Add InsertBranch() hook for tail mergeing
[llvm/msp430.git] / lib / Analysis / BasicAliasAnalysis.cpp
blobfe71f04098b13061a0b04c4dcf2a99bc3fd7f9dd
1 //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the default implementation of the Alias Analysis interface
11 // that simply implements a few identities (two different globals cannot alias,
12 // etc), but otherwise does no analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CaptureTracking.h"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/GetElementPtrTypeIterator.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include <algorithm>
33 using namespace llvm;
35 //===----------------------------------------------------------------------===//
36 // Useful predicates
37 //===----------------------------------------------------------------------===//
39 static const User *isGEP(const Value *V) {
40 if (isa<GetElementPtrInst>(V) ||
41 (isa<ConstantExpr>(V) &&
42 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
43 return cast<User>(V);
44 return 0;
47 static const Value *GetGEPOperands(const Value *V,
48 SmallVector<Value*, 16> &GEPOps) {
49 assert(GEPOps.empty() && "Expect empty list to populate!");
50 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51 cast<User>(V)->op_end());
53 // Accumulate all of the chained indexes into the operand array
54 V = cast<User>(V)->getOperand(0);
56 while (const User *G = isGEP(V)) {
57 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58 !cast<Constant>(GEPOps[0])->isNullValue())
59 break; // Don't handle folding arbitrary pointer offsets yet...
60 GEPOps.erase(GEPOps.begin()); // Drop the zero index
61 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62 V = G->getOperand(0);
64 return V;
67 /// isKnownNonNull - Return true if we know that the specified value is never
68 /// null.
69 static bool isKnownNonNull(const Value *V) {
70 // Alloca never returns null, malloc might.
71 if (isa<AllocaInst>(V)) return true;
73 // A byval argument is never null.
74 if (const Argument *A = dyn_cast<Argument>(V))
75 return A->hasByValAttr();
77 // Global values are not null unless extern weak.
78 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79 return !GV->hasExternalWeakLinkage();
80 return false;
83 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84 /// object that never escapes from the function.
85 static bool isNonEscapingLocalObject(const Value *V) {
86 // If this is a local allocation, check to see if it escapes.
87 if (isa<AllocationInst>(V) || isNoAliasCall(V))
88 return !PointerMayBeCaptured(V, false);
90 // If this is an argument that corresponds to a byval or noalias argument,
91 // then it has not escaped before entering the function. Check if it escapes
92 // inside the function.
93 if (const Argument *A = dyn_cast<Argument>(V))
94 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95 // Don't bother analyzing arguments already known not to escape.
96 if (A->hasNoCaptureAttr())
97 return true;
98 return !PointerMayBeCaptured(V, false);
100 return false;
104 /// isObjectSmallerThan - Return true if we can prove that the object specified
105 /// by V is smaller than Size.
106 static bool isObjectSmallerThan(const Value *V, unsigned Size,
107 const TargetData &TD) {
108 const Type *AccessTy;
109 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
110 AccessTy = GV->getType()->getElementType();
111 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
112 if (!AI->isArrayAllocation())
113 AccessTy = AI->getType()->getElementType();
114 else
115 return false;
116 } else if (const Argument *A = dyn_cast<Argument>(V)) {
117 if (A->hasByValAttr())
118 AccessTy = cast<PointerType>(A->getType())->getElementType();
119 else
120 return false;
121 } else {
122 return false;
125 if (AccessTy->isSized())
126 return TD.getTypePaddedSize(AccessTy) < Size;
127 return false;
130 //===----------------------------------------------------------------------===//
131 // NoAA Pass
132 //===----------------------------------------------------------------------===//
134 namespace {
135 /// NoAA - This class implements the -no-aa pass, which always returns "I
136 /// don't know" for alias queries. NoAA is unlike other alias analysis
137 /// implementations, in that it does not chain to a previous analysis. As
138 /// such it doesn't follow many of the rules that other alias analyses must.
