1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
29 /// Run: module ::= toplevelentity*
30 bool LLParser::Run() {
34 return ParseTopLevelEntities() ||
35 ValidateEndOfModule();
38 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40 bool LLParser::ValidateEndOfModule() {
41 // Handle any instruction metadata forward references.
42 if (!ForwardRefInstMetadata
.empty()) {
43 for (DenseMap
<Instruction
*, std::vector
<MDRef
> >::iterator
44 I
= ForwardRefInstMetadata
.begin(), E
= ForwardRefInstMetadata
.end();
46 Instruction
*Inst
= I
->first
;
47 const std::vector
<MDRef
> &MDList
= I
->second
;
49 for (unsigned i
= 0, e
= MDList
.size(); i
!= e
; ++i
) {
50 unsigned SlotNo
= MDList
[i
].MDSlot
;
52 if (SlotNo
>= NumberedMetadata
.size() || NumberedMetadata
[SlotNo
] == 0)
53 return Error(MDList
[i
].Loc
, "use of undefined metadata '!" +
55 Inst
->setMetadata(MDList
[i
].MDKind
, NumberedMetadata
[SlotNo
]);
58 ForwardRefInstMetadata
.clear();
62 // Update auto-upgraded malloc calls to "malloc".
63 // FIXME: Remove in LLVM 3.0.
65 MallocF
->setName("malloc");
66 // If setName() does not set the name to "malloc", then there is already a
67 // declaration of "malloc". In that case, iterate over all calls to MallocF
68 // and get them to call the declared "malloc" instead.
69 if (MallocF
->getName() != "malloc") {
70 Constant
*RealMallocF
= M
->getFunction("malloc");
71 if (RealMallocF
->getType() != MallocF
->getType())
72 RealMallocF
= ConstantExpr::getBitCast(RealMallocF
, MallocF
->getType());
73 MallocF
->replaceAllUsesWith(RealMallocF
);
74 MallocF
->eraseFromParent();
80 // If there are entries in ForwardRefBlockAddresses at this point, they are
81 // references after the function was defined. Resolve those now.
82 while (!ForwardRefBlockAddresses
.empty()) {
83 // Okay, we are referencing an already-parsed function, resolve them now.
85 const ValID
&Fn
= ForwardRefBlockAddresses
.begin()->first
;
86 if (Fn
.Kind
== ValID::t_GlobalName
)
87 TheFn
= M
->getFunction(Fn
.StrVal
);
88 else if (Fn
.UIntVal
< NumberedVals
.size())
89 TheFn
= dyn_cast
<Function
>(NumberedVals
[Fn
.UIntVal
]);
92 return Error(Fn
.Loc
, "unknown function referenced by blockaddress");
94 // Resolve all these references.
95 if (ResolveForwardRefBlockAddresses(TheFn
,
96 ForwardRefBlockAddresses
.begin()->second
,
100 ForwardRefBlockAddresses
.erase(ForwardRefBlockAddresses
.begin());
104 if (!ForwardRefTypes
.empty())
105 return Error(ForwardRefTypes
.begin()->second
.second
,
106 "use of undefined type named '" +
107 ForwardRefTypes
.begin()->first
+ "'");
108 if (!ForwardRefTypeIDs
.empty())
109 return Error(ForwardRefTypeIDs
.begin()->second
.second
,
110 "use of undefined type '%" +
111 Twine(ForwardRefTypeIDs
.begin()->first
) + "'");
113 if (!ForwardRefVals
.empty())
114 return Error(ForwardRefVals
.begin()->second
.second
,
115 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
118 if (!ForwardRefValIDs
.empty())
119 return Error(ForwardRefValIDs
.begin()->second
.second
,
120 "use of undefined value '@" +
121 Twine(ForwardRefValIDs
.begin()->first
) + "'");
123 if (!ForwardRefMDNodes
.empty())
124 return Error(ForwardRefMDNodes
.begin()->second
.second
,
125 "use of undefined metadata '!" +
126 Twine(ForwardRefMDNodes
.begin()->first
) + "'");
129 // Look for intrinsic functions and CallInst that need to be upgraded
130 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
131 UpgradeCallsToIntrinsic(FI
++); // must be post-increment, as we remove
133 // Check debug info intrinsics.
134 CheckDebugInfoIntrinsics(M
);
138 bool LLParser::ResolveForwardRefBlockAddresses(Function
*TheFn
,
139 std::vector
<std::pair
<ValID
, GlobalValue
*> > &Refs
,
140 PerFunctionState
*PFS
) {
141 // Loop over all the references, resolving them.
142 for (unsigned i
= 0, e
= Refs
.size(); i
!= e
; ++i
) {
145 if (Refs
[i
].first
.Kind
== ValID::t_LocalName
)
146 Res
= PFS
->GetBB(Refs
[i
].first
.StrVal
, Refs
[i
].first
.Loc
);
148 Res
= PFS
->GetBB(Refs
[i
].first
.UIntVal
, Refs
[i
].first
.Loc
);
149 } else if (Refs
[i
].first
.Kind
== ValID::t_LocalID
) {
150 return Error(Refs
[i
].first
.Loc
,
151 "cannot take address of numeric label after the function is defined");
153 Res
= dyn_cast_or_null
<BasicBlock
>(
154 TheFn
->getValueSymbolTable().lookup(Refs
[i
].first
.StrVal
));
158 return Error(Refs
[i
].first
.Loc
,
159 "referenced value is not a basic block");
161 // Get the BlockAddress for this and update references to use it.
