Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / docs / WritingAnLLVMPass.html
blob331617937755f26c4cf39af62ebc52234e0d4eb2
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>Writing an LLVM Pass</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
11 <h1>
12 Writing an LLVM Pass
13 </h1>
15 <ol>
16 <li><a href="#introduction">Introduction - What is a pass?</a></li>
17 <li><a href="#quickstart">Quick Start - Writing hello world</a>
18 <ul>
19 <li><a href="#makefile">Setting up the build environment</a></li>
20 <li><a href="#basiccode">Basic code required</a></li>
21 <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
22 </ul></li>
23 <li><a href="#passtype">Pass classes and requirements</a>
24 <ul>
25 <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
26 <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
27 <ul>
28 <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
29 </ul></li>
30 <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
31 <ul>
32 <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
33 &amp;)</tt> method</a></li>
34 <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
35 <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
36 &amp;)</tt> method</a></li>
37 </ul></li>
38 <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
39 <ul>
40 <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
41 &amp;)</tt> method</a></li>
42 <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
43 <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
44 &amp;)</tt> method</a></li>
45 </ul></li>
46 <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
47 <ul>
48 <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
49 LPPassManager &amp;)</tt> method</a></li>
50 <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
51 <li><a href="#doFinalization_loop">The <tt>doFinalization()
52 </tt> method</a></li>
53 </ul></li>
54 <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a>
55 <ul>
56 <li><a href="#doInitialization_region">The <tt>doInitialization(Region *,
57 RGPassManager &amp;)</tt> method</a></li>
58 <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li>
59 <li><a href="#doFinalization_region">The <tt>doFinalization()
60 </tt> method</a></li>
61 </ul></li>
62 <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
63 <ul>
64 <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
65 &amp;)</tt> method</a></li>
66 <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
67 method</a></li>
68 <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
69 &amp;)</tt> method</a></li>
70 </ul></li>
71 <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
72 class</a>
73 <ul>
74 <li><a href="#runOnMachineFunction">The
75 <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
76 </ul></li>
77 </ul>
78 <li><a href="#registration">Pass Registration</a>
79 <ul>
80 <li><a href="#print">The <tt>print</tt> method</a></li>
81 </ul></li>
82 <li><a href="#interaction">Specifying interactions between passes</a>
83 <ul>
84 <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt>
85 method</a></li>
86 <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
87 <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
88 <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
89 <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
90 <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
91 </ul></li>
92 <li><a href="#analysisgroup">Implementing Analysis Groups</a>
93 <ul>
94 <li><a href="#agconcepts">Analysis Group Concepts</a></li>
95 <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
96 </ul></li>
97 <li><a href="#passStatistics">Pass Statistics</a>
98 <li><a href="#passmanager">What PassManager does</a>
99 <ul>
100 <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
101 </ul></li>
102 <li><a href="#registering">Registering dynamically loaded passes</a>
103 <ul>
104 <li><a href="#registering_existing">Using existing registries</a></li>
105 <li><a href="#registering_new">Creating new registries</a></li>
106 </ul></li>
107 <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
108 <ul>
109 <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
110 <li><a href="#debugmisc">Miscellaneous Problems</a></li>
111 </ul></li>
112 <li><a href="#future">Future extensions planned</a>
113 <ul>
114 <li><a href="#SMP">Multithreaded LLVM</a></li>
115 </ul></li>
116 </ol>
118 <div class="doc_author">
119 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
120 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
121 </div>
123 <!-- *********************************************************************** -->
124 <h2>
125 <a name="introduction">Introduction - What is a pass?</a>
126 </h2>
127 <!-- *********************************************************************** -->
129 <div class="doc_text">
131 <p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
132 passes are where most of the interesting parts of the compiler exist. Passes
133 perform the transformations and optimizations that make up the compiler, they
134 build the analysis results that are used by these transformations, and they are,
135 above all, a structuring technique for compiler code.</p>
137 <p>All LLVM passes are subclasses of the <tt><a
138 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
139 class, which implement functionality by overriding virtual methods inherited
140 from <tt>Pass</tt>. Depending on how your pass works, you should inherit from
141 the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
142 href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
143 href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
144 href="#LoopPass">LoopPass</a></tt>, or <tt><a
145 href="#RegionPass">RegionPass</a></tt>, or <tt><a
146 href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
147 more information about what your pass does, and how it can be combined with
148 other passes. One of the main features of the LLVM Pass Framework is that it
149 schedules passes to run in an efficient way based on the constraints that your
150 pass meets (which are indicated by which class they derive from).</p>
152 <p>We start by showing you how to construct a pass, everything from setting up
153 the code, to compiling, loading, and executing it. After the basics are down,
154 more advanced features are discussed.</p>
156 </div>
158 <!-- *********************************************************************** -->
159 <h2>
160 <a name="quickstart">Quick Start - Writing hello world</a>
161 </h2>
162 <!-- *********************************************************************** -->
164 <div class="doc_text">
166 <p>Here we describe how to write the "hello world" of passes. The "Hello" pass
167 is designed to simply print out the name of non-external functions that exist in
168 the program being compiled. It does not modify the program at all, it just
169 inspects it. The source code and files for this pass are available in the LLVM
170 source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
172 </div>
174 <!-- ======================================================================= -->
175 <h3>
176 <a name="makefile">Setting up the build environment</a>
177 </h3>
179 <div class="doc_text">
181 <p>First, configure and build LLVM. This needs to be done directly inside the
182 LLVM source tree rather than in a separate objects directory.
183 Next, you need to create a new directory somewhere in the LLVM source
184 base. For this example, we'll assume that you made
185 <tt>lib/Transforms/Hello</tt>. Finally, you must set up a build script
186 (Makefile) that will compile the source code for the new pass. To do this,
187 copy the following into <tt>Makefile</tt>:</p>
188 <hr>
190 <div class="doc_code"><pre>
191 # Makefile for hello pass
193 # Path to top level of LLVM hierarchy
194 LEVEL = ../../..
196 # Name of the library to build
197 LIBRARYNAME = Hello
199 # Make the shared library become a loadable module so the tools can
200 # dlopen/dlsym on the resulting library.
201 LOADABLE_MODULE = 1
203 # Include the makefile implementation stuff
204 include $(LEVEL)/Makefile.common
205 </pre></div>
207 <p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
208 directory are to be compiled and linked together into a shared object
209 <tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by
210 the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.
211 If your operating system uses a suffix other than .so (such as windows or
212 Mac OS/X), the appropriate extension will be used.</p>
214 <p>If you are used CMake to build LLVM, see
215 <a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p>
217 <p>Now that we have the build scripts set up, we just need to write the code for
218 the pass itself.</p>
220 </div>
222 <!-- ======================================================================= -->
223 <h3>
224 <a name="basiccode">Basic code required</a>
225 </h3>
227 <div class="doc_text">
229 <p>Now that we have a way to compile our new pass, we just have to write it.
230 Start out with:</p>
232 <div class="doc_code"><pre>
233 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
234 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
235 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
236 </pre></div>
238 <p>Which are needed because we are writing a <tt><a
239 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>,
240 we are operating on <tt><a
241 href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s,
242 and we will be doing some printing.</p>
244 <p>Next we have:</p>
245 <div class="doc_code"><pre>
246 <b>using namespace llvm;</b>
247 </pre></div>
248 <p>... which is required because the functions from the include files
249 live in the llvm namespace.