140 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
141 static char ID; // Class identification, replacement for typeinfo
142 NoAA() : ImmutablePass(&ID) {}
143 explicit NoAA(void *PID) : ImmutablePass(PID) { }
145 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.addRequired<TargetData>();
149 virtual void initializePass() {
150 TD = &getAnalysis<TargetData>();
153 virtual AliasResult alias(const Value *V1, unsigned V1Size,
154 const Value *V2, unsigned V2Size) {
155 return MayAlias;
158 virtual void getArgumentAccesses(Function *F, CallSite CS,
159 std::vector<PointerAccessInfo> &Info) {
160 assert(0 && "This method may not be called on this function!");
163 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
164 virtual bool pointsToConstantMemory(const Value *P) { return false; }
165 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
166 return ModRef;
168 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
169 return ModRef;
171 virtual bool hasNoModRefInfoForCalls() const { return true; }
173 virtual void deleteValue(Value *V) {}
174 virtual void copyValue(Value *From, Value *To) {}
176 } // End of anonymous namespace
178 // Register this pass...
179 char NoAA::ID = 0;
180 static RegisterPass<NoAA>
181 U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
183 // Declare that we implement the AliasAnalysis interface
184 static RegisterAnalysisGroup<AliasAnalysis> V(U);
186 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
188 //===----------------------------------------------------------------------===//
189 // BasicAA Pass
190 //===----------------------------------------------------------------------===//
192 namespace {
193 /// BasicAliasAnalysis - This is the default alias analysis implementation.
194 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
195 /// derives from the NoAA class.
196 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
197 static char ID; // Class identification, replacement for typeinfo
198 BasicAliasAnalysis() : NoAA(&ID) {}
199 AliasResult alias(const Value *V1, unsigned V1Size,
200 const Value *V2, unsigned V2Size);
202 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
203 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
205 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
206 /// non-escaping allocations.
207 virtual bool hasNoModRefInfoForCalls() const { return false; }
209 /// pointsToConstantMemory - Chase pointers until we find a (constant
210 /// global) or not.
211 bool pointsToConstantMemory(const Value *P);
213 private:
214 // CheckGEPInstructions - Check two GEP instructions with known
215 // must-aliasing base pointers. This checks to see if the index expressions
216 // preclude the pointers from aliasing...
217 AliasResult
218 CheckGEPInstructions(const Type* BasePtr1Ty,
219 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
220 const Type *BasePtr2Ty,
221 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
223 } // End of anonymous namespace
225 // Register this pass...
226 char BasicAliasAnalysis::ID = 0;
227 static RegisterPass<BasicAliasAnalysis>
228 X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
230 // Declare that we implement the AliasAnalysis interface
231 static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
233 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
234 return new BasicAliasAnalysis();
238 /// pointsToConstantMemory - Chase pointers until we find a (constant
239 /// global) or not.
240 bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
241 if (const GlobalVariable *GV =
242 dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
243 return GV->isConstant();
244 return false;
248 // getModRefInfo - Check to see if the specified callsite can clobber the
249 // specified memory object. Since we only look at local properties of this
250 // function, we really can't say much about this query. We do, however, use
251 // simple "address taken" analysis on local objects.
253 AliasAnalysis::ModRefResult
254 BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
255 if (!isa<Constant>(P)) {
256 const Value *Object = P->getUnderlyingObject();
258 // If this is a tail call and P points to a stack location, we know that
259 // the tail call cannot access or modify the local stack.
260 // We cannot exclude byval arguments here; these belong to the caller of
261 // the current function not to the current function, and a tail callee
262 // may reference them.
263 if (isa<AllocaInst>(Object))
264 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
265 if (CI->isTailCall())
266 return NoModRef;
268 // If the pointer is to a locally allocated object that does not escape,
269 // then the call can not mod/ref the pointer unless the call takes the
270 // argument without capturing it.
271 if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
272 bool passedAsArg = false;
273 // TODO: Eventually only check 'nocapture' arguments.
274 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
275 CI != CE; ++CI)
276 if (isa<PointerType>((*CI)->getType()) &&
277 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
278 passedAsArg = true;
280 if (!passedAsArg)
281 return NoModRef;
285 // The AliasAnalysis base class has some smarts, lets use them.