162 BlockAddress
*BA
= BlockAddress::get(TheFn
, Res
);
163 Refs
[i
].second
->replaceAllUsesWith(BA
);
164 Refs
[i
].second
->eraseFromParent();
170 //===----------------------------------------------------------------------===//
171 // Top-Level Entities
172 //===----------------------------------------------------------------------===//
174 bool LLParser::ParseTopLevelEntities() {
176 switch (Lex
.getKind()) {
177 default: return TokError("expected top-level entity");
178 case lltok::Eof
: return false;
179 //case lltok::kw_define:
180 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
181 case lltok::kw_define
: if (ParseDefine()) return true; break;
182 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
183 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
184 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
185 case lltok::kw_type
: if (ParseUnnamedType()) return true; break;
186 case lltok::LocalVarID
: if (ParseUnnamedType()) return true; break;
187 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
188 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
189 case lltok::GlobalID
: if (ParseUnnamedGlobal()) return true; break;
190 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
191 case lltok::exclaim
: if (ParseStandaloneMetadata()) return true; break;
192 case lltok::MetadataVar
: if (ParseNamedMetadata()) return true; break;
194 // The Global variable production with no name can have many different
195 // optional leading prefixes, the production is:
196 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197 // OptionalAddrSpace OptionalUnNammedAddr
198 // ('constant'|'global') ...
199 case lltok::kw_private
: // OptionalLinkage
200 case lltok::kw_linker_private
: // OptionalLinkage
201 case lltok::kw_linker_private_weak
: // OptionalLinkage
202 case lltok::kw_linker_private_weak_def_auto
: // OptionalLinkage
203 case lltok::kw_internal
: // OptionalLinkage
204 case lltok::kw_weak
: // OptionalLinkage
205 case lltok::kw_weak_odr
: // OptionalLinkage
206 case lltok::kw_linkonce
: // OptionalLinkage
207 case lltok::kw_linkonce_odr
: // OptionalLinkage
208 case lltok::kw_appending
: // OptionalLinkage
209 case lltok::kw_dllexport
: // OptionalLinkage
210 case lltok::kw_common
: // OptionalLinkage
211 case lltok::kw_dllimport
: // OptionalLinkage
212 case lltok::kw_extern_weak
: // OptionalLinkage
213 case lltok::kw_external
: { // OptionalLinkage
214 unsigned Linkage
, Visibility
;
215 if (ParseOptionalLinkage(Linkage
) ||
216 ParseOptionalVisibility(Visibility
) ||
217 ParseGlobal("", SMLoc(), Linkage
, true, Visibility
))
221 case lltok::kw_default
: // OptionalVisibility
222 case lltok::kw_hidden
: // OptionalVisibility
223 case lltok::kw_protected
: { // OptionalVisibility
225 if (ParseOptionalVisibility(Visibility
) ||
226 ParseGlobal("", SMLoc(), 0, false, Visibility
))
231 case lltok::kw_thread_local
: // OptionalThreadLocal
232 case lltok::kw_addrspace
: // OptionalAddrSpace
233 case lltok::kw_constant
: // GlobalType
234 case lltok::kw_global
: // GlobalType
235 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
243 /// ::= 'module' 'asm' STRINGCONSTANT
244 bool LLParser::ParseModuleAsm() {
245 assert(Lex
.getKind() == lltok::kw_module
);
249 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
250 ParseStringConstant(AsmStr
)) return true;
252 M
->appendModuleInlineAsm(AsmStr
);
257 /// ::= 'target' 'triple' '=' STRINGCONSTANT
258 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
259 bool LLParser::ParseTargetDefinition() {
260 assert(Lex
.getKind() == lltok::kw_target
);
263 default: return TokError("unknown target property");
264 case lltok::kw_triple
:
266 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
267 ParseStringConstant(Str
))
269 M
->setTargetTriple(Str
);
271 case lltok::kw_datalayout
:
273 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
274 ParseStringConstant(Str
))
276 M
->setDataLayout(Str
);
282 /// ::= 'deplibs' '=' '[' ']'
283 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
284 bool LLParser::ParseDepLibs() {
285 assert(Lex
.getKind() == lltok::kw_deplibs
);
287 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
288 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
291 if (EatIfPresent(lltok::rsquare
))
295 if (ParseStringConstant(Str
)) return true;
298 while (EatIfPresent(lltok::comma
)) {
299 if (ParseStringConstant(Str
)) return true;
303 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
306 /// ParseUnnamedType:
308 /// ::= LocalVarID '=' 'type' type
309 bool LLParser::ParseUnnamedType() {
310 unsigned TypeID
= NumberedTypes
.size();
312 // Handle the LocalVarID form.
