1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
18 #include "llvm/Target/TargetLowering.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "PPCSubtarget.h"
26 // Start the numbering where the builtin ops and target ops leave off.
27 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
29 /// FSEL - Traditional three-operand fsel node.
33 /// FCFID - The FCFID instruction, taking an f64 operand and producing
34 /// and f64 value containing the FP representation of the integer that
35 /// was temporarily in the f64 operand.
38 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39 /// operand, producing an f64 value containing the integer representation
43 /// STFIWX - The STFIWX instruction. The first operand is an input token
44 /// chain, then an f64 value to store, then an address to store it to.
47 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48 // three v4f32 operands and producing a v4f32 result.
51 /// VPERM - The PPC VPERM Instruction.
55 /// Hi/Lo - These represent the high and low 16-bit parts of a global
56 /// address respectively. These nodes have two operands, the first of
57 /// which must be a TargetGlobalAddress, and the second of which must be a
58 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
59 /// though these are usually folded into other nodes.
64 /// The following three target-specific nodes are used for calls through
65 /// function pointers in the 64-bit SVR4 ABI.
67 /// Restore the TOC from the TOC save area of the current stack frame.
68 /// This is basically a hard coded load instruction which additionally
69 /// takes/produces a flag.
72 /// Like a regular LOAD but additionally taking/producing a flag.
75 /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76 /// a hard coded load instruction.
79 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
80 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81 /// compute an allocation on the stack.
84 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85 /// at function entry, used for PIC code.
88 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89 /// shift amounts. These nodes are generated by the multi-precision shift
93 /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
97 /// CALL - A direct function call.
98 CALL_Darwin
, CALL_SVR4
,
100 /// NOP - Special NOP which follows 64-bit SVR4 calls.
103 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
104 /// MTCTR instruction.
107 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
108 /// BCTRL instruction.
109 BCTRL_Darwin
, BCTRL_SVR4
,
111 /// Return with a flag operand, matched by 'blr'
114 /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
115 /// instructions. This copies the bits corresponding to the specified
116 /// CRREG into the resultant GPR. Bits corresponding to other CR regs
120 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
121 /// instructions. For lack of better number, we use the opcode number
122 /// encoding for the OPC field to identify the compare. For example, 838
126 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
127 /// altivec VCMP*o instructions. For lack of better number, we use the
128 /// opcode number encoding for the OPC field to identify the compare. For
129 /// example, 838 is VCMPGTSH.
132 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
133 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
134 /// condition register to branch on, OPC is the branch opcode to use (e.g.
135 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
136 /// an optional input flag argument.
139 // The following 5 instructions are used only as part of the
140 // long double-to-int conversion sequence.
142 /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
146 /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
149 /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
152 /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
153 /// rounding towards zero. It has flags added so it won't move past the
154 /// FPSCR-setting instructions.
157 /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
160 /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
161 /// reserve indexed. This is used to implement atomic operations.
164 /// STCX = This corresponds to PPC stcx. instrcution: store conditional
165 /// indexed. This is used to implement atomic operations.
168 /// TC_RETURN - A tail call return.
170 /// operand #1 callee (register or absolute)
171 /// operand #2 stack adjustment
172 /// operand #3 optional in flag
175 /// STD_32 - This is the STD instruction for use with "32-bit" registers.
176 STD_32
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
178 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
179 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
180 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
184 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
185 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
186 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
192 /// Define some predicates that are used for node matching.
194 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
195 /// VPKUHUM instruction.
196 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
);
198 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
199 /// VPKUWUM instruction.
200 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
);
202 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
203 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
204 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
207 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
208 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
209 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
212 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
213 /// amount, otherwise return -1.
214 int isVSLDOIShuffleMask(SDNode
*N
, bool isUnary
);
216 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
217 /// specifies a splat of a single element that is suitable for input to
218 /// VSPLTB/VSPLTH/VSPLTW.
219 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
221 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
223 bool isAllNegativeZeroVector(SDNode
*N
);
225 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
226 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
227 unsigned getVSPLTImmediate(SDNode
*N
, unsigned EltSize
);
229 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
230 /// formed by using a vspltis[bhw] instruction of the specified element
231 /// size, return the constant being splatted. The ByteSize field indicates
232 /// the number of bytes of each element [124] -> [bhw].