250 </p>
252 <p>Next we have:</p>
254 <div class="doc_code"><pre>
255 <b>namespace</b> {
256 </pre></div>
258 <p>... which starts out an anonymous namespace. Anonymous namespaces are to C++
259 what the "<tt>static</tt>" keyword is to C (at global scope). It makes the
260 things declared inside of the anonymous namespace only visible to the current
261 file. If you're not familiar with them, consult a decent C++ book for more
262 information.</p>
264 <p>Next, we declare our pass itself:</p>
266 <div class="doc_code"><pre>
267 <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
268 </pre></div><p>
270 <p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
271 href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
272 The different builtin pass subclasses are described in detail <a
273 href="#passtype">later</a>, but for now, know that <a
274 href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate a function at a
275 time.</p>
277 <div class="doc_code"><pre>
278 static char ID;
279 Hello() : FunctionPass(ID) {}
280 </pre></div><p>
282 <p> This declares pass identifier used by LLVM to identify pass. This allows LLVM to
283 avoid using expensive C++ runtime information.</p>
285 <div class="doc_code"><pre>
286 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
287 errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
288 <b>return false</b>;
290 }; <i>// end of struct Hello</i>
291 </pre></div>
293 <p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
294 which overloads an abstract virtual method inherited from <a
295 href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed
296 to do our thing, so we just print out our message with the name of each
297 function.</p>
299 <div class="doc_code"><pre>
300 char Hello::ID = 0;
301 </pre></div>
303 <p> We initialize pass ID here. LLVM uses ID's address to identify pass so
304 initialization value is not important.</p>
306 <div class="doc_code"><pre>
307 static RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
308 false /* Only looks at CFG */,
309 false /* Analysis Pass */);
310 } <i>// end of anonymous namespace</i>
311 </pre></div>
313 <p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
314 giving it a command line
315 argument "<tt>hello</tt>", and a name "<tt>Hello World Pass</tt>".
316 Last two arguments describe its behavior.
317 If a pass walks CFG without modifying it then third argument is set to true.
318 If a pass is an analysis pass, for example dominator tree pass, then true
319 is supplied as fourth argument. </p>
321 <p>As a whole, the <tt>.cpp</tt> file looks like:</p>
323 <div class="doc_code"><pre>
324 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
325 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
326 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
328 <b>using namespace llvm;</b>
330 <b>namespace</b> {
331 <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
333 static char ID;
334 Hello() : FunctionPass(ID) {}
336 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
337 errs() &lt;&lt; "<i>Hello: </i>" &lt;&lt; F.getName() &lt;&lt; "\n";
338 <b>return false</b>;
342 char Hello::ID = 0;
343 static RegisterPass&lt;Hello&gt; X("hello", "Hello World Pass", false, false);
346 </pre></div>
348 <p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
349 command in the local directory and you should get a new file
350 "<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM
351 source tree (not in the local directory). Note that everything in this file is
352 contained in an anonymous namespace: this reflects the fact that passes are self
353 contained units that do not need external interfaces (although they can have
354 them) to be useful.</p>
356 </div>
358 <!-- ======================================================================= -->
359 <h3>
360 <a name="running">Running a pass with <tt>opt</tt></a>
361 </h3>
363 <div class="doc_text">
365 <p>Now that you have a brand new shiny shared object file, we can use the
366 <tt>opt</tt> command to run an LLVM program through your pass. Because you
367 registered your pass with <tt>RegisterPass</tt>, you will be able to
368 use the <tt>opt</tt> tool to access it, once loaded.</p>
370 <p>To test it, follow the example at the end of the <a
371 href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
372 LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program
373 through our transformation like this (or course, any bitcode file will
374 work):</p>
376 <div class="doc_code"><pre>
377 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
378 Hello: __main
379 Hello: puts
380 Hello: main
381 </pre></div>
383 <p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
384 pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
385 argument (which is one reason you need to <a href="#registration">register your
386 pass</a>). Because the hello pass does not modify the program in any
387 interesting way, we just throw away the result of <tt>opt</tt> (sending it to
388 <tt>/dev/null</tt>).</p>
390 <p>To see what happened to the other string you registered, try running
391 <tt>opt</tt> with the <tt>-help</tt> option:</p>
393 <div class="doc_code"><pre>
394 $ opt -load ../../../Debug+Asserts/lib/Hello.so -help
395 OVERVIEW: llvm .bc -&gt; .bc modular optimizer
397 USAGE: opt [options] &lt;input bitcode&gt;
399 OPTIONS:
400 Optimizations available:
402 -funcresolve - Resolve Functions
403 -gcse - Global Common Subexpression Elimination
404 -globaldce - Dead Global Elimination
405 <b>-hello - Hello World Pass</b>
406 -indvars - Canonicalize Induction Variables
407 -inline - Function Integration/Inlining
408 -instcombine - Combine redundant instructions
410 </pre></div>
412 <p>The pass name get added as the information string for your pass, giving some
413 documentation to users of <tt>opt</tt>. Now that you have a working pass, you
414 would go ahead and make it do the cool transformations you want. Once you get
415 it all working and tested, it may become useful to find out how fast your pass
416 is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
417 line option (<tt>--time-passes</tt>) that allows you to get information about
418 the execution time of your pass along with the other passes you queue up. For
419 example:</p>
421 <div class="doc_code"><pre>
422 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
423 Hello: __main
424 Hello: puts
425 Hello: main
426 ===============================================================================
427 ... Pass execution timing report ...
