1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "dagcombine"
16 #include "llvm/CodeGen/SelectionDAG.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Target/TargetFrameInfo.h"
24 #include "llvm/Target/TargetLowering.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
37 STATISTIC(NodesCombined
, "Number of dag nodes combined");
38 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
39 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
43 CombinerAA("combiner-alias-analysis", cl::Hidden
,
44 cl::desc("Turn on alias analysis during testing"));
47 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
48 cl::desc("Include global information in alias analysis"));
50 //------------------------------ DAGCombiner ---------------------------------//
52 class VISIBILITY_HIDDEN DAGCombiner
{
54 const TargetLowering
&TLI
;
60 // Worklist of all of the nodes that need to be simplified.
61 std::vector
<SDNode
*> WorkList
;
63 // AA - Used for DAG load/store alias analysis.
66 /// AddUsersToWorkList - When an instruction is simplified, add all users of
67 /// the instruction to the work lists because they might get more simplified
70 void AddUsersToWorkList(SDNode
*N
) {
71 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
76 /// visit - call the node-specific routine that knows how to fold each
77 /// particular type of node.
78 SDValue
visit(SDNode
*N
);
81 /// AddToWorkList - Add to the work list making sure it's instance is at the
82 /// the back (next to be processed.)
83 void AddToWorkList(SDNode
*N
) {
84 removeFromWorkList(N
);
85 WorkList
.push_back(N
);
88 /// removeFromWorkList - remove all instances of N from the worklist.
90 void removeFromWorkList(SDNode
*N
) {
91 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
95 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
98 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
99 return CombineTo(N
, &Res
, 1, AddTo
);
102 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
104 SDValue To
[] = { Res0
, Res1
};
105 return CombineTo(N
, To
, 2, AddTo
);
108 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
112 /// SimplifyDemandedBits - Check the specified integer node value to see if
113 /// it can be simplified or if things it uses can be simplified by bit
114 /// propagation. If so, return true.
115 bool SimplifyDemandedBits(SDValue Op
) {
116 APInt Demanded
= APInt::getAllOnesValue(Op
.getValueSizeInBits());
117 return SimplifyDemandedBits(Op
, Demanded
);
120 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
122 bool CombineToPreIndexedLoadStore(SDNode
*N
);
123 bool CombineToPostIndexedLoadStore(SDNode
*N
);
126 /// combine - call the node-specific routine that knows how to fold each
127 /// particular type of node. If that doesn't do anything, try the
128 /// target-specific DAG combines.
129 SDValue
combine(SDNode
*N
);
131 // Visitation implementation - Implement dag node combining for different
132 // node types. The semantics are as follows:
134 // SDValue.getNode() == 0 - No change was made
135 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
136 // otherwise - N should be replaced by the returned Operand.
138 SDValue
visitTokenFactor(SDNode
*N
);
139 SDValue
visitMERGE_VALUES(SDNode
*N
);
140 SDValue
visitADD(SDNode
*N
);
141 SDValue
visitSUB(SDNode
*N
);
142 SDValue
visitADDC(SDNode
*N
);
143 SDValue
visitADDE(SDNode
*N
);
144 SDValue
visitMUL(SDNode
*N
);
145 SDValue
visitSDIV(SDNode
*N
);
146 SDValue
visitUDIV(SDNode
*N
);
147 SDValue
visitSREM(SDNode
*N
);
148 SDValue
visitUREM(SDNode
*N
);
149 SDValue
visitMULHU(SDNode
*N
);
150 SDValue
visitMULHS(SDNode
*N
);
151 SDValue
visitSMUL_LOHI(SDNode
*N
);
152 SDValue
visitUMUL_LOHI(SDNode
*N
);
153 SDValue
visitSDIVREM(SDNode
*N
);
154 SDValue
visitUDIVREM(SDNode
*N
);
155 SDValue
visitAND(SDNode
*N
);
156 SDValue
visitOR(SDNode
*N
);
157 SDValue
visitXOR(SDNode
*N
);
158 SDValue
SimplifyVBinOp(SDNode
*N
);
159 SDValue
visitSHL(SDNode
*N
);
160 SDValue
visitSRA(SDNode
*N
);
161 SDValue
visitSRL(SDNode
*N
);
162 SDValue
visitCTLZ(SDNode
*N
);
163 SDValue
visitCTTZ(SDNode
*N
);
164 SDValue
visitCTPOP(SDNode
*N
);
165 SDValue
visitSELECT(SDNode
*N
);
166 SDValue
visitSELECT_CC(SDNode
*N
);
167 SDValue
visitSETCC(SDNode
*N
);
168 SDValue
visitSIGN_EXTEND(SDNode
*N
);
169 SDValue
visitZERO_EXTEND(SDNode
*N
);
170 SDValue
visitANY_EXTEND(SDNode
*N
);
171 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
172 SDValue
visitTRUNCATE(SDNode
*N
);
173 SDValue
visitBIT_CONVERT(SDNode
*N
);
174 SDValue
visitBUILD_PAIR(SDNode
*N
);
175 SDValue
visitFADD(SDNode
*N
);
176 SDValue
visitFSUB(SDNode
*N
);
177 SDValue
visitFMUL(SDNode
*N
);
178 SDValue
visitFDIV(SDNode
*N
);
179 SDValue
visitFREM(SDNode
*N
);
180 SDValue
visitFCOPYSIGN(SDNode
*N
);
181 SDValue
visitSINT_TO_FP(SDNode
*N
);
182 SDValue
visitUINT_TO_FP(SDNode
*N
);
183 SDValue
visitFP_TO_SINT(SDNode
*N
);
184 SDValue
visitFP_TO_UINT(SDNode
*N
);
185 SDValue
visitFP_ROUND(SDNode
*N
);
186 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
187 SDValue
visitFP_EXTEND(SDNode
*N
);
188 SDValue
visitFNEG(SDNode
*N
);
189 SDValue
visitFABS(SDNode
*N
);
190 SDValue
visitBRCOND(SDNode
*N
);
191 SDValue
visitBR_CC(SDNode
*N
);
192 SDValue
visitLOAD(SDNode
*N
);
193 SDValue
visitSTORE(SDNode
*N
);
194 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
195 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
196 SDValue
visitBUILD_VECTOR(SDNode
*N
);
197 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
198 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
200 SDValue
XformToShuffleWithZero(SDNode
*N
);
201 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
203 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
205 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
206 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
207 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
208 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
209 SDValue N3
, ISD::CondCode CC
,
210 bool NotExtCompare
= false);
211 SDValue
SimplifySetCC(MVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
212 DebugLoc DL
, bool foldBooleans
= true);
213 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
215 SDValue
CombineConsecutiveLoads(SDNode
*N
, MVT VT
);
216 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, MVT
);
217 SDValue
BuildSDIV(SDNode
*N
);
218 SDValue
BuildUDIV(SDNode
*N
);
219 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
220 SDValue
ReduceLoadWidth(SDNode
*N
);
222 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
224 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
225 /// looking for aliasing nodes and adding them to the Aliases vector.
226 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
227 SmallVector
<SDValue
, 8> &Aliases
);
229 /// isAlias - Return true if there is any possibility that the two addresses
231 bool isAlias(SDValue Ptr1
, int64_t Size1
,
232 const Value
*SrcValue1
, int SrcValueOffset1
,
233 SDValue Ptr2
, int64_t Size2
,
234 const Value
*SrcValue2
, int SrcValueOffset2
) const;
236 /// FindAliasInfo - Extracts the relevant alias information from the memory
237 /// node. Returns true if the operand was a load.
238 bool FindAliasInfo(SDNode
*N
,
239 SDValue
&Ptr
, int64_t &Size
,
240 const Value
*&SrcValue
, int &SrcValueOffset
) const;
242 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
243 /// looking for a better chain (aliasing node.)
244 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
246 /// getShiftAmountTy - Returns a type large enough to hold any valid
247 /// shift amount - before type legalization these can be huge.
248 MVT
getShiftAmountTy() {
249 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
253 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, bool fast
)
255 TLI(D
.getTargetLoweringInfo()),
257 LegalOperations(false),
262 /// Run - runs the dag combiner on all nodes in the work list
263 void Run(CombineLevel AtLevel
);
269 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
270 /// nodes from the worklist.
271 class VISIBILITY_HIDDEN WorkListRemover
:
272 public SelectionDAG::DAGUpdateListener
{
275 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
277 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
278 DC
.removeFromWorkList(N
);
281 virtual void NodeUpdated(SDNode
*N
) {
287 //===----------------------------------------------------------------------===//
288 // TargetLowering::DAGCombinerInfo implementation
289 //===----------------------------------------------------------------------===//
291 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
292 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
295 SDValue
TargetLowering::DAGCombinerInfo::
296 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
) {
297 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size());
300 SDValue
TargetLowering::DAGCombinerInfo::
301 CombineTo(SDNode
*N
, SDValue Res
) {
302 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
);
306 SDValue
TargetLowering::DAGCombinerInfo::
307 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
) {
308 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
);
311 void TargetLowering::DAGCombinerInfo::
312 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
313 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
316 //===----------------------------------------------------------------------===//
318 //===----------------------------------------------------------------------===//
320 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
321 /// specified expression for the same cost as the expression itself, or 2 if we
322 /// can compute the negated form more cheaply than the expression itself.
323 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
324 unsigned Depth
= 0) {
325 // No compile time optimizations on this type.
326 if (Op
.getValueType() == MVT::ppcf128
)
329 // fneg is removable even if it has multiple uses.
330 if (Op
.getOpcode() == ISD::FNEG
) return 2;
332 // Don't allow anything with multiple uses.
333 if (!Op
.hasOneUse()) return 0;
335 // Don't recurse exponentially.
336 if (Depth
> 6) return 0;
338 switch (Op
.getOpcode()) {
339 default: return false;
340 case ISD::ConstantFP
:
341 // Don't invert constant FP values after legalize. The negated constant
342 // isn't necessarily legal.
343 return LegalOperations
? 0 : 1;
345 // FIXME: determine better conditions for this xform.
346 if (!UnsafeFPMath
) return 0;
348 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
349 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
351 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
352 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
354 // We can't turn -(A-B) into B-A when we honor signed zeros.
355 if (!UnsafeFPMath
) return 0;
357 // fold (fneg (fsub A, B)) -> (fsub B, A)
362 if (HonorSignDependentRoundingFPMath()) return 0;
364 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
365 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
368 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
373 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
377 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
378 /// returns the newly negated expression.
379 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
380 bool LegalOperations
, unsigned Depth
= 0) {
381 // fneg is removable even if it has multiple uses.
382 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
384 // Don't allow anything with multiple uses.
385 assert(Op
.hasOneUse() && "Unknown reuse!");
387 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
388 switch (Op
.getOpcode()) {
389 default: assert(0 && "Unknown code");
390 case ISD::ConstantFP
: {
391 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
393 return DAG
.getConstantFP(V
, Op
.getValueType());
396 // FIXME: determine better conditions for this xform.
397 assert(UnsafeFPMath
);
399 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
400 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
401 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
402 GetNegatedExpression(Op
.getOperand(0), DAG
,
403 LegalOperations
, Depth
+1),
405 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
406 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
407 GetNegatedExpression(Op
.getOperand(1), DAG
,
408 LegalOperations
, Depth
+1),
411 // We can't turn -(A-B) into B-A when we honor signed zeros.
412 assert(UnsafeFPMath
);
414 // fold (fneg (fsub 0, B)) -> B
415 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
416 if (N0CFP
->getValueAPF().isZero())
417 return Op
.getOperand(1);
419 // fold (fneg (fsub A, B)) -> (fsub B, A)
420 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
421 Op
.getOperand(1), Op
.getOperand(0));
425 assert(!HonorSignDependentRoundingFPMath());
427 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
428 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
429 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
430 GetNegatedExpression(Op
.getOperand(0), DAG
,
431 LegalOperations
, Depth
+1),
434 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
435 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
437 GetNegatedExpression(Op
.getOperand(1), DAG
,
438 LegalOperations
, Depth
+1));
442 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
443 GetNegatedExpression(Op
.getOperand(0), DAG
,
444 LegalOperations
, Depth
+1));
446 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
447 GetNegatedExpression(Op
.getOperand(0), DAG
,
448 LegalOperations
, Depth
+1),
454 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
455 // that selects between the values 1 and 0, making it equivalent to a setcc.
456 // Also, set the incoming LHS, RHS, and CC references to the appropriate
457 // nodes based on the type of node we are checking. This simplifies life a
458 // bit for the callers.
459 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
461 if (N
.getOpcode() == ISD::SETCC
) {
462 LHS
= N
.getOperand(0);
463 RHS
= N
.getOperand(1);
464 CC
= N
.getOperand(2);
467 if (N
.getOpcode() == ISD::SELECT_CC
&&
468 N
.getOperand(2).getOpcode() == ISD::Constant
&&
469 N
.getOperand(3).getOpcode() == ISD::Constant
&&
470 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
471 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
472 LHS
= N
.getOperand(0);
473 RHS
= N
.getOperand(1);
474 CC
= N
.getOperand(4);
480 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
481 // one use. If this is true, it allows the users to invert the operation for
482 // free when it is profitable to do so.
483 static bool isOneUseSetCC(SDValue N
) {
485 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
490 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
491 SDValue N0
, SDValue N1
) {
492 MVT VT
= N0
.getValueType();
493 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
494 if (isa
<ConstantSDNode
>(N1
)) {
495 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
497 DAG
.FoldConstantArithmetic(Opc
, VT
,
498 cast
<ConstantSDNode
>(N0
.getOperand(1)),
499 cast
<ConstantSDNode
>(N1
));
500 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
501 } else if (N0
.hasOneUse()) {
502 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
503 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
504 N0
.getOperand(0), N1
);
505 AddToWorkList(OpNode
.getNode());
506 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
510 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
511 if (isa
<ConstantSDNode
>(N0
)) {
512 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
514 DAG
.FoldConstantArithmetic(Opc
, VT
,
515 cast
<ConstantSDNode
>(N1
.getOperand(1)),
516 cast
<ConstantSDNode
>(N0
));
517 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
518 } else if (N1
.hasOneUse()) {
519 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
520 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
521 N1
.getOperand(0), N0
);
522 AddToWorkList(OpNode
.getNode());
523 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
530 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
532 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
534 DOUT
<< "\nReplacing.1 "; DEBUG(N
->dump(&DAG
));
535 DOUT
<< "\nWith: "; DEBUG(To
[0].getNode()->dump(&DAG
));
536 DOUT
<< " and " << NumTo
-1 << " other values\n";
537 DEBUG(for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
538 assert(N
->getValueType(i
) == To
[i
].getValueType() &&
539 "Cannot combine value to value of different type!"));
540 WorkListRemover
DeadNodes(*this);
541 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
544 // Push the new nodes and any users onto the worklist
545 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
546 if (To
[i
].getNode()) {
547 AddToWorkList(To
[i
].getNode());
548 AddUsersToWorkList(To
[i
].getNode());
553 // Finally, if the node is now dead, remove it from the graph. The node
554 // may not be dead if the replacement process recursively simplified to
555 // something else needing this node.
556 if (N
->use_empty()) {
557 // Nodes can be reintroduced into the worklist. Make sure we do not
558 // process a node that has been replaced.
559 removeFromWorkList(N
);
561 // Finally, since the node is now dead, remove it from the graph.
564 return SDValue(N
, 0);
568 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&
570 // Replace all uses. If any nodes become isomorphic to other nodes and
571 // are deleted, make sure to remove them from our worklist.
572 WorkListRemover
DeadNodes(*this);
573 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
575 // Push the new node and any (possibly new) users onto the worklist.
576 AddToWorkList(TLO
.New
.getNode());
577 AddUsersToWorkList(TLO
.New
.getNode());
579 // Finally, if the node is now dead, remove it from the graph. The node
580 // may not be dead if the replacement process recursively simplified to
581 // something else needing this node.
582 if (TLO
.Old
.getNode()->use_empty()) {
583 removeFromWorkList(TLO
.Old
.getNode());
585 // If the operands of this node are only used by the node, they will now
586 // be dead. Make sure to visit them first to delete dead nodes early.
587 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
588 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
589 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
591 DAG
.DeleteNode(TLO
.Old
.getNode());
595 /// SimplifyDemandedBits - Check the specified integer node value to see if
596 /// it can be simplified or if things it uses can be simplified by bit
597 /// propagation. If so, return true.
598 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
599 TargetLowering::TargetLoweringOpt
TLO(DAG
);
600 APInt KnownZero
, KnownOne
;
601 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
605 AddToWorkList(Op
.getNode());
607 // Replace the old value with the new one.
609 DOUT
<< "\nReplacing.2 "; DEBUG(TLO
.Old
.getNode()->dump(&DAG
));
610 DOUT
<< "\nWith: "; DEBUG(TLO
.New
.getNode()->dump(&DAG
));
613 CommitTargetLoweringOpt(TLO
);
617 //===----------------------------------------------------------------------===//
618 // Main DAG Combiner implementation
619 //===----------------------------------------------------------------------===//
621 void DAGCombiner::Run(CombineLevel AtLevel
) {
622 // set the instance variables, so that the various visit routines may use it.
624 LegalOperations
= Level
>= NoIllegalOperations
;
625 LegalTypes
= Level
>= NoIllegalTypes
;
627 // Add all the dag nodes to the worklist.
628 WorkList
.reserve(DAG
.allnodes_size());
629 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
630 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
631 WorkList
.push_back(I
);
633 // Create a dummy node (which is not added to allnodes), that adds a reference
634 // to the root node, preventing it from being deleted, and tracking any
635 // changes of the root.
636 HandleSDNode
Dummy(DAG
.getRoot());
638 // The root of the dag may dangle to deleted nodes until the dag combiner is
639 // done. Set it to null to avoid confusion.
640 DAG
.setRoot(SDValue());
642 // while the worklist isn't empty, inspect the node on the end of it and
643 // try and combine it.
644 while (!WorkList
.empty()) {
645 SDNode
*N
= WorkList
.back();
648 // If N has no uses, it is dead. Make sure to revisit all N's operands once
649 // N is deleted from the DAG, since they too may now be dead or may have a
650 // reduced number of uses, allowing other xforms.
651 if (N
->use_empty() && N
!= &Dummy
) {
652 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
653 AddToWorkList(N
->getOperand(i
).getNode());
659 SDValue RV
= combine(N
);
661 if (RV
.getNode() == 0)
666 // If we get back the same node we passed in, rather than a new node or
667 // zero, we know that the node must have defined multiple values and
668 // CombineTo was used. Since CombineTo takes care of the worklist
669 // mechanics for us, we have no work to do in this case.
670 if (RV
.getNode() == N
)
673 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
674 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
675 "Node was deleted but visit returned new node!");
677 DOUT
<< "\nReplacing.3 "; DEBUG(N
->dump(&DAG
));
678 DOUT
<< "\nWith: "; DEBUG(RV
.getNode()->dump(&DAG
));
680 WorkListRemover
DeadNodes(*this);
681 if (N
->getNumValues() == RV
.getNode()->getNumValues())
682 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
684 assert(N
->getValueType(0) == RV
.getValueType() &&
685 N
->getNumValues() == 1 && "Type mismatch");
687 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
690 // Push the new node and any users onto the worklist
691 AddToWorkList(RV
.getNode());
692 AddUsersToWorkList(RV
.getNode());
694 // Add any uses of the old node to the worklist in case this node is the
695 // last one that uses them. They may become dead after this node is
697 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
698 AddToWorkList(N
->getOperand(i
).getNode());
700 // Finally, if the node is now dead, remove it from the graph. The node
701 // may not be dead if the replacement process recursively simplified to
702 // something else needing this node.