286 return AliasAnalysis::getModRefInfo(CS, P, Size);
290 AliasAnalysis::ModRefResult
291 BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
292 // If CS1 or CS2 are readnone, they don't interact.
293 ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
294 if (CS1B == DoesNotAccessMemory) return NoModRef;
296 ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
297 if (CS2B == DoesNotAccessMemory) return NoModRef;
299 // If they both only read from memory, just return ref.
300 if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
301 return Ref;
303 // Otherwise, fall back to NoAA (mod+ref).
304 return NoAA::getModRefInfo(CS1, CS2);
308 // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
309 // as array references.
311 AliasAnalysis::AliasResult
312 BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
313 const Value *V2, unsigned V2Size) {
314 // Strip off any constant expression casts if they exist
315 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
316 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
317 V1 = CE->getOperand(0);
318 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
319 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
320 V2 = CE->getOperand(0);
322 // Are we checking for alias of the same value?
323 if (V1 == V2) return MustAlias;
325 if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
326 return NoAlias; // Scalars cannot alias each other
328 // Strip off cast instructions. Since V1 and V2 are pointers, they must be
329 // pointer<->pointer bitcasts.
330 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
331 return alias(I->getOperand(0), V1Size, V2, V2Size);
332 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
333 return alias(V1, V1Size, I->getOperand(0), V2Size);
335 // Figure out what objects these things are pointing to if we can.
336 const Value *O1 = V1->getUnderlyingObject();
337 const Value *O2 = V2->getUnderlyingObject();
339 if (O1 != O2) {
340 // If V1/V2 point to two different objects we know that we have no alias.
341 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
342 return NoAlias;
344 // Arguments can't alias with local allocations or noalias calls.
345 if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
346 (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
347 return NoAlias;
349 // Most objects can't alias null.
350 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
351 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
352 return NoAlias;
355 // If the size of one access is larger than the entire object on the other
356 // side, then we know such behavior is undefined and can assume no alias.
357 const TargetData &TD = getTargetData();
358 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
359 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
360 return NoAlias;
362 // If one pointer is the result of a call/invoke and the other is a
363 // non-escaping local object, then we know the object couldn't escape to a
364 // point where the call could return it.
365 if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
366 isNonEscapingLocalObject(O2) && O1 != O2)
367 return NoAlias;
368 if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
369 isNonEscapingLocalObject(O1) && O1 != O2)
370 return NoAlias;
372 // If we have two gep instructions with must-alias'ing base pointers, figure
373 // out if the indexes to the GEP tell us anything about the derived pointer.
374 // Note that we also handle chains of getelementptr instructions as well as
375 // constant expression getelementptrs here.
377 if (isGEP(V1) && isGEP(V2)) {
378 const User *GEP1 = cast<User>(V1);
379 const User *GEP2 = cast<User>(V2);
381 // If V1 and V2 are identical GEPs, just recurse down on both of them.
382 // This allows us to analyze things like:
383 // P = gep A, 0, i, 1
384 // Q = gep B, 0, i, 1
385 // by just analyzing A and B. This is even safe for variable indices.
386 if (GEP1->getType() == GEP2->getType() &&
387 GEP1->getNumOperands() == GEP2->getNumOperands() &&
388 GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
389 // All operands are the same, ignoring the base.
390 std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
391 return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
394 // Drill down into the first non-gep value, to test for must-aliasing of
395 // the base pointers.
396 while (isGEP(GEP1->getOperand(0)) &&
397 GEP1->getOperand(1) ==
398 Constant::getNullValue(GEP1->getOperand(1)->getType()))
399 GEP1 = cast<User>(GEP1->getOperand(0));
400 const Value *BasePtr1 = GEP1->getOperand(0);
402 while (isGEP(GEP2->getOperand(0)) &&
403 GEP2->getOperand(1) ==
404 Constant::getNullValue(GEP2->getOperand(1)->getType()))
405 GEP2 = cast<User>(GEP2->getOperand(0));
406 const Value *BasePtr2 = GEP2->getOperand(0);
408 // Do the base pointers alias?