428 ===============================================================================
429 Total Execution Time: 0.02 seconds (0.0479059 wall clock)
431 ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name ---
432 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer
433 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction
434 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier
435 <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b>
436 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL
437 </pre></div>
439 <p>As you can see, our implementation above is pretty fast :). The additional
440 passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
441 that the LLVM emitted by your pass is still valid and well formed LLVM, which
442 hasn't been broken somehow.</p>
444 <p>Now that you have seen the basics of the mechanics behind passes, we can talk
445 about some more details of how they work and how to use them.</p>
447 </div>
449 <!-- *********************************************************************** -->
450 <h2>
451 <a name="passtype">Pass classes and requirements</a>
452 </h2>
453 <!-- *********************************************************************** -->
455 <div class="doc_text">
457 <p>One of the first things that you should do when designing a new pass is to
458 decide what class you should subclass for your pass. The <a
459 href="#basiccode">Hello World</a> example uses the <tt><a
460 href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
461 did not discuss why or when this should occur. Here we talk about the classes
462 available, from the most general to the most specific.</p>
464 <p>When choosing a superclass for your Pass, you should choose the <b>most
465 specific</b> class possible, while still being able to meet the requirements
466 listed. This gives the LLVM Pass Infrastructure information necessary to
467 optimize how passes are run, so that the resultant compiler isn't unnecessarily
468 slow.</p>
470 </div>
472 <!-- ======================================================================= -->
473 <h3>
474 <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
475 </h3>
477 <div class="doc_text">
479 <p>The most plain and boring type of pass is the "<tt><a
480 href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
481 class. This pass type is used for passes that do not have to be run, do not
482 change state, and never need to be updated. This is not a normal type of
483 transformation or analysis, but can provide information about the current
484 compiler configuration.</p>
486 <p>Although this pass class is very infrequently used, it is important for
487 providing information about the current target machine being compiled for, and
488 other static information that can affect the various transformations.</p>
490 <p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
491 invalidated, and are never "run".</p>
493 </div>
495 <!-- ======================================================================= -->
496 <h3>
497 <a name="ModulePass">The <tt>ModulePass</tt> class</a>
498 </h3>
500 <div class="doc_text">
502 <p>The "<tt><a
503 href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
504 class is the most general of all superclasses that you can use. Deriving from
505 <tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
506 referring to function bodies in no predictable order, or adding and removing
507 functions. Because nothing is known about the behavior of <tt>ModulePass</tt>
508 subclasses, no optimization can be done for their execution.</p>
510 <p>A module pass can use function level passes (e.g. dominators) using
511 the getAnalysis interface
512 <tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
513 function to retrieve analysis result for, if the function pass does not require
514 any module or immutable passes. Note that this can only be done for functions for which the
515 analysis ran, e.g. in the case of dominators you should only ask for the
516 DominatorTree for function definitions, not declarations.</p>
518 <p>To write a correct <tt>ModulePass</tt> subclass, derive from
519 <tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
520 following signature:</p>
522 </div>
524 <!-- _______________________________________________________________________ -->
525 <h4>
526 <a name="runOnModule">The <tt>runOnModule</tt> method</a>
527 </h4>
529 <div class="doc_text">
531 <div class="doc_code"><pre>
532 <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
533 </pre></div>
535 <p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
536 It should return true if the module was modified by the transformation and
537 false otherwise.</p>
539 </div>
541 <!-- ======================================================================= -->
542 <h3>
543 <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
544 </h3>
546 <div class="doc_text">
548 <p>The "<tt><a
549 href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
550 is used by passes that need to traverse the program bottom-up on the call graph
551 (callees before callers). Deriving from CallGraphSCCPass provides some
552 mechanics for building and traversing the CallGraph, but also allows the system
553 to optimize execution of CallGraphSCCPass's. If your pass meets the
554 requirements outlined below, and doesn't meet the requirements of a <tt><a
555 href="#FunctionPass">FunctionPass</a></tt> or <tt><a
556 href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
557 <tt>CallGraphSCCPass</tt>.</p>
559 <p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
561 <p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
563 <ol>
565 <li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other
566 than those in the current SCC and the direct callers and direct callees of the
567 SCC.</li>
569 <li>... <em>required</em> to preserve the current CallGraph object, updating it
570 to reflect any changes made to the program.</li>
572 <li>... <em>not allowed</em> to add or remove SCC's from the current Module,
573 though they may change the contents of an SCC.</li>
575 <li>... <em>allowed</em> to add or remove global variables from the current
576 Module.</li>
578 <li>... <em>allowed</em> to maintain state across invocations of
579 <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
580 </ol>
582 <p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
583 because it has to handle SCCs with more than one node in it. All of the virtual
584 methods described below should return true if they modified the program, or
585 false if they didn't.</p>
587 </div>
589 <!-- _______________________________________________________________________ -->
590 <h4>
591 <a name="doInitialization_scc">
592 The <tt>doInitialization(CallGraph &amp;)</tt> method
593 </a>
594 </h4>
596 <div class="doc_text">
598 <div class="doc_code"><pre>
599 <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
600 </pre></div>
602 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
603 <tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove
604 functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
605 is designed to do simple initialization type of stuff that does not depend on
606 the SCCs being processed. The <tt>doInitialization</tt> method call is not
607 scheduled to overlap with any other pass executions (thus it should be very
608 fast).</p>
610 </div>
612 <!-- _______________________________________________________________________ -->
613 <h4>
614 <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
615 </h4>
617 <div class="doc_text">
619 <div class="doc_code"><pre>
620 <b>virtual bool</b> runOnSCC(CallGraphSCC &amp;SCC) = 0;
621 </pre></div>
623 <p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
624 should return true if the module was modified by the transformation, false
625 otherwise.</p>
627 </div>
629 <!-- _______________________________________________________________________ -->
630 <h4>
631 <a name="doFinalization_scc">
632 The <tt>doFinalization(CallGraph &amp;)</tt> method
633 </a>
634 </h4>
636 <div class="doc_text">
638 <div class="doc_code"><pre>
639 <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
640 </pre></div>
642 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
643 called when the pass framework has finished calling <a
644 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
645 program being compiled.</p>
647 </div>
649 <!-- ======================================================================= -->
650 <h3>
651 <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
652 </h3>
654 <div class="doc_text">
656 <p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
657 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
658 subclasses do have a predictable, local behavior that can be expected by the
659 system. All <tt>FunctionPass</tt> execute on each function in the program
660 independent of all of the other functions in the program.
661 <tt>FunctionPass</tt>'s do not require that they are executed in a particular
662 order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
664 <p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
666 <ol>
667 <li>Modify a Function other than the one currently being processed.</li>
668 <li>Add or remove Function's from the current Module.</li>
669 <li>Add or remove global variables from the current Module.</li>
670 <li>Maintain state across invocations of
671 <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
672 </ol>
674 <p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
675 href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s
676 may overload three virtual methods to do their work. All of these methods
677 should return true if they modified the program, or false if they didn't.</p>
679 </div>
681 <!-- _______________________________________________________________________ -->
682 <h4>
683 <a name="doInitialization_mod">
684 The <tt>doInitialization(Module &amp;)</tt> method
685 </a>
686 </h4>
688 <div class="doc_text">
690 <div class="doc_code"><pre>
691 <b>virtual bool</b> doInitialization(Module &amp;M);
692 </pre></div>
694 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
695 <tt>FunctionPass</tt>'s are not allowed to do. They can add and remove
696 functions, get pointers to functions, etc. The <tt>doInitialization</tt> method
697 is designed to do simple initialization type of stuff that does not depend on
698 the functions being processed. The <tt>doInitialization</tt> method call is not
699 scheduled to overlap with any other pass executions (thus it should be very
700 fast).</p>
702 <p>A good example of how this method should be used is the <a
703 href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
704 pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
705 platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It
706 uses the <tt>doInitialization</tt> method to get a reference to the malloc and
707 free functions that it needs, adding prototypes to the module if necessary.</p>
709 </div>
711 <!-- _______________________________________________________________________ -->
712 <h4>
713 <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
714 </h4>
716 <div class="doc_text">
718 <div class="doc_code"><pre>
719 <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
720 </pre></div><p>
722 <p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
723 the transformation or analysis work of your pass. As usual, a true value should
724 be returned if the function is modified.</p>
726 </div>
728 <!-- _______________________________________________________________________ -->
729 <h4>
730 <a name="doFinalization_mod">
731 The <tt>doFinalization(Module &amp;)</tt> method
732 </a>
733 </h4>
735 <div class="doc_text">
737 <div class="doc_code"><pre>
738 <b>virtual bool</b> doFinalization(Module &amp;M);
739 </pre></div>
741 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
742 called when the pass framework has finished calling <a
743 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
744 program being compiled.</p>
746 </div>
748 <!-- ======================================================================= -->
749 <h3>
750 <a name="LoopPass">The <tt>LoopPass</tt> class </a>
751 </h3>
753 <div class="doc_text">
755 <p> All <tt>LoopPass</tt> execute on each loop in the function independent of
756 all of the other loops in the function. <tt>LoopPass</tt> processes loops in
757 loop nest order such that outer most loop is processed last. </p>
759 <p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
760 <tt>LPPassManager</tt> interface. Implementing a loop pass is usually
761 straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to
762 do their work. All these methods should return true if they modified the
763 program, or false if they didn't. </p>
764 </div>
766 <!-- _______________________________________________________________________ -->
767 <h4>
768 <a name="doInitialization_loop">
769 The <tt>doInitialization(Loop *,LPPassManager &amp;)</tt> method
770 </a>
771 </h4>
773 <div class="doc_text">
775 <div class="doc_code"><pre>
776 <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
777 </pre></div>
779 <p>The <tt>doInitialization</tt> method is designed to do simple initialization
780 type of stuff that does not depend on the functions being processed. The
781 <tt>doInitialization</tt> method call is not scheduled to overlap with any
782 other pass executions (thus it should be very fast). LPPassManager
783 interface should be used to access Function or Module level analysis
784 information.</p>
786 </div>
789 <!-- _______________________________________________________________________ -->
790 <h4>
791 <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
792 </h4>
794 <div class="doc_text">
796 <div class="doc_code"><pre>
797 <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
798 </pre></div><p>
800 <p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
801 the transformation or analysis work of your pass. As usual, a true value should
802 be returned if the function is modified. <tt>LPPassManager</tt> interface
803 should be used to update loop nest.</p>
805 </div>
807 <!-- _______________________________________________________________________ -->
808 <h4>
809 <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
810 </h4>
812 <div class="doc_text">
814 <div class="doc_code"><pre>
815 <b>virtual bool</b> doFinalization();
816 </pre></div>
818 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
819 called when the pass framework has finished calling <a
820 href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
821 program being compiled. </p>
823 </div>
825 <!-- ======================================================================= -->
826 <h3>
827 <a name="RegionPass">The <tt>RegionPass</tt> class </a>
828 </h3>
830 <div class="doc_text">
832 <p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>,
833 but executes on each single entry single exit region in the function.
