881 const TargetLowering &TLI) {
2882 bool HasCopyToRegUses = false;
2883 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2884 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
2885 UE = N0.getNode()->use_end();
2886 UI != UE; ++UI) {
2887 SDNode *User = *UI;
2888 if (User == N)
2889 continue;
2890 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2891 if (User->getOpcode() == ISD::SETCC) {
2892 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2893 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2894 // Sign bits will be lost after a zext.
2895 return false;
2896 bool Add = false;
2897 for (unsigned i = 0; i != 2; ++i) {
2898 SDValue UseOp = User->getOperand(i);
2899 if (UseOp == N0)
2900 continue;
2901 if (!isa<ConstantSDNode>(UseOp))
2902 return false;
2903 Add = true;
2905 if (Add)
2906 ExtendNodes.push_back(User);
2907 } else {
2908 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2909 SDValue UseOp = User->getOperand(i);
2910 if (UseOp == N0) {
2911 // If truncate from extended type to original load type is free
2912 // on this target, then it's ok to extend a CopyToReg.
2913 if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2914 HasCopyToRegUses = true;
2915 else
2916 return false;
2922 if (HasCopyToRegUses) {
2923 bool BothLiveOut = false;
2924 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2925 UI != UE; ++UI) {
2926 SDNode *User = *UI;
2927 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2928 SDValue UseOp = User->getOperand(i);
2929 if (UseOp.getNode() == N && UseOp.getResNo() == 0) {
2930 BothLiveOut = true;
2931 break;
2935 if (BothLiveOut)
2936 // Both unextended and extended values are live out. There had better be
2937 // good a reason for the transformation.
2938 return ExtendNodes.size();
2940 return true;
2943 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2944 SDValue N0 = N->getOperand(0);
2945 MVT VT = N->getValueType(0);
2947 // fold (sext c1) -> c1
2948 if (isa<ConstantSDNode>(N0))
2949 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
2951 // fold (sext (sext x)) -> (sext x)
2952 // fold (sext (aext x)) -> (sext x)
2953 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2954 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
2955 N0.getOperand(0));
2957 if (N0.getOpcode() == ISD::TRUNCATE) {
2958 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2959 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2960 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
2961 if (NarrowLoad.getNode()) {
2962 if (NarrowLoad.getNode() != N0.getNode())
2963 CombineTo(N0.getNode(), NarrowLoad);
2964 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
2967 // See if the value being truncated is already sign extended. If so, just
2968 // eliminate the trunc/sext pair.
2969 SDValue Op = N0.getOperand(0);
2970 unsigned OpBits = Op.getValueType().getSizeInBits();
2971 unsigned MidBits = N0.getValueType().getSizeInBits();
2972 unsigned DestBits = VT.getSizeInBits();
2973 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2975 if (OpBits == DestBits) {
2976 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2977 // bits, it is already ready.
2978 if (NumSignBits > DestBits-MidBits)
2979 return Op;
2980 } else if (OpBits < DestBits) {
2981 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2982 // bits, just sext from i32.
2983 if (NumSignBits > OpBits-MidBits)
2984 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
2985 } else {
2986 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2987 // bits, just truncate to i32.
2988 if (NumSignBits > OpBits-MidBits)
2989 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
2992 // fold (sext (truncate x)) -> (sextinreg x).
2993 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2994 N0.getValueType())) {
2995 if (Op.getValueType().bitsLT(VT))
2996 Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
2997 else if (Op.getValueType().bitsGT(VT))
2998 Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
2999 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
3000 DAG.getValueType(N0.getValueType()));
3004 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3005 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3006 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3007 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
3008 bool DoXform = true;
3009 SmallVector<SDNode*, 4> SetCCs;
3010 if (!N0.hasOneUse())
3011 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
3012 if (DoXform) {
3013 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3014 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(),
3015 VT, LN0->getChain(),
3016 LN0->getBasePtr(), LN0->getSrcValue(),
3017 LN0->getSrcValueOffset(),
3018 N0.getValueType(),
3019 LN0->isVolatile(), LN0->getAlignment());
3020 CombineTo(N, ExtLoad);
3021 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3022 N0.getValueType(), ExtLoad);
3023 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3025 // Extend SetCC uses if necessary.
3026 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3027 SDNode *SetCC = SetCCs[i];
3028 SmallVector<SDValue, 4> Ops;
3030 for (unsigned j = 0; j != 2; ++j) {
3031 SDValue SOp = SetCC->getOperand(j);
3032 if (SOp == Trunc)
3033 Ops.push_back(ExtLoad);
3034 else
3035 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3036 VT, SOp));
3039 Ops.push_back(SetCC->getOperand(2));
3040 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3041 SetCC->getValueType(0),
3042 &Ops[0], Ops.size()));
3045 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3049 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3050 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3051 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3052 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3053 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3054 MVT EVT = LN0->getMemoryVT();
3055 if ((!LegalOperations && !LN0->isVolatile()) ||
3056 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT)) {
3057 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3058 LN0->getChain(),
3059 LN0->getBasePtr(), LN0->getSrcValue(),
3060 LN0->getSrcValueOffset(), EVT,
3061 LN0->isVolatile(), LN0->getAlignment());
3062 CombineTo(N, ExtLoad);
3063 CombineTo(N0.getNode(),
3064 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3065 N0.getValueType(), ExtLoad),
3066 ExtLoad.getValue(1));
3067 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3071 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3072 if (N0.getOpcode() == ISD::SETCC) {
3073 SDValue SCC =
3074 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3075 DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
3076 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3077 if (SCC.getNode()) return SCC;
3080 // fold (sext x) -> (zext x) if the sign bit is known zero.
3081 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
3082 DAG.SignBitIsZero(N0))
3083 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3085 return SDValue();
3088 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
3089 SDValue N0 = N->getOperand(0);
3090 MVT VT = N->getValueType(0);
3092 // fold (zext c1) -> c1
3093 if (isa<ConstantSDNode>(N0))
3094 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3095 // fold (zext (zext x)) -> (zext x)
3096 // fold (zext (aext x)) -> (zext x)
3097 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
3098 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
3099 N0.getOperand(0));
3101 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3102 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3103 if (N0.getOpcode() == ISD::TRUNCATE) {
3104 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3105 if (NarrowLoad.getNode()) {
3106 if (NarrowLoad.getNode() != N0.getNode())
3107 CombineTo(N0.getNode(), NarrowLoad);
3108 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3112 // fold (zext (truncate x)) -> (and x, mask)
3113 if (N0.getOpcode() == ISD::TRUNCATE &&
3114 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
3115 SDValue Op = N0.getOperand(0);
3116 if (Op.getValueType().bitsLT(VT)) {
3117 Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
3118 } else if (Op.getValueType().bitsGT(VT)) {
3119 Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
3121 return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), N0.getValueType());
3124 // fold (zext (and (trunc x), cst)) -> (and x, cst).
3125 if (N0.getOpcode() == ISD::AND &&
3126 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3127 N0.getOperand(1).getOpcode() == ISD::Constant) {
3128 SDValue X = N0.getOperand(0).getOperand(0);
3129 if (X.getValueType().bitsLT(VT)) {
3130 X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
3131 } else if (X.getValueType().bitsGT(VT)) {
3132 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3134 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3135 Mask.zext(VT.getSizeInBits());
3136 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3137 X, DAG.getConstant(Mask, VT));
3140 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3141 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3142 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3143 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
3144 bool DoXform = true;
3145 SmallVector<SDNode*, 4> SetCCs;
3146 if (!N0.hasOneUse())
3147 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
3148 if (DoXform) {
3149 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3150 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3151 LN0->getChain(),
3152 LN0->getBasePtr(), LN0->getSrcValue(),
3153 LN0->getSrcValueOffset(),
3154 N0.getValueType(),
3155 LN0->isVolatile(), LN0->getAlignment());
3156 CombineTo(N, ExtLoad);
3157 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3158 N0.getValueType(), ExtLoad);
3159 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3161 // Extend SetCC uses if necessary.
3162 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3163 SDNode *SetCC = SetCCs[i];
3164 SmallVector<SDValue, 4> Ops;
3166 for (unsigned j = 0; j != 2; ++j) {
3167 SDValue SOp = SetCC->getOperand(j);
3168 if (SOp == Trunc)
3169 Ops.push_back(ExtLoad);
3170 else
3171 Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND,
3172 N->getDebugLoc(), VT, SOp));
3175 Ops.push_back(SetCC->getOperand(2));
3176 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3177 SetCC->getValueType(0),
3178 &Ops[0], Ops.size()));
3181 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3185 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3186 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3187 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3188 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3189 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3190 MVT EVT = LN0->getMemoryVT();
3191 if ((!LegalOperations && !LN0->isVolatile()) ||
3192 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT)) {
3193 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3194 LN0->getChain(),
3195 LN0->getBasePtr(), LN0->getSrcValue(),
3196 LN0->getSrcValueOffset(), EVT,
3197 LN0->isVolatile(), LN0->getAlignment());
3198 CombineTo(N, ExtLoad);
3199 CombineTo(N0.getNode(),
3200 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
3201 ExtLoad),
3202 ExtLoad.getValue(1));
3203 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3207 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3208 if (N0.getOpcode() == ISD::SETCC) {
3209 SDValue SCC =
3210 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3211 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3212 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3213 if (SCC.getNode()) return SCC;
3216 return SDValue();
3219 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
3220 SDValue N0 = N->getOperand(0);
3221 MVT VT = N->getValueType(0);
3223 // fold (aext c1) -> c1
3224 if (isa<ConstantSDNode>(N0))
3225 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
3226 // fold (aext (aext x)) -> (aext x)
3227 // fold (aext (zext x)) -> (zext x)
3228 // fold (aext (sext x)) -> (sext x)
3229 if (N0.getOpcode() == ISD::ANY_EXTEND ||
3230 N0.getOpcode() == ISD::ZERO_EXTEND ||
3231 N0.getOpcode() == ISD::SIGN_EXTEND)
3232 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
3234 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3235 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3236 if (N0.getOpcode() == ISD::TRUNCATE) {
3237 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3238 if (NarrowLoad.getNode()) {
3239 if (NarrowLoad.getNode() != N0.getNode())
3240 CombineTo(N0.getNode(), NarrowLoad);
3241 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3245 // fold (aext (truncate x))
3246 if (N0.getOpcode() == ISD::TRUNCATE) {
3247 SDValue TruncOp = N0.getOperand(0);
3248 if (TruncOp.getValueType() == VT)
3249 return TruncOp; // x iff x size == zext size.
3250 if (TruncOp.getValueType().bitsGT(VT))
3251 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
3252 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
3255 // fold (aext (and (trunc x), cst)) -> (and x, cst).
3256 if (N0.getOpcode() == ISD::AND &&
3257 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3258 N0.getOperand(1).getOpcode() == ISD::Constant) {
3259 SDValue X = N0.getOperand(0).getOperand(0);
3260 if (X.getValueType().bitsLT(VT)) {
3261 X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
3262 } else if (X.getValueType().bitsGT(VT)) {
3263 X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
3265 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3266 Mask.zext(VT.getSizeInBits());
3267 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3268 X, DAG.getConstant(Mask, VT));
3271 // fold (aext (load x)) -> (aext (truncate (extload x)))
3272 if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
3273 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3274 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
3275 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3276 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
3277 LN0->getChain(),
3278 LN0->getBasePtr(), LN0->getSrcValue(),
3279 LN0->getSrcValueOffset(),
3280 N0.getValueType(),
3281 LN0->isVolatile(), LN0->getAlignment());
3282 CombineTo(N, ExtLoad);
3283 // Redirect any chain users to the new load.
3284 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1),
3285 SDValue(ExtLoad.getNode(), 1));
3286 // If any node needs the original loaded value, recompute it.