703 if (N
->use_empty()) {
704 // Nodes can be reintroduced into the worklist. Make sure we do not
705 // process a node that has been replaced.
706 removeFromWorkList(N
);
708 // Finally, since the node is now dead, remove it from the graph.
713 // If the root changed (e.g. it was a dead load, update the root).
714 DAG
.setRoot(Dummy
.getValue());
717 SDValue
DAGCombiner::visit(SDNode
*N
) {
718 switch(N
->getOpcode()) {
720 case ISD::TokenFactor
: return visitTokenFactor(N
);
721 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
722 case ISD::ADD
: return visitADD(N
);
723 case ISD::SUB
: return visitSUB(N
);
724 case ISD::ADDC
: return visitADDC(N
);
725 case ISD::ADDE
: return visitADDE(N
);
726 case ISD::MUL
: return visitMUL(N
);
727 case ISD::SDIV
: return visitSDIV(N
);
728 case ISD::UDIV
: return visitUDIV(N
);
729 case ISD::SREM
: return visitSREM(N
);
730 case ISD::UREM
: return visitUREM(N
);
731 case ISD::MULHU
: return visitMULHU(N
);
732 case ISD::MULHS
: return visitMULHS(N
);
733 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
734 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
735 case ISD::SDIVREM
: return visitSDIVREM(N
);
736 case ISD::UDIVREM
: return visitUDIVREM(N
);
737 case ISD::AND
: return visitAND(N
);
738 case ISD::OR
: return visitOR(N
);
739 case ISD::XOR
: return visitXOR(N
);
740 case ISD::SHL
: return visitSHL(N
);
741 case ISD::SRA
: return visitSRA(N
);
742 case ISD::SRL
: return visitSRL(N
);
743 case ISD::CTLZ
: return visitCTLZ(N
);
744 case ISD::CTTZ
: return visitCTTZ(N
);
745 case ISD::CTPOP
: return visitCTPOP(N
);
746 case ISD::SELECT
: return visitSELECT(N
);
747 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
748 case ISD::SETCC
: return visitSETCC(N
);
749 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
750 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
751 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
752 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
753 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
754 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
755 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
756 case ISD::FADD
: return visitFADD(N
);
757 case ISD::FSUB
: return visitFSUB(N
);
758 case ISD::FMUL
: return visitFMUL(N
);
759 case ISD::FDIV
: return visitFDIV(N
);
760 case ISD::FREM
: return visitFREM(N
);
761 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
762 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
763 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
764 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
765 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
766 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
767 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
768 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
769 case ISD::FNEG
: return visitFNEG(N
);
770 case ISD::FABS
: return visitFABS(N
);
771 case ISD::BRCOND
: return visitBRCOND(N
);
772 case ISD::BR_CC
: return visitBR_CC(N
);
773 case ISD::LOAD
: return visitLOAD(N
);
774 case ISD::STORE
: return visitSTORE(N
);
775 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
776 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
777 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
778 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
779 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
784 SDValue
DAGCombiner::combine(SDNode
*N
) {
785 SDValue RV
= visit(N
);
787 // If nothing happened, try a target-specific DAG combine.
788 if (RV
.getNode() == 0) {
789 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
790 "Node was deleted but visit returned NULL!");
792 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
793 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
795 // Expose the DAG combiner to the target combiner impls.
796 TargetLowering::DAGCombinerInfo
797 DagCombineInfo(DAG
, Level
== Unrestricted
, false, this);
799 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
803 // If N is a commutative binary node, try commuting it to enable more
805 if (RV
.getNode() == 0 &&
806 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
807 N
->getNumValues() == 1) {
808 SDValue N0
= N
->getOperand(0);
809 SDValue N1
= N
->getOperand(1);
811 // Constant operands are canonicalized to RHS.
812 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
813 SDValue Ops
[] = { N1
, N0
};
814 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
817 return SDValue(CSENode
, 0);
824 /// getInputChainForNode - Given a node, return its input chain if it has one,
825 /// otherwise return a null sd operand.
826 static SDValue
getInputChainForNode(SDNode
*N
) {
827 if (unsigned NumOps
= N
->getNumOperands()) {
828 if (N
->getOperand(0).getValueType() == MVT::Other
)
829 return N
->getOperand(0);
830 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
831 return N
->getOperand(NumOps
-1);
832 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
833 if (N
->getOperand(i
).getValueType() == MVT::Other
)
834 return N
->getOperand(i
);
839 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
840 // If N has two operands, where one has an input chain equal to the other,
841 // the 'other' chain is redundant.
842 if (N
->getNumOperands() == 2) {
843 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
844 return N
->getOperand(0);
845 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
846 return N
->getOperand(1);
849 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
850 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
851 SmallPtrSet
<SDNode
*, 16> SeenOps
;
852 bool Changed
= false; // If we should replace this token factor.
854 // Start out with this token factor.
857 // Iterate through token factors. The TFs grows when new token factors are
859 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
862 // Check each of the operands.
863 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
864 SDValue Op
= TF
->getOperand(i
);
866 switch (Op
.getOpcode()) {
867 case ISD::EntryToken
:
868 // Entry tokens don't need to be added to the list. They are
873 case ISD::TokenFactor
:
874 if ((CombinerAA
|| Op
.hasOneUse()) &&
875 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
876 // Queue up for processing.
877 TFs
.push_back(Op
.getNode());
878 // Clean up in case the token factor is removed.
879 AddToWorkList(Op
.getNode());
886 // Only add if it isn't already in the list.
887 if (SeenOps
.insert(Op
.getNode()))
898 // If we've change things around then replace token factor.
901 // The entry token is the only possible outcome.
902 Result
= DAG
.getEntryNode();
904 // New and improved token factor.
905 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
906 MVT::Other
, &Ops
[0], Ops
.size());
909 // Don't add users to work list.
910 return CombineTo(N
, Result
, false);
916 /// MERGE_VALUES can always be eliminated.
917 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
918 WorkListRemover
DeadNodes(*this);
919 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
920 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
922 removeFromWorkList(N
);
924 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
928 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
930 MVT VT
= N0
.getValueType();
931 SDValue N00
= N0
.getOperand(0);
932 SDValue N01
= N0
.getOperand(1);
933 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
935 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
936 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
937 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
938 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
939 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
940 N00
.getOperand(0), N01
),
941 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
942 N00
.getOperand(1), N01
));
943 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
949 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
950 SDValue N0
= N
->getOperand(0);
951 SDValue N1
= N
->getOperand(1);
952 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
953 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
954 MVT VT
= N0
.getValueType();
958 SDValue FoldedVOp
= SimplifyVBinOp(N
);
959 if (FoldedVOp
.getNode()) return FoldedVOp
;
962 // fold (add x, undef) -> undef
963 if (N0
.getOpcode() == ISD::UNDEF
)
965 if (N1
.getOpcode() == ISD::UNDEF
)
967 // fold (add c1, c2) -> c1+c2
969 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
970 // canonicalize constant to RHS
972 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
973 // fold (add x, 0) -> x
974 if (N1C
&& N1C
->isNullValue())
976 // fold (add Sym, c) -> Sym+c
977 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
978 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
979 GA
->getOpcode() == ISD::GlobalAddress
)
980 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
982 (uint64_t)N1C
->getSExtValue());
983 // fold ((c1-A)+c2) -> (c1+c2)-A
984 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
985 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
986 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
987 DAG
.getConstant(N1C
->getAPIntValue()+
988 N0C
->getAPIntValue(), VT
),
991 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
992 if (RADD
.getNode() != 0)
994 // fold ((0-A) + B) -> B-A
995 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
996 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
997 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
998 // fold (A + (0-B)) -> A-B
999 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1000 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1001 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1002 // fold (A+(B-A)) -> B
1003 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1004 return N1
.getOperand(0);
1005 // fold ((B-A)+A) -> B
1006 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1007 return N0
.getOperand(0);
1008 // fold (A+(B-(A+C))) to (B-C)
1009 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1010 N0
== N1
.getOperand(1).getOperand(0))
1011 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1012 N1
.getOperand(1).getOperand(1));
1013 // fold (A+(B-(C+A))) to (B-C)
1014 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1015 N0
== N1
.getOperand(1).getOperand(1))
1016 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1017 N1
.getOperand(1).getOperand(0));
1018 // fold (A+((B-A)+or-C)) to (B+or-C)
1019 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1020 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1021 N0
== N1
.getOperand(0).getOperand(1))
1022 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1023 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1025 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1026 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1027 SDValue N00
= N0
.getOperand(0);
1028 SDValue N01
= N0
.getOperand(1);
1029 SDValue N10
= N1
.getOperand(0);
1030 SDValue N11
= N1
.getOperand(1);
1032 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1033 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1034 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1035 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1038 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1039 return SDValue(N
, 0);
1041 // fold (a+b) -> (a|b) iff a and b share no bits.
1042 if (VT
.isInteger() && !VT
.isVector()) {
1043 APInt LHSZero
, LHSOne
;
1044 APInt RHSZero
, RHSOne
;
1045 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1046 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1048 if (LHSZero
.getBoolValue()) {
1049 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1051 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1052 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1053 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1054 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1055 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1059 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1060 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1061 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1062 if (Result
.getNode()) return Result
;
1064 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1065 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1066 if (Result
.getNode()) return Result
;
1072 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1073 SDValue N0
= N
->getOperand(0);
1074 SDValue N1
= N
->getOperand(1);
1075 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1076 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1077 MVT VT
= N0
.getValueType();
1079 // If the flag result is dead, turn this into an ADD.
1080 if (N
->hasNUsesOfValue(0, 1))
1081 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1082 DAG
.getNode(ISD::CARRY_FALSE
,
1083 N
->getDebugLoc(), MVT::Flag
));
1085 // canonicalize constant to RHS.
1087 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1089 // fold (addc x, 0) -> x + no carry out
1090 if (N1C
&& N1C
->isNullValue())
1091 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1092 N
->getDebugLoc(), MVT::Flag
));
1094 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1095 APInt LHSZero
, LHSOne
;
1096 APInt RHSZero
, RHSOne
;
1097 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1098 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1100 if (LHSZero
.getBoolValue()) {
1101 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1103 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1104 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1105 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1106 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1107 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1108 DAG
.getNode(ISD::CARRY_FALSE
,
1109 N
->getDebugLoc(), MVT::Flag
));
1115 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1116 SDValue N0
= N
->getOperand(0);
1117 SDValue N1
= N
->getOperand(1);
1118 SDValue CarryIn
= N
->getOperand(2);
1119 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1120 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1122 // canonicalize constant to RHS
1124 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1127 // fold (adde x, y, false) -> (addc x, y)
1128 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1129 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1134 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1135 SDValue N0
= N
->getOperand(0);
1136 SDValue N1
= N
->getOperand(1);
1137 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1138 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1139 MVT VT
= N0
.getValueType();
1142 if (VT
.isVector()) {
1143 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1144 if (FoldedVOp
.getNode()) return FoldedVOp
;
1147 // fold (sub x, x) -> 0
1149 return DAG
.getConstant(0, N
->getValueType(0));
1150 // fold (sub c1, c2) -> c1-c2
1152 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1153 // fold (sub x, c) -> (add x, -c)
1155 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1156 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1157 // fold (A+B)-A -> B
1158 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1159 return N0
.getOperand(1);
1160 // fold (A+B)-B -> A
1161 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1162 return N0
.getOperand(0);
1163 // fold ((A+(B+or-C))-B) -> A+or-C
1164 if (N0
.getOpcode() == ISD::ADD
&&
1165 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1166 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1167 N0
.getOperand(1).getOperand(0) == N1
)
1168 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1169 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1170 // fold ((A+(C+B))-B) -> A+C
1171 if (N0
.getOpcode() == ISD::ADD
&&
1172 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1173 N0
.getOperand(1).getOperand(1) == N1
)
1174 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1175 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1176 // fold ((A-(B-C))-C) -> A-B
1177 if (N0
.getOpcode() == ISD::SUB
&&
1178 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1179 N0
.getOperand(1).getOperand(1) == N1
)
1180 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1181 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1183 // If either operand of a sub is undef, the result is undef
1184 if (N0
.getOpcode() == ISD::UNDEF
)
1186 if (N1
.getOpcode() == ISD::UNDEF
)
1189 // If the relocation model supports it, consider symbol offsets.
1190 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1191 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1192 // fold (sub Sym, c) -> Sym-c
1193 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1194 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1196 (uint64_t)N1C
->getSExtValue());
1197 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1198 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1199 if (GA
->getGlobal() == GB
->getGlobal())
1200 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1207 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1208 SDValue N0
= N
->getOperand(0);
1209 SDValue N1
= N
->getOperand(1);
1210 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1211 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1212 MVT VT
= N0
.getValueType();
1215 if (VT
.isVector()) {
1216 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1217 if (FoldedVOp
.getNode()) return FoldedVOp
;
1220 // fold (mul x, undef) -> 0
1221 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1222 return DAG
.getConstant(0, VT
);
1223 // fold (mul c1, c2) -> c1*c2
1225 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1226 // canonicalize constant to RHS
1228 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1229 // fold (mul x, 0) -> 0
1230 if (N1C
&& N1C
->isNullValue())
1232 // fold (mul x, -1) -> 0-x
1233 if (N1C
&& N1C
->isAllOnesValue())
1234 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1235 DAG
.getConstant(0, VT
), N0
);
1236 // fold (mul x, (1 << c)) -> x << c
1237 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1238 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1239 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1240 getShiftAmountTy()));
1241 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1242 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1243 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1244 // FIXME: If the input is something that is easily negated (e.g. a
1245 // single-use add), we should put the negate there.
1246 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1247 DAG
.getConstant(0, VT
),
1248 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1249 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1251 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1252 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1253 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1254 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1255 N1
, N0
.getOperand(1));
1256 AddToWorkList(C3
.getNode());
1257 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1258 N0
.getOperand(0), C3
);
1261 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1264 SDValue
Sh(0,0), Y(0,0);
1265 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1266 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1267 N0
.getNode()->hasOneUse()) {
1269 } else if (N1
.getOpcode() == ISD::SHL
&&
1270 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1271 N1
.getNode()->hasOneUse()) {
1276 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1277 Sh
.getOperand(0), Y
);
1278 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1279 Mul
, Sh
.getOperand(1));
1283 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1284 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1285 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1286 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1287 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1288 N0
.getOperand(0), N1
),
1289 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1290 N0
.getOperand(1), N1
));
1293 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1294 if (RMUL
.getNode() != 0)
1300 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1301 SDValue N0
= N
->getOperand(0);
1302 SDValue N1
= N
->getOperand(1);
1303 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1304 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1305 MVT VT
= N
->getValueType(0);
1308 if (VT
.isVector()) {
1309 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1310 if (FoldedVOp
.getNode()) return FoldedVOp
;
1313 // fold (sdiv c1, c2) -> c1/c2
1314 if (N0C
&& N1C
&& !N1C
->isNullValue())
1315 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1316 // fold (sdiv X, 1) -> X
1317 if (N1C
&& N1C
->getSExtValue() == 1LL)
1319 // fold (sdiv X, -1) -> 0-X
1320 if (N1C
&& N1C
->isAllOnesValue())
1321 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1322 DAG
.getConstant(0, VT
), N0
);
1323 // If we know the sign bits of both operands are zero, strength reduce to a
1324 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1325 if (!VT
.isVector()) {
1326 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1327 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1330 // fold (sdiv X, pow2) -> simple ops after legalize
1331 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1332 (isPowerOf2_64(N1C
->getSExtValue()) ||
1333 isPowerOf2_64(-N1C
->getSExtValue()))) {
1334 // If dividing by powers of two is cheap, then don't perform the following
1336 if (TLI
.isPow2DivCheap())
1339 int64_t pow2
= N1C
->getSExtValue();
1340 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1341 unsigned lg2
= Log2_64(abs2
);
1343 // Splat the sign bit into the register
1344 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1345 DAG
.getConstant(VT
.getSizeInBits()-1,
1346 getShiftAmountTy()));
1347 AddToWorkList(SGN
.getNode());
1349 // Add (N0 < 0) ? abs2 - 1 : 0;
1350 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1351 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1352 getShiftAmountTy()));
1353 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1354 AddToWorkList(SRL
.getNode());
1355 AddToWorkList(ADD
.getNode()); // Divide by pow2
1356 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1357 DAG
.getConstant(lg2
, getShiftAmountTy()));
1359 // If we're dividing by a positive value, we're done. Otherwise, we must
1360 // negate the result.
1364 AddToWorkList(SRA
.getNode());
1365 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1366 DAG
.getConstant(0, VT
), SRA
);
1369 // if integer divide is expensive and we satisfy the requirements, emit an
1370 // alternate sequence.
1371 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1372 !TLI
.isIntDivCheap()) {
1373 SDValue Op
= BuildSDIV(N
);
1374 if (Op
.getNode()) return Op
;
1378 if (N0
.getOpcode() == ISD::UNDEF
)
1379 return DAG
.getConstant(0, VT
);
1380 // X / undef -> undef
1381 if (N1
.getOpcode() == ISD::UNDEF
)
1387 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1388 SDValue N0
= N
->getOperand(0);
1389 SDValue N1
= N
->getOperand(1);
1390 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1391 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1392 MVT VT
= N
->getValueType(0);
1395 if (VT
.isVector()) {
1396 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1397 if (FoldedVOp
.getNode()) return FoldedVOp
;
1400 // fold (udiv c1, c2) -> c1/c2
1401 if (N0C
&& N1C
&& !N1C
->isNullValue())
1402 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1403 // fold (udiv x, (1 << c)) -> x >>u c
1404 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1405 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1406 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1407 getShiftAmountTy()));
1408 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1409 if (N1
.getOpcode() == ISD::SHL
) {
1410 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1411 if (SHC
->getAPIntValue().isPowerOf2()) {
1412 MVT ADDVT
= N1
.getOperand(1).getValueType();
1413 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1415 DAG
.getConstant(SHC
->getAPIntValue()
1418 AddToWorkList(Add
.getNode());
1419 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1423 // fold (udiv x, c) -> alternate
1424 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1425 SDValue Op
= BuildUDIV(N
);
1426 if (Op
.getNode()) return Op
;
1430 if (N0
.getOpcode() == ISD::UNDEF
)
1431 return DAG
.getConstant(0, VT
);
1432 // X / undef -> undef
1433 if (N1
.getOpcode() == ISD::UNDEF
)
1439 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1440 SDValue N0
= N
->getOperand(0);
1441 SDValue N1
= N
->getOperand(1);
1442 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1443 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1444 MVT VT
= N
->getValueType(0);
1446 // fold (srem c1, c2) -> c1%c2
1447 if (N0C
&& N1C
&& !N1C
->isNullValue())
1448 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1449 // If we know the sign bits of both operands are zero, strength reduce to a
1450 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1451 if (!VT
.isVector()) {
1452 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1453 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1456 // If X/C can be simplified by the division-by-constant logic, lower
1457 // X%C to the equivalent of X-X/C*C.