313 if (Lex
.getKind() == lltok::LocalVarID
) {
314 if (Lex
.getUIntVal() != TypeID
)
315 return Error(Lex
.getLoc(), "type expected to be numbered '%" +
316 Twine(TypeID
) + "'");
317 Lex
.Lex(); // eat LocalVarID;
319 if (ParseToken(lltok::equal
, "expected '=' after name"))
323 LocTy TypeLoc
= Lex
.getLoc();
324 if (ParseToken(lltok::kw_type
, "expected 'type' after '='")) return true;
326 PATypeHolder
Ty(Type::getVoidTy(Context
));
327 if (ParseType(Ty
)) return true;
329 // See if this type was previously referenced.
330 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
331 FI
= ForwardRefTypeIDs
.find(TypeID
);
332 if (FI
!= ForwardRefTypeIDs
.end()) {
333 if (FI
->second
.first
.get() == Ty
)
334 return Error(TypeLoc
, "self referential type is invalid");
336 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
337 Ty
= FI
->second
.first
.get();
338 ForwardRefTypeIDs
.erase(FI
);
341 NumberedTypes
.push_back(Ty
);
347 /// ::= LocalVar '=' 'type' type
348 bool LLParser::ParseNamedType() {
349 std::string Name
= Lex
.getStrVal();
350 LocTy NameLoc
= Lex
.getLoc();
351 Lex
.Lex(); // eat LocalVar.
353 PATypeHolder
Ty(Type::getVoidTy(Context
));
355 if (ParseToken(lltok::equal
, "expected '=' after name") ||
356 ParseToken(lltok::kw_type
, "expected 'type' after name") ||
360 // Set the type name, checking for conflicts as we do so.
361 bool AlreadyExists
= M
->addTypeName(Name
, Ty
);
362 if (!AlreadyExists
) return false;
364 // See if this type is a forward reference. We need to eagerly resolve
365 // types to allow recursive type redefinitions below.
366 std::map
<std::string
, std::pair
<PATypeHolder
, LocTy
> >::iterator
367 FI
= ForwardRefTypes
.find(Name
);
368 if (FI
!= ForwardRefTypes
.end()) {
369 if (FI
->second
.first
.get() == Ty
)
370 return Error(NameLoc
, "self referential type is invalid");
372 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
373 Ty
= FI
->second
.first
.get();
374 ForwardRefTypes
.erase(FI
);
377 // Inserting a name that is already defined, get the existing name.
378 const Type
*Existing
= M
->getTypeByName(Name
);
379 assert(Existing
&& "Conflict but no matching type?!");
381 // Otherwise, this is an attempt to redefine a type. That's okay if
382 // the redefinition is identical to the original.
383 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
384 if (Existing
== Ty
) return false;
386 // Any other kind of (non-equivalent) redefinition is an error.
387 return Error(NameLoc
, "redefinition of type named '" + Name
+ "' of type '" +
388 Ty
->getDescription() + "'");
393 /// ::= 'declare' FunctionHeader
394 bool LLParser::ParseDeclare() {
395 assert(Lex
.getKind() == lltok::kw_declare
);
399 return ParseFunctionHeader(F
, false);
403 /// ::= 'define' FunctionHeader '{' ...
404 bool LLParser::ParseDefine() {
405 assert(Lex
.getKind() == lltok::kw_define
);
409 return ParseFunctionHeader(F
, true) ||
410 ParseFunctionBody(*F
);
416 bool LLParser::ParseGlobalType(bool &IsConstant
) {
417 if (Lex
.getKind() == lltok::kw_constant
)
419 else if (Lex
.getKind() == lltok::kw_global
)
423 return TokError("expected 'global' or 'constant'");
429 /// ParseUnnamedGlobal:
430 /// OptionalVisibility ALIAS ...
431 /// OptionalLinkage OptionalVisibility ... -> global variable
432 /// GlobalID '=' OptionalVisibility ALIAS ...
433 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
434 bool LLParser::ParseUnnamedGlobal() {
435 unsigned VarID
= NumberedVals
.size();
437 LocTy NameLoc
= Lex
.getLoc();
439 // Handle the GlobalID form.
440 if (Lex
.getKind() == lltok::GlobalID
) {
441 if (Lex
.getUIntVal() != VarID
)
442 return Error(Lex
.getLoc(), "variable expected to be numbered '%" +
444 Lex
.Lex(); // eat GlobalID;
446 if (ParseToken(lltok::equal
, "expected '=' after name"))
451 unsigned Linkage
, Visibility
;
452 if (ParseOptionalLinkage(Linkage
, HasLinkage
) ||
453 ParseOptionalVisibility(Visibility
))
456 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
457 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
458 return ParseAlias(Name
, NameLoc
, Visibility
);
461 /// ParseNamedGlobal:
462 /// GlobalVar '=' OptionalVisibility ALIAS ...