233 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
236 class PPCTargetLowering
: public TargetLowering
{
237 const PPCSubtarget
&PPCSubTarget
;
240 explicit PPCTargetLowering(PPCTargetMachine
&TM
);
242 /// getTargetNodeName() - This method returns the name of a target specific
244 virtual const char *getTargetNodeName(unsigned Opcode
) const;
246 virtual MVT
getShiftAmountTy(EVT LHSTy
) const { return MVT::i32
; }
248 /// getSetCCResultType - Return the ISD::SETCC ValueType
249 virtual MVT::SimpleValueType
getSetCCResultType(EVT VT
) const;
251 /// getPreIndexedAddressParts - returns true by value, base pointer and
252 /// offset pointer and addressing mode by reference if the node's address
253 /// can be legally represented as pre-indexed load / store address.
254 virtual bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
256 ISD::MemIndexedMode
&AM
,
257 SelectionDAG
&DAG
) const;
259 /// SelectAddressRegReg - Given the specified addressed, check to see if it
260 /// can be represented as an indexed [r+r] operation. Returns false if it
261 /// can be more efficiently represented with [r+imm].
262 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
263 SelectionDAG
&DAG
) const;
265 /// SelectAddressRegImm - Returns true if the address N can be represented
266 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
267 /// is not better represented as reg+reg.
268 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
269 SelectionDAG
&DAG
) const;
271 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
272 /// represented as an indexed [r+r] operation.
273 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
274 SelectionDAG
&DAG
) const;
276 /// SelectAddressRegImmShift - Returns true if the address N can be
277 /// represented by a base register plus a signed 14-bit displacement
278 /// [r+imm*4]. Suitable for use by STD and friends.
279 bool SelectAddressRegImmShift(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
280 SelectionDAG
&DAG
) const;
283 /// LowerOperation - Provide custom lowering hooks for some operations.
285 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const;
287 /// ReplaceNodeResults - Replace the results of node with an illegal result
288 /// type with new values built out of custom code.
290 virtual void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
291 SelectionDAG
&DAG
) const;
293 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
295 virtual void computeMaskedBitsForTargetNode(const SDValue Op
,
299 const SelectionDAG
&DAG
,
300 unsigned Depth
= 0) const;
302 virtual MachineBasicBlock
*
303 EmitInstrWithCustomInserter(MachineInstr
*MI
,
304 MachineBasicBlock
*MBB
) const;
305 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
*MI
,
306 MachineBasicBlock
*MBB
, bool is64Bit
,
307 unsigned BinOpcode
) const;
308 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
*MI
,
309 MachineBasicBlock
*MBB
,
310 bool is8bit
, unsigned Opcode
) const;
312 ConstraintType
getConstraintType(const std::string
&Constraint
) const;
314 /// Examine constraint string and operand type and determine a weight value.
315 /// The operand object must already have been set up with the operand type.
316 ConstraintWeight
getSingleConstraintMatchWeight(
317 AsmOperandInfo
&info
, const char *constraint
) const;
319 std::pair
<unsigned, const TargetRegisterClass
*>
320 getRegForInlineAsmConstraint(const std::string
&Constraint
,
323 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
324 /// function arguments in the caller parameter area. This is the actual
325 /// alignment, not its logarithm.
326 unsigned getByValTypeAlignment(const Type
*Ty
) const;
328 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
329 /// vector. If it is invalid, don't add anything to Ops.
330 virtual void LowerAsmOperandForConstraint(SDValue Op
,
331 char ConstraintLetter
,
332 std::vector
<SDValue
> &Ops
,
333 SelectionDAG
&DAG
) const;
335 /// isLegalAddressingMode - Return true if the addressing mode represented
336 /// by AM is legal for this target, for a load/store of the specified type.
337 virtual bool isLegalAddressingMode(const AddrMode
&AM
, const Type
*Ty
)const;
339 /// isLegalAddressImmediate - Return true if the integer value can be used
340 /// as the offset of the target addressing mode for load / store of the
342 virtual bool isLegalAddressImmediate(int64_t V
, const Type
*Ty
) const;
344 /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
345 /// the offset of the target addressing mode.