1458 if (N1C
&& !N1C
->isNullValue()) {
1459 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1460 AddToWorkList(Div
.getNode());
1461 SDValue OptimizedDiv
= combine(Div
.getNode());
1462 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1463 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1465 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1466 AddToWorkList(Mul
.getNode());
1472 if (N0
.getOpcode() == ISD::UNDEF
)
1473 return DAG
.getConstant(0, VT
);
1474 // X % undef -> undef
1475 if (N1
.getOpcode() == ISD::UNDEF
)
1481 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1482 SDValue N0
= N
->getOperand(0);
1483 SDValue N1
= N
->getOperand(1);
1484 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1485 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1486 MVT VT
= N
->getValueType(0);
1488 // fold (urem c1, c2) -> c1%c2
1489 if (N0C
&& N1C
&& !N1C
->isNullValue())
1490 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1491 // fold (urem x, pow2) -> (and x, pow2-1)
1492 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1493 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1494 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1495 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1496 if (N1
.getOpcode() == ISD::SHL
) {
1497 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1498 if (SHC
->getAPIntValue().isPowerOf2()) {
1500 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1501 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1503 AddToWorkList(Add
.getNode());
1504 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1509 // If X/C can be simplified by the division-by-constant logic, lower
1510 // X%C to the equivalent of X-X/C*C.
1511 if (N1C
&& !N1C
->isNullValue()) {
1512 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1513 AddToWorkList(Div
.getNode());
1514 SDValue OptimizedDiv
= combine(Div
.getNode());
1515 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1516 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1518 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1519 AddToWorkList(Mul
.getNode());
1525 if (N0
.getOpcode() == ISD::UNDEF
)
1526 return DAG
.getConstant(0, VT
);
1527 // X % undef -> undef
1528 if (N1
.getOpcode() == ISD::UNDEF
)
1534 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1535 SDValue N0
= N
->getOperand(0);
1536 SDValue N1
= N
->getOperand(1);
1537 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1538 MVT VT
= N
->getValueType(0);
1540 // fold (mulhs x, 0) -> 0
1541 if (N1C
&& N1C
->isNullValue())
1543 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1544 if (N1C
&& N1C
->getAPIntValue() == 1)
1545 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1546 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1547 getShiftAmountTy()));
1548 // fold (mulhs x, undef) -> 0
1549 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1550 return DAG
.getConstant(0, VT
);
1555 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1556 SDValue N0
= N
->getOperand(0);
1557 SDValue N1
= N
->getOperand(1);
1558 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1559 MVT VT
= N
->getValueType(0);
1561 // fold (mulhu x, 0) -> 0
1562 if (N1C
&& N1C
->isNullValue())
1564 // fold (mulhu x, 1) -> 0
1565 if (N1C
&& N1C
->getAPIntValue() == 1)
1566 return DAG
.getConstant(0, N0
.getValueType());
1567 // fold (mulhu x, undef) -> 0
1568 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1569 return DAG
.getConstant(0, VT
);
1574 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1575 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1576 /// that are being performed. Return true if a simplification was made.
1578 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1580 // If the high half is not needed, just compute the low half.
1581 bool HiExists
= N
->hasAnyUseOfValue(1);
1583 (!LegalOperations
||
1584 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1585 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1586 N
->op_begin(), N
->getNumOperands());
1587 return CombineTo(N
, Res
, Res
);
1590 // If the low half is not needed, just compute the high half.
1591 bool LoExists
= N
->hasAnyUseOfValue(0);
1593 (!LegalOperations
||
1594 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1595 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1596 N
->op_begin(), N
->getNumOperands());
1597 return CombineTo(N
, Res
, Res
);
1600 // If both halves are used, return as it is.
1601 if (LoExists
&& HiExists
)
1604 // If the two computed results can be simplified separately, separate them.
1606 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1607 N
->op_begin(), N
->getNumOperands());
1608 AddToWorkList(Lo
.getNode());
1609 SDValue LoOpt
= combine(Lo
.getNode());
1610 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1611 (!LegalOperations
||
1612 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1613 return CombineTo(N
, LoOpt
, LoOpt
);
1617 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1618 N
->op_begin(), N
->getNumOperands());
1619 AddToWorkList(Hi
.getNode());
1620 SDValue HiOpt
= combine(Hi
.getNode());
1621 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
1622 (!LegalOperations
||
1623 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
1624 return CombineTo(N
, HiOpt
, HiOpt
);
1630 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
1631 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
1632 if (Res
.getNode()) return Res
;
1637 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
1638 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
1639 if (Res
.getNode()) return Res
;
1644 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
1645 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
1646 if (Res
.getNode()) return Res
;
1651 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
1652 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
1653 if (Res
.getNode()) return Res
;
1658 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1659 /// two operands of the same opcode, try to simplify it.
1660 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1661 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1662 MVT VT
= N0
.getValueType();
1663 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1665 // For each of OP in AND/OR/XOR:
1666 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1667 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1668 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1669 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1670 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1671 N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::TRUNCATE
) &&
1672 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()) {
1673 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1674 N0
.getOperand(0).getValueType(),
1675 N0
.getOperand(0), N1
.getOperand(0));
1676 AddToWorkList(ORNode
.getNode());
1677 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
1680 // For each of OP in SHL/SRL/SRA/AND...
1681 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1682 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1683 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1684 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1685 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1686 N0
.getOperand(1) == N1
.getOperand(1)) {
1687 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1688 N0
.getOperand(0).getValueType(),
1689 N0
.getOperand(0), N1
.getOperand(0));
1690 AddToWorkList(ORNode
.getNode());
1691 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
1692 ORNode
, N0
.getOperand(1));
1698 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
1699 SDValue N0
= N
->getOperand(0);
1700 SDValue N1
= N
->getOperand(1);
1701 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1702 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1703 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1704 MVT VT
= N1
.getValueType();
1705 unsigned BitWidth
= VT
.getSizeInBits();
1708 if (VT
.isVector()) {
1709 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1710 if (FoldedVOp
.getNode()) return FoldedVOp
;
1713 // fold (and x, undef) -> 0
1714 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1715 return DAG
.getConstant(0, VT
);
1716 // fold (and c1, c2) -> c1&c2
1718 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
1719 // canonicalize constant to RHS
1721 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
1722 // fold (and x, -1) -> x
1723 if (N1C
&& N1C
->isAllOnesValue())
1725 // if (and x, c) is known to be zero, return 0
1726 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
1727 APInt::getAllOnesValue(BitWidth
)))
1728 return DAG
.getConstant(0, VT
);
1730 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
1731 if (RAND
.getNode() != 0)
1733 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1734 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1735 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1736 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
1738 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1739 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1740 SDValue N0Op0
= N0
.getOperand(0);
1741 APInt Mask
= ~N1C
->getAPIntValue();
1742 Mask
.trunc(N0Op0
.getValueSizeInBits());
1743 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
1744 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
1745 N0
.getValueType(), N0Op0
);
1747 // Replace uses of the AND with uses of the Zero extend node.
1750 // We actually want to replace all uses of the any_extend with the
1751 // zero_extend, to avoid duplicating things. This will later cause this
1752 // AND to be folded.
1753 CombineTo(N0
.getNode(), Zext
);
1754 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1757 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1758 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1759 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1760 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1762 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1763 LL
.getValueType().isInteger()) {
1764 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1765 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
1766 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1767 LR
.getValueType(), LL
, RL
);
1768 AddToWorkList(ORNode
.getNode());
1769 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1771 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1772 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1773 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
1774 LR
.getValueType(), LL
, RL
);
1775 AddToWorkList(ANDNode
.getNode());
1776 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1778 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1779 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1780 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1781 LR
.getValueType(), LL
, RL
);
1782 AddToWorkList(ORNode
.getNode());
1783 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1786 // canonicalize equivalent to ll == rl
1787 if (LL
== RR
&& LR
== RL
) {
1788 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1791 if (LL
== RL
&& LR
== RR
) {
1792 bool isInteger
= LL
.getValueType().isInteger();
1793 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1794 if (Result
!= ISD::SETCC_INVALID
&&
1795 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1796 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1801 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1802 if (N0
.getOpcode() == N1
.getOpcode()) {
1803 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1804 if (Tmp
.getNode()) return Tmp
;
1807 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1808 // fold (and (sra)) -> (and (srl)) when possible.
1809 if (!VT
.isVector() &&
1810 SimplifyDemandedBits(SDValue(N
, 0)))
1811 return SDValue(N
, 0);
1812 // fold (zext_inreg (extload x)) -> (zextload x)
1813 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
1814 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1815 MVT EVT
= LN0
->getMemoryVT();
1816 // If we zero all the possible extended bits, then we can turn this into
1817 // a zextload if we are running before legalize or the operation is legal.
1818 unsigned BitWidth
= N1
.getValueSizeInBits();
1819 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1820 BitWidth
- EVT
.getSizeInBits())) &&
1821 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1822 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1823 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1824 LN0
->getChain(), LN0
->getBasePtr(),
1826 LN0
->getSrcValueOffset(), EVT
,
1827 LN0
->isVolatile(), LN0
->getAlignment());
1829 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1830 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1833 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1834 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
1836 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1837 MVT EVT
= LN0
->getMemoryVT();
1838 // If we zero all the possible extended bits, then we can turn this into
1839 // a zextload if we are running before legalize or the operation is legal.
1840 unsigned BitWidth
= N1
.getValueSizeInBits();
1841 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1842 BitWidth
- EVT
.getSizeInBits())) &&
1843 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1844 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1845 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1847 LN0
->getBasePtr(), LN0
->getSrcValue(),
1848 LN0
->getSrcValueOffset(), EVT
,
1849 LN0
->isVolatile(), LN0
->getAlignment());
1851 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1852 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1856 // fold (and (load x), 255) -> (zextload x, i8)
1857 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1858 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1859 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1860 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1861 LN0
->isUnindexed() && N0
.hasOneUse() &&
1862 // Do not change the width of a volatile load.
1863 !LN0
->isVolatile()) {
1864 MVT EVT
= MVT::Other
;
1865 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
1866 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue()))
1867 EVT
= MVT::getIntegerVT(ActiveBits
);
1869 MVT LoadedVT
= LN0
->getMemoryVT();
1871 // Do not generate loads of non-round integer types since these can
1872 // be expensive (and would be wrong if the type is not byte sized).
1873 if (EVT
!= MVT::Other
&& LoadedVT
.bitsGT(EVT
) && EVT
.isRound() &&
1874 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1875 MVT PtrType
= N0
.getOperand(1).getValueType();
1877 // For big endian targets, we need to add an offset to the pointer to
1878 // load the correct bytes. For little endian systems, we merely need to
1879 // read fewer bytes from the same pointer.
1880 unsigned LVTStoreBytes
= LoadedVT
.getStoreSizeInBits()/8;
1881 unsigned EVTStoreBytes
= EVT
.getStoreSizeInBits()/8;
1882 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
1883 unsigned Alignment
= LN0
->getAlignment();
1884 SDValue NewPtr
= LN0
->getBasePtr();
1886 if (TLI
.isBigEndian()) {
1887 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
1888 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
1889 Alignment
= MinAlign(Alignment
, PtrOff
);
1892 AddToWorkList(NewPtr
.getNode());
1894 DAG
.getExtLoad(ISD::ZEXTLOAD
, LN0
->getDebugLoc(), VT
, LN0
->getChain(),
1895 NewPtr
, LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
1896 EVT
, LN0
->isVolatile(), Alignment
);
1898 CombineTo(N0
.getNode(), Load
, Load
.getValue(1));
1899 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1907 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
1908 SDValue N0
= N
->getOperand(0);
1909 SDValue N1
= N
->getOperand(1);
1910 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1911 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1912 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1913 MVT VT
= N1
.getValueType();
1916 if (VT
.isVector()) {
1917 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1918 if (FoldedVOp
.getNode()) return FoldedVOp
;
1921 // fold (or x, undef) -> -1
1922 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1923 return DAG
.getConstant(~0ULL, VT
);
1924 // fold (or c1, c2) -> c1|c2
1926 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
1927 // canonicalize constant to RHS
1929 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
1930 // fold (or x, 0) -> x
1931 if (N1C
&& N1C
->isNullValue())
1933 // fold (or x, -1) -> -1
1934 if (N1C
&& N1C
->isAllOnesValue())
1936 // fold (or x, c) -> c iff (x & ~c) == 0
1937 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
1940 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
1941 if (ROR
.getNode() != 0)
1943 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1944 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1945 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1946 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1947 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
1948 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
1949 N0
.getOperand(0), N1
),
1950 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
1952 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1953 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1954 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1955 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1957 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1958 LL
.getValueType().isInteger()) {
1959 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1960 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1961 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
1962 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1963 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
1964 LR
.getValueType(), LL
, RL
);
1965 AddToWorkList(ORNode
.getNode());
1966 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1968 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1969 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1970 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1971 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1972 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
1973 LR
.getValueType(), LL
, RL
);
1974 AddToWorkList(ANDNode
.getNode());
1975 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1978 // canonicalize equivalent to ll == rl
1979 if (LL
== RR
&& LR
== RL
) {
1980 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1983 if (LL
== RL
&& LR
== RR
) {
1984 bool isInteger
= LL
.getValueType().isInteger();
1985 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
1986 if (Result
!= ISD::SETCC_INVALID
&&
1987 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1988 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1993 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
1994 if (N0
.getOpcode() == N1
.getOpcode()) {
1995 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1996 if (Tmp
.getNode()) return Tmp
;
1999 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2000 if (N0
.getOpcode() == ISD::AND
&&
2001 N1
.getOpcode() == ISD::AND
&&
2002 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2003 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2004 // Don't increase # computations.
2005 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2006 // We can only do this xform if we know that bits from X that are set in C2
2007 // but not in C1 are already zero. Likewise for Y.
2008 const APInt
&LHSMask
=
2009 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2010 const APInt
&RHSMask
=
2011 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2013 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2014 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2015 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2016 N0
.getOperand(0), N1
.getOperand(0));
2017 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2018 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2022 // See if this is some rotate idiom.
2023 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2024 return SDValue(Rot
, 0);
2029 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2030 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2031 if (Op
.getOpcode() == ISD::AND
) {
2032 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2033 Mask
= Op
.getOperand(1);
2034 Op
= Op
.getOperand(0);
2040 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2048 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2049 // idioms for rotate, and if the target supports rotation instructions, generate
2051 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2052 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2053 MVT VT
= LHS
.getValueType();
2054 if (!TLI
.isTypeLegal(VT
)) return 0;
2056 // The target must have at least one rotate flavor.
2057 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2058 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2059 if (!HasROTL
&& !HasROTR
) return 0;
2061 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2062 SDValue LHSShift
; // The shift.
2063 SDValue LHSMask
; // AND value if any.
2064 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2065 return 0; // Not part of a rotate.
2067 SDValue RHSShift
; // The shift.
2068 SDValue RHSMask
; // AND value if any.
2069 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2070 return 0; // Not part of a rotate.
2072 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2073 return 0; // Not shifting the same value.
2075 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2076 return 0; // Shifts must disagree.
2078 // Canonicalize shl to left side in a shl/srl pair.
2079 if (RHSShift
.getOpcode() == ISD::SHL
) {
2080 std::swap(LHS
, RHS
);
2081 std::swap(LHSShift
, RHSShift
);
2082 std::swap(LHSMask
, RHSMask
);
2085 unsigned OpSizeInBits
= VT
.getSizeInBits();
2086 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2087 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2088 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2090 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2091 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2092 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2093 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2094 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2095 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2096 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2101 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2103 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2105 // If there is an AND of either shifted operand, apply it to the result.
2106 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2107 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2109 if (LHSMask
.getNode()) {
2110 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2111 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2113 if (RHSMask
.getNode()) {
2114 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2115 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2118 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2121 return Rot
.getNode();
2124 // If there is a mask here, and we have a variable shift, we can't be sure
2125 // that we're masking out the right stuff.
2126 if (LHSMask
.getNode() || RHSMask
.getNode())
2129 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2130 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2131 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2132 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2133 if (ConstantSDNode
*SUBC
=
2134 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2135 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2137 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2138 LHSShiftArg
, LHSShiftAmt
).getNode();
2140 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2141 LHSShiftArg
, RHSShiftAmt
).getNode();
2146 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2147 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2148 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2149 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2150 if (ConstantSDNode
*SUBC
=
2151 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2152 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2154 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2155 LHSShiftArg
, RHSShiftAmt
).getNode();
2157 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2158 LHSShiftArg
, LHSShiftAmt
).getNode();
2163 // Look for sign/zext/any-extended or truncate cases:
2164 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2165 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2166 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2167 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2168 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2169 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2170 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2171 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2172 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2173 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2174 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2175 RExtOp0
.getOperand(1) == LExtOp0
) {
2176 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2178 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2179 // (rotr x, (sub 32, y))
2180 if (ConstantSDNode
*SUBC
=
2181 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2182 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2183 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2185 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2188 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2189 RExtOp0
== LExtOp0
.getOperand(1)) {
2190 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2192 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2193 // (rotl x, (sub 32, y))
2194 if (ConstantSDNode
*SUBC
=
2195 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2196 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2197 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2199 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2208 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2209 SDValue N0
= N
->getOperand(0);
2210 SDValue N1
= N
->getOperand(1);
2211 SDValue LHS
, RHS
, CC
;
2212 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2213 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2214 MVT VT
= N0
.getValueType();
2217 if (VT
.isVector()) {
2218 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2219 if (FoldedVOp
.getNode()) return FoldedVOp
;
2222 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2223 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2224 return DAG
.getConstant(0, VT
);
2225 // fold (xor x, undef) -> undef
2226 if (N0
.getOpcode() == ISD::UNDEF
)
2228 if (N1
.getOpcode() == ISD::UNDEF
)
2230 // fold (xor c1, c2) -> c1^c2
2232 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2233 // canonicalize constant to RHS
2235 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2236 // fold (xor x, 0) -> x
2237 if (N1C
&& N1C
->isNullValue())
2240 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2241 if (RXOR
.getNode() != 0)
2244 // fold !(x cc y) -> (x !cc y)
2245 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2246 bool isInt
= LHS
.getValueType().isInteger();
2247 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2250 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2251 switch (N0
.getOpcode()) {
2253 assert(0 && "Unhandled SetCC Equivalent!");
2256 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2257 case ISD::SELECT_CC
:
2258 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2259 N0
.getOperand(3), NotCC
);
2264 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2265 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2266 N0
.getNode()->hasOneUse() &&
2267 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2268 SDValue V
= N0
.getOperand(0);
2269 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2270 DAG
.getConstant(1, V
.getValueType()));
2271 AddToWorkList(V
.getNode());
2272 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2275 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2276 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2277 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2278 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2279 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2280 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2281 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2282 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2283 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2284 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2287 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2288 if (N1C
&& N1C
->isAllOnesValue() &&
2289 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2290 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2291 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2292 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2293 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2294 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2295 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2296 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2299 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2300 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2301 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2302 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2304 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2305 DAG
.getConstant(N1C
->getAPIntValue() ^
2306 N00C
->getAPIntValue(), VT
));
2308 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2309 DAG
.getConstant(N1C
->getAPIntValue() ^
2310 N01C
->getAPIntValue(), VT
));
2312 // fold (xor x, x) -> 0
2314 if (!VT
.isVector()) {
2315 return DAG
.getConstant(0, VT
);
2316 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2317 // Produce a vector of zeros.
2318 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2319 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2320 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2321 &Ops
[0], Ops
.size());
2325 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2326 if (N0
.getOpcode() == N1
.getOpcode()) {
2327 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2328 if (Tmp
.getNode()) return Tmp
;
2331 // Simplify the expression using non-local knowledge.