409 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
410 if (BaseAlias == NoAlias) return NoAlias;
411 if (BaseAlias == MustAlias) {
412 // If the base pointers alias each other exactly, check to see if we can
413 // figure out anything about the resultant pointers, to try to prove
414 // non-aliasing.
416 // Collect all of the chained GEP operands together into one simple place
417 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
418 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
419 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
421 // If GetGEPOperands were able to fold to the same must-aliased pointer,
422 // do the comparison.
423 if (BasePtr1 == BasePtr2) {
424 AliasResult GAlias =
425 CheckGEPInstructions(BasePtr1->getType(),
426 &GEP1Ops[0], GEP1Ops.size(), V1Size,
427 BasePtr2->getType(),
428 &GEP2Ops[0], GEP2Ops.size(), V2Size);
429 if (GAlias != MayAlias)
430 return GAlias;
435 // Check to see if these two pointers are related by a getelementptr
436 // instruction. If one pointer is a GEP with a non-zero index of the other
437 // pointer, we know they cannot alias.
439 if (isGEP(V2)) {
440 std::swap(V1, V2);
441 std::swap(V1Size, V2Size);
444 if (V1Size != ~0U && V2Size != ~0U)
445 if (isGEP(V1)) {
446 SmallVector<Value*, 16> GEPOperands;
447 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
449 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
450 if (R == MustAlias) {
451 // If there is at least one non-zero constant index, we know they cannot
452 // alias.
453 bool ConstantFound = false;
454 bool AllZerosFound = true;
455 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
456 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
457 if (!C->isNullValue()) {
458 ConstantFound = true;
459 AllZerosFound = false;
460 break;
462 } else {
463 AllZerosFound = false;
466 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
467 // the ptr, the end result is a must alias also.
468 if (AllZerosFound)
469 return MustAlias;
471 if (ConstantFound) {
472 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
473 return NoAlias;
475 // Otherwise we have to check to see that the distance is more than
476 // the size of the argument... build an index vector that is equal to
477 // the arguments provided, except substitute 0's for any variable
478 // indexes we find...
479 if (cast<PointerType>(
480 BasePtr->getType())->getElementType()->isSized()) {
481 for (unsigned i = 0; i != GEPOperands.size(); ++i)
482 if (!isa<ConstantInt>(GEPOperands[i]))
483 GEPOperands[i] =
484 Constant::getNullValue(GEPOperands[i]->getType());
485 int64_t Offset =
486 getTargetData().getIndexedOffset(BasePtr->getType(),
487 &GEPOperands[0],
488 GEPOperands.size());
490 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
491 return NoAlias;
497 return MayAlias;
500 // This function is used to determine if the indices of two GEP instructions are
501 // equal. V1 and V2 are the indices.
502 static bool IndexOperandsEqual(Value *V1, Value *V2) {
503 if (V1->getType() == V2->getType())
504 return V1 == V2;
505 if (Constant *C1 = dyn_cast<Constant>(V1))
506 if (Constant *C2 = dyn_cast<Constant>(V2)) {
507 // Sign extend the constants to long types, if necessary
508 if (C1->getType() != Type::Int64Ty)
509 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
510 if (C2->getType() != Type::Int64Ty)
511 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
512 return C1 == C2;
514 return false;
517 /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
518 /// base pointers. This checks to see if the index expressions preclude the
519 /// pointers from aliasing...
520 AliasAnalysis::AliasResult
521 BasicAliasAnalysis::CheckGEPInstructions(
522 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
523 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
524 // We currently can't handle the case when the base pointers have different
525 // primitive types. Since this is uncommon anyway, we are happy being
526 // extremely conservative.
527 if (BasePtr1Ty != BasePtr2Ty)
528 return MayAlias;
530 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
532 // Find the (possibly empty) initial sequence of equal values... which are not
533 // necessarily constants.
534 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
535 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
536 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
537 unsigned UnequalOper = 0;
538 while (UnequalOper != MinOperands &&
539 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
540 // Advance through the type as we go...