3287 if (!LN0->use_empty())
3288 CombineTo(LN0, DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3289 N0.getValueType(), ExtLoad),
3290 ExtLoad.getValue(1));
3291 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3294 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3295 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3296 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3297 if (N0.getOpcode() == ISD::LOAD &&
3298 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3299 N0.hasOneUse()) {
3300 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3301 MVT EVT = LN0->getMemoryVT();
3302 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
3303 VT, LN0->getChain(), LN0->getBasePtr(),
3304 LN0->getSrcValue(),
3305 LN0->getSrcValueOffset(), EVT,
3306 LN0->isVolatile(), LN0->getAlignment());
3307 CombineTo(N, ExtLoad);
3308 CombineTo(N0.getNode(),
3309 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3310 N0.getValueType(), ExtLoad),
3311 ExtLoad.getValue(1));
3312 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3315 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3316 if (N0.getOpcode() == ISD::SETCC) {
3317 SDValue SCC =
3318 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3319 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3320 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3321 if (SCC.getNode())
3322 return SCC;
3325 return SDValue();
3328 /// GetDemandedBits - See if the specified operand can be simplified with the
3329 /// knowledge that only the bits specified by Mask are used. If so, return the
3330 /// simpler operand, otherwise return a null SDValue.
3331 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
3332 switch (V.getOpcode()) {
3333 default: break;
3334 case ISD::OR:
3335 case ISD::XOR:
3336 // If the LHS or RHS don't contribute bits to the or, drop them.
3337 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3338 return V.getOperand(1);
3339 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3340 return V.getOperand(0);
3341 break;
3342 case ISD::SRL:
3343 // Only look at single-use SRLs.
3344 if (!V.getNode()->hasOneUse())
3345 break;
3346 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3347 // See if we can recursively simplify the LHS.
3348 unsigned Amt = RHSC->getZExtValue();
3350 // Watch out for shift count overflow though.
3351 if (Amt >= Mask.getBitWidth()) break;
3352 APInt NewMask = Mask << Amt;
3353 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3354 if (SimplifyLHS.getNode())
3355 return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
3356 SimplifyLHS, V.getOperand(1));
3359 return SDValue();
3362 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3363 /// bits and then truncated to a narrower type and where N is a multiple
3364 /// of number of bits of the narrower type, transform it to a narrower load
3365 /// from address + N / num of bits of new type. If the result is to be
3366 /// extended, also fold the extension to form a extending load.
3367 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
3368 unsigned Opc = N->getOpcode();
3369 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3370 SDValue N0 = N->getOperand(0);
3371 MVT VT = N->getValueType(0);
3372 MVT EVT = VT;
3374 // This transformation isn't valid for vector loads.
3375 if (VT.isVector())
3376 return SDValue();
3378 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3379 // extended to VT.
3380 if (Opc == ISD::SIGN_EXTEND_INREG) {
3381 ExtType = ISD::SEXTLOAD;
3382 EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3383 if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))
3384 return SDValue();
3387 unsigned EVTBits = EVT.getSizeInBits();
3388 unsigned ShAmt = 0;
3389 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3390 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3391 ShAmt = N01->getZExtValue();
3392 // Is the shift amount a multiple of size of VT?
3393 if ((ShAmt & (EVTBits-1)) == 0) {
3394 N0 = N0.getOperand(0);
3395 if (N0.getValueType().getSizeInBits() <= EVTBits)
3396 return SDValue();
3401 // Do not generate loads of non-round integer types since these can
3402 // be expensive (and would be wrong if the type is not byte sized).
3403 if (isa<LoadSDNode>(N0) && N0.hasOneUse() && EVT.isRound() &&
3404 cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
3405 // Do not change the width of a volatile load.
3406 !cast<LoadSDNode>(N0)->isVolatile()) {
3407 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3408 MVT PtrType = N0.getOperand(1).getValueType();
3410 // For big endian targets, we need to adjust the offset to the pointer to
3411 // load the correct bytes.
3412 if (TLI.isBigEndian()) {
3413 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
3414 unsigned EVTStoreBits = EVT.getStoreSizeInBits();
3415 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3418 uint64_t PtrOff = ShAmt / 8;
3419 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3420 SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
3421 PtrType, LN0->getBasePtr(),
3422 DAG.getConstant(PtrOff, PtrType));
3423 AddToWorkList(NewPtr.getNode());
3425 SDValue Load = (ExtType == ISD::NON_EXTLOAD)
3426 ? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
3427 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3428 LN0->isVolatile(), NewAlign)
3429 : DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
3430 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3431 EVT, LN0->isVolatile(), NewAlign);
3433 // Replace the old load's chain with the new load's chain.
3434 WorkListRemover DeadNodes(*this);
3435 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3436 &DeadNodes);
3438 // Return the new loaded value.
3439 return Load;
3442 return SDValue();
3445 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3446 SDValue N0 = N->getOperand(0);
3447 SDValue N1 = N->getOperand(1);
3448 MVT VT = N->getValueType(0);
3449 MVT EVT = cast<VTSDNode>(N1)->getVT();
3450 unsigned VTBits = VT.getSizeInBits();
3451 unsigned EVTBits = EVT.getSizeInBits();
3453 // fold (sext_in_reg c1) -> c1
3454 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3455 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
3457 // If the input is already sign extended, just drop the extension.
3458 if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1)
3459 return N0;
3461 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3462 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3463 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
3464 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3465 N0.getOperand(0), N1);
3468 // fold (sext_in_reg (sext x)) -> (sext x)
3469 // fold (sext_in_reg (aext x)) -> (sext x)
3470 // if x is small enough.
3471 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
3472 SDValue N00 = N0.getOperand(0);
3473 if (N00.getValueType().getSizeInBits() < EVTBits)
3474 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
3477 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3478 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3479 return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
3481 // fold operands of sext_in_reg based on knowledge that the top bits are not
3482 // demanded.
3483 if (SimplifyDemandedBits(SDValue(N, 0)))
3484 return SDValue(N, 0);
3486 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3487 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3488 SDValue NarrowLoad = ReduceLoadWidth(N);
3489 if (NarrowLoad.getNode())
3490 return NarrowLoad;
3492 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3493 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3494 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3495 if (N0.getOpcode() == ISD::SRL) {
3496 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3497 if (ShAmt->getZExtValue()+EVTBits <= VT.getSizeInBits()) {
3498 // We can turn this into an SRA iff the input to the SRL is already sign
3499 // extended enough.
3500 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3501 if (VT.getSizeInBits()-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
3502 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
3503 N0.getOperand(0), N0.getOperand(1));
3507 // fold (sext_inreg (extload x)) -> (sextload x)
3508 if (ISD::isEXTLoad(N0.getNode()) &&
3509 ISD::isUNINDEXEDLoad(N0.getNode()) &&
3510 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3511 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3512 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3513 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3514 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3515 LN0->getChain(),
3516 LN0->getBasePtr(), LN0->getSrcValue(),
3517 LN0->getSrcValueOffset(), EVT,
3518 LN0->isVolatile(), LN0->getAlignment());
3519 CombineTo(N, ExtLoad);
3520 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3521 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3523 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3524 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3525 N0.hasOneUse() &&
3526 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3527 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3528 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3529 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3530 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3531 LN0->getChain(),
3532 LN0->getBasePtr(), LN0->getSrcValue(),
3533 LN0->getSrcValueOffset(), EVT,
3534 LN0->isVolatile(), LN0->getAlignment());
3535 CombineTo(N, ExtLoad);
3536 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3537 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3539 return SDValue();
3542 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
3543 SDValue N0 = N->getOperand(0);
3544 MVT VT = N->getValueType(0);
3546 // noop truncate
3547 if (N0.getValueType() == N->getValueType(0))
3548 return N0;
3549 // fold (truncate c1) -> c1
3550 if (isa<ConstantSDNode>(N0))
3551 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
3552 // fold (truncate (truncate x)) -> (truncate x)
3553 if (N0.getOpcode() == ISD::TRUNCATE)
3554 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3555 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3556 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3557 N0.getOpcode() == ISD::ANY_EXTEND) {
3558 if (N0.getOperand(0).getValueType().bitsLT(VT))
3559 // if the source is smaller than the dest, we still need an extend
3560 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
3561 N0.getOperand(0));
3562 else if (N0.getOperand(0).getValueType().bitsGT(VT))
3563 // if the source is larger than the dest, than we just need the truncate
3564 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3565 else
3566 // if the source and dest are the same type, we can drop both the extend
3567 // and the truncate
3568 return N0.getOperand(0);
3571 // See if we can simplify the input to this truncate through knowledge that
3572 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3573 // -> trunc y
3574 SDValue Shorter =
3575 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3576 VT.getSizeInBits()));
3577 if (Shorter.getNode())
3578 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
3580 // fold (truncate (load x)) -> (smaller load x)
3581 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3582 return ReduceLoadWidth(N);
3585 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
3586 SDValue Elt = N->getOperand(i);
3587 if (Elt.getOpcode() != ISD::MERGE_VALUES)
3588 return Elt.getNode();
3589 return Elt.getOperand(Elt.getResNo()).getNode();
3592 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3593 /// if load locations are consecutive.
3594 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
3595 assert(N->getOpcode() == ISD::BUILD_PAIR);
3597 SDNode *LD1 = getBuildPairElt(N, 0);
3598 if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
3599 return SDValue();
3600 MVT LD1VT = LD1->getValueType(0);
3601 SDNode *LD2 = getBuildPairElt(N, 1);
3602 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3604 if (ISD::isNON_EXTLoad(LD2) &&
3605 LD2->hasOneUse() &&
3606 // If both are volatile this would reduce the number of volatile loads.
3607 // If one is volatile it might be ok, but play conservative and bail out.
3608 !cast<LoadSDNode>(LD1)->isVolatile() &&
3609 !cast<LoadSDNode>(LD2)->isVolatile() &&
3610 TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
3611 LoadSDNode *LD = cast<LoadSDNode>(LD1);
3612 unsigned Align = LD->getAlignment();
3613 unsigned NewAlign = TLI.getTargetData()->
3614 getABITypeAlignment(VT.getTypeForMVT());
3616 if (NewAlign <= Align &&
3617 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
3618 return DAG.getLoad(VT, N->getDebugLoc(), LD->getChain(), LD->getBasePtr(),
3619 LD->getSrcValue(), LD->getSrcValueOffset(),
3620 false, Align);
3623 return SDValue();
3626 SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3627 SDValue N0 = N->getOperand(0);
3628 MVT VT = N->getValueType(0);
3630 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3631 // Only do this before legalize, since afterward the target may be depending
3632 // on the bitconvert.
3633 // First check to see if this is all constant.
3634 if (!LegalTypes &&
3635 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
3636 VT.isVector()) {
3637 bool isSimple = true;
3638 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3639 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3640 N0.getOperand(i).getOpcode() != ISD::Constant &&
3641 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3642 isSimple = false;
3643 break;
3646 MVT DestEltVT = N->getValueType(0).getVectorElementType();
3647 assert(!DestEltVT.isVector() &&
3648 "Element type of vector ValueType must not be vector!");
3649 if (isSimple)
3650 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
3653 // If the input is a constant, let getNode fold it.
3654 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3655 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
3656 if (Res.getNode() != N) return Res;
3659 // (conv (conv x, t1), t2) -> (conv x, t2)
3660 if (N0.getOpcode() == ISD::BIT_CONVERT)
3661 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
3662 N0.getOperand(0));
3664 // fold (conv (load x)) -> (load (conv*)x)
3665 // If the resultant load doesn't need a higher alignment than the original!
3666 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
3667 // Do not change the width of a volatile load.
3668 !cast<LoadSDNode>(N0)->isVolatile() &&
3669 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
3670 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3671 unsigned Align = TLI.getTargetData()->
3672 getABITypeAlignment(VT.getTypeForMVT());
3673 unsigned OrigAlign = LN0->getAlignment();
3675 if (Align <= OrigAlign) {
3676 SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
3677 LN0->getBasePtr(),
3678 LN0->getSrcValue(), LN0->getSrcValueOffset(),
3679 LN0->isVolatile(), OrigAlign);
3680 AddToWorkList(N);
3681 CombineTo(N0.getNode(),
3682 DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3683 N0.getValueType(), Load),
3684 Load.getValue(1));
3685 return Load;
3689 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3690 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3691 // This often reduces constant pool loads.