346 virtual bool isLegalAddressImmediate(GlobalValue
*GV
) const;
348 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const;
350 /// getOptimalMemOpType - Returns the target specific optimal type for load
351 /// and store operations as a result of memset, memcpy, and memmove
352 /// lowering. If DstAlign is zero that means it's safe to destination
353 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
354 /// means there isn't a need to check it against alignment requirement,
355 /// probably because the source does not need to be loaded. If
356 /// 'NonScalarIntSafe' is true, that means it's safe to return a
357 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
358 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
359 /// constant so it does not need to be loaded.
360 /// It returns EVT::Other if the type should be determined using generic
361 /// target-independent logic.
363 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
364 bool NonScalarIntSafe
, bool MemcpyStrSrc
,
365 MachineFunction
&MF
) const;
368 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
369 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
372 IsEligibleForTailCallOptimization(SDValue Callee
,
373 CallingConv::ID CalleeCC
,
375 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
376 SelectionDAG
& DAG
) const;
378 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
& DAG
,
386 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
387 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
388 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
389 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
390 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
391 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
392 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
393 SDValue
LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
394 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
,
395 const PPCSubtarget
&Subtarget
) const;
396 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
,
397 const PPCSubtarget
&Subtarget
) const;
398 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
,
399 const PPCSubtarget
&Subtarget
) const;
400 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
,
401 const PPCSubtarget
&Subtarget
) const;
402 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
403 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
, DebugLoc dl
) const;
404 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
405 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
406 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
407 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
408 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
409 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
410 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
411 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
412 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
413 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
415 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
416 CallingConv::ID CallConv
, bool isVarArg
,
417 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
418 DebugLoc dl
, SelectionDAG
&DAG
,
419 SmallVectorImpl
<SDValue
> &InVals
) const;
420 SDValue
FinishCall(CallingConv::ID CallConv
, DebugLoc dl
, bool isTailCall
,
423 SmallVector
<std::pair
<unsigned, SDValue
>, 8>
425 SDValue InFlag
, SDValue Chain
,
427 int SPDiff
, unsigned NumBytes
,
428 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
429 SmallVectorImpl
<SDValue
> &InVals
) const;
432 LowerFormalArguments(SDValue Chain
,
433 CallingConv::ID CallConv
, bool isVarArg
,
434 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
435 DebugLoc dl
, SelectionDAG
&DAG
,
436 SmallVectorImpl
<SDValue
> &InVals
) const;
439 LowerCall(SDValue Chain
, SDValue Callee
,
440 CallingConv::ID CallConv
, bool isVarArg
, bool &isTailCall
,
441 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
442 const SmallVectorImpl
<SDValue
> &OutVals
,
443 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
444 DebugLoc dl
, SelectionDAG
&DAG
,
445 SmallVectorImpl
<SDValue
> &InVals
) const;
448 LowerReturn(SDValue Chain
,
449 CallingConv::ID CallConv
, bool isVarArg
,
450 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
451 const SmallVectorImpl
<SDValue
> &OutVals
,
452 DebugLoc dl
, SelectionDAG
&DAG
) const;
455 LowerFormalArguments_Darwin(SDValue Chain
,
456 CallingConv::ID CallConv
, bool isVarArg
,
457 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
458 DebugLoc dl
, SelectionDAG
&DAG
,
459 SmallVectorImpl
<SDValue
> &InVals
) const;
461 LowerFormalArguments_SVR4(SDValue Chain
,
462 CallingConv::ID CallConv
, bool isVarArg
,
463 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
464 DebugLoc dl
, SelectionDAG
&DAG
,
465 SmallVectorImpl
<SDValue
> &InVals
) const;
468 LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
469 CallingConv::ID CallConv
, bool isVarArg
, bool isTailCall
,
470 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
471 const SmallVectorImpl
<SDValue
> &OutVals
,
472 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
473 DebugLoc dl
, SelectionDAG
&DAG
,
474 SmallVectorImpl
<SDValue
> &InVals
) const;
476 LowerCall_SVR4(SDValue Chain
, SDValue Callee
,
477 CallingConv::ID CallConv
, bool isVarArg
, bool isTailCall
,
478 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
479 const SmallVectorImpl
<SDValue
> &OutVals
,
480 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
481 DebugLoc dl
, SelectionDAG
&DAG
,
482 SmallVectorImpl
<SDValue
> &InVals
) const;
486 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H