541 ++UnequalOper;
542 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
543 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
544 else {
545 // If all operands equal each other, then the derived pointers must
546 // alias each other...
547 BasePtr1Ty = 0;
548 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
549 "Ran out of type nesting, but not out of operands?");
550 return MustAlias;
554 // If we have seen all constant operands, and run out of indexes on one of the
555 // getelementptrs, check to see if the tail of the leftover one is all zeros.
556 // If so, return mustalias.
557 if (UnequalOper == MinOperands) {
558 if (NumGEP1Ops < NumGEP2Ops) {
559 std::swap(GEP1Ops, GEP2Ops);
560 std::swap(NumGEP1Ops, NumGEP2Ops);
563 bool AllAreZeros = true;
564 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
565 if (!isa<Constant>(GEP1Ops[i]) ||
566 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
567 AllAreZeros = false;
568 break;
570 if (AllAreZeros) return MustAlias;
574 // So now we know that the indexes derived from the base pointers,
575 // which are known to alias, are different. We can still determine a
576 // no-alias result if there are differing constant pairs in the index
577 // chain. For example:
578 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
580 // We have to be careful here about array accesses. In particular, consider:
581 // A[1][0] vs A[0][i]
582 // In this case, we don't *know* that the array will be accessed in bounds:
583 // the index could even be negative. Because of this, we have to
584 // conservatively *give up* and return may alias. We disregard differing
585 // array subscripts that are followed by a variable index without going
586 // through a struct.
588 unsigned SizeMax = std::max(G1S, G2S);
589 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
591 // Scan for the first operand that is constant and unequal in the
592 // two getelementptrs...
593 unsigned FirstConstantOper = UnequalOper;
594 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
595 const Value *G1Oper = GEP1Ops[FirstConstantOper];
596 const Value *G2Oper = GEP2Ops[FirstConstantOper];
598 if (G1Oper != G2Oper) // Found non-equal constant indexes...
599 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
600 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
601 if (G1OC->getType() != G2OC->getType()) {
602 // Sign extend both operands to long.
603 if (G1OC->getType() != Type::Int64Ty)
604 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
605 if (G2OC->getType() != Type::Int64Ty)
606 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
607 GEP1Ops[FirstConstantOper] = G1OC;
608 GEP2Ops[FirstConstantOper] = G2OC;
611 if (G1OC != G2OC) {
612 // Handle the "be careful" case above: if this is an array/vector
613 // subscript, scan for a subsequent variable array index.
614 if (isa<SequentialType>(BasePtr1Ty)) {
615 const Type *NextTy =
616 cast<SequentialType>(BasePtr1Ty)->getElementType();
617 bool isBadCase = false;
619 for (unsigned Idx = FirstConstantOper+1;
620 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
621 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
622 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
623 isBadCase = true;
624 break;
626 NextTy = cast<SequentialType>(NextTy)->getElementType();
629 if (isBadCase) G1OC = 0;
632 // Make sure they are comparable (ie, not constant expressions), and
633 // make sure the GEP with the smaller leading constant is GEP1.
634 if (G1OC) {
635 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
636 G1OC, G2OC);
637 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
638 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
639 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
640 std::swap(NumGEP1Ops, NumGEP2Ops);
642 break;
647 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
650 // No shared constant operands, and we ran out of common operands. At this
651 // point, the GEP instructions have run through all of their operands, and we
652 // haven't found evidence that there are any deltas between the GEP's.
653 // However, one GEP may have more operands than the other. If this is the
654 // case, there may still be hope. Check this now.
655 if (FirstConstantOper == MinOperands) {
656 // Make GEP1Ops be the longer one if there is a longer one.
657 if (NumGEP1Ops < NumGEP2Ops) {
658 std::swap(GEP1Ops, GEP2Ops);
659 std::swap(NumGEP1Ops, NumGEP2Ops);
662 // Is there anything to check?
663 if (NumGEP1Ops > MinOperands) {
664 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
665 if (isa<ConstantInt>(GEP1Ops[i]) &&
666 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
667 // Yup, there's a constant in the tail. Set all variables to
668 // constants in the GEP instruction to make it suitable for
669 // TargetData::getIndexedOffset.