3692 if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3693 N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
3694 SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
3695 N0.getOperand(0));
3696 AddToWorkList(NewConv.getNode());
3698 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3699 if (N0.getOpcode() == ISD::FNEG)
3700 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3701 NewConv, DAG.getConstant(SignBit, VT));
3702 assert(N0.getOpcode() == ISD::FABS);
3703 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3704 NewConv, DAG.getConstant(~SignBit, VT));
3707 // fold (bitconvert (fcopysign cst, x)) ->
3708 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3709 // Note that we don't handle (copysign x, cst) because this can always be
3710 // folded to an fneg or fabs.
3711 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
3712 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3713 VT.isInteger() && !VT.isVector()) {
3714 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
3715 MVT IntXVT = MVT::getIntegerVT(OrigXWidth);
3716 if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
3717 SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3718 IntXVT, N0.getOperand(1));
3719 AddToWorkList(X.getNode());
3721 // If X has a different width than the result/lhs, sext it or truncate it.
3722 unsigned VTWidth = VT.getSizeInBits();
3723 if (OrigXWidth < VTWidth) {
3724 X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
3725 AddToWorkList(X.getNode());
3726 } else if (OrigXWidth > VTWidth) {
3727 // To get the sign bit in the right place, we have to shift it right
3728 // before truncating.
3729 X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
3730 X.getValueType(), X,
3731 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3732 AddToWorkList(X.getNode());
3733 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3734 AddToWorkList(X.getNode());
3737 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3738 X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
3739 X, DAG.getConstant(SignBit, VT));
3740 AddToWorkList(X.getNode());
3742 SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3743 VT, N0.getOperand(0));
3744 Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
3745 Cst, DAG.getConstant(~SignBit, VT));
3746 AddToWorkList(Cst.getNode());
3748 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
3752 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3753 if (N0.getOpcode() == ISD::BUILD_PAIR) {
3754 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
3755 if (CombineLD.getNode())
3756 return CombineLD;
3759 return SDValue();
3762 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
3763 MVT VT = N->getValueType(0);
3764 return CombineConsecutiveLoads(N, VT);
3767 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3768 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3769 /// destination element value type.
3770 SDValue DAGCombiner::
3771 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
3772 MVT SrcEltVT = BV->getOperand(0).getValueType();
3774 // If this is already the right type, we're done.
3775 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
3777 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
3778 unsigned DstBitSize = DstEltVT.getSizeInBits();
3780 // If this is a conversion of N elements of one type to N elements of another
3781 // type, convert each element. This handles FP<->INT cases.
3782 if (SrcBitSize == DstBitSize) {
3783 SmallVector<SDValue, 8> Ops;
3784 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3785 Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
3786 DstEltVT, BV->getOperand(i)));
3787 AddToWorkList(Ops.back().getNode());
3789 MVT VT = MVT::getVectorVT(DstEltVT,
3790 BV->getValueType(0).getVectorNumElements());
3791 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3792 &Ops[0], Ops.size());
3795 // Otherwise, we're growing or shrinking the elements. To avoid having to
3796 // handle annoying details of growing/shrinking FP values, we convert them to
3797 // int first.
3798 if (SrcEltVT.isFloatingPoint()) {
3799 // Convert the input float vector to a int vector where the elements are the
3800 // same sizes.
3801 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3802 MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits());
3803 BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
3804 SrcEltVT = IntVT;
3807 // Now we know the input is an integer vector. If the output is a FP type,
3808 // convert to integer first, then to FP of the right size.
3809 if (DstEltVT.isFloatingPoint()) {
3810 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3811 MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits());
3812 SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
3814 // Next, convert to FP elements of the same size.
3815 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3818 // Okay, we know the src/dst types are both integers of differing types.
3819 // Handling growing first.
3820 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
3821 if (SrcBitSize < DstBitSize) {
3822 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3824 SmallVector<SDValue, 8> Ops;
3825 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3826 i += NumInputsPerOutput) {
3827 bool isLE = TLI.isLittleEndian();
3828 APInt NewBits = APInt(DstBitSize, 0);
3829 bool EltIsUndef = true;
3830 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3831 // Shift the previously computed bits over.
3832 NewBits <<= SrcBitSize;
3833 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3834 if (Op.getOpcode() == ISD::UNDEF) continue;
3835 EltIsUndef = false;
3837 NewBits |=
3838 APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3841 if (EltIsUndef)
3842 Ops.push_back(DAG.getUNDEF(DstEltVT));
3843 else
3844 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3847 MVT VT = MVT::getVectorVT(DstEltVT, Ops.size());
3848 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3849 &Ops[0], Ops.size());
3852 // Finally, this must be the case where we are shrinking elements: each input
3853 // turns into multiple outputs.
3854 bool isS2V = ISD::isScalarToVector(BV);
3855 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3856 MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands());
3857 SmallVector<SDValue, 8> Ops;
3859 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3860 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3861 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3862 Ops.push_back(DAG.getUNDEF(DstEltVT));
3863 continue;
3866 APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3868 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3869 APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3870 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3871 if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3872 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3873 return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
3874 Ops[0]);
3875 OpVal = OpVal.lshr(DstBitSize);
3878 // For big endian targets, swap the order of the pieces of each element.
3879 if (TLI.isBigEndian())
3880 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3883 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3884 &Ops[0], Ops.size());
3887 SDValue DAGCombiner::visitFADD(SDNode *N) {
3888 SDValue N0 = N->getOperand(0);
3889 SDValue N1 = N->getOperand(1);
3890 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3891 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3892 MVT VT = N->getValueType(0);
3894 // fold vector ops
3895 if (VT.isVector()) {
3896 SDValue FoldedVOp = SimplifyVBinOp(N);
3897 if (FoldedVOp.getNode()) return FoldedVOp;
3900 // fold (fadd c1, c2) -> (fadd c1, c2)
3901 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3902 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
3903 // canonicalize constant to RHS
3904 if (N0CFP && !N1CFP)
3905 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
3906 // fold (fadd A, 0) -> A
3907 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3908 return N0;
3909 // fold (fadd A, (fneg B)) -> (fsub A, B)
3910 if (isNegatibleForFree(N1, LegalOperations) == 2)
3911 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
3912 GetNegatedExpression(N1, DAG, LegalOperations));
3913 // fold (fadd (fneg A), B) -> (fsub B, A)
3914 if (isNegatibleForFree(N0, LegalOperations) == 2)
3915 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
3916 GetNegatedExpression(N0, DAG, LegalOperations));
3918 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3919 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3920 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3921 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
3922 DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
3923 N0.getOperand(1), N1));
3925 return SDValue();
3928 SDValue DAGCombiner::visitFSUB(SDNode *N) {
3929 SDValue N0 = N->getOperand(0);
3930 SDValue N1 = N->getOperand(1);
3931 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3932 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3933 MVT VT = N->getValueType(0);
3935 // fold vector ops
3936 if (VT.isVector()) {
3937 SDValue FoldedVOp = SimplifyVBinOp(N);
3938 if (FoldedVOp.getNode()) return FoldedVOp;
3941 // fold (fsub c1, c2) -> c1-c2
3942 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3943 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
3944 // fold (fsub A, 0) -> A
3945 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3946 return N0;
3947 // fold (fsub 0, B) -> -B
3948 if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3949 if (isNegatibleForFree(N1, LegalOperations))
3950 return GetNegatedExpression(N1, DAG, LegalOperations);
3951 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
3952 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
3954 // fold (fsub A, (fneg B)) -> (fadd A, B)
3955 if (isNegatibleForFree(N1, LegalOperations))
3956 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
3957 GetNegatedExpression(N1, DAG, LegalOperations));
3959 return SDValue();
3962 SDValue DAGCombiner::visitFMUL(SDNode *N) {
3963 SDValue N0 = N->getOperand(0);
3964 SDValue N1 = N->getOperand(1);
3965 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3966 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3967 MVT VT = N->getValueType(0);
3969 // fold vector ops
3970 if (VT.isVector()) {
3971 SDValue FoldedVOp = SimplifyVBinOp(N);
3972 if (FoldedVOp.getNode()) return FoldedVOp;
3975 // fold (fmul c1, c2) -> c1*c2
3976 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3977 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
3978 // canonicalize constant to RHS
3979 if (N0CFP && !N1CFP)
3980 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
3981 // fold (fmul A, 0) -> 0
3982 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3983 return N1;
3984 // fold (fmul X, 2.0) -> (fadd X, X)
3985 if (N1CFP && N1CFP->isExactlyValue(+2.0))
3986 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
3987 // fold (fmul X, (fneg 1.0)) -> (fneg X)
3988 if (N1CFP && N1CFP->isExactlyValue(-1.0))
3989 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
3990 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
3992 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
3993 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
3994 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
3995 // Both can be negated for free, check to see if at least one is cheaper
3996 // negated.
3997 if (LHSNeg == 2 || RHSNeg == 2)
3998 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
3999 GetNegatedExpression(N0, DAG, LegalOperations),
4000 GetNegatedExpression(N1, DAG, LegalOperations));
4004 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4005 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
4006 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
4007 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
4008 DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
4009 N0.getOperand(1), N1));
4011 return SDValue();
4014 SDValue DAGCombiner::visitFDIV(SDNode *N) {
4015 SDValue N0 = N->getOperand(0);
4016 SDValue N1 = N->getOperand(1);
4017 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4018 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4019 MVT VT = N->getValueType(0);
4021 // fold vector ops
4022 if (VT.isVector()) {
4023 SDValue FoldedVOp = SimplifyVBinOp(N);
4024 if (FoldedVOp.getNode()) return FoldedVOp;
4027 // fold (fdiv c1, c2) -> c1/c2
4028 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4029 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
4032 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4033 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
4034 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
4035 // Both can be negated for free, check to see if at least one is cheaper
4036 // negated.
4037 if (LHSNeg == 2 || RHSNeg == 2)
4038 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
4039 GetNegatedExpression(N0, DAG, LegalOperations),
4040 GetNegatedExpression(N1, DAG, LegalOperations));
4044 return SDValue();
4047 SDValue DAGCombiner::visitFREM(SDNode *N) {
4048 SDValue N0 = N->getOperand(0);
4049 SDValue N1 = N->getOperand(1);
4050 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4051 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4052 MVT VT = N->getValueType(0);
4054 // fold (frem c1, c2) -> fmod(c1,c2)
4055 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4056 return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
4058 return SDValue();
4061 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
4062 SDValue N0 = N->getOperand(0);
4063 SDValue N1 = N->getOperand(1);
4064 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4065 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4066 MVT VT = N->getValueType(0);
4068 if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
4069 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
4071 if (N1CFP) {
4072 const APFloat& V = N1CFP->getValueAPF();
4073 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4074 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4075 if (!V.isNegative()) {
4076 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
4077 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4078 } else {
4079 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4080 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
4081 DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
4085 // copysign(fabs(x), y) -> copysign(x, y)
4086 // copysign(fneg(x), y) -> copysign(x, y)
4087 // copysign(copysign(x,z), y) -> copysign(x, y)
4088 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
4089 N0.getOpcode() == ISD::FCOPYSIGN)
4090 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4091 N0.getOperand(0), N1);
4093 // copysign(x, abs(y)) -> abs(x)
4094 if (N1.getOpcode() == ISD::FABS)
4095 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4097 // copysign(x, copysign(y,z)) -> copysign(x, z)
4098 if (N1.getOpcode() == ISD::FCOPYSIGN)
4099 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4100 N0, N1.getOperand(1));
4102 // copysign(x, fp_extend(y)) -> copysign(x, y)
4103 // copysign(x, fp_round(y)) -> copysign(x, y)
4104 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
4105 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4106 N0, N1.getOperand(0));
4108 return SDValue();
4111 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
4112 SDValue N0 = N->getOperand(0);
4113 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4114 MVT VT = N->getValueType(0);
4115 MVT OpVT = N0.getValueType();
4117 // fold (sint_to_fp c1) -> c1fp
4118 if (N0C && OpVT != MVT::ppcf128)
4119 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4121 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4122 // but UINT_TO_FP is legal on this target, try to convert.