463 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
464 bool LLParser::ParseNamedGlobal() {
465 assert(Lex
.getKind() == lltok::GlobalVar
);
466 LocTy NameLoc
= Lex
.getLoc();
467 std::string Name
= Lex
.getStrVal();
471 unsigned Linkage
, Visibility
;
472 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
473 ParseOptionalLinkage(Linkage
, HasLinkage
) ||
474 ParseOptionalVisibility(Visibility
))
477 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
478 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
479 return ParseAlias(Name
, NameLoc
, Visibility
);
483 // ::= '!' STRINGCONSTANT
484 bool LLParser::ParseMDString(MDString
*&Result
) {
486 if (ParseStringConstant(Str
)) return true;
487 Result
= MDString::get(Context
, Str
);
492 // ::= '!' MDNodeNumber
494 /// This version of ParseMDNodeID returns the slot number and null in the case
495 /// of a forward reference.
496 bool LLParser::ParseMDNodeID(MDNode
*&Result
, unsigned &SlotNo
) {
497 // !{ ..., !42, ... }
498 if (ParseUInt32(SlotNo
)) return true;
500 // Check existing MDNode.
501 if (SlotNo
< NumberedMetadata
.size() && NumberedMetadata
[SlotNo
] != 0)
502 Result
= NumberedMetadata
[SlotNo
];
508 bool LLParser::ParseMDNodeID(MDNode
*&Result
) {
509 // !{ ..., !42, ... }
511 if (ParseMDNodeID(Result
, MID
)) return true;
513 // If not a forward reference, just return it now.
514 if (Result
) return false;
516 // Otherwise, create MDNode forward reference.
517 MDNode
*FwdNode
= MDNode::getTemporary(Context
, 0, 0);
518 ForwardRefMDNodes
[MID
] = std::make_pair(FwdNode
, Lex
.getLoc());
520 if (NumberedMetadata
.size() <= MID
)
521 NumberedMetadata
.resize(MID
+1);
522 NumberedMetadata
[MID
] = FwdNode
;
527 /// ParseNamedMetadata:
528 /// !foo = !{ !1, !2 }
529 bool LLParser::ParseNamedMetadata() {
530 assert(Lex
.getKind() == lltok::MetadataVar
);
531 std::string Name
= Lex
.getStrVal();
534 if (ParseToken(lltok::equal
, "expected '=' here") ||
535 ParseToken(lltok::exclaim
, "Expected '!' here") ||
536 ParseToken(lltok::lbrace
, "Expected '{' here"))
539 NamedMDNode
*NMD
= M
->getOrInsertNamedMetadata(Name
);
540 if (Lex
.getKind() != lltok::rbrace
)
542 if (ParseToken(lltok::exclaim
, "Expected '!' here"))
546 if (ParseMDNodeID(N
)) return true;
548 } while (EatIfPresent(lltok::comma
));
550 if (ParseToken(lltok::rbrace
, "expected end of metadata node"))
556 /// ParseStandaloneMetadata:
558 bool LLParser::ParseStandaloneMetadata() {
559 assert(Lex
.getKind() == lltok::exclaim
);
561 unsigned MetadataID
= 0;
564 PATypeHolder
Ty(Type::getVoidTy(Context
));
565 SmallVector
<Value
*, 16> Elts
;
566 if (ParseUInt32(MetadataID
) ||
567 ParseToken(lltok::equal
, "expected '=' here") ||
568 ParseType(Ty
, TyLoc
) ||
569 ParseToken(lltok::exclaim
, "Expected '!' here") ||
570 ParseToken(lltok::lbrace
, "Expected '{' here") ||
571 ParseMDNodeVector(Elts
, NULL
) ||
572 ParseToken(lltok::rbrace
, "expected end of metadata node"))
575 MDNode
*Init
= MDNode::get(Context
, Elts
.data(), Elts
.size());
577 // See if this was forward referenced, if so, handle it.
578 std::map
<unsigned, std::pair
<TrackingVH
<MDNode
>, LocTy
> >::iterator
579 FI
= ForwardRefMDNodes
.find(MetadataID
);
580 if (FI
!= ForwardRefMDNodes
.end()) {
581 MDNode
*Temp
= FI
->second
.first
;
582 Temp
->replaceAllUsesWith(Init
);
583 MDNode::deleteTemporary(Temp
);
584 ForwardRefMDNodes
.erase(FI
);
586 assert(NumberedMetadata
[MetadataID
] == Init
&& "Tracking VH didn't work");
588 if (MetadataID
>= NumberedMetadata
.size())
589 NumberedMetadata
.resize(MetadataID
+1);
591 if (NumberedMetadata
[MetadataID
] != 0)
592 return TokError("Metadata id is already used");
593 NumberedMetadata
[MetadataID
] = Init
;
600 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
603 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
604 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
606 /// Everything through visibility has already been parsed.
608 bool LLParser::ParseAlias(const std::string
&Name
, LocTy NameLoc
,
609 unsigned Visibility
) {
610 assert(Lex
.getKind() == lltok::kw_alias
);
613 LocTy LinkageLoc
= Lex
.getLoc();
614 if (ParseOptionalLinkage(Linkage
))
617 if (Linkage
!= GlobalValue::ExternalLinkage
&&
618 Linkage
!= GlobalValue::WeakAnyLinkage
&&
619 Linkage
!= GlobalValue::WeakODRLinkage
&&
620 Linkage
!= GlobalValue::InternalLinkage
&&
621 Linkage
!= GlobalValue::PrivateLinkage
&&
622 Linkage
!= GlobalValue::LinkerPrivateLinkage
&&
623 Linkage
!= GlobalValue::LinkerPrivateWeakLinkage
&&
624 Linkage
!= GlobalValue::LinkerPrivateWeakDefAutoLinkage
)
625 return Error(LinkageLoc
, "invalid linkage type for alias");
628 LocTy AliaseeLoc
= Lex
.getLoc();
629 if (Lex
.getKind() != lltok::kw_bitcast
&&
630 Lex
.getKind() != lltok::kw_getelementptr
) {
631 if (ParseGlobalTypeAndValue(Aliasee
)) return true;
633 // The bitcast dest type is not present, it is implied by the dest type.