2332 if (!VT
.isVector() &&
2333 SimplifyDemandedBits(SDValue(N
, 0)))
2334 return SDValue(N
, 0);
2339 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2340 /// the shift amount is a constant.
2341 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2342 SDNode
*LHS
= N
->getOperand(0).getNode();
2343 if (!LHS
->hasOneUse()) return SDValue();
2345 // We want to pull some binops through shifts, so that we have (and (shift))
2346 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2347 // thing happens with address calculations, so it's important to canonicalize
2349 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2351 switch (LHS
->getOpcode()) {
2352 default: return SDValue();
2355 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2358 HighBitSet
= true; // We can only transform sra if the high bit is set.
2361 if (N
->getOpcode() != ISD::SHL
)
2362 return SDValue(); // only shl(add) not sr[al](add).
2363 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2367 // We require the RHS of the binop to be a constant as well.
2368 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2369 if (!BinOpCst
) return SDValue();
2371 // FIXME: disable this unless the input to the binop is a shift by a constant.
2372 // If it is not a shift, it pessimizes some common cases like:
2374 // void foo(int *X, int i) { X[i & 1235] = 1; }
2375 // int bar(int *X, int i) { return X[i & 255]; }
2376 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2377 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2378 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2379 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2380 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2383 MVT VT
= N
->getValueType(0);
2385 // If this is a signed shift right, and the high bit is modified by the
2386 // logical operation, do not perform the transformation. The highBitSet
2387 // boolean indicates the value of the high bit of the constant which would
2388 // cause it to be modified for this operation.
2389 if (N
->getOpcode() == ISD::SRA
) {
2390 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2391 if (BinOpRHSSignSet
!= HighBitSet
)
2395 // Fold the constants, shifting the binop RHS by the shift amount.
2396 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2398 LHS
->getOperand(1), N
->getOperand(1));
2400 // Create the new shift.
2401 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2402 VT
, LHS
->getOperand(0), N
->getOperand(1));
2404 // Create the new binop.
2405 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2408 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2409 SDValue N0
= N
->getOperand(0);
2410 SDValue N1
= N
->getOperand(1);
2411 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2412 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2413 MVT VT
= N0
.getValueType();
2414 unsigned OpSizeInBits
= VT
.getSizeInBits();
2416 // fold (shl c1, c2) -> c1<<c2
2418 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2419 // fold (shl 0, x) -> 0
2420 if (N0C
&& N0C
->isNullValue())
2422 // fold (shl x, c >= size(x)) -> undef
2423 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2424 return DAG
.getUNDEF(VT
);
2425 // fold (shl x, 0) -> x
2426 if (N1C
&& N1C
->isNullValue())
2428 // if (shl x, c) is known to be zero, return 0
2429 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2430 APInt::getAllOnesValue(VT
.getSizeInBits())))
2431 return DAG
.getConstant(0, VT
);
2432 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2433 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2434 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2435 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2436 SDValue N101
= N1
.getOperand(0).getOperand(1);
2437 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2438 MVT TruncVT
= N1
.getValueType();
2439 SDValue N100
= N1
.getOperand(0).getOperand(0);
2440 APInt TruncC
= N101C
->getAPIntValue();
2441 TruncC
.trunc(TruncVT
.getSizeInBits());
2442 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2443 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2444 DAG
.getNode(ISD::TRUNCATE
,
2447 DAG
.getConstant(TruncC
, TruncVT
)));
2451 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2452 return SDValue(N
, 0);
2454 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2455 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2456 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2457 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2458 uint64_t c2
= N1C
->getZExtValue();
2459 if (c1
+ c2
> OpSizeInBits
)
2460 return DAG
.getConstant(0, VT
);
2461 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2462 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2464 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2465 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2466 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2467 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2468 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2469 uint64_t c2
= N1C
->getZExtValue();
2470 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
, N0
.getOperand(0),
2471 DAG
.getConstant(~0ULL << c1
, VT
));
2473 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2474 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2476 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2477 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2479 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2480 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1))
2481 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2482 DAG
.getConstant(~0ULL << N1C
->getZExtValue(), VT
));
2484 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2487 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2488 SDValue N0
= N
->getOperand(0);
2489 SDValue N1
= N
->getOperand(1);
2490 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2491 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2492 MVT VT
= N0
.getValueType();
2494 // fold (sra c1, c2) -> (sra c1, c2)
2496 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2497 // fold (sra 0, x) -> 0
2498 if (N0C
&& N0C
->isNullValue())
2500 // fold (sra -1, x) -> -1
2501 if (N0C
&& N0C
->isAllOnesValue())
2503 // fold (sra x, (setge c, size(x))) -> undef
2504 if (N1C
&& N1C
->getZExtValue() >= VT
.getSizeInBits())
2505 return DAG
.getUNDEF(VT
);
2506 // fold (sra x, 0) -> x
2507 if (N1C
&& N1C
->isNullValue())
2509 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2511 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2512 unsigned LowBits
= VT
.getSizeInBits() - (unsigned)N1C
->getZExtValue();
2513 MVT EVT
= MVT::getIntegerVT(LowBits
);
2514 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
)))
2515 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2516 N0
.getOperand(0), DAG
.getValueType(EVT
));
2519 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2520 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2521 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2522 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2523 if (Sum
>= VT
.getSizeInBits()) Sum
= VT
.getSizeInBits()-1;
2524 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2525 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2529 // fold (sra (shl X, m), (sub result_size, n))
2530 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2531 // result_size - n != m.
2532 // If truncate is free for the target sext(shl) is likely to result in better
2534 if (N0
.getOpcode() == ISD::SHL
) {
2535 // Get the two constanst of the shifts, CN0 = m, CN = n.
2536 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2538 // Determine what the truncate's result bitsize and type would be.
2539 unsigned VTValSize
= VT
.getSizeInBits();
2541 MVT::getIntegerVT(VTValSize
- N1C
->getZExtValue());
2542 // Determine the residual right-shift amount.
2543 unsigned ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2545 // If the shift is not a no-op (in which case this should be just a sign
2546 // extend already), the truncated to type is legal, sign_extend is legal
2547 // on that type, and the the truncate to that type is both legal and free,
2548 // perform the transform.
2550 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
2551 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
2552 TLI
.isTruncateFree(VT
, TruncVT
)) {
2554 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
2555 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
2556 N0
.getOperand(0), Amt
);
2557 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
2559 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
2560 N
->getValueType(0), Trunc
);
2565 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2566 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2567 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2568 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2569 SDValue N101
= N1
.getOperand(0).getOperand(1);
2570 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2571 MVT TruncVT
= N1
.getValueType();
2572 SDValue N100
= N1
.getOperand(0).getOperand(0);
2573 APInt TruncC
= N101C
->getAPIntValue();
2574 TruncC
.trunc(TruncVT
.getSizeInBits());
2575 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
2576 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2578 DAG
.getNode(ISD::TRUNCATE
,
2581 DAG
.getConstant(TruncC
, TruncVT
)));
2585 // Simplify, based on bits shifted out of the LHS.
2586 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2587 return SDValue(N
, 0);
2590 // If the sign bit is known to be zero, switch this to a SRL.
2591 if (DAG
.SignBitIsZero(N0
))
2592 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
2594 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2597 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
2598 SDValue N0
= N
->getOperand(0);
2599 SDValue N1
= N
->getOperand(1);
2600 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2601 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2602 MVT VT
= N0
.getValueType();
2603 unsigned OpSizeInBits
= VT
.getSizeInBits();
2605 // fold (srl c1, c2) -> c1 >>u c2
2607 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
2608 // fold (srl 0, x) -> 0
2609 if (N0C
&& N0C
->isNullValue())
2611 // fold (srl x, c >= size(x)) -> undef
2612 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2613 return DAG
.getUNDEF(VT
);
2614 // fold (srl x, 0) -> x
2615 if (N1C
&& N1C
->isNullValue())
2617 // if (srl x, c) is known to be zero, return 0
2618 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2619 APInt::getAllOnesValue(OpSizeInBits
)))
2620 return DAG
.getConstant(0, VT
);
2622 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2623 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2624 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2625 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2626 uint64_t c2
= N1C
->getZExtValue();
2627 if (c1
+ c2
> OpSizeInBits
)
2628 return DAG
.getConstant(0, VT
);
2629 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2630 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2633 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2634 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2635 // Shifting in all undef bits?
2636 MVT SmallVT
= N0
.getOperand(0).getValueType();
2637 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
2638 return DAG
.getUNDEF(VT
);
2640 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
2641 N0
.getOperand(0), N1
);
2642 AddToWorkList(SmallShift
.getNode());
2643 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
2646 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2647 // bit, which is unmodified by sra.
2648 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
2649 if (N0
.getOpcode() == ISD::SRA
)
2650 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
2653 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2654 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2655 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
2656 APInt KnownZero
, KnownOne
;
2657 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
2658 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2660 // If any of the input bits are KnownOne, then the input couldn't be all
2661 // zeros, thus the result of the srl will always be zero.
2662 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
2664 // If all of the bits input the to ctlz node are known to be zero, then
2665 // the result of the ctlz is "32" and the result of the shift is one.
2666 APInt UnknownBits
= ~KnownZero
& Mask
;
2667 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2669 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2670 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
2671 // Okay, we know that only that the single bit specified by UnknownBits
2672 // could be set on input to the CTLZ node. If this bit is set, the SRL
2673 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2674 // to an SRL/XOR pair, which is likely to simplify more.
2675 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
2676 SDValue Op
= N0
.getOperand(0);
2679 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
2680 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
2681 AddToWorkList(Op
.getNode());
2684 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
2685 Op
, DAG
.getConstant(1, VT
));
2689 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2690 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2691 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2692 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2693 SDValue N101
= N1
.getOperand(0).getOperand(1);
2694 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2695 MVT TruncVT
= N1
.getValueType();
2696 SDValue N100
= N1
.getOperand(0).getOperand(0);
2697 APInt TruncC
= N101C
->getAPIntValue();
2698 TruncC
.trunc(TruncVT
.getSizeInBits());
2699 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
2700 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2702 DAG
.getNode(ISD::TRUNCATE
,
2705 DAG
.getConstant(TruncC
, TruncVT
)));
2709 // fold operands of srl based on knowledge that the low bits are not
2711 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2712 return SDValue(N
, 0);
2714 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2717 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
2718 SDValue N0
= N
->getOperand(0);
2719 MVT VT
= N
->getValueType(0);
2721 // fold (ctlz c1) -> c2
2722 if (isa
<ConstantSDNode
>(N0
))
2723 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
2727 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
2728 SDValue N0
= N
->getOperand(0);
2729 MVT VT
= N
->getValueType(0);
2731 // fold (cttz c1) -> c2
2732 if (isa
<ConstantSDNode
>(N0
))
2733 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
2737 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
2738 SDValue N0
= N
->getOperand(0);
2739 MVT VT
= N
->getValueType(0);
2741 // fold (ctpop c1) -> c2
2742 if (isa
<ConstantSDNode
>(N0
))
2743 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
2747 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
2748 SDValue N0
= N
->getOperand(0);
2749 SDValue N1
= N
->getOperand(1);
2750 SDValue N2
= N
->getOperand(2);
2751 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2752 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2753 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2754 MVT VT
= N
->getValueType(0);
2755 MVT VT0
= N0
.getValueType();
2757 // fold (select C, X, X) -> X
2760 // fold (select true, X, Y) -> X
2761 if (N0C
&& !N0C
->isNullValue())
2763 // fold (select false, X, Y) -> Y
2764 if (N0C
&& N0C
->isNullValue())
2766 // fold (select C, 1, X) -> (or C, X)
2767 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
2768 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2769 // fold (select C, 0, 1) -> (xor C, 1)
2770 if (VT
.isInteger() &&
2773 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
2774 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
2777 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
2778 N0
, DAG
.getConstant(1, VT0
));
2779 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
2780 N0
, DAG
.getConstant(1, VT0
));
2781 AddToWorkList(XORNode
.getNode());
2783 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
2784 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
2786 // fold (select C, 0, X) -> (and (not C), X)
2787 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
2788 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2789 AddToWorkList(NOTNode
.getNode());
2790 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
2792 // fold (select C, X, 1) -> (or (not C), X)
2793 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
2794 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2795 AddToWorkList(NOTNode
.getNode());
2796 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
2798 // fold (select C, X, 0) -> (and C, X)
2799 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
2800 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2801 // fold (select X, X, Y) -> (or X, Y)
2802 // fold (select X, 1, Y) -> (or X, Y)
2803 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
2804 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2805 // fold (select X, Y, X) -> (and X, Y)
2806 // fold (select X, Y, 0) -> (and X, Y)
2807 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
2808 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2810 // If we can fold this based on the true/false value, do so.
2811 if (SimplifySelectOps(N
, N1
, N2
))
2812 return SDValue(N
, 0); // Don't revisit N.
2814 // fold selects based on a setcc into other things, such as min/max/abs
2815 if (N0
.getOpcode() == ISD::SETCC
) {
2817 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2818 // having to say they don't support SELECT_CC on every type the DAG knows
2819 // about, since there is no way to mark an opcode illegal at all value types
2820 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
))
2821 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
2822 N0
.getOperand(0), N0
.getOperand(1),
2823 N1
, N2
, N0
.getOperand(2));
2824 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
2830 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2831 SDValue N0
= N
->getOperand(0);
2832 SDValue N1
= N
->getOperand(1);
2833 SDValue N2
= N
->getOperand(2);
2834 SDValue N3
= N
->getOperand(3);
2835 SDValue N4
= N
->getOperand(4);
2836 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2838 // fold select_cc lhs, rhs, x, x, cc -> x
2842 // Determine if the condition we're dealing with is constant
2843 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
2844 N0
, N1
, CC
, N
->getDebugLoc(), false);
2845 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
2847 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
2848 if (!SCCC
->isNullValue())
2849 return N2
; // cond always true -> true val
2851 return N3
; // cond always false -> false val
2854 // Fold to a simpler select_cc
2855 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
2856 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
2857 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2860 // If we can fold this based on the true/false value, do so.
2861 if (SimplifySelectOps(N
, N2
, N3
))
2862 return SDValue(N
, 0); // Don't revisit N.
2864 // fold select_cc into other things, such as min/max/abs
2865 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
2868 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
2869 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2870 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
2874 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2875 // "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2876 // transformation. Returns true if extension are possible and the above
2877 // mentioned transformation is profitable.
2878 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
2880 SmallVector
<SDNode
*, 4> &ExtendNodes
,
2881 const TargetLowering
&TLI
) {
2882 bool HasCopyToRegUses
= false;
2883 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
2884 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
2885 UE
= N0
.getNode()->use_end();
2890 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2891 if (User
->getOpcode() == ISD::SETCC
) {
2892 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
2893 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
2894 // Sign bits will be lost after a zext.
2897 for (unsigned i
= 0; i
!= 2; ++i
) {
2898 SDValue UseOp
= User
->getOperand(i
);
2901 if (!isa
<ConstantSDNode
>(UseOp
))
2906 ExtendNodes
.push_back(User
);
2908 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
2909 SDValue UseOp
= User
->getOperand(i
);
2911 // If truncate from extended type to original load type is free
2912 // on this target, then it's ok to extend a CopyToReg.
2913 if (isTruncFree
&& User
->getOpcode() == ISD::CopyToReg
)
2914 HasCopyToRegUses
= true;
2922 if (HasCopyToRegUses
) {
2923 bool BothLiveOut
= false;
2924 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
2927 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
2928 SDValue UseOp
= User
->getOperand(i
);
2929 if (UseOp
.getNode() == N
&& UseOp
.getResNo() == 0) {
2936 // Both unextended and extended values are live out. There had better be
2937 // good a reason for the transformation.
2938 return ExtendNodes
.size();
2943 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2944 SDValue N0
= N
->getOperand(0);
2945 MVT VT
= N
->getValueType(0);
2947 // fold (sext c1) -> c1
2948 if (isa
<ConstantSDNode
>(N0
))
2949 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
2951 // fold (sext (sext x)) -> (sext x)
2952 // fold (sext (aext x)) -> (sext x)
2953 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2954 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
2957 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2958 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2959 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2960 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
2961 if (NarrowLoad
.getNode()) {
2962 if (NarrowLoad
.getNode() != N0
.getNode())
2963 CombineTo(N0
.getNode(), NarrowLoad
);
2964 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
2967 // See if the value being truncated is already sign extended. If so, just
2968 // eliminate the trunc/sext pair.
2969 SDValue Op
= N0
.getOperand(0);
2970 unsigned OpBits
= Op
.getValueType().getSizeInBits();
2971 unsigned MidBits
= N0
.getValueType().getSizeInBits();
2972 unsigned DestBits
= VT
.getSizeInBits();
2973 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
2975 if (OpBits
== DestBits
) {
2976 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2977 // bits, it is already ready.
2978 if (NumSignBits
> DestBits
-MidBits
)
2980 } else if (OpBits
< DestBits
) {
2981 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2982 // bits, just sext from i32.
2983 if (NumSignBits
> OpBits
-MidBits
)
2984 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
2986 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2987 // bits, just truncate to i32.
2988 if (NumSignBits
> OpBits
-MidBits
)
2989 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
2992 // fold (sext (truncate x)) -> (sextinreg x).
2993 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
2994 N0
.getValueType())) {
2995 if (Op
.getValueType().bitsLT(VT
))
2996 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
2997 else if (Op
.getValueType().bitsGT(VT
))
2998 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
2999 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3000 DAG
.getValueType(N0
.getValueType()));
3004 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3005 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3006 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3007 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3008 bool DoXform
= true;
3009 SmallVector
<SDNode
*, 4> SetCCs
;
3010 if (!N0
.hasOneUse())
3011 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3013 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3014 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(),
3015 VT
, LN0
->getChain(),
3016 LN0
->getBasePtr(), LN0
->getSrcValue(),
3017 LN0
->getSrcValueOffset(),
3019 LN0
->isVolatile(), LN0
->getAlignment());
3020 CombineTo(N
, ExtLoad
);
3021 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3022 N0
.getValueType(), ExtLoad
);
3023 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3025 // Extend SetCC uses if necessary.
3026 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3027 SDNode
*SetCC
= SetCCs
[i
];
3028 SmallVector
<SDValue
, 4> Ops
;
3030 for (unsigned j
= 0; j
!= 2; ++j
) {
3031 SDValue SOp
= SetCC
->getOperand(j
);
3033 Ops
.push_back(ExtLoad
);
3035 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
3039 Ops
.push_back(SetCC
->getOperand(2));
3040 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3041 SetCC
->getValueType(0),
3042 &Ops
[0], Ops
.size()));
3045 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3049 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3050 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3051 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3052 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3053 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3054 MVT EVT
= LN0
->getMemoryVT();
3055 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3056 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
)) {
3057 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3059 LN0
->getBasePtr(), LN0
->getSrcValue(),
3060 LN0
->getSrcValueOffset(), EVT
,
3061 LN0
->isVolatile(), LN0
->getAlignment());
3062 CombineTo(N
, ExtLoad
);
3063 CombineTo(N0
.getNode(),
3064 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3065 N0
.getValueType(), ExtLoad
),
3066 ExtLoad
.getValue(1));
3067 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3071 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3072 if (N0
.getOpcode() == ISD::SETCC
) {
3074 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3075 DAG
.getConstant(~0ULL, VT
), DAG
.getConstant(0, VT
),
3076 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3077 if (SCC
.getNode()) return SCC
;
3080 // fold (sext x) -> (zext x) if the sign bit is known zero.