4123 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
4124 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
4125 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4126 if (DAG.SignBitIsZero(N0))
4127 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4130 return SDValue();
4133 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
4134 SDValue N0 = N->getOperand(0);
4135 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4136 MVT VT = N->getValueType(0);
4137 MVT OpVT = N0.getValueType();
4139 // fold (uint_to_fp c1) -> c1fp
4140 if (N0C && OpVT != MVT::ppcf128)
4141 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4143 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4144 // but SINT_TO_FP is legal on this target, try to convert.
4145 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
4146 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
4147 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4148 if (DAG.SignBitIsZero(N0))
4149 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4152 return SDValue();
4155 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
4156 SDValue N0 = N->getOperand(0);
4157 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4158 MVT VT = N->getValueType(0);
4160 // fold (fp_to_sint c1fp) -> c1
4161 if (N0CFP)
4162 return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
4164 return SDValue();
4167 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
4168 SDValue N0 = N->getOperand(0);
4169 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4170 MVT VT = N->getValueType(0);
4172 // fold (fp_to_uint c1fp) -> c1
4173 if (N0CFP && VT != MVT::ppcf128)
4174 return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
4176 return SDValue();
4179 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
4180 SDValue N0 = N->getOperand(0);
4181 SDValue N1 = N->getOperand(1);
4182 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4183 MVT VT = N->getValueType(0);
4185 // fold (fp_round c1fp) -> c1fp
4186 if (N0CFP && N0.getValueType() != MVT::ppcf128)
4187 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
4189 // fold (fp_round (fp_extend x)) -> x
4190 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
4191 return N0.getOperand(0);
4193 // fold (fp_round (fp_round x)) -> (fp_round x)
4194 if (N0.getOpcode() == ISD::FP_ROUND) {
4195 // This is a value preserving truncation if both round's are.
4196 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
4197 N0.getNode()->getConstantOperandVal(1) == 1;
4198 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
4199 DAG.getIntPtrConstant(IsTrunc));
4202 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4203 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
4204 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
4205 N0.getOperand(0), N1);
4206 AddToWorkList(Tmp.getNode());
4207 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4208 Tmp, N0.getOperand(1));
4211 return SDValue();
4214 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
4215 SDValue N0 = N->getOperand(0);
4216 MVT VT = N->getValueType(0);
4217 MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4218 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4220 // fold (fp_round_inreg c1fp) -> c1fp
4221 if (N0CFP && (TLI.isTypeLegal(EVT) || !LegalTypes)) {
4222 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
4223 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
4226 return SDValue();
4229 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
4230 SDValue N0 = N->getOperand(0);
4231 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4232 MVT VT = N->getValueType(0);
4234 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4235 if (N->hasOneUse() &&
4236 N->use_begin()->getOpcode() == ISD::FP_ROUND)
4237 return SDValue();
4239 // fold (fp_extend c1fp) -> c1fp
4240 if (N0CFP && VT != MVT::ppcf128)
4241 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
4243 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4244 // value of X.
4245 if (N0.getOpcode() == ISD::FP_ROUND
4246 && N0.getNode()->getConstantOperandVal(1) == 1) {
4247 SDValue In = N0.getOperand(0);
4248 if (In.getValueType() == VT) return In;
4249 if (VT.bitsLT(In.getValueType()))
4250 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
4251 In, N0.getOperand(1));
4252 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
4255 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4256 if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
4257 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4258 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4259 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4260 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4261 LN0->getChain(),
4262 LN0->getBasePtr(), LN0->getSrcValue(),
4263 LN0->getSrcValueOffset(),
4264 N0.getValueType(),
4265 LN0->isVolatile(), LN0->getAlignment());
4266 CombineTo(N, ExtLoad);
4267 CombineTo(N0.getNode(),
4268 DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
4269 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
4270 ExtLoad.getValue(1));
4271 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4274 return SDValue();
4277 SDValue DAGCombiner::visitFNEG(SDNode *N) {
4278 SDValue N0 = N->getOperand(0);
4280 if (isNegatibleForFree(N0, LegalOperations))
4281 return GetNegatedExpression(N0, DAG, LegalOperations);
4283 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4284 // constant pool values.
4285 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4286 N0.getOperand(0).getValueType().isInteger() &&
4287 !N0.getOperand(0).getValueType().isVector()) {
4288 SDValue Int = N0.getOperand(0);
4289 MVT IntVT = Int.getValueType();
4290 if (IntVT.isInteger() && !IntVT.isVector()) {
4291 Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
4292 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4293 AddToWorkList(Int.getNode());
4294 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4295 N->getValueType(0), Int);
4299 return SDValue();
4302 SDValue DAGCombiner::visitFABS(SDNode *N) {
4303 SDValue N0 = N->getOperand(0);
4304 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4305 MVT VT = N->getValueType(0);
4307 // fold (fabs c1) -> fabs(c1)
4308 if (N0CFP && VT != MVT::ppcf128)
4309 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4310 // fold (fabs (fabs x)) -> (fabs x)
4311 if (N0.getOpcode() == ISD::FABS)
4312 return N->getOperand(0);
4313 // fold (fabs (fneg x)) -> (fabs x)
4314 // fold (fabs (fcopysign x, y)) -> (fabs x)
4315 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
4316 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
4318 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4319 // constant pool values.
4320 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4321 N0.getOperand(0).getValueType().isInteger() &&
4322 !N0.getOperand(0).getValueType().isVector()) {
4323 SDValue Int = N0.getOperand(0);
4324 MVT IntVT = Int.getValueType();
4325 if (IntVT.isInteger() && !IntVT.isVector()) {
4326 Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
4327 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4328 AddToWorkList(Int.getNode());
4329 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4330 N->getValueType(0), Int);
4334 return SDValue();
4337 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
4338 SDValue Chain = N->getOperand(0);
4339 SDValue N1 = N->getOperand(1);
4340 SDValue N2 = N->getOperand(2);
4341 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4343 // never taken branch, fold to chain
4344 if (N1C && N1C->isNullValue())
4345 return Chain;
4346 // unconditional branch
4347 if (N1C && N1C->getAPIntValue() == 1)
4348 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other, Chain, N2);
4349 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4350 // on the target.
4351 if (N1.getOpcode() == ISD::SETCC &&
4352 TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
4353 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4354 Chain, N1.getOperand(2),
4355 N1.getOperand(0), N1.getOperand(1), N2);
4358 return SDValue();
4361 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4363 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
4364 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
4365 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
4367 // Use SimplifySetCC to simplify SETCC's.
4368 SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
4369 CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
4370 false);
4371 if (Simp.getNode()) AddToWorkList(Simp.getNode());
4373 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.getNode());
4375 // fold br_cc true, dest -> br dest (unconditional branch)
4376 if (SCCC && !SCCC->isNullValue())
4377 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other,
4378 N->getOperand(0), N->getOperand(4));
4379 // fold br_cc false, dest -> unconditional fall through
4380 if (SCCC && SCCC->isNullValue())
4381 return N->getOperand(0);
4383 // fold to a simpler setcc
4384 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
4385 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4386 N->getOperand(0), Simp.getOperand(2),
4387 Simp.getOperand(0), Simp.getOperand(1),
4388 N->getOperand(4));
4390 return SDValue();
4393 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4394 /// pre-indexed load / store when the base pointer is an add or subtract
4395 /// and it has other uses besides the load / store. After the
4396 /// transformation, the new indexed load / store has effectively folded
4397 /// the add / subtract in and all of its other uses are redirected to the
4398 /// new load / store.
4399 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4400 if (!LegalOperations)
4401 return false;
4403 bool isLoad = true;
4404 SDValue Ptr;
4405 MVT VT;
4406 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4407 if (LD->isIndexed())
4408 return false;
4409 VT = LD->getMemoryVT();
4410 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4411 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4412 return false;
4413 Ptr = LD->getBasePtr();
4414 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4415 if (ST->isIndexed())
4416 return false;
4417 VT = ST->getMemoryVT();
4418 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4419 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4420 return false;
4421 Ptr = ST->getBasePtr();
4422 isLoad = false;
4423 } else {
4424 return false;
4427 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4428 // out. There is no reason to make this a preinc/predec.
4429 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4430 Ptr.getNode()->hasOneUse())
4431 return false;
4433 // Ask the target to do addressing mode selection.
4434 SDValue BasePtr;
4435 SDValue Offset;
4436 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4437 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4438 return false;
4439 // Don't create a indexed load / store with zero offset.
4440 if (isa<ConstantSDNode>(Offset) &&
4441 cast<ConstantSDNode>(Offset)->isNullValue())
4442 return false;
4444 // Try turning it into a pre-indexed load / store except when:
4445 // 1) The new base ptr is a frame index.
4446 // 2) If N is a store and the new base ptr is either the same as or is a
4447 // predecessor of the value being stored.
4448 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4449 // that would create a cycle.
4450 // 4) All uses are load / store ops that use it as old base ptr.
4452 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4453 // (plus the implicit offset) to a register to preinc anyway.
4454 if (isa<FrameIndexSDNode>(BasePtr))
4455 return false;
4457 // Check #2.
4458 if (!isLoad) {
4459 SDValue Val = cast<StoreSDNode>(N)->getValue();
4460 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
4461 return false;
4464 // Now check for #3 and #4.
4465 bool RealUse = false;
4466 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4467 E = Ptr.getNode()->use_end(); I != E; ++I) {
4468 SDNode *Use = *I;
4469 if (Use == N)
4470 continue;
4471 if (Use->isPredecessorOf(N))
4472 return false;
4474 if (!((Use->getOpcode() == ISD::LOAD &&
4475 cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4476 (Use->getOpcode() == ISD::STORE &&
4477 cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4478 RealUse = true;
4481 if (!RealUse)
4482 return false;
4484 SDValue Result;
4485 if (isLoad)
4486 Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4487 BasePtr, Offset, AM);
4488 else
4489 Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4490 BasePtr, Offset, AM);
4491 ++PreIndexedNodes;
4492 ++NodesCombined;
4493 DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4494 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4495 DOUT << '\n';
4496 WorkListRemover DeadNodes(*this);
4497 if (isLoad) {
4498 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4499 &DeadNodes);
4500 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4501 &DeadNodes);
4502 } else {
4503 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4504 &DeadNodes);
4507 // Finally, since the node is now dead, remove it from the graph.
4508 DAG.DeleteNode(N);
4510 // Replace the uses of Ptr with uses of the updated base value.
4511 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4512 &DeadNodes);
4513 removeFromWorkList(Ptr.getNode());
4514 DAG.DeleteNode(Ptr.getNode());
4516 return true;
4519 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4520 /// add / sub of the base pointer node into a post-indexed load / store.
4521 /// The transformation folded the add / subtract into the new indexed
4522 /// load / store effectively and all of its uses are redirected to the
4523 /// new load / store.
4524 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4525 if (!LegalOperations)
4526 return false;
4528 bool isLoad = true;
4529 SDValue Ptr;
4530 MVT VT;
4531 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4532 if (LD->isIndexed())
4533 return false;
4534 VT = LD->getMemoryVT();
4535 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4536 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4537 return false;
4538 Ptr = LD->getBasePtr();
4539 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4540 if (ST->isIndexed())
4541 return false;
4542 VT = ST->getMemoryVT();
4543 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4544 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4545 return false;
4546 Ptr = ST->getBasePtr();
4547 isLoad = false;
4548 } else {
4549 return false;
4552 if (Ptr.getNode()->hasOneUse())
4553 return false;
4555 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4556 E = Ptr.getNode()->use_end(); I != E; ++I) {
4557 SDNode *Op = *I;
4558 if (Op == N ||
4559 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4560 continue;
4562 SDValue BasePtr;
4563 SDValue Offset;
4564 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4565 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4566 if (Ptr == Offset)
4567 std::swap(BasePtr, Offset);
4568 if (Ptr != BasePtr)
4569 continue;
4570 // Don't create a indexed load / store with zero offset.