635 if (ParseValID(ID
)) return true;
636 if (ID
.Kind
!= ValID::t_Constant
)
637 return Error(AliaseeLoc
, "invalid aliasee");
638 Aliasee
= ID
.ConstantVal
;
641 if (!Aliasee
->getType()->isPointerTy())
642 return Error(AliaseeLoc
, "alias must have pointer type");
644 // Okay, create the alias but do not insert it into the module yet.
645 GlobalAlias
* GA
= new GlobalAlias(Aliasee
->getType(),
646 (GlobalValue::LinkageTypes
)Linkage
, Name
,
648 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
650 // See if this value already exists in the symbol table. If so, it is either
651 // a redefinition or a definition of a forward reference.
652 if (GlobalValue
*Val
= M
->getNamedValue(Name
)) {
653 // See if this was a redefinition. If so, there is no entry in
655 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
656 I
= ForwardRefVals
.find(Name
);
657 if (I
== ForwardRefVals
.end())
658 return Error(NameLoc
, "redefinition of global named '@" + Name
+ "'");
660 // Otherwise, this was a definition of forward ref. Verify that types
662 if (Val
->getType() != GA
->getType())
663 return Error(NameLoc
,
664 "forward reference and definition of alias have different types");
666 // If they agree, just RAUW the old value with the alias and remove the
668 Val
->replaceAllUsesWith(GA
);
669 Val
->eraseFromParent();
670 ForwardRefVals
.erase(I
);
673 // Insert into the module, we know its name won't collide now.
674 M
->getAliasList().push_back(GA
);
675 assert(GA
->getName() == Name
&& "Should not be a name conflict!");
681 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
682 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
683 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
684 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
686 /// Everything through visibility has been parsed already.
688 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
689 unsigned Linkage
, bool HasLinkage
,
690 unsigned Visibility
) {
692 bool ThreadLocal
, IsConstant
, UnnamedAddr
;
693 LocTy UnnamedAddrLoc
;
696 PATypeHolder
Ty(Type::getVoidTy(Context
));
697 if (ParseOptionalToken(lltok::kw_thread_local
, ThreadLocal
) ||
698 ParseOptionalAddrSpace(AddrSpace
) ||
699 ParseOptionalToken(lltok::kw_unnamed_addr
, UnnamedAddr
,
701 ParseGlobalType(IsConstant
) ||
702 ParseType(Ty
, TyLoc
))
705 // If the linkage is specified and is external, then no initializer is
708 if (!HasLinkage
|| (Linkage
!= GlobalValue::DLLImportLinkage
&&
709 Linkage
!= GlobalValue::ExternalWeakLinkage
&&
710 Linkage
!= GlobalValue::ExternalLinkage
)) {
711 if (ParseGlobalValue(Ty
, Init
))
715 if (Ty
->isFunctionTy() || Ty
->isLabelTy())
716 return Error(TyLoc
, "invalid type for global variable");
718 GlobalVariable
*GV
= 0;
720 // See if the global was forward referenced, if so, use the global.
722 if (GlobalValue
*GVal
= M
->getNamedValue(Name
)) {
723 if (!ForwardRefVals
.erase(Name
) || !isa
<GlobalValue
>(GVal
))
724 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
725 GV
= cast
<GlobalVariable
>(GVal
);
728 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
729 I
= ForwardRefValIDs
.find(NumberedVals
.size());
730 if (I
!= ForwardRefValIDs
.end()) {
731 GV
= cast
<GlobalVariable
>(I
->second
.first
);
732 ForwardRefValIDs
.erase(I
);
737 GV
= new GlobalVariable(*M
, Ty
, false, GlobalValue::ExternalLinkage
, 0,
738 Name
, 0, false, AddrSpace
);
740 if (GV
->getType()->getElementType() != Ty
)
742 "forward reference and definition of global have different types");
744 // Move the forward-reference to the correct spot in the module.
745 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
749 NumberedVals
.push_back(GV
);
751 // Set the parsed properties on the global.
753 GV
->setInitializer(Init
);
754 GV
->setConstant(IsConstant
);
755 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
756 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
757 GV
->setThreadLocal(ThreadLocal
);
758 GV
->setUnnamedAddr(UnnamedAddr
);
760 // Parse attributes on the global.