3081 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3082 DAG
.SignBitIsZero(N0
))
3083 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3088 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3089 SDValue N0
= N
->getOperand(0);
3090 MVT VT
= N
->getValueType(0);
3092 // fold (zext c1) -> c1
3093 if (isa
<ConstantSDNode
>(N0
))
3094 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3095 // fold (zext (zext x)) -> (zext x)
3096 // fold (zext (aext x)) -> (zext x)
3097 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3098 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3101 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3102 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3103 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3104 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3105 if (NarrowLoad
.getNode()) {
3106 if (NarrowLoad
.getNode() != N0
.getNode())
3107 CombineTo(N0
.getNode(), NarrowLoad
);
3108 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3112 // fold (zext (truncate x)) -> (and x, mask)
3113 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3114 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3115 SDValue Op
= N0
.getOperand(0);
3116 if (Op
.getValueType().bitsLT(VT
)) {
3117 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3118 } else if (Op
.getValueType().bitsGT(VT
)) {
3119 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3121 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(), N0
.getValueType());
3124 // fold (zext (and (trunc x), cst)) -> (and x, cst).
3125 if (N0
.getOpcode() == ISD::AND
&&
3126 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3127 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3128 SDValue X
= N0
.getOperand(0).getOperand(0);
3129 if (X
.getValueType().bitsLT(VT
)) {
3130 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3131 } else if (X
.getValueType().bitsGT(VT
)) {
3132 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3134 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3135 Mask
.zext(VT
.getSizeInBits());
3136 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3137 X
, DAG
.getConstant(Mask
, VT
));
3140 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3141 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3142 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3143 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3144 bool DoXform
= true;
3145 SmallVector
<SDNode
*, 4> SetCCs
;
3146 if (!N0
.hasOneUse())
3147 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3149 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3150 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3152 LN0
->getBasePtr(), LN0
->getSrcValue(),
3153 LN0
->getSrcValueOffset(),
3155 LN0
->isVolatile(), LN0
->getAlignment());
3156 CombineTo(N
, ExtLoad
);
3157 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3158 N0
.getValueType(), ExtLoad
);
3159 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3161 // Extend SetCC uses if necessary.
3162 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3163 SDNode
*SetCC
= SetCCs
[i
];
3164 SmallVector
<SDValue
, 4> Ops
;
3166 for (unsigned j
= 0; j
!= 2; ++j
) {
3167 SDValue SOp
= SetCC
->getOperand(j
);
3169 Ops
.push_back(ExtLoad
);
3171 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3172 N
->getDebugLoc(), VT
, SOp
));
3175 Ops
.push_back(SetCC
->getOperand(2));
3176 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3177 SetCC
->getValueType(0),
3178 &Ops
[0], Ops
.size()));
3181 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3185 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3186 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3187 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3188 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3189 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3190 MVT EVT
= LN0
->getMemoryVT();
3191 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3192 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
)) {
3193 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3195 LN0
->getBasePtr(), LN0
->getSrcValue(),
3196 LN0
->getSrcValueOffset(), EVT
,
3197 LN0
->isVolatile(), LN0
->getAlignment());
3198 CombineTo(N
, ExtLoad
);
3199 CombineTo(N0
.getNode(),
3200 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3202 ExtLoad
.getValue(1));
3203 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3207 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3208 if (N0
.getOpcode() == ISD::SETCC
) {
3210 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3211 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3212 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3213 if (SCC
.getNode()) return SCC
;
3219 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3220 SDValue N0
= N
->getOperand(0);
3221 MVT VT
= N
->getValueType(0);
3223 // fold (aext c1) -> c1
3224 if (isa
<ConstantSDNode
>(N0
))
3225 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3226 // fold (aext (aext x)) -> (aext x)
3227 // fold (aext (zext x)) -> (zext x)
3228 // fold (aext (sext x)) -> (sext x)
3229 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3230 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3231 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3232 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3234 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3235 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3236 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3237 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3238 if (NarrowLoad
.getNode()) {
3239 if (NarrowLoad
.getNode() != N0
.getNode())
3240 CombineTo(N0
.getNode(), NarrowLoad
);
3241 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3245 // fold (aext (truncate x))
3246 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3247 SDValue TruncOp
= N0
.getOperand(0);
3248 if (TruncOp
.getValueType() == VT
)
3249 return TruncOp
; // x iff x size == zext size.
3250 if (TruncOp
.getValueType().bitsGT(VT
))
3251 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3252 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3255 // fold (aext (and (trunc x), cst)) -> (and x, cst).
3256 if (N0
.getOpcode() == ISD::AND
&&
3257 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3258 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3259 SDValue X
= N0
.getOperand(0).getOperand(0);
3260 if (X
.getValueType().bitsLT(VT
)) {
3261 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3262 } else if (X
.getValueType().bitsGT(VT
)) {
3263 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3265 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3266 Mask
.zext(VT
.getSizeInBits());
3267 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3268 X
, DAG
.getConstant(Mask
, VT
));
3271 // fold (aext (load x)) -> (aext (truncate (extload x)))
3272 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
3273 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3274 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3275 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3276 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
3278 LN0
->getBasePtr(), LN0
->getSrcValue(),
3279 LN0
->getSrcValueOffset(),
3281 LN0
->isVolatile(), LN0
->getAlignment());
3282 CombineTo(N
, ExtLoad
);
3283 // Redirect any chain users to the new load.
3284 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1),
3285 SDValue(ExtLoad
.getNode(), 1));
3286 // If any node needs the original loaded value, recompute it.
3287 if (!LN0
->use_empty())
3288 CombineTo(LN0
, DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3289 N0
.getValueType(), ExtLoad
),
3290 ExtLoad
.getValue(1));
3291 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3294 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3295 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3296 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3297 if (N0
.getOpcode() == ISD::LOAD
&&
3298 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3300 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3301 MVT EVT
= LN0
->getMemoryVT();
3302 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), N
->getDebugLoc(),
3303 VT
, LN0
->getChain(), LN0
->getBasePtr(),
3305 LN0
->getSrcValueOffset(), EVT
,
3306 LN0
->isVolatile(), LN0
->getAlignment());
3307 CombineTo(N
, ExtLoad
);
3308 CombineTo(N0
.getNode(),
3309 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3310 N0
.getValueType(), ExtLoad
),
3311 ExtLoad
.getValue(1));
3312 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3315 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3316 if (N0
.getOpcode() == ISD::SETCC
) {
3318 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3319 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3320 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3328 /// GetDemandedBits - See if the specified operand can be simplified with the
3329 /// knowledge that only the bits specified by Mask are used. If so, return the
3330 /// simpler operand, otherwise return a null SDValue.
3331 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
3332 switch (V
.getOpcode()) {
3336 // If the LHS or RHS don't contribute bits to the or, drop them.
3337 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
3338 return V
.getOperand(1);
3339 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
3340 return V
.getOperand(0);
3343 // Only look at single-use SRLs.
3344 if (!V
.getNode()->hasOneUse())
3346 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
3347 // See if we can recursively simplify the LHS.
3348 unsigned Amt
= RHSC
->getZExtValue();
3350 // Watch out for shift count overflow though.
3351 if (Amt
>= Mask
.getBitWidth()) break;
3352 APInt NewMask
= Mask
<< Amt
;
3353 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
3354 if (SimplifyLHS
.getNode())
3355 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
3356 SimplifyLHS
, V
.getOperand(1));
3362 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3363 /// bits and then truncated to a narrower type and where N is a multiple
3364 /// of number of bits of the narrower type, transform it to a narrower load
3365 /// from address + N / num of bits of new type. If the result is to be
3366 /// extended, also fold the extension to form a extending load.
3367 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
3368 unsigned Opc
= N
->getOpcode();
3369 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3370 SDValue N0
= N
->getOperand(0);
3371 MVT VT
= N
->getValueType(0);
3374 // This transformation isn't valid for vector loads.
3378 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3380 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
3381 ExtType
= ISD::SEXTLOAD
;
3382 EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3383 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))
3387 unsigned EVTBits
= EVT
.getSizeInBits();
3389 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
3390 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3391 ShAmt
= N01
->getZExtValue();
3392 // Is the shift amount a multiple of size of VT?
3393 if ((ShAmt
& (EVTBits
-1)) == 0) {
3394 N0
= N0
.getOperand(0);
3395 if (N0
.getValueType().getSizeInBits() <= EVTBits
)
3401 // Do not generate loads of non-round integer types since these can
3402 // be expensive (and would be wrong if the type is not byte sized).
3403 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && EVT
.isRound() &&
3404 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() > EVTBits
&&
3405 // Do not change the width of a volatile load.
3406 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
3407 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3408 MVT PtrType
= N0
.getOperand(1).getValueType();
3410 // For big endian targets, we need to adjust the offset to the pointer to
3411 // load the correct bytes.
3412 if (TLI
.isBigEndian()) {
3413 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
3414 unsigned EVTStoreBits
= EVT
.getStoreSizeInBits();
3415 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
3418 uint64_t PtrOff
= ShAmt
/ 8;
3419 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
3420 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
3421 PtrType
, LN0
->getBasePtr(),
3422 DAG
.getConstant(PtrOff
, PtrType
));
3423 AddToWorkList(NewPtr
.getNode());
3425 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
3426 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
3427 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3428 LN0
->isVolatile(), NewAlign
)
3429 : DAG
.getExtLoad(ExtType
, N0
.getDebugLoc(), VT
, LN0
->getChain(), NewPtr
,
3430 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3431 EVT
, LN0
->isVolatile(), NewAlign
);
3433 // Replace the old load's chain with the new load's chain.
3434 WorkListRemover
DeadNodes(*this);
3435 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
3438 // Return the new loaded value.
3445 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
3446 SDValue N0
= N
->getOperand(0);
3447 SDValue N1
= N
->getOperand(1);
3448 MVT VT
= N
->getValueType(0);
3449 MVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
3450 unsigned VTBits
= VT
.getSizeInBits();
3451 unsigned EVTBits
= EVT
.getSizeInBits();
3453 // fold (sext_in_reg c1) -> c1
3454 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
3455 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
3457 // If the input is already sign extended, just drop the extension.
3458 if (DAG
.ComputeNumSignBits(N0
) >= VT
.getSizeInBits()-EVTBits
+1)
3461 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3462 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3463 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
3464 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
3465 N0
.getOperand(0), N1
);
3468 // fold (sext_in_reg (sext x)) -> (sext x)
3469 // fold (sext_in_reg (aext x)) -> (sext x)
3470 // if x is small enough.
3471 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
3472 SDValue N00
= N0
.getOperand(0);
3473 if (N00
.getValueType().getSizeInBits() < EVTBits
)
3474 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
3477 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3478 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
3479 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
3481 // fold operands of sext_in_reg based on knowledge that the top bits are not
3483 if (SimplifyDemandedBits(SDValue(N
, 0)))
3484 return SDValue(N
, 0);
3486 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3487 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3488 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3489 if (NarrowLoad
.getNode())
3492 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3493 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3494 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3495 if (N0
.getOpcode() == ISD::SRL
) {
3496 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
3497 if (ShAmt
->getZExtValue()+EVTBits
<= VT
.getSizeInBits()) {
3498 // We can turn this into an SRA iff the input to the SRL is already sign
3500 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
3501 if (VT
.getSizeInBits()-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
3502 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
3503 N0
.getOperand(0), N0
.getOperand(1));
3507 // fold (sext_inreg (extload x)) -> (sextload x)
3508 if (ISD::isEXTLoad(N0
.getNode()) &&
3509 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3510 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3511 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3512 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3513 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3514 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3516 LN0
->getBasePtr(), LN0
->getSrcValue(),
3517 LN0
->getSrcValueOffset(), EVT
,
3518 LN0
->isVolatile(), LN0
->getAlignment());
3519 CombineTo(N
, ExtLoad
);
3520 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3521 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3523 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3524 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3526 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3527 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3528 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3529 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3530 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3532 LN0
->getBasePtr(), LN0
->getSrcValue(),
3533 LN0
->getSrcValueOffset(), EVT
,
3534 LN0
->isVolatile(), LN0
->getAlignment());
3535 CombineTo(N
, ExtLoad
);
3536 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3537 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3542 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
3543 SDValue N0
= N
->getOperand(0);
3544 MVT VT
= N
->getValueType(0);
3547 if (N0
.getValueType() == N
->getValueType(0))
3549 // fold (truncate c1) -> c1
3550 if (isa
<ConstantSDNode
>(N0
))
3551 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
3552 // fold (truncate (truncate x)) -> (truncate x)
3553 if (N0
.getOpcode() == ISD::TRUNCATE
)
3554 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3555 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3556 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
3557 N0
.getOpcode() == ISD::ANY_EXTEND
) {
3558 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
3559 // if the source is smaller than the dest, we still need an extend
3560 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
3562 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
3563 // if the source is larger than the dest, than we just need the truncate
3564 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3566 // if the source and dest are the same type, we can drop both the extend
3568 return N0
.getOperand(0);
3571 // See if we can simplify the input to this truncate through knowledge that
3572 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3575 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
3576 VT
.getSizeInBits()));
3577 if (Shorter
.getNode())
3578 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
3580 // fold (truncate (load x)) -> (smaller load x)
3581 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3582 return ReduceLoadWidth(N
);
3585 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
3586 SDValue Elt
= N
->getOperand(i
);
3587 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
3588 return Elt
.getNode();
3589 return Elt
.getOperand(Elt
.getResNo()).getNode();
3592 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3593 /// if load locations are consecutive.
3594 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, MVT VT
) {
3595 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
3597 SDNode
*LD1
= getBuildPairElt(N
, 0);
3598 if (!ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse())
3600 MVT LD1VT
= LD1
->getValueType(0);
3601 SDNode
*LD2
= getBuildPairElt(N
, 1);
3602 const MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3604 if (ISD::isNON_EXTLoad(LD2
) &&
3606 // If both are volatile this would reduce the number of volatile loads.
3607 // If one is volatile it might be ok, but play conservative and bail out.
3608 !cast
<LoadSDNode
>(LD1
)->isVolatile() &&
3609 !cast
<LoadSDNode
>(LD2
)->isVolatile() &&
3610 TLI
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1, MFI
)) {
3611 LoadSDNode
*LD
= cast
<LoadSDNode
>(LD1
);
3612 unsigned Align
= LD
->getAlignment();
3613 unsigned NewAlign
= TLI
.getTargetData()->
3614 getABITypeAlignment(VT
.getTypeForMVT());
3616 if (NewAlign
<= Align
&&
3617 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
3618 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD
->getChain(), LD
->getBasePtr(),
3619 LD
->getSrcValue(), LD
->getSrcValueOffset(),
3626 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
3627 SDValue N0
= N
->getOperand(0);
3628 MVT VT
= N
->getValueType(0);
3630 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3631 // Only do this before legalize, since afterward the target may be depending
3632 // on the bitconvert.
3633 // First check to see if this is all constant.
3635 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
3637 bool isSimple
= true;
3638 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
3639 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3640 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
3641 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
3646 MVT DestEltVT
= N
->getValueType(0).getVectorElementType();
3647 assert(!DestEltVT
.isVector() &&
3648 "Element type of vector ValueType must not be vector!");
3650 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
3653 // If the input is a constant, let getNode fold it.
3654 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
3655 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
3656 if (Res
.getNode() != N
) return Res
;
3659 // (conv (conv x, t1), t2) -> (conv x, t2)
3660 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
3661 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
3664 // fold (conv (load x)) -> (load (conv*)x)
3665 // If the resultant load doesn't need a higher alignment than the original!
3666 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
3667 // Do not change the width of a volatile load.
3668 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
3669 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
3670 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3671 unsigned Align
= TLI
.getTargetData()->
3672 getABITypeAlignment(VT
.getTypeForMVT());
3673 unsigned OrigAlign
= LN0
->getAlignment();
3675 if (Align
<= OrigAlign
) {
3676 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
3678 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
3679 LN0
->isVolatile(), OrigAlign
);
3681 CombineTo(N0
.getNode(),
3682 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3683 N0
.getValueType(), Load
),
3689 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3690 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3691 // This often reduces constant pool loads.
3692 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
3693 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
3694 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
3696 AddToWorkList(NewConv
.getNode());
3698 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3699 if (N0
.getOpcode() == ISD::FNEG
)
3700 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3701 NewConv
, DAG
.getConstant(SignBit
, VT
));
3702 assert(N0
.getOpcode() == ISD::FABS
);
3703 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3704 NewConv
, DAG
.getConstant(~SignBit
, VT
));
3707 // fold (bitconvert (fcopysign cst, x)) ->
3708 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3709 // Note that we don't handle (copysign x, cst) because this can always be
3710 // folded to an fneg or fabs.
3711 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
3712 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
3713 VT
.isInteger() && !VT
.isVector()) {
3714 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
3715 MVT IntXVT
= MVT::getIntegerVT(OrigXWidth
);
3716 if (TLI
.isTypeLegal(IntXVT
) || !LegalTypes
) {
3717 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3718 IntXVT
, N0
.getOperand(1));
3719 AddToWorkList(X
.getNode());
3721 // If X has a different width than the result/lhs, sext it or truncate it.
3722 unsigned VTWidth
= VT
.getSizeInBits();
3723 if (OrigXWidth
< VTWidth
) {
3724 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
3725 AddToWorkList(X
.getNode());
3726 } else if (OrigXWidth
> VTWidth
) {
3727 // To get the sign bit in the right place, we have to shift it right
3728 // before truncating.
3729 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
3730 X
.getValueType(), X
,
3731 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
3732 AddToWorkList(X
.getNode());
3733 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3734 AddToWorkList(X
.getNode());
3737 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3738 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
3739 X
, DAG
.getConstant(SignBit
, VT
));
3740 AddToWorkList(X
.getNode());
3742 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3743 VT
, N0
.getOperand(0));
3744 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
3745 Cst
, DAG
.getConstant(~SignBit
, VT
));
3746 AddToWorkList(Cst
.getNode());
3748 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
3752 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3753 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
3754 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
3755 if (CombineLD
.getNode())
3762 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
3763 MVT VT
= N
->getValueType(0);
3764 return CombineConsecutiveLoads(N
, VT
);
3767 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3768 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3769 /// destination element value type.
3770 SDValue
DAGCombiner::
3771 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, MVT DstEltVT
) {
3772 MVT SrcEltVT
= BV
->getOperand(0).getValueType();
3774 // If this is already the right type, we're done.
3775 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
3777 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
3778 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
3780 // If this is a conversion of N elements of one type to N elements of another
3781 // type, convert each element. This handles FP<->INT cases.
3782 if (SrcBitSize
== DstBitSize
) {
3783 SmallVector
<SDValue
, 8> Ops
;
3784 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3785 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
3786 DstEltVT
, BV
->getOperand(i
)));
3787 AddToWorkList(Ops
.back().getNode());
3789 MVT VT
= MVT::getVectorVT(DstEltVT
,
3790 BV
->getValueType(0).getVectorNumElements());
3791 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3792 &Ops
[0], Ops
.size());
3795 // Otherwise, we're growing or shrinking the elements. To avoid having to
3796 // handle annoying details of growing/shrinking FP values, we convert them to
3798 if (SrcEltVT
.isFloatingPoint()) {
3799 // Convert the input float vector to a int vector where the elements are the
3801 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
3802 MVT IntVT
= MVT::getIntegerVT(SrcEltVT
.getSizeInBits());
3803 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
3807 // Now we know the input is an integer vector. If the output is a FP type,
3808 // convert to integer first, then to FP of the right size.