4571 if (isa<ConstantSDNode>(Offset) &&
4572 cast<ConstantSDNode>(Offset)->isNullValue())
4573 continue;
4575 // Try turning it into a post-indexed load / store except when
4576 // 1) All uses are load / store ops that use it as base ptr.
4577 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4578 // nor a successor of N. Otherwise, if Op is folded that would
4579 // create a cycle.
4581 // Check for #1.
4582 bool TryNext = false;
4583 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
4584 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
4585 SDNode *Use = *II;
4586 if (Use == Ptr.getNode())
4587 continue;
4589 // If all the uses are load / store addresses, then don't do the
4590 // transformation.
4591 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4592 bool RealUse = false;
4593 for (SDNode::use_iterator III = Use->use_begin(),
4594 EEE = Use->use_end(); III != EEE; ++III) {
4595 SDNode *UseUse = *III;
4596 if (!((UseUse->getOpcode() == ISD::LOAD &&
4597 cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
4598 (UseUse->getOpcode() == ISD::STORE &&
4599 cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
4600 RealUse = true;
4603 if (!RealUse) {
4604 TryNext = true;
4605 break;
4610 if (TryNext)
4611 continue;
4613 // Check for #2
4614 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4615 SDValue Result = isLoad
4616 ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4617 BasePtr, Offset, AM)
4618 : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4619 BasePtr, Offset, AM);
4620 ++PostIndexedNodes;
4621 ++NodesCombined;
4622 DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4623 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4624 DOUT << '\n';
4625 WorkListRemover DeadNodes(*this);
4626 if (isLoad) {
4627 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4628 &DeadNodes);
4629 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4630 &DeadNodes);
4631 } else {
4632 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4633 &DeadNodes);
4636 // Finally, since the node is now dead, remove it from the graph.
4637 DAG.DeleteNode(N);
4639 // Replace the uses of Use with uses of the updated base value.
4640 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
4641 Result.getValue(isLoad ? 1 : 0),
4642 &DeadNodes);
4643 removeFromWorkList(Op);
4644 DAG.DeleteNode(Op);
4645 return true;
4650 return false;
4653 /// InferAlignment - If we can infer some alignment information from this
4654 /// pointer, return it.
4655 static unsigned InferAlignment(SDValue Ptr, SelectionDAG &DAG) {
4656 // If this is a direct reference to a stack slot, use information about the
4657 // stack slot's alignment.
4658 int FrameIdx = 1 << 31;
4659 int64_t FrameOffset = 0;
4660 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4661 FrameIdx = FI->getIndex();
4662 } else if (Ptr.getOpcode() == ISD::ADD &&
4663 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4664 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4665 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4666 FrameOffset = Ptr.getConstantOperandVal(1);
4669 if (FrameIdx != (1 << 31)) {
4670 // FIXME: Handle FI+CST.
4671 const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4672 if (MFI.isFixedObjectIndex(FrameIdx)) {
4673 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
4675 // The alignment of the frame index can be determined from its offset from
4676 // the incoming frame position. If the frame object is at offset 32 and
4677 // the stack is guaranteed to be 16-byte aligned, then we know that the
4678 // object is 16-byte aligned.
4679 unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4680 unsigned Align = MinAlign(ObjectOffset, StackAlign);
4682 // Finally, the frame object itself may have a known alignment. Factor
4683 // the alignment + offset into a new alignment. For example, if we know
4684 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4685 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4686 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4687 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4688 FrameOffset);
4689 return std::max(Align, FIInfoAlign);
4693 return 0;
4696 SDValue DAGCombiner::visitLOAD(SDNode *N) {
4697 LoadSDNode *LD = cast<LoadSDNode>(N);
4698 SDValue Chain = LD->getChain();
4699 SDValue Ptr = LD->getBasePtr();
4701 // Try to infer better alignment information than the load already has.
4702 if (!Fast && LD->isUnindexed()) {
4703 if (unsigned Align = InferAlignment(Ptr, DAG)) {
4704 if (Align > LD->getAlignment())
4705 return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
4706 LD->getValueType(0),
4707 Chain, Ptr, LD->getSrcValue(),
4708 LD->getSrcValueOffset(), LD->getMemoryVT(),
4709 LD->isVolatile(), Align);
4713 // If load is not volatile and there are no uses of the loaded value (and
4714 // the updated indexed value in case of indexed loads), change uses of the
4715 // chain value into uses of the chain input (i.e. delete the dead load).
4716 if (!LD->isVolatile()) {
4717 if (N->getValueType(1) == MVT::Other) {
4718 // Unindexed loads.
4719 if (N->hasNUsesOfValue(0, 0)) {
4720 // It's not safe to use the two value CombineTo variant here. e.g.
4721 // v1, chain2 = load chain1, loc
4722 // v2, chain3 = load chain2, loc
4723 // v3 = add v2, c
4724 // Now we replace use of chain2 with chain1. This makes the second load
4725 // isomorphic to the one we are deleting, and thus makes this load live.
4726 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4727 DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG));
4728 DOUT << "\n";
4729 WorkListRemover DeadNodes(*this);
4730 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
4732 if (N->use_empty()) {
4733 removeFromWorkList(N);
4734 DAG.DeleteNode(N);
4737 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4739 } else {
4740 // Indexed loads.
4741 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4742 if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4743 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
4744 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4745 DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG));
4746 DOUT << " and 2 other values\n";
4747 WorkListRemover DeadNodes(*this);
4748 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
4749 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
4750 DAG.getUNDEF(N->getValueType(1)),
4751 &DeadNodes);
4752 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
4753 removeFromWorkList(N);
4754 DAG.DeleteNode(N);
4755 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4760 // If this load is directly stored, replace the load value with the stored
4761 // value.
4762 // TODO: Handle store large -> read small portion.
4763 // TODO: Handle TRUNCSTORE/LOADEXT
4764 if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
4765 !LD->isVolatile()) {
4766 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
4767 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4768 if (PrevST->getBasePtr() == Ptr &&
4769 PrevST->getValue().getValueType() == N->getValueType(0))
4770 return CombineTo(N, Chain.getOperand(1), Chain);
4774 if (CombinerAA) {
4775 // Walk up chain skipping non-aliasing memory nodes.
4776 SDValue BetterChain = FindBetterChain(N, Chain);
4778 // If there is a better chain.
4779 if (Chain != BetterChain) {
4780 SDValue ReplLoad;
4782 // Replace the chain to void dependency.
4783 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4784 ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
4785 BetterChain, Ptr,
4786 LD->getSrcValue(), LD->getSrcValueOffset(),
4787 LD->isVolatile(), LD->getAlignment());
4788 } else {
4789 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
4790 LD->getValueType(0),
4791 BetterChain, Ptr, LD->getSrcValue(),
4792 LD->getSrcValueOffset(),
4793 LD->getMemoryVT(),
4794 LD->isVolatile(),
4795 LD->getAlignment());
4798 // Create token factor to keep old chain connected.
4799 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
4800 MVT::Other, Chain, ReplLoad.getValue(1));
4802 // Replace uses with load result and token factor. Don't add users
4803 // to work list.
4804 return CombineTo(N, ReplLoad.getValue(0), Token, false);
4808 // Try transforming N to an indexed load.
4809 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4810 return SDValue(N, 0);
4812 return SDValue();
4815 SDValue DAGCombiner::visitSTORE(SDNode *N) {
4816 StoreSDNode *ST = cast<StoreSDNode>(N);
4817 SDValue Chain = ST->getChain();
4818 SDValue Value = ST->getValue();
4819 SDValue Ptr = ST->getBasePtr();
4821 // Try to infer better alignment information than the store already has.
4822 if (!Fast && ST->isUnindexed()) {
4823 if (unsigned Align = InferAlignment(Ptr, DAG)) {
4824 if (Align > ST->getAlignment())
4825 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
4826 Ptr, ST->getSrcValue(),
4827 ST->getSrcValueOffset(), ST->getMemoryVT(),
4828 ST->isVolatile(), Align);
4832 // If this is a store of a bit convert, store the input value if the
4833 // resultant store does not need a higher alignment than the original.
4834 if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4835 ST->isUnindexed()) {
4836 unsigned OrigAlign = ST->getAlignment();
4837 MVT SVT = Value.getOperand(0).getValueType();
4838 unsigned Align = TLI.getTargetData()->
4839 getABITypeAlignment(SVT.getTypeForMVT());
4840 if (Align <= OrigAlign &&
4841 ((!LegalOperations && !ST->isVolatile()) ||
4842 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
4843 return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
4844 Ptr, ST->getSrcValue(),
4845 ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign);
4848 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4849 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4850 // NOTE: If the original store is volatile, this transform must not increase
4851 // the number of stores. For example, on x86-32 an f64 can be stored in one
4852 // processor operation but an i64 (which is not legal) requires two. So the
4853 // transform should not be done in this case.
4854 if (Value.getOpcode() != ISD::TargetConstantFP) {
4855 SDValue Tmp;
4856 switch (CFP->getValueType(0).getSimpleVT()) {
4857 default: assert(0 && "Unknown FP type");
4858 case MVT::f80: // We don't do this for these yet.
4859 case MVT::f128:
4860 case MVT::ppcf128:
4861 break;
4862 case MVT::f32:
4863 if (((TLI.isTypeLegal(MVT::i32) || !LegalTypes) && !LegalOperations &&
4864 !ST->isVolatile()) ||
4865 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
4866 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4867 bitcastToAPInt().getZExtValue(), MVT::i32);
4868 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
4869 Ptr, ST->getSrcValue(),
4870 ST->getSrcValueOffset(), ST->isVolatile(),
4871 ST->getAlignment());
4873 break;
4874 case MVT::f64:
4875 if (((TLI.isTypeLegal(MVT::i64) || !LegalTypes) && !LegalOperations &&
4876 !ST->isVolatile()) ||
4877 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
4878 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
4879 getZExtValue(), MVT::i64);
4880 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
4881 Ptr, ST->getSrcValue(),
4882 ST->getSrcValueOffset(), ST->isVolatile(),
4883 ST->getAlignment());
4884 } else if (!ST->isVolatile() &&
4885 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
4886 // Many FP stores are not made apparent until after legalize, e.g. for
4887 // argument passing. Since this is so common, custom legalize the
4888 // 64-bit integer store into two 32-bit stores.
4889 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
4890 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4891 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
4892 if (TLI.isBigEndian()) std::swap(Lo, Hi);
4894 int SVOffset = ST->getSrcValueOffset();
4895 unsigned Alignment = ST->getAlignment();
4896 bool isVolatile = ST->isVolatile();
4898 SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
4899 Ptr, ST->getSrcValue(),
4900 ST->getSrcValueOffset(),
4901 isVolatile, ST->getAlignment());
4902 Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
4903 DAG.getConstant(4, Ptr.getValueType()));
4904 SVOffset += 4;
4905 Alignment = MinAlign(Alignment, 4U);
4906 SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
4907 Ptr, ST->getSrcValue(),
4908 SVOffset, isVolatile, Alignment);
4909 return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
4910 St0, St1);
4913 break;
4918 if (CombinerAA) {
4919 // Walk up chain skipping non-aliasing memory nodes.
4920 SDValue BetterChain = FindBetterChain(N, Chain);
4922 // If there is a better chain.
4923 if (Chain != BetterChain) {
4924 // Replace the chain to avoid dependency.
4925 SDValue ReplStore;
4926 if (ST->isTruncatingStore()) {
4927 ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
4928 ST->getSrcValue(),ST->getSrcValueOffset(),
4929 ST->getMemoryVT(),
4930 ST->isVolatile(), ST->getAlignment());
4931 } else {
4932 ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
4933 ST->getSrcValue(), ST->getSrcValueOffset(),
4934 ST->isVolatile(), ST->getAlignment());
4937 // Create token to keep both nodes around.
4938 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
4939 MVT::Other, Chain, ReplStore);
4941 // Don't add users to work list.
4942 return CombineTo(N, Token, false);
4946 // Try transforming N to an indexed store.
4947 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4948 return SDValue(N, 0);
4950 // FIXME: is there such a thing as a truncating indexed store?