761 while (Lex
.getKind() == lltok::comma
) {
764 if (Lex
.getKind() == lltok::kw_section
) {
766 GV
->setSection(Lex
.getStrVal());
767 if (ParseToken(lltok::StringConstant
, "expected global section string"))
769 } else if (Lex
.getKind() == lltok::kw_align
) {
771 if (ParseOptionalAlignment(Alignment
)) return true;
772 GV
->setAlignment(Alignment
);
774 TokError("unknown global variable property!");
782 //===----------------------------------------------------------------------===//
783 // GlobalValue Reference/Resolution Routines.
784 //===----------------------------------------------------------------------===//
786 /// GetGlobalVal - Get a value with the specified name or ID, creating a
787 /// forward reference record if needed. This can return null if the value
788 /// exists but does not have the right type.
789 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, const Type
*Ty
,
791 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
793 Error(Loc
, "global variable reference must have pointer type");
797 // Look this name up in the normal function symbol table.
799 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
801 // If this is a forward reference for the value, see if we already created a
802 // forward ref record.
804 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
805 I
= ForwardRefVals
.find(Name
);
806 if (I
!= ForwardRefVals
.end())
807 Val
= I
->second
.first
;
810 // If we have the value in the symbol table or fwd-ref table, return it.
812 if (Val
->getType() == Ty
) return Val
;
813 Error(Loc
, "'@" + Name
+ "' defined with type '" +
814 Val
->getType()->getDescription() + "'");
818 // Otherwise, create a new forward reference for this value and remember it.
820 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
821 // Function types can return opaque but functions can't.
822 if (FT
->getReturnType()->isOpaqueTy()) {
823 Error(Loc
, "function may not return opaque type");
827 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, Name
, M
);
829 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
830 GlobalValue::ExternalWeakLinkage
, 0, Name
);
833 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
837 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, const Type
*Ty
, LocTy Loc
) {
838 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
840 Error(Loc
, "global variable reference must have pointer type");
844 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
846 // If this is a forward reference for the value, see if we already created a
847 // forward ref record.
849 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
850 I
= ForwardRefValIDs
.find(ID
);
851 if (I
!= ForwardRefValIDs
.end())
852 Val
= I
->second
.first
;
855 // If we have the value in the symbol table or fwd-ref table, return it.
857 if (Val
->getType() == Ty
) return Val
;
858 Error(Loc
, "'@" + Twine(ID
) + "' defined with type '" +
859 Val
->getType()->getDescription() + "'");
863 // Otherwise, create a new forward reference for this value and remember it.
865 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
866 // Function types can return opaque but functions can't.
867 if (FT
->getReturnType()->isOpaqueTy()) {
868 Error(Loc
, "function may not return opaque type");
871 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, "", M
);
873 FwdVal
= new GlobalVariable(*M
, PTy
->getElementType(), false,
874 GlobalValue::ExternalWeakLinkage
, 0, "");
877 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
882 //===----------------------------------------------------------------------===//
884 //===----------------------------------------------------------------------===//
886 /// ParseToken - If the current token has the specified kind, eat it and return
887 /// success. Otherwise, emit the specified error and return failure.
888 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
889 if (Lex
.getKind() != T
)
890 return TokError(ErrMsg
);
895 /// ParseStringConstant
896 /// ::= StringConstant
897 bool LLParser::ParseStringConstant(std::string
&Result
) {
898 if (Lex
.getKind() != lltok::StringConstant
)
899 return TokError("expected string constant");
900 Result
= Lex
.getStrVal();
907 bool LLParser::ParseUInt32(unsigned &Val
) {
908 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
909 return TokError("expected integer");
910 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
911 if (Val64
!= unsigned(Val64
))
912 return TokError("expected 32-bit integer (too large)");
919 /// ParseOptionalAddrSpace
921 /// := 'addrspace' '(' uint32 ')'
922 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
) {
924 if (!EatIfPresent(lltok::kw_addrspace
))
926 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
927 ParseUInt32(AddrSpace
) ||
928 ParseToken(lltok::rparen
, "expected ')' in address space");
931 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
932 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
933 /// 2: function attr.
934 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
935 bool LLParser::ParseOptionalAttrs(unsigned &Attrs
, unsigned AttrKind
) {
936 Attrs
= Attribute::None
;
937 LocTy AttrLoc
= Lex
.getLoc();
940 switch (Lex
.getKind()) {
943 // Treat these as signext/zeroext if they occur in the argument list after
944 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
945 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
947 // FIXME: REMOVE THIS IN LLVM 3.0
949 if (Lex
.getKind() == lltok::kw_sext
)
950 Attrs
|= Attribute::SExt
;
952 Attrs
|= Attribute::ZExt
;
956 default: // End of attributes.