834 <tt>RegionPass</tt> processes regions in nested order such that the outer most
835 region is processed last. </p>
837 <p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using
838 the <tt>RGPassManager</tt> interface. You may overload three virtual methods of
839 <tt>RegionPass</tt> to implement your own region pass. All these
840 methods should return true if they modified the program, or false if they didn not.
841 </p>
842 </div>
844 <!-- _______________________________________________________________________ -->
845 <h4>
846 <a name="doInitialization_region">
847 The <tt>doInitialization(Region *, RGPassManager &amp;)</tt> method
848 </a>
849 </h4>
851 <div class="doc_text">
853 <div class="doc_code"><pre>
854 <b>virtual bool</b> doInitialization(Region *, RGPassManager &amp;RGM);
855 </pre></div>
857 <p>The <tt>doInitialization</tt> method is designed to do simple initialization
858 type of stuff that does not depend on the functions being processed. The
859 <tt>doInitialization</tt> method call is not scheduled to overlap with any
860 other pass executions (thus it should be very fast). RPPassManager
861 interface should be used to access Function or Module level analysis
862 information.</p>
864 </div>
867 <!-- _______________________________________________________________________ -->
868 <h4>
869 <a name="runOnRegion">The <tt>runOnRegion</tt> method</a>
870 </h4>
872 <div class="doc_text">
874 <div class="doc_code"><pre>
875 <b>virtual bool</b> runOnRegion(Region *, RGPassManager &amp;RGM) = 0;
876 </pre></div><p>
878 <p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do
879 the transformation or analysis work of your pass. As usual, a true value should
880 be returned if the region is modified. <tt>RGPassManager</tt> interface
881 should be used to update region tree.</p>
883 </div>
885 <!-- _______________________________________________________________________ -->
886 <h4>
887 <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a>
888 </h4>
890 <div class="doc_text">
892 <div class="doc_code"><pre>
893 <b>virtual bool</b> doFinalization();
894 </pre></div>
896 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
897 called when the pass framework has finished calling <a
898 href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the
899 program being compiled. </p>
901 </div>
905 <!-- ======================================================================= -->
906 <h3>
907 <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
908 </h3>
910 <div class="doc_text">
912 <p><tt>BasicBlockPass</tt>'s are just like <a
913 href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
914 their scope of inspection and modification to a single basic block at a time.
915 As such, they are <b>not</b> allowed to do any of the following:</p>
917 <ol>
918 <li>Modify or inspect any basic blocks outside of the current one</li>
919 <li>Maintain state across invocations of
920 <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
921 <li>Modify the control flow graph (by altering terminator instructions)</li>
922 <li>Any of the things forbidden for
923 <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
924 </ol>
926 <p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
927 optimizations. They may override the same <a
928 href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
929 href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
930 href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
932 </div>
934 <!-- _______________________________________________________________________ -->
935 <h4>
936 <a name="doInitialization_fn">
937 The <tt>doInitialization(Function &amp;)</tt> method
938 </a>
939 </h4>
941 <div class="doc_text">
943 <div class="doc_code"><pre>
944 <b>virtual bool</b> doInitialization(Function &amp;F);
945 </pre></div>
947 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
948 <tt>BasicBlockPass</tt>'s are not allowed to do, but that
949 <tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed
950 to do simple initialization that does not depend on the
951 BasicBlocks being processed. The <tt>doInitialization</tt> method call is not
952 scheduled to overlap with any other pass executions (thus it should be very
953 fast).</p>
955 </div>
957 <!-- _______________________________________________________________________ -->
958 <h4>
959 <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
960 </h4>
962 <div class="doc_text">
964 <div class="doc_code"><pre>
965 <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
966 </pre></div>
968 <p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This
969 function is not allowed to inspect or modify basic blocks other than the
970 parameter, and are not allowed to modify the CFG. A true value must be returned
971 if the basic block is modified.</p>
973 </div>
975 <!-- _______________________________________________________________________ -->
976 <h4>
977 <a name="doFinalization_fn">
978 The <tt>doFinalization(Function &amp;)</tt> method
979 </a>
980 </h4>
982 <div class="doc_text">
984 <div class="doc_code"><pre>
985 <b>virtual bool</b> doFinalization(Function &amp;F);
986 </pre></div>
988 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
989 called when the pass framework has finished calling <a
990 href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
991 program being compiled. This can be used to perform per-function
992 finalization.</p>
994 </div>
996 <!-- ======================================================================= -->
997 <h3>
998 <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
999 </h3>
1001 <div class="doc_text">
1003 <p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
1004 executes on the machine-dependent representation of each LLVM function in the
1005 program.</p>
1007 <p>Code generator passes are registered and initialized specially by
1008 <tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they
1009 cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt>
1010 commands.</p>
1012 <p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
1013 the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
1014 <tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
1015 <tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
1017 <ol>
1018 <li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments,
1019 Functions, GlobalVariables, GlobalAliases, or Modules.</li>
1020 <li>Modify a MachineFunction other than the one currently being processed.</li>
1021 <li>Maintain state across invocations of <a
1022 href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
1023 data)</li>
1024 </ol>
1026 </div>
1028 <!-- _______________________________________________________________________ -->
1029 <h4>
1030 <a name="runOnMachineFunction">
1031 The <tt>runOnMachineFunction(MachineFunction &amp;MF)</tt> method
1032 </a>
1033 </h4>
1035 <div class="doc_text">
1037 <div class="doc_code"><pre>
1038 <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
1039 </pre></div>
1041 <p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
1042 <tt>MachineFunctionPass</tt>; that is, you should override this method to do the
1043 work of your <tt>MachineFunctionPass</tt>.</p>
1045 <p>The <tt>runOnMachineFunction</tt> method is called on every
1046 <tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
1047 <tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
1048 representation of the function. If you want to get at the LLVM <tt>Function</tt>
1049 for the <tt>MachineFunction</tt> you're working on, use
1050 <tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
1051 remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
1052 <tt>MachineFunctionPass</tt>.</p>
1054 </div>
1056 <!-- *********************************************************************** -->
1057 <h2>
1058 <a name="registration">Pass registration</a>
1059 </h2>
1060 <!-- *********************************************************************** -->
1062 <div class="doc_text">
1064 <p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
1065 pass registration works, and discussed some of the reasons that it is used and
1066 what it does. Here we discuss how and why passes are registered.</p>