4951 if (ST->isTruncatingStore() && ST->isUnindexed() &&
4952 Value.getValueType().isInteger()) {
4953 // See if we can simplify the input to this truncstore with knowledge that
4954 // only the low bits are being used. For example:
4955 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
4956 SDValue Shorter =
4957 GetDemandedBits(Value,
4958 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4959 ST->getMemoryVT().getSizeInBits()));
4960 AddToWorkList(Value.getNode());
4961 if (Shorter.getNode())
4962 return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
4963 Ptr, ST->getSrcValue(),
4964 ST->getSrcValueOffset(), ST->getMemoryVT(),
4965 ST->isVolatile(), ST->getAlignment());
4967 // Otherwise, see if we can simplify the operation with
4968 // SimplifyDemandedBits, which only works if the value has a single use.
4969 if (SimplifyDemandedBits(Value,
4970 APInt::getLowBitsSet(
4971 Value.getValueSizeInBits(),
4972 ST->getMemoryVT().getSizeInBits())))
4973 return SDValue(N, 0);
4976 // If this is a load followed by a store to the same location, then the store
4977 // is dead/noop.
4978 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4979 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4980 ST->isUnindexed() && !ST->isVolatile() &&
4981 // There can't be any side effects between the load and store, such as
4982 // a call or store.
4983 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
4984 // The store is dead, remove it.
4985 return Chain;
4989 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4990 // truncating store. We can do this even if this is already a truncstore.
4991 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4992 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
4993 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4994 ST->getMemoryVT())) {
4995 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
4996 Ptr, ST->getSrcValue(),
4997 ST->getSrcValueOffset(), ST->getMemoryVT(),
4998 ST->isVolatile(), ST->getAlignment());
5001 return SDValue();
5004 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
5005 SDValue InVec = N->getOperand(0);
5006 SDValue InVal = N->getOperand(1);
5007 SDValue EltNo = N->getOperand(2);
5009 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5010 // vector with the inserted element.
5011 if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
5012 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5013 SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(),
5014 InVec.getNode()->op_end());
5015 if (Elt < Ops.size())
5016 Ops[Elt] = InVal;
5017 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5018 InVec.getValueType(), &Ops[0], Ops.size());
5021 return SDValue();
5024 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
5025 // (vextract (scalar_to_vector val, 0) -> val
5026 SDValue InVec = N->getOperand(0);
5028 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR)
5029 return InVec.getOperand(0);
5031 // Perform only after legalization to ensure build_vector / vector_shuffle
5032 // optimizations have already been done.
5033 if (!LegalOperations) return SDValue();
5035 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5036 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5037 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5038 SDValue EltNo = N->getOperand(1);
5040 if (isa<ConstantSDNode>(EltNo)) {
5041 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5042 bool NewLoad = false;
5043 bool BCNumEltsChanged = false;
5044 MVT VT = InVec.getValueType();
5045 MVT EVT = VT.getVectorElementType();
5046 MVT LVT = EVT;
5048 if (InVec.getOpcode() == ISD::BIT_CONVERT) {
5049 MVT BCVT = InVec.getOperand(0).getValueType();
5050 if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType()))
5051 return SDValue();
5052 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
5053 BCNumEltsChanged = true;
5054 InVec = InVec.getOperand(0);
5055 EVT = BCVT.getVectorElementType();
5056 NewLoad = true;
5059 LoadSDNode *LN0 = NULL;
5060 if (ISD::isNormalLoad(InVec.getNode())) {
5061 LN0 = cast<LoadSDNode>(InVec);
5062 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5063 InVec.getOperand(0).getValueType() == EVT &&
5064 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
5065 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
5066 } else if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
5067 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5068 // =>
5069 // (load $addr+1*size)
5071 // If the bit convert changed the number of elements, it is unsafe
5072 // to examine the mask.
5073 if (BCNumEltsChanged)
5074 return SDValue();
5075 unsigned Idx = cast<ConstantSDNode>(InVec.getOperand(2).
5076 getOperand(Elt))->getZExtValue();
5077 unsigned NumElems = InVec.getOperand(2).getNumOperands();
5078 InVec = (Idx < NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
5079 if (InVec.getOpcode() == ISD::BIT_CONVERT)
5080 InVec = InVec.getOperand(0);
5081 if (ISD::isNormalLoad(InVec.getNode())) {
5082 LN0 = cast<LoadSDNode>(InVec);
5083 Elt = (Idx < NumElems) ? Idx : Idx - NumElems;
5087 if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile())
5088 return SDValue();
5090 unsigned Align = LN0->getAlignment();
5091 if (NewLoad) {
5092 // Check the resultant load doesn't need a higher alignment than the
5093 // original load.
5094 unsigned NewAlign =
5095 TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForMVT());
5097 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
5098 return SDValue();
5100 Align = NewAlign;
5103 SDValue NewPtr = LN0->getBasePtr();
5104 if (Elt) {
5105 unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
5106 MVT PtrType = NewPtr.getValueType();
5107 if (TLI.isBigEndian())
5108 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
5109 NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
5110 DAG.getConstant(PtrOff, PtrType));
5113 return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
5114 LN0->getSrcValue(), LN0->getSrcValueOffset(),
5115 LN0->isVolatile(), Align);
5118 return SDValue();
5121 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
5122 unsigned NumInScalars = N->getNumOperands();
5123 MVT VT = N->getValueType(0);
5124 unsigned NumElts = VT.getVectorNumElements();
5125 MVT EltType = VT.getVectorElementType();
5127 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5128 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5129 // at most two distinct vectors, turn this into a shuffle node.
5130 SDValue VecIn1, VecIn2;
5131 for (unsigned i = 0; i != NumInScalars; ++i) {
5132 // Ignore undef inputs.
5133 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
5135 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5136 // constant index, bail out.
5137 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5138 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
5139 VecIn1 = VecIn2 = SDValue(0, 0);
5140 break;
5143 // If the input vector type disagrees with the result of the build_vector,
5144 // we can't make a shuffle.
5145 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
5146 if (ExtractedFromVec.getValueType() != VT) {
5147 VecIn1 = VecIn2 = SDValue(0, 0);
5148 break;
5151 // Otherwise, remember this. We allow up to two distinct input vectors.
5152 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
5153 continue;
5155 if (VecIn1.getNode() == 0) {
5156 VecIn1 = ExtractedFromVec;
5157 } else if (VecIn2.getNode() == 0) {
5158 VecIn2 = ExtractedFromVec;
5159 } else {
5160 // Too many inputs.
5161 VecIn1 = VecIn2 = SDValue(0, 0);
5162 break;
5166 // If everything is good, we can make a shuffle operation.
5167 if (VecIn1.getNode()) {
5168 SmallVector<SDValue, 8> BuildVecIndices;
5169 for (unsigned i = 0; i != NumInScalars; ++i) {
5170 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
5171 BuildVecIndices.push_back(DAG.getUNDEF(TLI.getPointerTy()));
5172 continue;
5175 SDValue Extract = N->getOperand(i);
5177 // If extracting from the first vector, just use the index directly.
5178 if (Extract.getOperand(0) == VecIn1) {
5179 BuildVecIndices.push_back(Extract.getOperand(1));
5180 continue;
5183 // Otherwise, use InIdx + VecSize
5184 unsigned Idx =
5185 cast<ConstantSDNode>(Extract.getOperand(1))->getZExtValue();
5186 BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
5189 // Add count and size info.
5190 MVT IndexVT = MVT::getIntegerVT(EltType.getSizeInBits());
5191 MVT BuildVecVT = MVT::getVectorVT(IndexVT, NumElts);
5192 if (!TLI.isTypeLegal(BuildVecVT) && LegalTypes)
5193 return SDValue();
5195 // Return the new VECTOR_SHUFFLE node.
5196 SDValue Ops[5];
5197 Ops[0] = VecIn1;
5198 if (VecIn2.getNode()) {
5199 Ops[1] = VecIn2;
5200 } else {
5201 // Use an undef build_vector as input for the second operand.
5202 std::vector<SDValue> UnOps(NumInScalars,
5203 DAG.getUNDEF(EltType));
5204 Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
5205 &UnOps[0], UnOps.size());
5206 AddToWorkList(Ops[1].getNode());
5209 Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), BuildVecVT,
5210 &BuildVecIndices[0], BuildVecIndices.size());
5211 return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getDebugLoc(), VT, Ops, 3);
5214 return SDValue();
5217 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
5218 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5219 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5220 // inputs come from at most two distinct vectors, turn this into a shuffle
5221 // node.
5223 // If we only have one input vector, we don't need to do any concatenation.
5224 if (N->getNumOperands() == 1)
5225 return N->getOperand(0);
5227 return SDValue();
5230 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
5231 SDValue ShufMask = N->getOperand(2);
5232 unsigned NumElts = ShufMask.getNumOperands();
5234 SDValue N0 = N->getOperand(0);
5235 SDValue N1 = N->getOperand(1);
5237 assert(N0.getValueType().getVectorNumElements() == NumElts &&
5238 "Vector shuffle must be normalized in DAG");
5240 // If the shuffle mask is an identity operation on the LHS, return the LHS.
5241 bool isIdentity = true;
5242 for (unsigned i = 0; i != NumElts; ++i) {
5243 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
5244 cast<ConstantSDNode>(ShufMask.getOperand(i))->getZExtValue() != i) {
5245 isIdentity = false;
5246 break;
5249 if (isIdentity) return N->getOperand(0);
5251 // If the shuffle mask is an identity operation on the RHS, return the RHS.
5252 isIdentity = true;
5253 for (unsigned i = 0; i != NumElts; ++i) {
5254 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
5255 cast<ConstantSDNode>(ShufMask.getOperand(i))->getZExtValue() !=
5256 i+NumElts) {
5257 isIdentity = false;
5258 break;
5261 if (isIdentity) return N->getOperand(1);
5263 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
5264 // needed at all.
5265 bool isUnary = true;
5266 bool isSplat = true;
5267 int VecNum = -1;
5268 unsigned BaseIdx = 0;
5269 for (unsigned i = 0; i != NumElts; ++i)
5270 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
5271 unsigned Idx=cast<ConstantSDNode>(ShufMask.getOperand(i))->getZExtValue();
5272 int V = (Idx < NumElts) ? 0 : 1;
5273 if (VecNum == -1) {
5274 VecNum = V;
5275 BaseIdx = Idx;
5276 } else {
5277 if (BaseIdx != Idx)
5278 isSplat = false;
5279 if (VecNum != V) {
5280 isUnary = false;
5281 break;
5286 // Normalize unary shuffle so the RHS is undef.
5287 if (isUnary && VecNum == 1)
5288 std::swap(N0, N1);
5290 // If it is a splat, check if the argument vector is a build_vector with
5291 // all scalar elements the same.
5292 if (isSplat) {
5293 SDNode *V = N0.getNode();
5295 // If this is a bit convert that changes the element type of the vector but
5296 // not the number of vector elements, look through it. Be careful not to
5297 // look though conversions that change things like v4f32 to v2f64.
5298 if (V->getOpcode() == ISD::BIT_CONVERT) {
5299 SDValue ConvInput = V->getOperand(0);
5300 if (ConvInput.getValueType().isVector() &&
5301 ConvInput.getValueType().getVectorNumElements() == NumElts)
5302 V = ConvInput.getNode();
5305 if (V->getOpcode() == ISD::BUILD_VECTOR) {
5306 unsigned NumElems = V->getNumOperands();
5307 if (NumElems > BaseIdx) {
5308 SDValue Base;
5309 bool AllSame = true;
5310 for (unsigned i = 0; i != NumElems; ++i) {
5311 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
5312 Base = V->getOperand(i);
5313 break;
5316 // Splat of <u, u, u, u>, return <u, u, u, u>
5317 if (!Base.getNode())
5318 return N0;
5319 for (unsigned i = 0; i != NumElems; ++i) {
5320 if (V->getOperand(i) != Base) {
5321 AllSame = false;
5322 break;
5325 // Splat of <x, x, x, x>, return <x, x, x, x>
5326 if (AllSame)
5327 return N0;
5332 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
5333 // into an undef.
5334 if (isUnary || N0 == N1) {
5335 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
5336 // first operand.