957 if (AttrKind
!= 2 && (Attrs
& Attribute::FunctionOnly
))
958 return Error(AttrLoc
, "invalid use of function-only attribute");
960 if (AttrKind
!= 0 && AttrKind
!= 3 && (Attrs
& Attribute::ParameterOnly
))
961 return Error(AttrLoc
, "invalid use of parameter-only attribute");
964 case lltok::kw_zeroext
: Attrs
|= Attribute::ZExt
; break;
965 case lltok::kw_signext
: Attrs
|= Attribute::SExt
; break;
966 case lltok::kw_inreg
: Attrs
|= Attribute::InReg
; break;
967 case lltok::kw_sret
: Attrs
|= Attribute::StructRet
; break;
968 case lltok::kw_noalias
: Attrs
|= Attribute::NoAlias
; break;
969 case lltok::kw_nocapture
: Attrs
|= Attribute::NoCapture
; break;
970 case lltok::kw_byval
: Attrs
|= Attribute::ByVal
; break;
971 case lltok::kw_nest
: Attrs
|= Attribute::Nest
; break;
973 case lltok::kw_noreturn
: Attrs
|= Attribute::NoReturn
; break;
974 case lltok::kw_nounwind
: Attrs
|= Attribute::NoUnwind
; break;
975 case lltok::kw_noinline
: Attrs
|= Attribute::NoInline
; break;
976 case lltok::kw_readnone
: Attrs
|= Attribute::ReadNone
; break;
977 case lltok::kw_readonly
: Attrs
|= Attribute::ReadOnly
; break;
978 case lltok::kw_inlinehint
: Attrs
|= Attribute::InlineHint
; break;
979 case lltok::kw_alwaysinline
: Attrs
|= Attribute::AlwaysInline
; break;
980 case lltok::kw_optsize
: Attrs
|= Attribute::OptimizeForSize
; break;
981 case lltok::kw_ssp
: Attrs
|= Attribute::StackProtect
; break;
982 case lltok::kw_sspreq
: Attrs
|= Attribute::StackProtectReq
; break;
983 case lltok::kw_noredzone
: Attrs
|= Attribute::NoRedZone
; break;
984 case lltok::kw_noimplicitfloat
: Attrs
|= Attribute::NoImplicitFloat
; break;
985 case lltok::kw_naked
: Attrs
|= Attribute::Naked
; break;
986 case lltok::kw_hotpatch
: Attrs
|= Attribute::Hotpatch
; break;
988 case lltok::kw_alignstack
: {
990 if (ParseOptionalStackAlignment(Alignment
))
992 Attrs
|= Attribute::constructStackAlignmentFromInt(Alignment
);
996 case lltok::kw_align
: {
998 if (ParseOptionalAlignment(Alignment
))
1000 Attrs
|= Attribute::constructAlignmentFromInt(Alignment
);
1009 /// ParseOptionalLinkage
1012 /// ::= 'linker_private'
1013 /// ::= 'linker_private_weak'
1014 /// ::= 'linker_private_weak_def_auto'
1019 /// ::= 'linkonce_odr'
1020 /// ::= 'available_externally'
1025 /// ::= 'extern_weak'
1027 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
) {
1029 switch (Lex
.getKind()) {
1030 default: Res
=GlobalValue::ExternalLinkage
; return false;
1031 case lltok::kw_private
: Res
= GlobalValue::PrivateLinkage
; break;
1032 case lltok::kw_linker_private
: Res
= GlobalValue::LinkerPrivateLinkage
; break;
1033 case lltok::kw_linker_private_weak
:
1034 Res
= GlobalValue::LinkerPrivateWeakLinkage
;
1036 case lltok::kw_linker_private_weak_def_auto
:
1037 Res
= GlobalValue::LinkerPrivateWeakDefAutoLinkage
;
1039 case lltok::kw_internal
: Res
= GlobalValue::InternalLinkage
; break;
1040 case lltok::kw_weak
: Res
= GlobalValue::WeakAnyLinkage
; break;
1041 case lltok::kw_weak_odr
: Res
= GlobalValue::WeakODRLinkage
; break;
1042 case lltok::kw_linkonce
: Res
= GlobalValue::LinkOnceAnyLinkage
; break;
1043 case lltok::kw_linkonce_odr
: Res
= GlobalValue::LinkOnceODRLinkage
; break;
1044 case lltok::kw_available_externally
:
1045 Res
= GlobalValue::AvailableExternallyLinkage
;
1047 case lltok::kw_appending
: Res
= GlobalValue::AppendingLinkage
; break;
1048 case lltok::kw_dllexport
: Res
= GlobalValue::DLLExportLinkage
; break;
1049 case lltok::kw_common
: Res
= GlobalValue::CommonLinkage
; break;
1050 case lltok::kw_dllimport
: Res
= GlobalValue::DLLImportLinkage
; break;
1051 case lltok::kw_extern_weak
: Res
= GlobalValue::ExternalWeakLinkage
; break;
1052 case lltok::kw_external
: Res
= GlobalValue::ExternalLinkage
; break;
1059 /// ParseOptionalVisibility
1065 bool LLParser::ParseOptionalVisibility(unsigned &Res
) {
1066 switch (Lex
.getKind()) {
1067 default: Res
= GlobalValue::DefaultVisibility
; return false;
1068 case lltok::kw_default
: Res
= GlobalValue::DefaultVisibility
; break;
1069 case lltok::kw_hidden
: Res
= GlobalValue::HiddenVisibility
; break;
1070 case lltok::kw_protected
: Res
= GlobalValue::ProtectedVisibility
; break;
1076 /// ParseOptionalCallingConv
1081 /// ::= 'x86_stdcallcc'
1082 /// ::= 'x86_fastcallcc'