1068 <p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
1069 template. The template parameter is the name of the pass that is to be used on
1070 the command line to specify that the pass should be added to a program (for
1071 example, with <tt>opt</tt> or <tt>bugpoint</tt>). The first argument is the
1072 name of the pass, which is to be used for the <tt>-help</tt> output of
1073 programs, as
1074 well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
1076 <p>If you want your pass to be easily dumpable, you should
1077 implement the virtual <tt>print</tt> method:</p>
1079 </div>
1081 <!-- _______________________________________________________________________ -->
1082 <h4>
1083 <a name="print">The <tt>print</tt> method</a>
1084 </h4>
1086 <div class="doc_text">
1088 <div class="doc_code"><pre>
1089 <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
1090 </pre></div>
1092 <p>The <tt>print</tt> method must be implemented by "analyses" in order to print
1093 a human readable version of the analysis results. This is useful for debugging
1094 an analysis itself, as well as for other people to figure out how an analysis
1095 works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
1097 <p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
1098 and the <tt>Module</tt> parameter gives a pointer to the top level module of the
1099 program that has been analyzed. Note however that this pointer may be null in
1100 certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
1101 debugger), so it should only be used to enhance debug output, it should not be
1102 depended on.</p>
1104 </div>
1106 <!-- *********************************************************************** -->
1107 <h2>
1108 <a name="interaction">Specifying interactions between passes</a>
1109 </h2>
1110 <!-- *********************************************************************** -->
1112 <div class="doc_text">
1114 <p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
1115 that passes interact with each other correctly. Because <tt>PassManager</tt>
1116 tries to <a href="#passmanager">optimize the execution of passes</a> it must
1117 know how the passes interact with each other and what dependencies exist between
1118 the various passes. To track this, each pass can declare the set of passes that
1119 are required to be executed before the current pass, and the passes which are
1120 invalidated by the current pass.</p>
1122 <p>Typically this functionality is used to require that analysis results are
1123 computed before your pass is run. Running arbitrary transformation passes can
1124 invalidate the computed analysis results, which is what the invalidation set
1125 specifies. If a pass does not implement the <tt><a
1126 href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
1127 having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
1129 </div>
1131 <!-- _______________________________________________________________________ -->
1132 <h4>
1133 <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
1134 </h4>
1136 <div class="doc_text">
1138 <div class="doc_code"><pre>
1139 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
1140 </pre></div>
1142 <p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
1143 invalidated sets may be specified for your transformation. The implementation
1144 should fill in the <tt><a
1145 href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
1146 object with information about which passes are required and not invalidated. To
1147 do this, a pass may call any of the following methods on the AnalysisUsage
1148 object:</p>
1149 </div>
1151 <!-- _______________________________________________________________________ -->
1152 <h4>
1153 <a name="AU::addRequired">
1154 The <tt>AnalysisUsage::addRequired&lt;&gt;</tt>
1155 and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods
1156 </a>
1157 </h4>
1159 <div class="doc_text">
1161 If your pass requires a previous pass to be executed (an analysis for example),
1162 it can use one of these methods to arrange for it to be run before your pass.
1163 LLVM has many different types of analyses and passes that can be required,
1164 spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
1165 Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
1166 be no critical edges in the CFG when your pass has been run.
1167 </p>
1170 Some analyses chain to other analyses to do their job. For example, an <a
1171 href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
1172 href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In
1173 cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
1174 used instead of the <tt>addRequired</tt> method. This informs the PassManager
1175 that the transitively required pass should be alive as long as the requiring
1176 pass is.
1177 </p>
1178 </div>
1180 <!-- _______________________________________________________________________ -->
1181 <h4>
1182 <a name="AU::addPreserved">
1183 The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method
1184 </a>
1185 </h4>
1187 <div class="doc_text">
1189 One of the jobs of the PassManager is to optimize how and when analyses are run.
1190 In particular, it attempts to avoid recomputing data unless it needs to. For
1191 this reason, passes are allowed to declare that they preserve (i.e., they don't
1192 invalidate) an existing analysis if it's available. For example, a simple
1193 constant folding pass would not modify the CFG, so it can't possibly affect the
1194 results of dominator analysis. By default, all passes are assumed to invalidate
1195 all others.
1196 </p>
1199 The <tt>AnalysisUsage</tt> class provides several methods which are useful in
1200 certain circumstances that are related to <tt>addPreserved</tt>. In particular,
1201 the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
1202 not modify the LLVM program at all (which is true for analyses), and the
1203 <tt>setPreservesCFG</tt> method can be used by transformations that change
1204 instructions in the program but do not modify the CFG or terminator instructions
1205 (note that this property is implicitly set for <a
1206 href="#BasicBlockPass">BasicBlockPass</a>'s).
1207 </p>
1210 <tt>addPreserved</tt> is particularly useful for transformations like
1211 <tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop
1212 and dominator related analyses if they exist, so it can preserve them, despite
1213 the fact that it hacks on the CFG.
1214 </p>
1215 </div>
1217 <!-- _______________________________________________________________________ -->
1218 <h4>
1219 <a name="AU::examples">
1220 Example implementations of <tt>getAnalysisUsage</tt>
1221 </a>
1222 </h4>
1224 <div class="doc_text">
1226 <div class="doc_code"><pre>
1227 <i>// This example modifies the program, but does not modify the CFG</i>
1228 <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1229 AU.setPreservesCFG();
1230 AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
1232 </pre></div>
1234 </div>
1236 <!-- _______________________________________________________________________ -->
1237 <h4>
1238 <a name="getAnalysis">
1239 The <tt>getAnalysis&lt;&gt;</tt> and
1240 <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods
1241 </a>
1242 </h4>
1244 <div class="doc_text">
1246 <p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
1247 your class, providing you with access to the passes that you declared that you
1248 required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
1249 method. It takes a single template argument that specifies which pass class you
1250 want, and returns a reference to that pass. For example:</p>
1252 <div class="doc_code"><pre>
1253 bool LICM::runOnFunction(Function &amp;F) {
1254 LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
1257 </pre></div>
1259 <p>This method call returns a reference to the pass desired. You may get a
1260 runtime assertion failure if you attempt to get an analysis that you did not
1261 declare as required in your <a
1262 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This
1263 method can be called by your <tt>run*</tt> method implementation, or by any
1264 other local method invoked by your <tt>run*</tt> method.