5337 SmallVector<SDValue, 8> MappedOps;
5339 for (unsigned i = 0; i != NumElts; ++i) {
5340 if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
5341 cast<ConstantSDNode>(ShufMask.getOperand(i))->getZExtValue() <
5342 NumElts) {
5343 MappedOps.push_back(ShufMask.getOperand(i));
5344 } else {
5345 unsigned NewIdx =
5346 cast<ConstantSDNode>(ShufMask.getOperand(i))->getZExtValue() -
5347 NumElts;
5348 MappedOps.push_back(DAG.getConstant(NewIdx,
5349 ShufMask.getOperand(i).getValueType()));
5353 ShufMask = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5354 ShufMask.getValueType(),
5355 &MappedOps[0], MappedOps.size());
5356 AddToWorkList(ShufMask.getNode());
5357 return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getDebugLoc(),
5358 N->getValueType(0), N0,
5359 DAG.getUNDEF(N->getValueType(0)),
5360 ShufMask);
5363 return SDValue();
5366 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5367 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5368 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5369 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5370 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
5371 SDValue LHS = N->getOperand(0);
5372 SDValue RHS = N->getOperand(1);
5373 if (N->getOpcode() == ISD::AND) {
5374 if (RHS.getOpcode() == ISD::BIT_CONVERT)
5375 RHS = RHS.getOperand(0);
5376 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
5377 std::vector<SDValue> IdxOps;
5378 unsigned NumOps = RHS.getNumOperands();
5379 unsigned NumElts = NumOps;
5380 for (unsigned i = 0; i != NumElts; ++i) {
5381 SDValue Elt = RHS.getOperand(i);
5382 if (!isa<ConstantSDNode>(Elt))
5383 return SDValue();
5384 else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
5385 IdxOps.push_back(DAG.getIntPtrConstant(i));
5386 else if (cast<ConstantSDNode>(Elt)->isNullValue())
5387 IdxOps.push_back(DAG.getIntPtrConstant(NumElts));
5388 else
5389 return SDValue();
5392 // Let's see if the target supports this vector_shuffle.
5393 if (!TLI.isVectorClearMaskLegal(IdxOps, TLI.getPointerTy(), DAG))
5394 return SDValue();
5396 // Return the new VECTOR_SHUFFLE node.
5397 MVT EVT = RHS.getValueType().getVectorElementType();
5398 MVT VT = MVT::getVectorVT(EVT, NumElts);
5399 MVT MaskVT = MVT::getVectorVT(TLI.getPointerTy(), NumElts);
5400 std::vector<SDValue> Ops;
5401 LHS = DAG.getNode(ISD::BIT_CONVERT, LHS.getDebugLoc(), VT, LHS);
5402 Ops.push_back(LHS);
5403 AddToWorkList(LHS.getNode());
5404 std::vector<SDValue> ZeroOps(NumElts, DAG.getConstant(0, EVT));
5405 Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5406 VT, &ZeroOps[0], ZeroOps.size()));
5407 Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5408 MaskVT, &IdxOps[0], IdxOps.size()));
5409 SDValue Result = DAG.getNode(ISD::VECTOR_SHUFFLE, N->getDebugLoc(),
5410 VT, &Ops[0], Ops.size());
5412 if (VT != N->getValueType(0))
5413 Result = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
5414 N->getValueType(0), Result);
5416 return Result;
5420 return SDValue();
5423 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5424 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
5425 // After legalize, the target may be depending on adds and other
5426 // binary ops to provide legal ways to construct constants or other
5427 // things. Simplifying them may result in a loss of legality.
5428 if (LegalOperations) return SDValue();
5430 MVT VT = N->getValueType(0);
5431 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
5433 MVT EltType = VT.getVectorElementType();
5434 SDValue LHS = N->getOperand(0);
5435 SDValue RHS = N->getOperand(1);
5436 SDValue Shuffle = XformToShuffleWithZero(N);
5437 if (Shuffle.getNode()) return Shuffle;
5439 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5440 // this operation.
5441 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
5442 RHS.getOpcode() == ISD::BUILD_VECTOR) {
5443 SmallVector<SDValue, 8> Ops;
5444 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
5445 SDValue LHSOp = LHS.getOperand(i);
5446 SDValue RHSOp = RHS.getOperand(i);
5447 // If these two elements can't be folded, bail out.
5448 if ((LHSOp.getOpcode() != ISD::UNDEF &&
5449 LHSOp.getOpcode() != ISD::Constant &&
5450 LHSOp.getOpcode() != ISD::ConstantFP) ||
5451 (RHSOp.getOpcode() != ISD::UNDEF &&
5452 RHSOp.getOpcode() != ISD::Constant &&
5453 RHSOp.getOpcode() != ISD::ConstantFP))
5454 break;
5456 // Can't fold divide by zero.
5457 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
5458 N->getOpcode() == ISD::FDIV) {
5459 if ((RHSOp.getOpcode() == ISD::Constant &&
5460 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
5461 (RHSOp.getOpcode() == ISD::ConstantFP &&
5462 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
5463 break;
5466 Ops.push_back(DAG.getNode(N->getOpcode(), LHS.getDebugLoc(),
5467 EltType, LHSOp, RHSOp));
5468 AddToWorkList(Ops.back().getNode());
5469 assert((Ops.back().getOpcode() == ISD::UNDEF ||
5470 Ops.back().getOpcode() == ISD::Constant ||
5471 Ops.back().getOpcode() == ISD::ConstantFP) &&
5472 "Scalar binop didn't fold!");
5475 if (Ops.size() == LHS.getNumOperands()) {
5476 MVT VT = LHS.getValueType();
5477 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
5478 &Ops[0], Ops.size());
5482 return SDValue();
5485 SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
5486 SDValue N1, SDValue N2){
5487 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5489 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
5490 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5492 // If we got a simplified select_cc node back from SimplifySelectCC, then
5493 // break it down into a new SETCC node, and a new SELECT node, and then return
5494 // the SELECT node, since we were called with a SELECT node.
5495 if (SCC.getNode()) {
5496 // Check to see if we got a select_cc back (to turn into setcc/select).
5497 // Otherwise, just return whatever node we got back, like fabs.
5498 if (SCC.getOpcode() == ISD::SELECT_CC) {
5499 SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
5500 N0.getValueType(),
5501 SCC.getOperand(0), SCC.getOperand(1),
5502 SCC.getOperand(4));
5503 AddToWorkList(SETCC.getNode());
5504 return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
5505 SCC.getOperand(2), SCC.getOperand(3), SETCC);
5508 return SCC;
5510 return SDValue();
5513 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5514 /// are the two values being selected between, see if we can simplify the
5515 /// select. Callers of this should assume that TheSelect is deleted if this
5516 /// returns true. As such, they should return the appropriate thing (e.g. the
5517 /// node) back to the top-level of the DAG combiner loop to avoid it being
5518 /// looked at.
5519 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
5520 SDValue RHS) {
5522 // If this is a select from two identical things, try to pull the operation
5523 // through the select.
5524 if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5525 // If this is a load and the token chain is identical, replace the select
5526 // of two loads with a load through a select of the address to load from.
5527 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5528 // constants have been dropped into the constant pool.
5529 if (LHS.getOpcode() == ISD::LOAD &&
5530 // Do not let this transformation reduce the number of volatile loads.
5531 !cast<LoadSDNode>(LHS)->isVolatile() &&
5532 !cast<LoadSDNode>(RHS)->isVolatile() &&
5533 // Token chains must be identical.
5534 LHS.getOperand(0) == RHS.getOperand(0)) {
5535 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5536 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5538 // If this is an EXTLOAD, the VT's must match.
5539 if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5540 // FIXME: this conflates two src values, discarding one. This is not
5541 // the right thing to do, but nothing uses srcvalues now. When they do,
5542 // turn SrcValue into a list of locations.
5543 SDValue Addr;
5544 if (TheSelect->getOpcode() == ISD::SELECT) {
5545 // Check that the condition doesn't reach either load. If so, folding
5546 // this will induce a cycle into the DAG.
5547 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5548 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) {
5549 Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
5550 LLD->getBasePtr().getValueType(),
5551 TheSelect->getOperand(0), LLD->getBasePtr(),
5552 RLD->getBasePtr());
5554 } else {
5555 // Check that the condition doesn't reach either load. If so, folding
5556 // this will induce a cycle into the DAG.
5557 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5558 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5559 !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()) &&
5560 !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())) {
5561 Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
5562 LLD->getBasePtr().getValueType(),
5563 TheSelect->getOperand(0),
5564 TheSelect->getOperand(1),
5565 LLD->getBasePtr(), RLD->getBasePtr(),
5566 TheSelect->getOperand(4));
5570 if (Addr.getNode()) {
5571 SDValue Load;
5572 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
5573 Load = DAG.getLoad(TheSelect->getValueType(0),
5574 TheSelect->getDebugLoc(),
5575 LLD->getChain(),
5576 Addr,LLD->getSrcValue(),
5577 LLD->getSrcValueOffset(),
5578 LLD->isVolatile(),
5579 LLD->getAlignment());
5580 } else {
5581 Load = DAG.getExtLoad(LLD->getExtensionType(),
5582 TheSelect->getDebugLoc(),
5583 TheSelect->getValueType(0),
5584 LLD->getChain(), Addr, LLD->getSrcValue(),
5585 LLD->getSrcValueOffset(),
5586 LLD->getMemoryVT(),
5587 LLD->isVolatile(),
5588 LLD->getAlignment());
5591 // Users of the select now use the result of the load.
5592 CombineTo(TheSelect, Load);
5594 // Users of the old loads now use the new load's chain. We know the
5595 // old-load value is dead now.
5596 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
5597 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
5598 return true;
5604 return false;
5607 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5608 /// where 'cond' is the comparison specified by CC.
5609 SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
5610 SDValue N2, SDValue N3,
5611 ISD::CondCode CC, bool NotExtCompare) {
5612 // (x ? y : y) -> y.
5613 if (N2 == N3) return N2;
5615 MVT VT = N2.getValueType();
5616 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
5617 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
5618 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
5620 // Determine if the condition we're dealing with is constant
5621 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
5622 N0, N1, CC, DL, false);
5623 if (SCC.getNode()) AddToWorkList(SCC.getNode());
5624 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
5626 // fold select_cc true, x, y -> x
5627 if (SCCC && !SCCC->isNullValue())
5628 return N2;
5629 // fold select_cc false, x, y -> y
5630 if (SCCC && SCCC->isNullValue())
5631 return N3;
5633 // Check to see if we can simplify the select into an fabs node
5634 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5635 // Allow either -0.0 or 0.0
5636 if (CFP->getValueAPF().isZero()) {
5637 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5638 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5639 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5640 N2 == N3.getOperand(0))
5641 return DAG.getNode(ISD::FABS, DL, VT, N0);
5643 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5644 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5645 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5646 N2.getOperand(0) == N3)
5647 return DAG.getNode(ISD::FABS, DL, VT, N3);
5651 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5652 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5653 // in it. This is a win when the constant is not otherwise available because
5654 // it replaces two constant pool loads with one. We only do this if the FP
5655 // type is known to be legal, because if it isn't, then we are before legalize
5656 // types an we want the other legalization to happen first (e.g. to avoid
5657 // messing with soft float).
5658 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
5659 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
5660 if (TLI.isTypeLegal(N2.getValueType()) &&
5661 // If both constants have multiple uses, then we won't need to do an
5662 // extra load, they are likely around in registers for other users.
5663 (TV->hasOneUse() || FV->hasOneUse())) {
5664 Constant *Elts[] = {
5665 const_cast<ConstantFP*>(FV->getConstantFPValue()),
5666 const_cast<ConstantFP*>(TV->getConstantFPValue())
5668 const Type *FPTy = Elts[0]->getType();
5669 const TargetData &TD = *TLI.getTargetData();
5671 // Create a ConstantArray of the two constants.
5672 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
5673 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
5674 TD.getPrefTypeAlignment(FPTy));
5675 unsigned Alignment =
5676 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
5678 // Get the offsets to the 0 and 1 element of the array so that we can
5679 // select between them.