3809 if (DstEltVT
.isFloatingPoint()) {
3810 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
3811 MVT TmpVT
= MVT::getIntegerVT(DstEltVT
.getSizeInBits());
3812 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
3814 // Next, convert to FP elements of the same size.
3815 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
3818 // Okay, we know the src/dst types are both integers of differing types.
3819 // Handling growing first.
3820 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
3821 if (SrcBitSize
< DstBitSize
) {
3822 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
3824 SmallVector
<SDValue
, 8> Ops
;
3825 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
3826 i
+= NumInputsPerOutput
) {
3827 bool isLE
= TLI
.isLittleEndian();
3828 APInt NewBits
= APInt(DstBitSize
, 0);
3829 bool EltIsUndef
= true;
3830 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
3831 // Shift the previously computed bits over.
3832 NewBits
<<= SrcBitSize
;
3833 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
3834 if (Op
.getOpcode() == ISD::UNDEF
) continue;
3838 APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).zext(DstBitSize
);
3842 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3844 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
3847 MVT VT
= MVT::getVectorVT(DstEltVT
, Ops
.size());
3848 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3849 &Ops
[0], Ops
.size());
3852 // Finally, this must be the case where we are shrinking elements: each input
3853 // turns into multiple outputs.
3854 bool isS2V
= ISD::isScalarToVector(BV
);
3855 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
3856 MVT VT
= MVT::getVectorVT(DstEltVT
, NumOutputsPerInput
*BV
->getNumOperands());
3857 SmallVector
<SDValue
, 8> Ops
;
3859 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3860 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3861 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
3862 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3866 APInt OpVal
= cast
<ConstantSDNode
>(BV
->getOperand(i
))->getAPIntValue();
3868 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
3869 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
3870 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
3871 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
3872 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3873 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
3875 OpVal
= OpVal
.lshr(DstBitSize
);
3878 // For big endian targets, swap the order of the pieces of each element.
3879 if (TLI
.isBigEndian())
3880 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
3883 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3884 &Ops
[0], Ops
.size());
3887 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
3888 SDValue N0
= N
->getOperand(0);
3889 SDValue N1
= N
->getOperand(1);
3890 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3891 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3892 MVT VT
= N
->getValueType(0);
3895 if (VT
.isVector()) {
3896 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3897 if (FoldedVOp
.getNode()) return FoldedVOp
;
3900 // fold (fadd c1, c2) -> (fadd c1, c2)
3901 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3902 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
3903 // canonicalize constant to RHS
3904 if (N0CFP
&& !N1CFP
)
3905 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
3906 // fold (fadd A, 0) -> A
3907 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3909 // fold (fadd A, (fneg B)) -> (fsub A, B)
3910 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
3911 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
3912 GetNegatedExpression(N1
, DAG
, LegalOperations
));
3913 // fold (fadd (fneg A), B) -> (fsub B, A)
3914 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
3915 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
3916 GetNegatedExpression(N0
, DAG
, LegalOperations
));
3918 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3919 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
3920 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
3921 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
3922 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
3923 N0
.getOperand(1), N1
));
3928 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
3929 SDValue N0
= N
->getOperand(0);
3930 SDValue N1
= N
->getOperand(1);
3931 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3932 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3933 MVT VT
= N
->getValueType(0);
3936 if (VT
.isVector()) {
3937 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3938 if (FoldedVOp
.getNode()) return FoldedVOp
;
3941 // fold (fsub c1, c2) -> c1-c2
3942 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3943 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
3944 // fold (fsub A, 0) -> A
3945 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3947 // fold (fsub 0, B) -> -B
3948 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
3949 if (isNegatibleForFree(N1
, LegalOperations
))
3950 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
3951 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
3952 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
3954 // fold (fsub A, (fneg B)) -> (fadd A, B)
3955 if (isNegatibleForFree(N1
, LegalOperations
))
3956 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
3957 GetNegatedExpression(N1
, DAG
, LegalOperations
));
3962 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
3963 SDValue N0
= N
->getOperand(0);
3964 SDValue N1
= N
->getOperand(1);
3965 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3966 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3967 MVT VT
= N
->getValueType(0);
3970 if (VT
.isVector()) {
3971 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3972 if (FoldedVOp
.getNode()) return FoldedVOp
;
3975 // fold (fmul c1, c2) -> c1*c2
3976 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3977 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
3978 // canonicalize constant to RHS
3979 if (N0CFP
&& !N1CFP
)
3980 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
3981 // fold (fmul A, 0) -> 0
3982 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3984 // fold (fmul X, 2.0) -> (fadd X, X)
3985 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
3986 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
3987 // fold (fmul X, (fneg 1.0)) -> (fneg X)
3988 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
3989 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
3990 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
3992 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
3993 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
3994 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
3995 // Both can be negated for free, check to see if at least one is cheaper
3997 if (LHSNeg
== 2 || RHSNeg
== 2)
3998 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
3999 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4000 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4004 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4005 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4006 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4007 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4008 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4009 N0
.getOperand(1), N1
));
4014 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4015 SDValue N0
= N
->getOperand(0);
4016 SDValue N1
= N
->getOperand(1);
4017 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4018 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4019 MVT VT
= N
->getValueType(0);
4022 if (VT
.isVector()) {
4023 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4024 if (FoldedVOp
.getNode()) return FoldedVOp
;
4027 // fold (fdiv c1, c2) -> c1/c2
4028 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4029 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4032 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4033 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4034 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4035 // Both can be negated for free, check to see if at least one is cheaper
4037 if (LHSNeg
== 2 || RHSNeg
== 2)
4038 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4039 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4040 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4047 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4048 SDValue N0
= N
->getOperand(0);
4049 SDValue N1
= N
->getOperand(1);
4050 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4051 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4052 MVT VT
= N
->getValueType(0);
4054 // fold (frem c1, c2) -> fmod(c1,c2)
4055 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4056 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4061 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4062 SDValue N0
= N
->getOperand(0);
4063 SDValue N1
= N
->getOperand(1);
4064 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4065 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4066 MVT VT
= N
->getValueType(0);
4068 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4069 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4072 const APFloat
& V
= N1CFP
->getValueAPF();
4073 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4074 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4075 if (!V
.isNegative()) {
4076 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4077 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4079 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4080 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4081 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4085 // copysign(fabs(x), y) -> copysign(x, y)
4086 // copysign(fneg(x), y) -> copysign(x, y)
4087 // copysign(copysign(x,z), y) -> copysign(x, y)
4088 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4089 N0
.getOpcode() == ISD::FCOPYSIGN
)
4090 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4091 N0
.getOperand(0), N1
);
4093 // copysign(x, abs(y)) -> abs(x)
4094 if (N1
.getOpcode() == ISD::FABS
)
4095 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4097 // copysign(x, copysign(y,z)) -> copysign(x, z)
4098 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4099 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4100 N0
, N1
.getOperand(1));
4102 // copysign(x, fp_extend(y)) -> copysign(x, y)
4103 // copysign(x, fp_round(y)) -> copysign(x, y)
4104 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4105 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4106 N0
, N1
.getOperand(0));
4111 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4112 SDValue N0
= N
->getOperand(0);
4113 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4114 MVT VT
= N
->getValueType(0);
4115 MVT OpVT
= N0
.getValueType();
4117 // fold (sint_to_fp c1) -> c1fp
4118 if (N0C
&& OpVT
!= MVT::ppcf128
)
4119 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4121 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4122 // but UINT_TO_FP is legal on this target, try to convert.
4123 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4124 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4125 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4126 if (DAG
.SignBitIsZero(N0
))
4127 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4133 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4134 SDValue N0
= N
->getOperand(0);
4135 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4136 MVT VT
= N
->getValueType(0);
4137 MVT OpVT
= N0
.getValueType();
4139 // fold (uint_to_fp c1) -> c1fp
4140 if (N0C
&& OpVT
!= MVT::ppcf128
)
4141 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4143 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4144 // but SINT_TO_FP is legal on this target, try to convert.
4145 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4146 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4147 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4148 if (DAG
.SignBitIsZero(N0
))
4149 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4155 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4156 SDValue N0
= N
->getOperand(0);
4157 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4158 MVT VT
= N
->getValueType(0);
4160 // fold (fp_to_sint c1fp) -> c1
4162 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4167 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4168 SDValue N0
= N
->getOperand(0);
4169 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4170 MVT VT
= N
->getValueType(0);
4172 // fold (fp_to_uint c1fp) -> c1
4173 if (N0CFP
&& VT
!= MVT::ppcf128
)
4174 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4179 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4180 SDValue N0
= N
->getOperand(0);
4181 SDValue N1
= N
->getOperand(1);
4182 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4183 MVT VT
= N
->getValueType(0);
4185 // fold (fp_round c1fp) -> c1fp
4186 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4187 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4189 // fold (fp_round (fp_extend x)) -> x
4190 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4191 return N0
.getOperand(0);
4193 // fold (fp_round (fp_round x)) -> (fp_round x)
4194 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4195 // This is a value preserving truncation if both round's are.
4196 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4197 N0
.getNode()->getConstantOperandVal(1) == 1;
4198 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4199 DAG
.getIntPtrConstant(IsTrunc
));
4202 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4203 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4204 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4205 N0
.getOperand(0), N1
);
4206 AddToWorkList(Tmp
.getNode());
4207 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4208 Tmp
, N0
.getOperand(1));
4214 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4215 SDValue N0
= N
->getOperand(0);
4216 MVT VT
= N
->getValueType(0);
4217 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4218 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4220 // fold (fp_round_inreg c1fp) -> c1fp
4221 if (N0CFP
&& (TLI
.isTypeLegal(EVT
) || !LegalTypes
)) {
4222 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
4223 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
4229 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
4230 SDValue N0
= N
->getOperand(0);
4231 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4232 MVT VT
= N
->getValueType(0);
4234 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4235 if (N
->hasOneUse() &&
4236 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
4239 // fold (fp_extend c1fp) -> c1fp
4240 if (N0CFP
&& VT
!= MVT::ppcf128
)
4241 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
4243 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4245 if (N0
.getOpcode() == ISD::FP_ROUND
4246 && N0
.getNode()->getConstantOperandVal(1) == 1) {
4247 SDValue In
= N0
.getOperand(0);
4248 if (In
.getValueType() == VT
) return In
;
4249 if (VT
.bitsLT(In
.getValueType()))
4250 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
4251 In
, N0
.getOperand(1));
4252 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
4255 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4256 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
4257 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4258 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
4259 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4260 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
4262 LN0
->getBasePtr(), LN0
->getSrcValue(),
4263 LN0
->getSrcValueOffset(),
4265 LN0
->isVolatile(), LN0
->getAlignment());
4266 CombineTo(N
, ExtLoad
);
4267 CombineTo(N0
.getNode(),
4268 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
4269 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
4270 ExtLoad
.getValue(1));
4271 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4277 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
4278 SDValue N0
= N
->getOperand(0);
4280 if (isNegatibleForFree(N0
, LegalOperations
))
4281 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
4283 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4284 // constant pool values.
4285 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4286 N0
.getOperand(0).getValueType().isInteger() &&
4287 !N0
.getOperand(0).getValueType().isVector()) {
4288 SDValue Int
= N0
.getOperand(0);
4289 MVT IntVT
= Int
.getValueType();
4290 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4291 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
4292 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4293 AddToWorkList(Int
.getNode());
4294 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4295 N
->getValueType(0), Int
);
4302 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
4303 SDValue N0
= N
->getOperand(0);
4304 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4305 MVT VT
= N
->getValueType(0);
4307 // fold (fabs c1) -> fabs(c1)
4308 if (N0CFP
&& VT
!= MVT::ppcf128
)
4309 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4310 // fold (fabs (fabs x)) -> (fabs x)
4311 if (N0
.getOpcode() == ISD::FABS
)
4312 return N
->getOperand(0);
4313 // fold (fabs (fneg x)) -> (fabs x)
4314 // fold (fabs (fcopysign x, y)) -> (fabs x)
4315 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
4316 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4318 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4319 // constant pool values.
4320 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4321 N0
.getOperand(0).getValueType().isInteger() &&
4322 !N0
.getOperand(0).getValueType().isVector()) {
4323 SDValue Int
= N0
.getOperand(0);
4324 MVT IntVT
= Int
.getValueType();
4325 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4326 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
4327 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4328 AddToWorkList(Int
.getNode());
4329 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4330 N
->getValueType(0), Int
);
4337 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
4338 SDValue Chain
= N
->getOperand(0);
4339 SDValue N1
= N
->getOperand(1);
4340 SDValue N2
= N
->getOperand(2);
4341 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4343 // never taken branch, fold to chain
4344 if (N1C
&& N1C
->isNullValue())
4346 // unconditional branch
4347 if (N1C
&& N1C
->getAPIntValue() == 1)
4348 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
, Chain
, N2
);
4349 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4351 if (N1
.getOpcode() == ISD::SETCC
&&
4352 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
4353 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4354 Chain
, N1
.getOperand(2),
4355 N1
.getOperand(0), N1
.getOperand(1), N2
);
4361 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4363 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
4364 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
4365 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
4367 // Use SimplifySetCC to simplify SETCC's.
4368 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
4369 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
4371 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
4373 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.getNode());
4375 // fold br_cc true, dest -> br dest (unconditional branch)
4376 if (SCCC
&& !SCCC
->isNullValue())
4377 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
,
4378 N
->getOperand(0), N
->getOperand(4));
4379 // fold br_cc false, dest -> unconditional fall through
4380 if (SCCC
&& SCCC
->isNullValue())
4381 return N
->getOperand(0);
4383 // fold to a simpler setcc
4384 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
4385 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4386 N
->getOperand(0), Simp
.getOperand(2),
4387 Simp
.getOperand(0), Simp
.getOperand(1),
4393 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4394 /// pre-indexed load / store when the base pointer is an add or subtract
4395 /// and it has other uses besides the load / store. After the
4396 /// transformation, the new indexed load / store has effectively folded
4397 /// the add / subtract in and all of its other uses are redirected to the
4398 /// new load / store.
4399 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
4400 if (!LegalOperations
)
4406 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4407 if (LD
->isIndexed())
4409 VT
= LD
->getMemoryVT();
4410 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
4411 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
4413 Ptr
= LD
->getBasePtr();
4414 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4415 if (ST
->isIndexed())
4417 VT
= ST
->getMemoryVT();
4418 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
4419 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
4421 Ptr
= ST
->getBasePtr();
4427 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4428 // out. There is no reason to make this a preinc/predec.
4429 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
4430 Ptr
.getNode()->hasOneUse())
4433 // Ask the target to do addressing mode selection.
4436 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4437 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
4439 // Don't create a indexed load / store with zero offset.
4440 if (isa
<ConstantSDNode
>(Offset
) &&
4441 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4444 // Try turning it into a pre-indexed load / store except when:
4445 // 1) The new base ptr is a frame index.
4446 // 2) If N is a store and the new base ptr is either the same as or is a
4447 // predecessor of the value being stored.
4448 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4449 // that would create a cycle.
4450 // 4) All uses are load / store ops that use it as old base ptr.
4452 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4453 // (plus the implicit offset) to a register to preinc anyway.
4454 if (isa
<FrameIndexSDNode
>(BasePtr
))
4459 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
4460 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
4464 // Now check for #3 and #4.
4465 bool RealUse
= false;
4466 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4467 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4471 if (Use
->isPredecessorOf(N
))
4474 if (!((Use
->getOpcode() == ISD::LOAD
&&
4475 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
4476 (Use
->getOpcode() == ISD::STORE
&&
4477 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
4486 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4487 BasePtr
, Offset
, AM
);
4489 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4490 BasePtr
, Offset
, AM
);
4493 DOUT
<< "\nReplacing.4 "; DEBUG(N
->dump(&DAG
));
4494 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4496 WorkListRemover
DeadNodes(*this);
4498 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4500 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4503 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4507 // Finally, since the node is now dead, remove it from the graph.
4510 // Replace the uses of Ptr with uses of the updated base value.
4511 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
4513 removeFromWorkList(Ptr
.getNode());
4514 DAG
.DeleteNode(Ptr
.getNode());
4519 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4520 /// add / sub of the base pointer node into a post-indexed load / store.
4521 /// The transformation folded the add / subtract into the new indexed
4522 /// load / store effectively and all of its uses are redirected to the
4523 /// new load / store.
4524 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
4525 if (!LegalOperations
)
4531 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4532 if (LD
->isIndexed())
4534 VT
= LD
->getMemoryVT();
4535 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
4536 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
4538 Ptr
= LD
->getBasePtr();
4539 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4540 if (ST
->isIndexed())
4542 VT
= ST
->getMemoryVT();
4543 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
4544 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
4546 Ptr
= ST
->getBasePtr();
4552 if (Ptr
.getNode()->hasOneUse())
4555 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4556 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4559 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
4564 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4565 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
4567 std::swap(BasePtr
, Offset
);
4570 // Don't create a indexed load / store with zero offset.
4571 if (isa
<ConstantSDNode
>(Offset
) &&
4572 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4575 // Try turning it into a post-indexed load / store except when
4576 // 1) All uses are load / store ops that use it as base ptr.
4577 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4578 // nor a successor of N. Otherwise, if Op is folded that would
4582 bool TryNext
= false;
4583 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
4584 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
4586 if (Use
== Ptr
.getNode())
4589 // If all the uses are load / store addresses, then don't do the
4591 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
4592 bool RealUse
= false;
4593 for (SDNode::use_iterator III
= Use
->use_begin(),
4594 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
4595 SDNode
*UseUse
= *III
;
4596 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
4597 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
4598 (UseUse
->getOpcode() == ISD::STORE
&&
4599 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
4614 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
4615 SDValue Result
= isLoad
4616 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4617 BasePtr
, Offset
, AM
)
4618 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4619 BasePtr
, Offset
, AM
);
4622 DOUT
<< "\nReplacing.5 "; DEBUG(N
->dump(&DAG
));
4623 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4625 WorkListRemover
DeadNodes(*this);
4627 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4629 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4632 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4636 // Finally, since the node is now dead, remove it from the graph.
4639 // Replace the uses of Use with uses of the updated base value.
4640 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
4641 Result
.getValue(isLoad
? 1 : 0),
4643 removeFromWorkList(Op
);
4653 /// InferAlignment - If we can infer some alignment information from this
4654 /// pointer, return it.
4655 static unsigned InferAlignment(SDValue Ptr
, SelectionDAG
&DAG
) {
4656 // If this is a direct reference to a stack slot, use information about the
4657 // stack slot's alignment.
4658 int FrameIdx
= 1 << 31;
4659 int64_t FrameOffset
= 0;
4660 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
4661 FrameIdx
= FI
->getIndex();
4662 } else if (Ptr
.getOpcode() == ISD::ADD
&&
4663 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
4664 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
4665 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4666 FrameOffset
= Ptr
.getConstantOperandVal(1);
4669 if (FrameIdx
!= (1 << 31)) {
4670 // FIXME: Handle FI+CST.