1266 A module level pass can use function level analysis info using this interface.
1267 For example:</p>
1269 <div class="doc_code"><pre>
1270 bool ModuleLevelPass::runOnModule(Module &amp;M) {
1272 DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
1275 </pre></div>
1277 <p>In above example, runOnFunction for DominatorTree is called by pass manager
1278 before returning a reference to the desired pass.</p>
1281 If your pass is capable of updating analyses if they exist (e.g.,
1282 <tt>BreakCriticalEdges</tt>, as described above), you can use the
1283 <tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
1284 if it is active. For example:</p>
1286 <div class="doc_code"><pre>
1288 if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
1289 <i>// A DominatorSet is active. This code will update it.</i>
1292 </pre></div>
1294 </div>
1296 <!-- *********************************************************************** -->
1297 <h2>
1298 <a name="analysisgroup">Implementing Analysis Groups</a>
1299 </h2>
1300 <!-- *********************************************************************** -->
1302 <div class="doc_text">
1304 <p>Now that we understand the basics of how passes are defined, how they are
1305 used, and how they are required from other passes, it's time to get a little bit
1306 fancier. All of the pass relationships that we have seen so far are very
1307 simple: one pass depends on one other specific pass to be run before it can run.
1308 For many applications, this is great, for others, more flexibility is
1309 required.</p>
1311 <p>In particular, some analyses are defined such that there is a single simple
1312 interface to the analysis results, but multiple ways of calculating them.
1313 Consider alias analysis for example. The most trivial alias analysis returns
1314 "may alias" for any alias query. The most sophisticated analysis a
1315 flow-sensitive, context-sensitive interprocedural analysis that can take a
1316 significant amount of time to execute (and obviously, there is a lot of room
1317 between these two extremes for other implementations). To cleanly support
1318 situations like this, the LLVM Pass Infrastructure supports the notion of
1319 Analysis Groups.</p>
1321 </div>
1323 <!-- _______________________________________________________________________ -->
1324 <h4>
1325 <a name="agconcepts">Analysis Group Concepts</a>
1326 </h4>
1328 <div class="doc_text">
1330 <p>An Analysis Group is a single simple interface that may be implemented by
1331 multiple different passes. Analysis Groups can be given human readable names
1332 just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
1333 class. An analysis group may have one or more implementations, one of which is
1334 the "default" implementation.</p>
1336 <p>Analysis groups are used by client passes just like other passes are: the
1337 <tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
1338 In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
1339 scans the available passes to see if any implementations of the analysis group
1340 are available. If none is available, the default implementation is created for
1341 the pass to use. All standard rules for <A href="#interaction">interaction
1342 between passes</a> still apply.</p>
1344 <p>Although <a href="#registration">Pass Registration</a> is optional for normal
1345 passes, all analysis group implementations must be registered, and must use the
1346 <A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the
1347 implementation pool. Also, a default implementation of the interface
1348 <b>must</b> be registered with <A
1349 href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
1351 <p>As a concrete example of an Analysis Group in action, consider the <a
1352 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
1353 analysis group. The default implementation of the alias analysis interface (the
1354 <tt><a
1355 href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
1356 pass) just does a few simple checks that don't require significant analysis to
1357 compute (such as: two different globals can never alias each other, etc).
1358 Passes that use the <tt><a
1359 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1360 interface (for example the <tt><a
1361 href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
1362 not care which implementation of alias analysis is actually provided, they just
1363 use the designated interface.</p>
1365 <p>From the user's perspective, commands work just like normal. Issuing the
1366 command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
1367 instantiated and added to the pass sequence. Issuing the command '<tt>opt
1368 -somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
1369 <tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
1370 hypothetical example) instead.</p>
1372 </div>
1374 <!-- _______________________________________________________________________ -->
1375 <h4>
1376 <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
1377 </h4>
1379 <div class="doc_text">
1381 <p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
1382 group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass
1383 implementations to the analysis group. First,
1384 an analysis group should be registered, with a human readable name
1385 provided for it.
1386 Unlike registration of passes, there is no command line argument to be specified
1387 for the Analysis Group Interface itself, because it is "abstract":</p>
1389 <div class="doc_code"><pre>
1390 <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
1391 </pre></div>
1393 <p>Once the analysis is registered, passes can declare that they are valid
1394 implementations of the interface by using the following code:</p>
1396 <div class="doc_code"><pre>
1397 <b>namespace</b> {
1398 //<i> Declare that we implement the AliasAnalysis interface</i>
1399 INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>",
1400 "<i>A more complex alias analysis implementation</i>",
1401 false, // <i>Is CFG Only?</i>
1402 true, // <i>Is Analysis?</i>
1403 false, // <i>Is default Analysis Group implementation?</i>
1406 </pre></div>
1408 <p>This just shows a class <tt>FancyAA</tt> that
1409 uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and
1410 to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
1411 analysis group. Every implementation of an analysis group should join using
1412 this macro.</p>
1414 <div class="doc_code"><pre>
1415 <b>namespace</b> {
1416 //<i> Declare that we implement the AliasAnalysis interface</i>
1417 INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>",
1418 "<i>Basic Alias Analysis (default AA impl)</i>",
1419 false, // <i>Is CFG Only?</i>
1420 true, // <i>Is Analysis?</i>
1421 true, // <i>Is default Analysis Group implementation?</i>
1424 </pre></div>
1426 <p>Here we show how the default implementation is specified (using the final
1427 argument to the <tt>INITIALIZE_AG_PASS</tt> template). There must be exactly
1428 one default implementation available at all times for an Analysis Group to be
1429 used. Only default implementation can derive from <tt>ImmutablePass</tt>.
1430 Here we declare that the
1431 <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
1432 pass is the default implementation for the interface.</p>
1434 </div>
1436 <!-- *********************************************************************** -->
1437 <h2>
1438 <a name="passStatistics">Pass Statistics</a>
1439 </h2>
1440 <!-- *********************************************************************** -->
1442 <div class="doc_text">
1443 <p>The <a
1444 href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
1445 class is designed to be an easy way to expose various success
1446 metrics from passes. These statistics are printed at the end of a
1447 run, when the -stats command line option is enabled on the command
1448 line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details.
1450 </div>
1453 <!-- *********************************************************************** -->
1454 <h2>
1455 <a name="passmanager">What PassManager does</a>
1456 </h2>
1457 <!-- *********************************************************************** -->
1459 <div class="doc_text">
1461 <p>The <a
1462 href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
1464 href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
1465 takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
1466 are set up correctly, and then schedules passes to run efficiently. All of the
1467 LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
1468 passes.</p>
1470 <p>The <tt>PassManager</tt> does two main things to try to reduce the execution
1471 time of a series of passes:</p>
1473 <ol>
1474 <li><b>Share analysis results</b> - The PassManager attempts to avoid
1475 recomputing analysis results as much as possible. This means keeping track of
1476 which analyses are available already, which analyses get invalidated, and which
1477 analyses are needed to be run for a pass. An important part of work is that the
1478 <tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
1479 it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
1480 results as soon as they are no longer needed.</li>
1482 <li><b>Pipeline the execution of passes on the program</b> - The
1483 <tt>PassManager</tt> attempts to get better cache and memory usage behavior out
1484 of a series of passes by pipelining the passes together. This means that, given
1485 a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
1486 will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
1487 the first function, then all of the <a
1488 href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
1489 etc... until the entire program has been run through the passes.