5680 SDValue Zero = DAG.getIntPtrConstant(0);
5681 unsigned EltSize = (unsigned)TD.getTypePaddedSize(Elts[0]->getType());
5682 SDValue One = DAG.getIntPtrConstant(EltSize);
5684 SDValue Cond = DAG.getSetCC(DL,
5685 TLI.getSetCCResultType(N0.getValueType()),
5686 N0, N1, CC);
5687 SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
5688 Cond, One, Zero);
5689 CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
5690 CstOffset);
5691 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
5692 PseudoSourceValue::getConstantPool(), 0, false,
5693 Alignment);
5698 // Check to see if we can perform the "gzip trick", transforming
5699 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5700 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5701 N0.getValueType().isInteger() &&
5702 N2.getValueType().isInteger() &&
5703 (N1C->isNullValue() || // (a < 0) ? b : 0
5704 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
5705 MVT XType = N0.getValueType();
5706 MVT AType = N2.getValueType();
5707 if (XType.bitsGE(AType)) {
5708 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5709 // single-bit constant.
5710 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5711 unsigned ShCtV = N2C->getAPIntValue().logBase2();
5712 ShCtV = XType.getSizeInBits()-ShCtV-1;
5713 SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy());
5714 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
5715 XType, N0, ShCt);
5716 AddToWorkList(Shift.getNode());
5718 if (XType.bitsGT(AType)) {
5719 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5720 AddToWorkList(Shift.getNode());
5723 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5726 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
5727 XType, N0,
5728 DAG.getConstant(XType.getSizeInBits()-1,
5729 getShiftAmountTy()));
5730 AddToWorkList(Shift.getNode());
5732 if (XType.bitsGT(AType)) {
5733 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5734 AddToWorkList(Shift.getNode());
5737 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5741 // fold select C, 16, 0 -> shl C, 4
5742 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5743 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) {
5745 // If the caller doesn't want us to simplify this into a zext of a compare,
5746 // don't do it.
5747 if (NotExtCompare && N2C->getAPIntValue() == 1)
5748 return SDValue();
5750 // Get a SetCC of the condition
5751 // FIXME: Should probably make sure that setcc is legal if we ever have a
5752 // target where it isn't.
5753 SDValue Temp, SCC;
5754 // cast from setcc result type to select result type
5755 if (LegalTypes) {
5756 SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
5757 N0, N1, CC);
5758 if (N2.getValueType().bitsLT(SCC.getValueType()))
5759 Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
5760 else
5761 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5762 N2.getValueType(), SCC);
5763 } else {
5764 SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
5765 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5766 N2.getValueType(), SCC);
5769 AddToWorkList(SCC.getNode());
5770 AddToWorkList(Temp.getNode());
5772 if (N2C->getAPIntValue() == 1)
5773 return Temp;
5775 // shl setcc result by log2 n2c
5776 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
5777 DAG.getConstant(N2C->getAPIntValue().logBase2(),
5778 getShiftAmountTy()));
5781 // Check to see if this is the equivalent of setcc
5782 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5783 // otherwise, go ahead with the folds.
5784 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5785 MVT XType = N0.getValueType();
5786 if (!LegalOperations ||
5787 TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
5788 SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
5789 if (Res.getValueType() != VT)
5790 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
5791 return Res;
5794 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5795 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5796 (!LegalOperations ||
5797 TLI.isOperationLegal(ISD::CTLZ, XType))) {
5798 SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
5799 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
5800 DAG.getConstant(Log2_32(XType.getSizeInBits()),
5801 getShiftAmountTy()));
5803 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5804 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5805 SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
5806 XType, DAG.getConstant(0, XType), N0);
5807 SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
5808 return DAG.getNode(ISD::SRL, DL, XType,
5809 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
5810 DAG.getConstant(XType.getSizeInBits()-1,
5811 getShiftAmountTy()));
5813 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5814 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5815 SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
5816 DAG.getConstant(XType.getSizeInBits()-1,
5817 getShiftAmountTy()));
5818 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
5822 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5823 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5824 if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5825 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5826 N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
5827 MVT XType = N0.getValueType();
5828 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
5829 DAG.getConstant(XType.getSizeInBits()-1,
5830 getShiftAmountTy()));
5831 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), XType,
5832 N0, Shift);
5833 AddToWorkList(Shift.getNode());
5834 AddToWorkList(Add.getNode());
5835 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
5837 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5838 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5839 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5840 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5841 if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5842 MVT XType = N0.getValueType();
5843 if (SubC->isNullValue() && XType.isInteger()) {
5844 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
5846 DAG.getConstant(XType.getSizeInBits()-1,
5847 getShiftAmountTy()));
5848 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
5849 XType, N0, Shift);
5850 AddToWorkList(Shift.getNode());
5851 AddToWorkList(Add.getNode());
5852 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
5857 return SDValue();
5860 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5861 SDValue DAGCombiner::SimplifySetCC(MVT VT, SDValue N0,
5862 SDValue N1, ISD::CondCode Cond,
5863 DebugLoc DL, bool foldBooleans) {
5864 TargetLowering::DAGCombinerInfo
5865 DagCombineInfo(DAG, Level == Unrestricted, false, this);
5866 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
5869 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5870 /// return a DAG expression to select that will generate the same value by
5871 /// multiplying by a magic number. See:
5872 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5873 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
5874 std::vector<SDNode*> Built;
5875 SDValue S = TLI.BuildSDIV(N, DAG, &Built);
5877 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5878 ii != ee; ++ii)
5879 AddToWorkList(*ii);
5880 return S;
5883 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5884 /// return a DAG expression to select that will generate the same value by
5885 /// multiplying by a magic number. See:
5886 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5887 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
5888 std::vector<SDNode*> Built;
5889 SDValue S = TLI.BuildUDIV(N, DAG, &Built);
5891 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5892 ii != ee; ++ii)
5893 AddToWorkList(*ii);
5894 return S;
5897 /// FindBaseOffset - Return true if base is known not to alias with anything
5898 /// but itself. Provides base object and offset as results.
5899 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
5900 // Assume it is a primitive operation.
5901 Base = Ptr; Offset = 0;
5903 // If it's an adding a simple constant then integrate the offset.
5904 if (Base.getOpcode() == ISD::ADD) {
5905 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5906 Base = Base.getOperand(0);
5907 Offset += C->getZExtValue();
5911 // If it's any of the following then it can't alias with anything but itself.
5912 return isa<FrameIndexSDNode>(Base) ||
5913 isa<ConstantPoolSDNode>(Base) ||
5914 isa<GlobalAddressSDNode>(Base);
5917 /// isAlias - Return true if there is any possibility that the two addresses
5918 /// overlap.
5919 bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
5920 const Value *SrcValue1, int SrcValueOffset1,
5921 SDValue Ptr2, int64_t Size2,
5922 const Value *SrcValue2, int SrcValueOffset2) const {
5923 // If they are the same then they must be aliases.
5924 if (Ptr1 == Ptr2) return true;
5926 // Gather base node and offset information.
5927 SDValue Base1, Base2;
5928 int64_t Offset1, Offset2;
5929 bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5930 bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5932 // If they have a same base address then...
5933 if (Base1 == Base2)
5934 // Check to see if the addresses overlap.
5935 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5937 // If we know both bases then they can't alias.
5938 if (KnownBase1 && KnownBase2) return false;
5940 if (CombinerGlobalAA) {
5941 // Use alias analysis information.
5942 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5943 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5944 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5945 AliasAnalysis::AliasResult AAResult =
5946 AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5947 if (AAResult == AliasAnalysis::NoAlias)
5948 return false;
5951 // Otherwise we have to assume they alias.
5952 return true;
5955 /// FindAliasInfo - Extracts the relevant alias information from the memory
5956 /// node. Returns true if the operand was a load.
5957 bool DAGCombiner::FindAliasInfo(SDNode *N,
5958 SDValue &Ptr, int64_t &Size,
5959 const Value *&SrcValue, int &SrcValueOffset) const {
5960 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5961 Ptr = LD->getBasePtr();
5962 Size = LD->getMemoryVT().getSizeInBits() >> 3;
5963 SrcValue = LD->getSrcValue();
5964 SrcValueOffset = LD->getSrcValueOffset();
5965 return true;
5966 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5967 Ptr = ST->getBasePtr();
5968 Size = ST->getMemoryVT().getSizeInBits() >> 3;
5969 SrcValue = ST->getSrcValue();
5970 SrcValueOffset = ST->getSrcValueOffset();
5971 } else {
5972 assert(0 && "FindAliasInfo expected a memory operand");
5975 return false;
5978 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5979 /// looking for aliasing nodes and adding them to the Aliases vector.
5980 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
5981 SmallVector<SDValue, 8> &Aliases) {
5982 SmallVector<SDValue, 8> Chains; // List of chains to visit.
5983 std::set<SDNode *> Visited; // Visited node set.
5985 // Get alias information for node.
5986 SDValue Ptr;
5987 int64_t Size;
5988 const Value *SrcValue;
5989 int SrcValueOffset;
5990 bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5992 // Starting off.
5993 Chains.push_back(OriginalChain);
5995 // Look at each chain and determine if it is an alias. If so, add it to the
5996 // aliases list. If not, then continue up the chain looking for the next
5997 // candidate.
5998 while (!Chains.empty()) {
5999 SDValue Chain = Chains.back();
6000 Chains.pop_back();
6002 // Don't bother if we've been before.
6003 if (Visited.find(Chain.getNode()) != Visited.end()) continue;
6004 Visited.insert(Chain.getNode());
6006 switch (Chain.getOpcode()) {
6007 case ISD::EntryToken:
6008 // Entry token is ideal chain operand, but handled in FindBetterChain.
6009 break;
6011 case ISD::LOAD:
6012 case ISD::STORE: {
6013 // Get alias information for Chain.
6014 SDValue OpPtr;
6015 int64_t OpSize;
6016 const Value *OpSrcValue;
6017 int OpSrcValueOffset;
6018 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
6019 OpSrcValue, OpSrcValueOffset);
6021 // If chain is alias then stop here.
6022 if (!(IsLoad && IsOpLoad) &&
6023 isAlias(Ptr, Size, SrcValue, SrcValueOffset,
6024 OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
6025 Aliases.push_back(Chain);
6026 } else {
6027 // Look further up the chain.
6028 Chains.push_back(Chain.getOperand(0));
6029 // Clean up old chain.
6030 AddToWorkList(Chain.getNode());
6032 break;
6035 case ISD::TokenFactor:
6036 // We have to check each of the operands of the token factor, so we queue
6037 // then up. Adding the operands to the queue (stack) in reverse order
6038 // maintains the original order and increases the likelihood that getNode
6039 // will find a matching token factor (CSE.)
6040 for (unsigned n = Chain.getNumOperands(); n;)
6041 Chains.push_back(Chain.getOperand(--n));
6042 // Eliminate the token factor if we can.
6043 AddToWorkList(Chain.getNode());
6044 break;
6046 default:
6047 // For all other instructions we will just have to take what we can get.
6048 Aliases.push_back(Chain);
6049 break;
6054 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6055 /// for a better chain (aliasing node.)
6056 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
6057 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
6059 // Accumulate all the aliases to this node.
6060 GatherAllAliases(N, OldChain, Aliases);
6062 if (Aliases.size() == 0) {
6063 // If no operands then chain to entry token.
6064 return DAG.getEntryNode();
6065 } else if (Aliases.size() == 1) {
6066 // If a single operand then chain to it. We don't need to revisit it.
6067 return Aliases[0];
6070 // Construct a custom tailored token factor.
6071 SDValue NewChain = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
6072 &Aliases[0], Aliases.size());
6074 // Make sure the old chain gets cleaned up.
6075 if (NewChain != OldChain) AddToWorkList(OldChain.getNode());
6077 return NewChain;
6080 // SelectionDAG::Combine - This is the entry point for the file.
6082 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, bool Fast) {
6083 /// run - This is the main entry point to this class.
6085 DAGCombiner(*this, AA, Fast).Run(Level);