4671 const MachineFrameInfo
&MFI
= *DAG
.getMachineFunction().getFrameInfo();
4672 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
4673 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
4675 // The alignment of the frame index can be determined from its offset from
4676 // the incoming frame position. If the frame object is at offset 32 and
4677 // the stack is guaranteed to be 16-byte aligned, then we know that the
4678 // object is 16-byte aligned.
4679 unsigned StackAlign
= DAG
.getTarget().getFrameInfo()->getStackAlignment();
4680 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
4682 // Finally, the frame object itself may have a known alignment. Factor
4683 // the alignment + offset into a new alignment. For example, if we know
4684 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4685 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4686 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4687 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
4689 return std::max(Align
, FIInfoAlign
);
4696 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
4697 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
4698 SDValue Chain
= LD
->getChain();
4699 SDValue Ptr
= LD
->getBasePtr();
4701 // Try to infer better alignment information than the load already has.
4702 if (!Fast
&& LD
->isUnindexed()) {
4703 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4704 if (Align
> LD
->getAlignment())
4705 return DAG
.getExtLoad(LD
->getExtensionType(), N
->getDebugLoc(),
4706 LD
->getValueType(0),
4707 Chain
, Ptr
, LD
->getSrcValue(),
4708 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
4709 LD
->isVolatile(), Align
);
4713 // If load is not volatile and there are no uses of the loaded value (and
4714 // the updated indexed value in case of indexed loads), change uses of the
4715 // chain value into uses of the chain input (i.e. delete the dead load).
4716 if (!LD
->isVolatile()) {
4717 if (N
->getValueType(1) == MVT::Other
) {
4719 if (N
->hasNUsesOfValue(0, 0)) {
4720 // It's not safe to use the two value CombineTo variant here. e.g.
4721 // v1, chain2 = load chain1, loc
4722 // v2, chain3 = load chain2, loc
4724 // Now we replace use of chain2 with chain1. This makes the second load
4725 // isomorphic to the one we are deleting, and thus makes this load live.
4726 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4727 DOUT
<< "\nWith chain: "; DEBUG(Chain
.getNode()->dump(&DAG
));
4729 WorkListRemover
DeadNodes(*this);
4730 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
4732 if (N
->use_empty()) {
4733 removeFromWorkList(N
);
4737 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4741 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
4742 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
4743 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
4744 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4745 DOUT
<< "\nWith: "; DEBUG(Undef
.getNode()->dump(&DAG
));
4746 DOUT
<< " and 2 other values\n";
4747 WorkListRemover
DeadNodes(*this);
4748 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
4749 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
4750 DAG
.getUNDEF(N
->getValueType(1)),
4752 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
4753 removeFromWorkList(N
);
4755 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4760 // If this load is directly stored, replace the load value with the stored
4762 // TODO: Handle store large -> read small portion.
4763 // TODO: Handle TRUNCSTORE/LOADEXT
4764 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
4765 !LD
->isVolatile()) {
4766 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
4767 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
4768 if (PrevST
->getBasePtr() == Ptr
&&
4769 PrevST
->getValue().getValueType() == N
->getValueType(0))
4770 return CombineTo(N
, Chain
.getOperand(1), Chain
);
4775 // Walk up chain skipping non-aliasing memory nodes.
4776 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4778 // If there is a better chain.
4779 if (Chain
!= BetterChain
) {
4782 // Replace the chain to void dependency.
4783 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
4784 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
4786 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4787 LD
->isVolatile(), LD
->getAlignment());
4789 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getDebugLoc(),
4790 LD
->getValueType(0),
4791 BetterChain
, Ptr
, LD
->getSrcValue(),
4792 LD
->getSrcValueOffset(),
4795 LD
->getAlignment());
4798 // Create token factor to keep old chain connected.
4799 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4800 MVT::Other
, Chain
, ReplLoad
.getValue(1));
4802 // Replace uses with load result and token factor. Don't add users
4804 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
4808 // Try transforming N to an indexed load.
4809 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4810 return SDValue(N
, 0);
4815 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
4816 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
4817 SDValue Chain
= ST
->getChain();
4818 SDValue Value
= ST
->getValue();
4819 SDValue Ptr
= ST
->getBasePtr();
4821 // Try to infer better alignment information than the store already has.
4822 if (!Fast
&& ST
->isUnindexed()) {
4823 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4824 if (Align
> ST
->getAlignment())
4825 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
4826 Ptr
, ST
->getSrcValue(),
4827 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
4828 ST
->isVolatile(), Align
);
4832 // If this is a store of a bit convert, store the input value if the
4833 // resultant store does not need a higher alignment than the original.
4834 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
4835 ST
->isUnindexed()) {
4836 unsigned OrigAlign
= ST
->getAlignment();
4837 MVT SVT
= Value
.getOperand(0).getValueType();
4838 unsigned Align
= TLI
.getTargetData()->
4839 getABITypeAlignment(SVT
.getTypeForMVT());
4840 if (Align
<= OrigAlign
&&
4841 ((!LegalOperations
&& !ST
->isVolatile()) ||
4842 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
4843 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
4844 Ptr
, ST
->getSrcValue(),
4845 ST
->getSrcValueOffset(), ST
->isVolatile(), OrigAlign
);
4848 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4849 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
4850 // NOTE: If the original store is volatile, this transform must not increase
4851 // the number of stores. For example, on x86-32 an f64 can be stored in one
4852 // processor operation but an i64 (which is not legal) requires two. So the
4853 // transform should not be done in this case.
4854 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
4856 switch (CFP
->getValueType(0).getSimpleVT()) {
4857 default: assert(0 && "Unknown FP type");
4858 case MVT::f80
: // We don't do this for these yet.
4863 if (((TLI
.isTypeLegal(MVT::i32
) || !LegalTypes
) && !LegalOperations
&&
4864 !ST
->isVolatile()) ||
4865 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
4866 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
4867 bitcastToAPInt().getZExtValue(), MVT::i32
);
4868 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
4869 Ptr
, ST
->getSrcValue(),
4870 ST
->getSrcValueOffset(), ST
->isVolatile(),
4871 ST
->getAlignment());
4875 if (((TLI
.isTypeLegal(MVT::i64
) || !LegalTypes
) && !LegalOperations
&&
4876 !ST
->isVolatile()) ||
4877 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
4878 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
4879 getZExtValue(), MVT::i64
);
4880 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
4881 Ptr
, ST
->getSrcValue(),
4882 ST
->getSrcValueOffset(), ST
->isVolatile(),
4883 ST
->getAlignment());
4884 } else if (!ST
->isVolatile() &&
4885 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
4886 // Many FP stores are not made apparent until after legalize, e.g. for
4887 // argument passing. Since this is so common, custom legalize the
4888 // 64-bit integer store into two 32-bit stores.
4889 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
4890 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
4891 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
4892 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
4894 int SVOffset
= ST
->getSrcValueOffset();
4895 unsigned Alignment
= ST
->getAlignment();
4896 bool isVolatile
= ST
->isVolatile();
4898 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
4899 Ptr
, ST
->getSrcValue(),
4900 ST
->getSrcValueOffset(),
4901 isVolatile
, ST
->getAlignment());
4902 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
4903 DAG
.getConstant(4, Ptr
.getValueType()));
4905 Alignment
= MinAlign(Alignment
, 4U);
4906 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
4907 Ptr
, ST
->getSrcValue(),
4908 SVOffset
, isVolatile
, Alignment
);
4909 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
4919 // Walk up chain skipping non-aliasing memory nodes.
4920 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4922 // If there is a better chain.
4923 if (Chain
!= BetterChain
) {
4924 // Replace the chain to avoid dependency.
4926 if (ST
->isTruncatingStore()) {
4927 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
4928 ST
->getSrcValue(),ST
->getSrcValueOffset(),
4930 ST
->isVolatile(), ST
->getAlignment());
4932 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
4933 ST
->getSrcValue(), ST
->getSrcValueOffset(),
4934 ST
->isVolatile(), ST
->getAlignment());
4937 // Create token to keep both nodes around.
4938 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4939 MVT::Other
, Chain
, ReplStore
);
4941 // Don't add users to work list.
4942 return CombineTo(N
, Token
, false);
4946 // Try transforming N to an indexed store.
4947 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4948 return SDValue(N
, 0);
4950 // FIXME: is there such a thing as a truncating indexed store?
4951 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
4952 Value
.getValueType().isInteger()) {
4953 // See if we can simplify the input to this truncstore with knowledge that
4954 // only the low bits are being used. For example:
4955 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
4957 GetDemandedBits(Value
,
4958 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
4959 ST
->getMemoryVT().getSizeInBits()));
4960 AddToWorkList(Value
.getNode());
4961 if (Shorter
.getNode())
4962 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
4963 Ptr
, ST
->getSrcValue(),
4964 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
4965 ST
->isVolatile(), ST
->getAlignment());
4967 // Otherwise, see if we can simplify the operation with
4968 // SimplifyDemandedBits, which only works if the value has a single use.
4969 if (SimplifyDemandedBits(Value
,
4970 APInt::getLowBitsSet(
4971 Value
.getValueSizeInBits(),
4972 ST
->getMemoryVT().getSizeInBits())))
4973 return SDValue(N
, 0);
4976 // If this is a load followed by a store to the same location, then the store
4978 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
4979 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
4980 ST
->isUnindexed() && !ST
->isVolatile() &&
4981 // There can't be any side effects between the load and store, such as
4983 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
4984 // The store is dead, remove it.
4989 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4990 // truncating store. We can do this even if this is already a truncstore.
4991 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
4992 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
4993 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
4994 ST
->getMemoryVT())) {
4995 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
4996 Ptr
, ST
->getSrcValue(),
4997 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
4998 ST
->isVolatile(), ST
->getAlignment());
5004 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
5005 SDValue InVec
= N
->getOperand(0);
5006 SDValue InVal
= N
->getOperand(1);
5007 SDValue EltNo
= N
->getOperand(2);
5009 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5010 // vector with the inserted element.
5011 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
5012 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5013 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
5014 InVec
.getNode()->op_end());
5015 if (Elt
< Ops
.size())
5017 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5018 InVec
.getValueType(), &Ops
[0], Ops
.size());
5024 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
5025 // (vextract (scalar_to_vector val, 0) -> val
5026 SDValue InVec
= N
->getOperand(0);
5028 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
5029 return InVec
.getOperand(0);
5031 // Perform only after legalization to ensure build_vector / vector_shuffle
5032 // optimizations have already been done.
5033 if (!LegalOperations
) return SDValue();
5035 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5036 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5037 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5038 SDValue EltNo
= N
->getOperand(1);
5040 if (isa
<ConstantSDNode
>(EltNo
)) {
5041 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5042 bool NewLoad
= false;
5043 bool BCNumEltsChanged
= false;
5044 MVT VT
= InVec
.getValueType();
5045 MVT EVT
= VT
.getVectorElementType();
5048 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
5049 MVT BCVT
= InVec
.getOperand(0).getValueType();
5050 if (!BCVT
.isVector() || EVT
.bitsGT(BCVT
.getVectorElementType()))
5052 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
5053 BCNumEltsChanged
= true;
5054 InVec
= InVec
.getOperand(0);
5055 EVT
= BCVT
.getVectorElementType();
5059 LoadSDNode
*LN0
= NULL
;
5060 if (ISD::isNormalLoad(InVec
.getNode())) {
5061 LN0
= cast
<LoadSDNode
>(InVec
);
5062 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
5063 InVec
.getOperand(0).getValueType() == EVT
&&
5064 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
5065 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
5066 } else if (InVec
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
5067 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5069 // (load $addr+1*size)
5071 // If the bit convert changed the number of elements, it is unsafe
5072 // to examine the mask.
5073 if (BCNumEltsChanged
)
5075 unsigned Idx
= cast
<ConstantSDNode
>(InVec
.getOperand(2).
5076 getOperand(Elt
))->getZExtValue();
5077 unsigned NumElems
= InVec
.getOperand(2).getNumOperands();
5078 InVec
= (Idx
< NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
5079 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
5080 InVec
= InVec
.getOperand(0);
5081 if (ISD::isNormalLoad(InVec
.getNode())) {
5082 LN0
= cast
<LoadSDNode
>(InVec
);
5083 Elt
= (Idx
< NumElems
) ? Idx
: Idx
- NumElems
;
5087 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
5090 unsigned Align
= LN0
->getAlignment();
5092 // Check the resultant load doesn't need a higher alignment than the
5095 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForMVT());
5097 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
5103 SDValue NewPtr
= LN0
->getBasePtr();
5105 unsigned PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
5106 MVT PtrType
= NewPtr
.getValueType();
5107 if (TLI
.isBigEndian())
5108 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
5109 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
5110 DAG
.getConstant(PtrOff
, PtrType
));
5113 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
5114 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
5115 LN0
->isVolatile(), Align
);
5121 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
5122 unsigned NumInScalars
= N
->getNumOperands();
5123 MVT VT
= N
->getValueType(0);
5124 unsigned NumElts
= VT
.getVectorNumElements();
5125 MVT EltType
= VT
.getVectorElementType();
5127 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5128 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5129 // at most two distinct vectors, turn this into a shuffle node.
5130 SDValue VecIn1
, VecIn2
;
5131 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5132 // Ignore undef inputs.
5133 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5135 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5136 // constant index, bail out.
5137 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5138 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
5139 VecIn1
= VecIn2
= SDValue(0, 0);
5143 // If the input vector type disagrees with the result of the build_vector,
5144 // we can't make a shuffle.
5145 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
5146 if (ExtractedFromVec
.getValueType() != VT
) {
5147 VecIn1
= VecIn2
= SDValue(0, 0);
5151 // Otherwise, remember this. We allow up to two distinct input vectors.
5152 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
5155 if (VecIn1
.getNode() == 0) {
5156 VecIn1
= ExtractedFromVec
;
5157 } else if (VecIn2
.getNode() == 0) {
5158 VecIn2
= ExtractedFromVec
;
5161 VecIn1
= VecIn2
= SDValue(0, 0);
5166 // If everything is good, we can make a shuffle operation.
5167 if (VecIn1
.getNode()) {
5168 SmallVector
<SDValue
, 8> BuildVecIndices
;
5169 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5170 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
5171 BuildVecIndices
.push_back(DAG
.getUNDEF(TLI
.getPointerTy()));
5175 SDValue Extract
= N
->getOperand(i
);
5177 // If extracting from the first vector, just use the index directly.
5178 if (Extract
.getOperand(0) == VecIn1
) {
5179 BuildVecIndices
.push_back(Extract
.getOperand(1));
5183 // Otherwise, use InIdx + VecSize
5185 cast
<ConstantSDNode
>(Extract
.getOperand(1))->getZExtValue();
5186 BuildVecIndices
.push_back(DAG
.getIntPtrConstant(Idx
+NumInScalars
));
5189 // Add count and size info.
5190 MVT IndexVT
= MVT::getIntegerVT(EltType
.getSizeInBits());
5191 MVT BuildVecVT
= MVT::getVectorVT(IndexVT
, NumElts
);
5192 if (!TLI
.isTypeLegal(BuildVecVT
) && LegalTypes
)
5195 // Return the new VECTOR_SHUFFLE node.
5198 if (VecIn2
.getNode()) {
5201 // Use an undef build_vector as input for the second operand.
5202 std::vector
<SDValue
> UnOps(NumInScalars
,
5203 DAG
.getUNDEF(EltType
));
5204 Ops
[1] = DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5205 &UnOps
[0], UnOps
.size());
5206 AddToWorkList(Ops
[1].getNode());
5209 Ops
[2] = DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), BuildVecVT
,
5210 &BuildVecIndices
[0], BuildVecIndices
.size());
5211 return DAG
.getNode(ISD::VECTOR_SHUFFLE
, N
->getDebugLoc(), VT
, Ops
, 3);
5217 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
5218 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5219 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5220 // inputs come from at most two distinct vectors, turn this into a shuffle
5223 // If we only have one input vector, we don't need to do any concatenation.
5224 if (N
->getNumOperands() == 1)
5225 return N
->getOperand(0);
5230 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
5231 SDValue ShufMask
= N
->getOperand(2);
5232 unsigned NumElts
= ShufMask
.getNumOperands();
5234 SDValue N0
= N
->getOperand(0);
5235 SDValue N1
= N
->getOperand(1);
5237 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
5238 "Vector shuffle must be normalized in DAG");
5240 // If the shuffle mask is an identity operation on the LHS, return the LHS.
5241 bool isIdentity
= true;
5242 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5243 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
5244 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getZExtValue() != i
) {
5249 if (isIdentity
) return N
->getOperand(0);
5251 // If the shuffle mask is an identity operation on the RHS, return the RHS.
5253 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5254 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
5255 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getZExtValue() !=
5261 if (isIdentity
) return N
->getOperand(1);
5263 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
5265 bool isUnary
= true;
5266 bool isSplat
= true;
5268 unsigned BaseIdx
= 0;
5269 for (unsigned i
= 0; i
!= NumElts
; ++i
)
5270 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
) {
5271 unsigned Idx
=cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getZExtValue();
5272 int V
= (Idx
< NumElts
) ? 0 : 1;
5286 // Normalize unary shuffle so the RHS is undef.
5287 if (isUnary
&& VecNum
== 1)
5290 // If it is a splat, check if the argument vector is a build_vector with
5291 // all scalar elements the same.
5293 SDNode
*V
= N0
.getNode();
5295 // If this is a bit convert that changes the element type of the vector but
5296 // not the number of vector elements, look through it. Be careful not to
5297 // look though conversions that change things like v4f32 to v2f64.
5298 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
5299 SDValue ConvInput
= V
->getOperand(0);
5300 if (ConvInput
.getValueType().isVector() &&
5301 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
5302 V
= ConvInput
.getNode();
5305 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
5306 unsigned NumElems
= V
->getNumOperands();
5307 if (NumElems
> BaseIdx
) {
5309 bool AllSame
= true;
5310 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5311 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
5312 Base
= V
->getOperand(i
);
5316 // Splat of <u, u, u, u>, return <u, u, u, u>
5317 if (!Base
.getNode())
5319 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5320 if (V
->getOperand(i
) != Base
) {
5325 // Splat of <x, x, x, x>, return <x, x, x, x>
5332 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
5334 if (isUnary
|| N0
== N1
) {
5335 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
5337 SmallVector
<SDValue
, 8> MappedOps
;
5339 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5340 if (ShufMask
.getOperand(i
).getOpcode() == ISD::UNDEF
||
5341 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getZExtValue() <
5343 MappedOps
.push_back(ShufMask
.getOperand(i
));
5346 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getZExtValue() -
5348 MappedOps
.push_back(DAG
.getConstant(NewIdx
,
5349 ShufMask
.getOperand(i
).getValueType()));
5353 ShufMask
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5354 ShufMask
.getValueType(),
5355 &MappedOps
[0], MappedOps
.size());
5356 AddToWorkList(ShufMask
.getNode());
5357 return DAG
.getNode(ISD::VECTOR_SHUFFLE
, N
->getDebugLoc(),
5358 N
->getValueType(0), N0
,
5359 DAG
.getUNDEF(N
->getValueType(0)),
5366 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5367 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5368 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5369 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5370 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
5371 SDValue LHS
= N
->getOperand(0);
5372 SDValue RHS
= N
->getOperand(1);
5373 if (N
->getOpcode() == ISD::AND
) {
5374 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
5375 RHS
= RHS
.getOperand(0);
5376 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5377 std::vector
<SDValue
> IdxOps
;
5378 unsigned NumOps
= RHS
.getNumOperands();
5379 unsigned NumElts
= NumOps
;
5380 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5381 SDValue Elt
= RHS
.getOperand(i
);
5382 if (!isa
<ConstantSDNode
>(Elt
))
5384 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
5385 IdxOps
.push_back(DAG
.getIntPtrConstant(i
));
5386 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
5387 IdxOps
.push_back(DAG
.getIntPtrConstant(NumElts
));
5392 // Let's see if the target supports this vector_shuffle.