1491 <p>This improves the cache behavior of the compiler, because it is only touching
1492 the LLVM program representation for a single function at a time, instead of
1493 traversing the entire program. It reduces the memory consumption of compiler,
1494 because, for example, only one <a
1495 href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
1496 needs to be calculated at a time. This also makes it possible to implement
1497 some <a
1498 href="#SMP">interesting enhancements</a> in the future.</p></li>
1500 </ol>
1502 <p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
1503 much information it has about the behaviors of the passes it is scheduling. For
1504 example, the "preserved" set is intentionally conservative in the face of an
1505 unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
1506 Not implementing when it should be implemented will have the effect of not
1507 allowing any analysis results to live across the execution of your pass.</p>
1509 <p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
1510 options that is useful for debugging pass execution, seeing how things work, and
1511 diagnosing when you should be preserving more analyses than you currently are
1512 (To get information about all of the variants of the <tt>--debug-pass</tt>
1513 option, just type '<tt>opt -help-hidden</tt>').</p>
1515 <p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
1516 how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
1517 Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
1519 <div class="doc_code"><pre>
1520 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1521 Module Pass Manager
1522 Function Pass Manager
1523 Dominator Set Construction
1524 Immediate Dominators Construction
1525 Global Common Subexpression Elimination
1526 -- Immediate Dominators Construction
1527 -- Global Common Subexpression Elimination
1528 Natural Loop Construction
1529 Loop Invariant Code Motion
1530 -- Natural Loop Construction
1531 -- Loop Invariant Code Motion
1532 Module Verifier
1533 -- Dominator Set Construction
1534 -- Module Verifier
1535 Bitcode Writer
1536 --Bitcode Writer
1537 </pre></div>
1539 <p>This output shows us when passes are constructed and when the analysis
1540 results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that
1541 GCSE uses dominator and immediate dominator information to do its job. The LICM
1542 pass uses natural loop information, which uses dominator sets, but not immediate
1543 dominators. Because immediate dominators are no longer useful after the GCSE
1544 pass, it is immediately destroyed. The dominator sets are then reused to
1545 compute natural loop information, which is then used by the LICM pass.</p>
1547 <p>After the LICM pass, the module verifier runs (which is automatically added
1548 by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
1549 resultant LLVM code is well formed. After it finishes, the dominator set
1550 information is destroyed, after being computed once, and shared by three
1551 passes.</p>
1553 <p>Lets see how this changes when we run the <a href="#basiccode">Hello
1554 World</a> pass in between the two passes:</p>
1556 <div class="doc_code"><pre>
1557 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1558 Module Pass Manager
1559 Function Pass Manager
1560 Dominator Set Construction
1561 Immediate Dominators Construction
1562 Global Common Subexpression Elimination
1563 <b>-- Dominator Set Construction</b>
1564 -- Immediate Dominators Construction
1565 -- Global Common Subexpression Elimination
1566 <b> Hello World Pass
1567 -- Hello World Pass
1568 Dominator Set Construction</b>
1569 Natural Loop Construction
1570 Loop Invariant Code Motion
1571 -- Natural Loop Construction
1572 -- Loop Invariant Code Motion
1573 Module Verifier
1574 -- Dominator Set Construction
1575 -- Module Verifier
1576 Bitcode Writer
1577 --Bitcode Writer
1578 Hello: __main
1579 Hello: puts
1580 Hello: main
1581 </pre></div>
1583 <p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
1584 Dominator Set pass, even though it doesn't modify the code at all! To fix this,
1585 we need to add the following <a
1586 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
1588 <div class="doc_code"><pre>
1589 <i>// We don't modify the program, so we preserve all analyses</i>
1590 <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
1591 AU.setPreservesAll();
1593 </pre></div>
1595 <p>Now when we run our pass, we get this output:</p>
1597 <div class="doc_code"><pre>
1598 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
1599 Pass Arguments: -gcse -hello -licm
1600 Module Pass Manager
1601 Function Pass Manager
1602 Dominator Set Construction
1603 Immediate Dominators Construction
1604 Global Common Subexpression Elimination
1605 -- Immediate Dominators Construction
1606 -- Global Common Subexpression Elimination
1607 Hello World Pass
1608 -- Hello World Pass
1609 Natural Loop Construction
1610 Loop Invariant Code Motion
1611 -- Loop Invariant Code Motion
1612 -- Natural Loop Construction
1613 Module Verifier
1614 -- Dominator Set Construction
1615 -- Module Verifier
1616 Bitcode Writer
1617 --Bitcode Writer
1618 Hello: __main
1619 Hello: puts
1620 Hello: main
1621 </pre></div>
1623 <p>Which shows that we don't accidentally invalidate dominator information
1624 anymore, and therefore do not have to compute it twice.</p>
1626 </div>
1628 <!-- _______________________________________________________________________ -->
1629 <h4>
1630 <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
1631 </h4>
1633 <div class="doc_text">
1635 <div class="doc_code"><pre>
1636 <b>virtual void</b> releaseMemory();
1637 </pre></div>
1639 <p>The <tt>PassManager</tt> automatically determines when to compute analysis
1640 results, and how long to keep them around for. Because the lifetime of the pass
1641 object itself is effectively the entire duration of the compilation process, we
1642 need some way to free analysis results when they are no longer useful. The
1643 <tt>releaseMemory</tt> virtual method is the way to do this.</p>
1645 <p>If you are writing an analysis or any other pass that retains a significant
1646 amount of state (for use by another pass which "requires" your pass and uses the
1647 <a href="#getAnalysis">getAnalysis</a> method) you should implement
1648 <tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
1649 internal state. This method is called after the <tt>run*</tt> method for the
1650 class, before the next call of <tt>run*</tt> in your pass.</p>
1652 </div>
1654 <!-- *********************************************************************** -->
1655 <h2>
1656 <a name="registering">Registering dynamically loaded passes</a>
1657 </h2>
1658 <!-- *********************************************************************** -->
1660 <div class="doc_text">
1662 <p><i>Size matters</i> when constructing production quality tools using llvm,
1663 both for the purposes of distribution, and for regulating the resident code size
1664 when running on the target system. Therefore, it becomes desirable to
1665 selectively use some passes, while omitting others and maintain the flexibility
1666 to change configurations later on. You want to be able to do all this, and,
1667 provide feedback to the user. This is where pass registration comes into
1668 play.</p>
1670 <p>The fundamental mechanisms for pass registration are the
1671 <tt>MachinePassRegistry</tt> class and subclasses of
1672 <tt>MachinePassRegistryNode</tt>.</p>
1674 <p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
1675 <tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and
1676 communicates additions and deletions to the command line interface.</p>
1678 <p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
1679 information provided about a particular pass. This information includes the
1680 command line name, the command help string and the address of the function used
1681 to create an instance of the pass. A global static constructor of one of these
1682 instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
1683 the static destructor <i>unregisters</i>. Thus a pass that is statically linked
1684 in the tool will be registered at start up. A dynamically loaded pass will
1685 register on load and unregister at unload.</p>
1687 </div>
1689 <!-- _______________________________________________________________________ -->
1690 <h3>
1691 <a name="registering_existing">Using existing registries</a>
1692 </h3>
1694 <div class="doc_text">
1696 <p>There are predefined registries to track instruction scheduling
1697 (<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
1698 machine passes. Here we will describe how to <i>register</i> a register
1699 allocator machine pass.</p>
1701 <p>Implement your register allocator machine pass. In your register allocator
1702 .cpp file add the following include;</p>
1704 <div class="doc_code"><pre>
1705 #include "llvm/CodeGen/RegAllocRegistry.h"