670 for (i = 0; i != MaxOperands; ++i)
671 if (!isa<ConstantInt>(GEP1Ops[i]))
672 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
673 // Okay, now get the offset. This is the relative offset for the full
674 // instruction.
675 const TargetData &TD = getTargetData();
676 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
677 NumGEP1Ops);
679 // Now check without any constants at the end.
680 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
681 MinOperands);
683 // Make sure we compare the absolute difference.
684 if (Offset1 > Offset2)
685 std::swap(Offset1, Offset2);
687 // If the tail provided a bit enough offset, return noalias!
688 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
689 return NoAlias;
690 // Otherwise break - we don't look for another constant in the tail.
691 break;
695 // Couldn't find anything useful.
696 return MayAlias;
699 // If there are non-equal constants arguments, then we can figure
700 // out a minimum known delta between the two index expressions... at
701 // this point we know that the first constant index of GEP1 is less
702 // than the first constant index of GEP2.
704 // Advance BasePtr[12]Ty over this first differing constant operand.
705 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
706 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
707 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
708 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
710 // We are going to be using TargetData::getIndexedOffset to determine the
711 // offset that each of the GEP's is reaching. To do this, we have to convert
712 // all variable references to constant references. To do this, we convert the
713 // initial sequence of array subscripts into constant zeros to start with.
714 const Type *ZeroIdxTy = GEPPointerTy;
715 for (unsigned i = 0; i != FirstConstantOper; ++i) {
716 if (!isa<StructType>(ZeroIdxTy))
717 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
719 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
720 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
723 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
725 // Loop over the rest of the operands...
726 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
727 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
728 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
729 // If they are equal, use a zero index...
730 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
731 if (!isa<ConstantInt>(Op1))
732 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
733 // Otherwise, just keep the constants we have.
734 } else {
735 if (Op1) {
736 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
737 // If this is an array index, make sure the array element is in range.
738 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
739 if (Op1C->getZExtValue() >= AT->getNumElements())
740 return MayAlias; // Be conservative with out-of-range accesses
741 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
742 if (Op1C->getZExtValue() >= VT->getNumElements())
743 return MayAlias; // Be conservative with out-of-range accesses
746 } else {
747 // GEP1 is known to produce a value less than GEP2. To be
748 // conservatively correct, we must assume the largest possible
749 // constant is used in this position. This cannot be the initial
750 // index to the GEP instructions (because we know we have at least one
751 // element before this one with the different constant arguments), so
752 // we know that the current index must be into either a struct or
753 // array. Because we know it's not constant, this cannot be a
754 // structure index. Because of this, we can calculate the maximum
755 // value possible.
757 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
758 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
759 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
760 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
764 if (Op2) {
765 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
766 // If this is an array index, make sure the array element is in range.
767 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
768 if (Op2C->getZExtValue() >= AT->getNumElements())
769 return MayAlias; // Be conservative with out-of-range accesses
770 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
771 if (Op2C->getZExtValue() >= VT->getNumElements())
772 return MayAlias; // Be conservative with out-of-range accesses
774 } else { // Conservatively assume the minimum value for this index
775 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
780 if (BasePtr1Ty && Op1) {
781 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
782 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
783 else
784 BasePtr1Ty = 0;
787 if (BasePtr2Ty && Op2) {
788 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
789 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
790 else
791 BasePtr2Ty = 0;
795 if (GEPPointerTy->getElementType()->isSized()) {
796 int64_t Offset1 =
797 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
798 int64_t Offset2 =
799 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
800 assert(Offset1 != Offset2 &&
801 "There is at least one different constant here!");
803 // Make sure we compare the absolute difference.
804 if (Offset1 > Offset2)
805 std::swap(Offset1, Offset2);
807 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
808 //cerr << "Determined that these two GEP's don't alias ["
809 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
810 return NoAlias;
813 return MayAlias;
816 // Make sure that anything that uses AliasAnalysis pulls in this file...
817 DEFINING_FILE_FOR(BasicAliasAnalysis)