5393 if (!TLI
.isVectorClearMaskLegal(IdxOps
, TLI
.getPointerTy(), DAG
))
5396 // Return the new VECTOR_SHUFFLE node.
5397 MVT EVT
= RHS
.getValueType().getVectorElementType();
5398 MVT VT
= MVT::getVectorVT(EVT
, NumElts
);
5399 MVT MaskVT
= MVT::getVectorVT(TLI
.getPointerTy(), NumElts
);
5400 std::vector
<SDValue
> Ops
;
5401 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, LHS
.getDebugLoc(), VT
, LHS
);
5403 AddToWorkList(LHS
.getNode());
5404 std::vector
<SDValue
> ZeroOps(NumElts
, DAG
.getConstant(0, EVT
));
5405 Ops
.push_back(DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5406 VT
, &ZeroOps
[0], ZeroOps
.size()));
5407 Ops
.push_back(DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5408 MaskVT
, &IdxOps
[0], IdxOps
.size()));
5409 SDValue Result
= DAG
.getNode(ISD::VECTOR_SHUFFLE
, N
->getDebugLoc(),
5410 VT
, &Ops
[0], Ops
.size());
5412 if (VT
!= N
->getValueType(0))
5413 Result
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
5414 N
->getValueType(0), Result
);
5423 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5424 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
5425 // After legalize, the target may be depending on adds and other
5426 // binary ops to provide legal ways to construct constants or other
5427 // things. Simplifying them may result in a loss of legality.
5428 if (LegalOperations
) return SDValue();
5430 MVT VT
= N
->getValueType(0);
5431 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
5433 MVT EltType
= VT
.getVectorElementType();
5434 SDValue LHS
= N
->getOperand(0);
5435 SDValue RHS
= N
->getOperand(1);
5436 SDValue Shuffle
= XformToShuffleWithZero(N
);
5437 if (Shuffle
.getNode()) return Shuffle
;
5439 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5441 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
5442 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5443 SmallVector
<SDValue
, 8> Ops
;
5444 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
5445 SDValue LHSOp
= LHS
.getOperand(i
);
5446 SDValue RHSOp
= RHS
.getOperand(i
);
5447 // If these two elements can't be folded, bail out.
5448 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
5449 LHSOp
.getOpcode() != ISD::Constant
&&
5450 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
5451 (RHSOp
.getOpcode() != ISD::UNDEF
&&
5452 RHSOp
.getOpcode() != ISD::Constant
&&
5453 RHSOp
.getOpcode() != ISD::ConstantFP
))
5456 // Can't fold divide by zero.
5457 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
5458 N
->getOpcode() == ISD::FDIV
) {
5459 if ((RHSOp
.getOpcode() == ISD::Constant
&&
5460 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
5461 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
5462 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
5466 Ops
.push_back(DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(),
5467 EltType
, LHSOp
, RHSOp
));
5468 AddToWorkList(Ops
.back().getNode());
5469 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
5470 Ops
.back().getOpcode() == ISD::Constant
||
5471 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
5472 "Scalar binop didn't fold!");
5475 if (Ops
.size() == LHS
.getNumOperands()) {
5476 MVT VT
= LHS
.getValueType();
5477 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5478 &Ops
[0], Ops
.size());
5485 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
5486 SDValue N1
, SDValue N2
){
5487 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
5489 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
5490 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
5492 // If we got a simplified select_cc node back from SimplifySelectCC, then
5493 // break it down into a new SETCC node, and a new SELECT node, and then return
5494 // the SELECT node, since we were called with a SELECT node.
5495 if (SCC
.getNode()) {
5496 // Check to see if we got a select_cc back (to turn into setcc/select).
5497 // Otherwise, just return whatever node we got back, like fabs.
5498 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
5499 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
5501 SCC
.getOperand(0), SCC
.getOperand(1),
5503 AddToWorkList(SETCC
.getNode());
5504 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
5505 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
5513 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5514 /// are the two values being selected between, see if we can simplify the
5515 /// select. Callers of this should assume that TheSelect is deleted if this
5516 /// returns true. As such, they should return the appropriate thing (e.g. the
5517 /// node) back to the top-level of the DAG combiner loop to avoid it being
5519 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
5522 // If this is a select from two identical things, try to pull the operation
5523 // through the select.
5524 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
5525 // If this is a load and the token chain is identical, replace the select
5526 // of two loads with a load through a select of the address to load from.
5527 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5528 // constants have been dropped into the constant pool.
5529 if (LHS
.getOpcode() == ISD::LOAD
&&
5530 // Do not let this transformation reduce the number of volatile loads.
5531 !cast
<LoadSDNode
>(LHS
)->isVolatile() &&
5532 !cast
<LoadSDNode
>(RHS
)->isVolatile() &&
5533 // Token chains must be identical.
5534 LHS
.getOperand(0) == RHS
.getOperand(0)) {
5535 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
5536 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
5538 // If this is an EXTLOAD, the VT's must match.
5539 if (LLD
->getMemoryVT() == RLD
->getMemoryVT()) {
5540 // FIXME: this conflates two src values, discarding one. This is not
5541 // the right thing to do, but nothing uses srcvalues now. When they do,
5542 // turn SrcValue into a list of locations.
5544 if (TheSelect
->getOpcode() == ISD::SELECT
) {
5545 // Check that the condition doesn't reach either load. If so, folding
5546 // this will induce a cycle into the DAG.
5547 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5548 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode())) {
5549 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
5550 LLD
->getBasePtr().getValueType(),
5551 TheSelect
->getOperand(0), LLD
->getBasePtr(),
5555 // Check that the condition doesn't reach either load. If so, folding
5556 // this will induce a cycle into the DAG.
5557 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5558 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5559 !LLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode()) &&
5560 !RLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode())) {
5561 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
5562 LLD
->getBasePtr().getValueType(),
5563 TheSelect
->getOperand(0),
5564 TheSelect
->getOperand(1),
5565 LLD
->getBasePtr(), RLD
->getBasePtr(),
5566 TheSelect
->getOperand(4));
5570 if (Addr
.getNode()) {
5572 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5573 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
5574 TheSelect
->getDebugLoc(),
5576 Addr
,LLD
->getSrcValue(),
5577 LLD
->getSrcValueOffset(),
5579 LLD
->getAlignment());
5581 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
5582 TheSelect
->getDebugLoc(),
5583 TheSelect
->getValueType(0),
5584 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
5585 LLD
->getSrcValueOffset(),
5588 LLD
->getAlignment());
5591 // Users of the select now use the result of the load.
5592 CombineTo(TheSelect
, Load
);
5594 // Users of the old loads now use the new load's chain. We know the
5595 // old-load value is dead now.
5596 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5597 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5607 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5608 /// where 'cond' is the comparison specified by CC.
5609 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
5610 SDValue N2
, SDValue N3
,
5611 ISD::CondCode CC
, bool NotExtCompare
) {
5612 // (x ? y : y) -> y.
5613 if (N2
== N3
) return N2
;
5615 MVT VT
= N2
.getValueType();
5616 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
5617 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
5618 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
5620 // Determine if the condition we're dealing with is constant
5621 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
5622 N0
, N1
, CC
, DL
, false);
5623 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
5624 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
5626 // fold select_cc true, x, y -> x
5627 if (SCCC
&& !SCCC
->isNullValue())
5629 // fold select_cc false, x, y -> y
5630 if (SCCC
&& SCCC
->isNullValue())
5633 // Check to see if we can simplify the select into an fabs node
5634 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
5635 // Allow either -0.0 or 0.0
5636 if (CFP
->getValueAPF().isZero()) {
5637 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5638 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
5639 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
5640 N2
== N3
.getOperand(0))
5641 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
5643 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5644 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5645 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
5646 N2
.getOperand(0) == N3
)
5647 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
5651 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5652 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5653 // in it. This is a win when the constant is not otherwise available because
5654 // it replaces two constant pool loads with one. We only do this if the FP
5655 // type is known to be legal, because if it isn't, then we are before legalize
5656 // types an we want the other legalization to happen first (e.g. to avoid
5657 // messing with soft float).
5658 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
5659 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
5660 if (TLI
.isTypeLegal(N2
.getValueType()) &&
5661 // If both constants have multiple uses, then we won't need to do an
5662 // extra load, they are likely around in registers for other users.
5663 (TV
->hasOneUse() || FV
->hasOneUse())) {
5664 Constant
*Elts
[] = {
5665 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
5666 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
5668 const Type
*FPTy
= Elts
[0]->getType();
5669 const TargetData
&TD
= *TLI
.getTargetData();
5671 // Create a ConstantArray of the two constants.
5672 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
5673 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
5674 TD
.getPrefTypeAlignment(FPTy
));
5675 unsigned Alignment
=
5676 1 << cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5678 // Get the offsets to the 0 and 1 element of the array so that we can
5679 // select between them.
5680 SDValue Zero
= DAG
.getIntPtrConstant(0);
5681 unsigned EltSize
= (unsigned)TD
.getTypePaddedSize(Elts
[0]->getType());
5682 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
5684 SDValue Cond
= DAG
.getSetCC(DL
,
5685 TLI
.getSetCCResultType(N0
.getValueType()),
5687 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
5689 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
5691 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
5692 PseudoSourceValue::getConstantPool(), 0, false,
5698 // Check to see if we can perform the "gzip trick", transforming
5699 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5700 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
5701 N0
.getValueType().isInteger() &&
5702 N2
.getValueType().isInteger() &&
5703 (N1C
->isNullValue() || // (a < 0) ? b : 0
5704 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
5705 MVT XType
= N0
.getValueType();
5706 MVT AType
= N2
.getValueType();
5707 if (XType
.bitsGE(AType
)) {
5708 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5709 // single-bit constant.
5710 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
5711 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
5712 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
5713 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
5714 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
5716 AddToWorkList(Shift
.getNode());
5718 if (XType
.bitsGT(AType
)) {
5719 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5720 AddToWorkList(Shift
.getNode());
5723 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5726 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
5728 DAG
.getConstant(XType
.getSizeInBits()-1,
5729 getShiftAmountTy()));
5730 AddToWorkList(Shift
.getNode());
5732 if (XType
.bitsGT(AType
)) {
5733 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5734 AddToWorkList(Shift
.getNode());
5737 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5741 // fold select C, 16, 0 -> shl C, 4
5742 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
5743 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
5745 // If the caller doesn't want us to simplify this into a zext of a compare,
5747 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
5750 // Get a SetCC of the condition
5751 // FIXME: Should probably make sure that setcc is legal if we ever have a
5752 // target where it isn't.
5754 // cast from setcc result type to select result type
5756 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
5758 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
5759 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
5761 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5762 N2
.getValueType(), SCC
);
5764 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
5765 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5766 N2
.getValueType(), SCC
);
5769 AddToWorkList(SCC
.getNode());
5770 AddToWorkList(Temp
.getNode());
5772 if (N2C
->getAPIntValue() == 1)
5775 // shl setcc result by log2 n2c
5776 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
5777 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
5778 getShiftAmountTy()));
5781 // Check to see if this is the equivalent of setcc
5782 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5783 // otherwise, go ahead with the folds.
5784 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
5785 MVT XType
= N0
.getValueType();
5786 if (!LegalOperations
||
5787 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
5788 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
5789 if (Res
.getValueType() != VT
)
5790 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
5794 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5795 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
5796 (!LegalOperations
||
5797 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
5798 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
5799 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
5800 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
5801 getShiftAmountTy()));
5803 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5804 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
5805 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
5806 XType
, DAG
.getConstant(0, XType
), N0
);
5807 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
5808 return DAG
.getNode(ISD::SRL
, DL
, XType
,
5809 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
5810 DAG
.getConstant(XType
.getSizeInBits()-1,
5811 getShiftAmountTy()));
5813 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5814 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
5815 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
5816 DAG
.getConstant(XType
.getSizeInBits()-1,
5817 getShiftAmountTy()));
5818 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
5822 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5823 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5824 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5825 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
5826 N2
.getOperand(0) == N1
&& N0
.getValueType().isInteger()) {
5827 MVT XType
= N0
.getValueType();
5828 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
, N0
,
5829 DAG
.getConstant(XType
.getSizeInBits()-1,
5830 getShiftAmountTy()));
5831 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), XType
,
5833 AddToWorkList(Shift
.getNode());
5834 AddToWorkList(Add
.getNode());
5835 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
5837 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5838 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5839 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
5840 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
5841 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
5842 MVT XType
= N0
.getValueType();
5843 if (SubC
->isNullValue() && XType
.isInteger()) {
5844 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
5846 DAG
.getConstant(XType
.getSizeInBits()-1,
5847 getShiftAmountTy()));
5848 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
5850 AddToWorkList(Shift
.getNode());
5851 AddToWorkList(Add
.getNode());
5852 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
5860 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5861 SDValue
DAGCombiner::SimplifySetCC(MVT VT
, SDValue N0
,
5862 SDValue N1
, ISD::CondCode Cond
,
5863 DebugLoc DL
, bool foldBooleans
) {
5864 TargetLowering::DAGCombinerInfo
5865 DagCombineInfo(DAG
, Level
== Unrestricted
, false, this);
5866 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
5869 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5870 /// return a DAG expression to select that will generate the same value by
5871 /// multiplying by a magic number. See:
5872 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5873 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
5874 std::vector
<SDNode
*> Built
;
5875 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
5877 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
5883 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5884 /// return a DAG expression to select that will generate the same value by
5885 /// multiplying by a magic number. See:
5886 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5887 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
5888 std::vector
<SDNode
*> Built
;
5889 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
5891 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
5897 /// FindBaseOffset - Return true if base is known not to alias with anything
5898 /// but itself. Provides base object and offset as results.
5899 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
) {
5900 // Assume it is a primitive operation.
5901 Base
= Ptr
; Offset
= 0;
5903 // If it's an adding a simple constant then integrate the offset.
5904 if (Base
.getOpcode() == ISD::ADD
) {
5905 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
5906 Base
= Base
.getOperand(0);
5907 Offset
+= C
->getZExtValue();
5911 // If it's any of the following then it can't alias with anything but itself.
5912 return isa
<FrameIndexSDNode
>(Base
) ||
5913 isa
<ConstantPoolSDNode
>(Base
) ||
5914 isa
<GlobalAddressSDNode
>(Base
);
5917 /// isAlias - Return true if there is any possibility that the two addresses
5919 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
5920 const Value
*SrcValue1
, int SrcValueOffset1
,
5921 SDValue Ptr2
, int64_t Size2
,
5922 const Value
*SrcValue2
, int SrcValueOffset2
) const {
5923 // If they are the same then they must be aliases.
5924 if (Ptr1
== Ptr2
) return true;
5926 // Gather base node and offset information.
5927 SDValue Base1
, Base2
;
5928 int64_t Offset1
, Offset2
;
5929 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
5930 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
5932 // If they have a same base address then...
5934 // Check to see if the addresses overlap.
5935 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
5937 // If we know both bases then they can't alias.
5938 if (KnownBase1
&& KnownBase2
) return false;
5940 if (CombinerGlobalAA
) {
5941 // Use alias analysis information.
5942 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
5943 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
5944 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
5945 AliasAnalysis::AliasResult AAResult
=
5946 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
5947 if (AAResult
== AliasAnalysis::NoAlias
)
5951 // Otherwise we have to assume they alias.
5955 /// FindAliasInfo - Extracts the relevant alias information from the memory
5956 /// node. Returns true if the operand was a load.
5957 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
5958 SDValue
&Ptr
, int64_t &Size
,
5959 const Value
*&SrcValue
, int &SrcValueOffset
) const {
5960 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
5961 Ptr
= LD
->getBasePtr();
5962 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
5963 SrcValue
= LD
->getSrcValue();
5964 SrcValueOffset
= LD
->getSrcValueOffset();
5966 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
5967 Ptr
= ST
->getBasePtr();
5968 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
5969 SrcValue
= ST
->getSrcValue();
5970 SrcValueOffset
= ST
->getSrcValueOffset();
5972 assert(0 && "FindAliasInfo expected a memory operand");
5978 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5979 /// looking for aliasing nodes and adding them to the Aliases vector.
5980 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
5981 SmallVector
<SDValue
, 8> &Aliases
) {
5982 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
5983 std::set
<SDNode
*> Visited
; // Visited node set.
5985 // Get alias information for node.
5988 const Value
*SrcValue
;
5990 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
);
5993 Chains
.push_back(OriginalChain
);
5995 // Look at each chain and determine if it is an alias. If so, add it to the
5996 // aliases list. If not, then continue up the chain looking for the next
5998 while (!Chains
.empty()) {
5999 SDValue Chain
= Chains
.back();
6002 // Don't bother if we've been before.
6003 if (Visited
.find(Chain
.getNode()) != Visited
.end()) continue;
6004 Visited
.insert(Chain
.getNode());
6006 switch (Chain
.getOpcode()) {
6007 case ISD::EntryToken
:
6008 // Entry token is ideal chain operand, but handled in FindBetterChain.
6013 // Get alias information for Chain.
6016 const Value
*OpSrcValue
;
6017 int OpSrcValueOffset
;
6018 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
6019 OpSrcValue
, OpSrcValueOffset
);
6021 // If chain is alias then stop here.
6022 if (!(IsLoad
&& IsOpLoad
) &&
6023 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
,
6024 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
)) {
6025 Aliases
.push_back(Chain
);
6027 // Look further up the chain.
6028 Chains
.push_back(Chain
.getOperand(0));
6029 // Clean up old chain.
6030 AddToWorkList(Chain
.getNode());
6035 case ISD::TokenFactor
:
6036 // We have to check each of the operands of the token factor, so we queue
6037 // then up. Adding the operands to the queue (stack) in reverse order
6038 // maintains the original order and increases the likelihood that getNode
6039 // will find a matching token factor (CSE.)
6040 for (unsigned n
= Chain
.getNumOperands(); n
;)
6041 Chains
.push_back(Chain
.getOperand(--n
));
6042 // Eliminate the token factor if we can.
6043 AddToWorkList(Chain
.getNode());
6047 // For all other instructions we will just have to take what we can get.
6048 Aliases
.push_back(Chain
);
6054 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6055 /// for a better chain (aliasing node.)
6056 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
6057 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
6059 // Accumulate all the aliases to this node.
6060 GatherAllAliases(N
, OldChain
, Aliases
);
6062 if (Aliases
.size() == 0) {
6063 // If no operands then chain to entry token.
6064 return DAG
.getEntryNode();
6065 } else if (Aliases
.size() == 1) {
6066 // If a single operand then chain to it. We don't need to revisit it.
6070 // Construct a custom tailored token factor.
6071 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6072 &Aliases
[0], Aliases
.size());
6074 // Make sure the old chain gets cleaned up.
6075 if (NewChain
!= OldChain
) AddToWorkList(OldChain
.getNode());
6080 // SelectionDAG::Combine - This is the entry point for the file.
6082 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
, bool Fast
) {
6083 /// run - This is the main entry point to this class.
6085 DAGCombiner(*this, AA
, Fast
).Run(Level
);