1706 </pre></div>
1708 <p>Also in your register allocator .cpp file, define a creator function in the
1709 form; </p>
1711 <div class="doc_code"><pre>
1712 FunctionPass *createMyRegisterAllocator() {
1713 return new MyRegisterAllocator();
1715 </pre></div>
1717 <p>Note that the signature of this function should match the type of
1718 <tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the
1719 "installing" declaration, in the form;</p>
1721 <div class="doc_code"><pre>
1722 static RegisterRegAlloc myRegAlloc("myregalloc",
1723 " my register allocator help string",
1724 createMyRegisterAllocator);
1725 </pre></div>
1727 <p>Note the two spaces prior to the help string produces a tidy result on the
1728 -help query.</p>
1730 <div class="doc_code"><pre>
1731 $ llc -help
1733 -regalloc - Register allocator to use (default=linearscan)
1734 =linearscan - linear scan register allocator
1735 =local - local register allocator
1736 =simple - simple register allocator
1737 =myregalloc - my register allocator help string
1739 </pre></div>
1741 <p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as
1742 an option. Registering instruction schedulers is similar except use the
1743 <tt>RegisterScheduler</tt> class. Note that the
1744 <tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
1745 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
1747 <p>To force the load/linking of your register allocator into the llc/lli tools,
1748 add your creator function's global declaration to "Passes.h" and add a "pseudo"
1749 call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
1751 </div>
1754 <!-- _______________________________________________________________________ -->
1755 <h3>
1756 <a name="registering_new">Creating new registries</a>
1757 </h3>
1759 <div class="doc_text">
1761 <p>The easiest way to get started is to clone one of the existing registries; we
1762 recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify
1763 are the class name and the <tt>FunctionPassCtor</tt> type.</p>
1765 <p>Then you need to declare the registry. Example: if your pass registry is
1766 <tt>RegisterMyPasses</tt> then define;</p>
1768 <div class="doc_code"><pre>
1769 MachinePassRegistry RegisterMyPasses::Registry;
1770 </pre></div>
1772 <p>And finally, declare the command line option for your passes. Example:</p>
1774 <div class="doc_code"><pre>
1775 cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
1776 RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
1777 MyPassOpt("mypass",
1778 cl::init(&amp;createDefaultMyPass),
1779 cl::desc("my pass option help"));
1780 </pre></div>
1782 <p>Here the command option is "mypass", with createDefaultMyPass as the default
1783 creator.</p>
1785 </div>
1787 <!-- *********************************************************************** -->
1788 <h2>
1789 <a name="debughints">Using GDB with dynamically loaded passes</a>
1790 </h2>
1791 <!-- *********************************************************************** -->
1793 <div class="doc_text">
1795 <p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
1796 should be. First of all, you can't set a breakpoint in a shared object that has
1797 not been loaded yet, and second of all there are problems with inlined functions
1798 in shared objects. Here are some suggestions to debugging your pass with
1799 GDB.</p>
1801 <p>For sake of discussion, I'm going to assume that you are debugging a
1802 transformation invoked by <tt>opt</tt>, although nothing described here depends
1803 on that.</p>
1805 </div>
1807 <!-- _______________________________________________________________________ -->
1808 <h4>
1809 <a name="breakpoint">Setting a breakpoint in your pass</a>
1810 </h4>
1812 <div class="doc_text">
1814 <p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
1816 <div class="doc_code"><pre>
1817 $ <b>gdb opt</b>
1818 GNU gdb 5.0
1819 Copyright 2000 Free Software Foundation, Inc.
1820 GDB is free software, covered by the GNU General Public License, and you are
1821 welcome to change it and/or distribute copies of it under certain conditions.
1822 Type "show copying" to see the conditions.
1823 There is absolutely no warranty for GDB. Type "show warranty" for details.
1824 This GDB was configured as "sparc-sun-solaris2.6"...
1825 (gdb)
1826 </pre></div>
1828 <p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
1829 time to load. Be patient. Since we cannot set a breakpoint in our pass yet
1830 (the shared object isn't loaded until runtime), we must execute the process, and
1831 have it stop before it invokes our pass, but after it has loaded the shared
1832 object. The most foolproof way of doing this is to set a breakpoint in
1833 <tt>PassManager::run</tt> and then run the process with the arguments you
1834 want:</p>
1836 <div class="doc_code"><pre>
1837 (gdb) <b>break llvm::PassManager::run</b>
1838 Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
1839 (gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b>
1840 Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
1841 Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
1842 70 bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
1843 (gdb)
1844 </pre></div>
1846 <p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
1847 now free to set breakpoints in your pass so that you can trace through execution
1848 or do other standard debugging stuff.</p>
1850 </div>
1852 <!-- _______________________________________________________________________ -->
1853 <h4>
1854 <a name="debugmisc">Miscellaneous Problems</a>
1855 </h4>
1857 <div class="doc_text">
1859 <p>Once you have the basics down, there are a couple of problems that GDB has,
1860 some with solutions, some without.</p>
1862 <ul>
1863 <li>Inline functions have bogus stack information. In general, GDB does a
1864 pretty good job getting stack traces and stepping through inline functions.
1865 When a pass is dynamically loaded however, it somehow completely loses this
1866 capability. The only solution I know of is to de-inline a function (move it
1867 from the body of a class to a .cpp file).</li>
1869 <li>Restarting the program breaks breakpoints. After following the information
1870 above, you have succeeded in getting some breakpoints planted in your pass. Nex
1871 thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
1872 and you start getting errors about breakpoints being unsettable. The only way I
1873 have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
1874 already set in your pass, run the program, and re-set the breakpoints once
1875 execution stops in <tt>PassManager::run</tt>.</li>
1877 </ul>
1879 <p>Hopefully these tips will help with common case debugging situations. If
1880 you'd like to contribute some tips of your own, just contact <a
1881 href="mailto:sabre@nondot.org">Chris</a>.</p>
1883 </div>
1885 <!-- *********************************************************************** -->
1886 <h2>
1887 <a name="future">Future extensions planned</a>
1888 </h2>
1889 <!-- *********************************************************************** -->
1891 <div class="doc_text">
1893 <p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
1894 some nifty stuff, there are things we'd like to add in the future. Here is
1895 where we are going:</p>
1897 </div>
1899 <!-- _______________________________________________________________________ -->
1900 <h4>
1901 <a name="SMP">Multithreaded LLVM</a>
1902 </h4>
1904 <div class="doc_text">
1906 <p>Multiple CPU machines are becoming more common and compilation can never be
1907 fast enough: obviously we should allow for a multithreaded compiler. Because of
1908 the semantics defined for passes above (specifically they cannot maintain state
1909 across invocations of their <tt>run*</tt> methods), a nice clean way to
1910 implement a multithreaded compiler would be for the <tt>PassManager</tt> class
1911 to create multiple instances of each pass object, and allow the separate
1912 instances to be hacking on different parts of the program at the same time.</p>
1914 <p>This implementation would prevent each of the passes from having to implement
1915 multithreaded constructs, requiring only the LLVM core to have locking in a few
1916 places (for global resources). Although this is a simple extension, we simply
1917 haven't had time (or multiprocessor machines, thus a reason) to implement this.
1918 Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
1920 </div>
1922 <!-- *********************************************************************** -->
1923 <hr>
1924 <address>
1925 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1926 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1927 <a href="http://validator.w3.org/check/referer"><img
1928 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1930 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1931 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1932 Last modified: $Date$
1933 </address>
1935 </body>
1936 </html>