1083 /// ::= 'x86_thiscallcc'
1084 /// ::= 'arm_apcscc'
1085 /// ::= 'arm_aapcscc'
1086 /// ::= 'arm_aapcs_vfpcc'
1087 /// ::= 'msp430_intrcc'
1088 /// ::= 'ptx_kernel'
1089 /// ::= 'ptx_device'
1092 bool LLParser::ParseOptionalCallingConv(CallingConv::ID
&CC
) {
1093 switch (Lex
.getKind()) {
1094 default: CC
= CallingConv::C
; return false;
1095 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
1096 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
1097 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
1098 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
1099 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
1100 case lltok::kw_x86_thiscallcc
: CC
= CallingConv::X86_ThisCall
; break;
1101 case lltok::kw_arm_apcscc
: CC
= CallingConv::ARM_APCS
; break;
1102 case lltok::kw_arm_aapcscc
: CC
= CallingConv::ARM_AAPCS
; break;
1103 case lltok::kw_arm_aapcs_vfpcc
:CC
= CallingConv::ARM_AAPCS_VFP
; break;
1104 case lltok::kw_msp430_intrcc
: CC
= CallingConv::MSP430_INTR
; break;
1105 case lltok::kw_ptx_kernel
: CC
= CallingConv::PTX_Kernel
; break;
1106 case lltok::kw_ptx_device
: CC
= CallingConv::PTX_Device
; break;
1107 case lltok::kw_cc
: {
1108 unsigned ArbitraryCC
;
1110 if (ParseUInt32(ArbitraryCC
)) {
1113 CC
= static_cast<CallingConv::ID
>(ArbitraryCC
);
1123 /// ParseInstructionMetadata
1124 /// ::= !dbg !42 (',' !dbg !57)*
1125 bool LLParser::ParseInstructionMetadata(Instruction
*Inst
,
1126 PerFunctionState
*PFS
) {
1128 if (Lex
.getKind() != lltok::MetadataVar
)
1129 return TokError("expected metadata after comma");
1131 std::string Name
= Lex
.getStrVal();
1132 unsigned MDK
= M
->getMDKindID(Name
.c_str());
1136 SMLoc Loc
= Lex
.getLoc();
1138 if (ParseToken(lltok::exclaim
, "expected '!' here"))
1141 // This code is similar to that of ParseMetadataValue, however it needs to
1142 // have special-case code for a forward reference; see the comments on
1143 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1144 // at the top level here.
1145 if (Lex
.getKind() == lltok::lbrace
) {
1147 if (ParseMetadataListValue(ID
, PFS
))
1149 assert(ID
.Kind
== ValID::t_MDNode
);
1150 Inst
->setMetadata(MDK
, ID
.MDNodeVal
);
1152 unsigned NodeID
= 0;
1153 if (ParseMDNodeID(Node
, NodeID
))
1156 // If we got the node, add it to the instruction.
1157 Inst
->setMetadata(MDK
, Node
);
1159 MDRef R
= { Loc
, MDK
, NodeID
};
1160 // Otherwise, remember that this should be resolved later.
1161 ForwardRefInstMetadata
[Inst
].push_back(R
);
1165 // If this is the end of the list, we're done.
1166 } while (EatIfPresent(lltok::comma
));
1170 /// ParseOptionalAlignment
1173 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
1175 if (!EatIfPresent(lltok::kw_align
))
1177 LocTy AlignLoc
= Lex
.getLoc();
1178 if (ParseUInt32(Alignment
)) return true;
1179 if (!isPowerOf2_32(Alignment
))
1180 return Error(AlignLoc
, "alignment is not a power of two");
1181 if (Alignment
> Value::MaximumAlignment
)
1182 return Error(AlignLoc
, "huge alignments are not supported yet");
1186 /// ParseOptionalCommaAlign
1190 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1192 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment
,
1193 bool &AteExtraComma
) {
1194 AteExtraComma
= false;
1195 while (EatIfPresent(lltok::comma
)) {
1196 // Metadata at the end is an early exit.
1197 if (Lex
.getKind() == lltok::MetadataVar
) {
1198 AteExtraComma
= true;
1202 if (Lex
.getKind() != lltok::kw_align
)
1203 return Error(Lex
.getLoc(), "expected metadata or 'align'");
1205 if (ParseOptionalAlignment(Alignment
)) return true;
1211 /// ParseOptionalStackAlignment
1213 /// ::= 'alignstack' '(' 4 ')'
1214 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment
) {
1216 if (!EatIfPresent(lltok::kw_alignstack
))
1218 LocTy ParenLoc
= Lex
.getLoc();
1219 if (!EatIfPresent(lltok::lparen
))
1220 return Error(ParenLoc
, "expected '('");
1221 LocTy AlignLoc
= Lex
.getLoc();
1222 if (ParseUInt32(Alignment
)) return true;
1223 ParenLoc
= Lex
.getLoc();
1224 if (!EatIfPresent(lltok::rparen
))
1225 return Error(ParenLoc
, "expected ')'");
1226 if (!isPowerOf2_32(Alignment
))
1227 return Error(AlignLoc
, "stack alignment is not a power of two");
1231 /// ParseIndexList - This parses the index list for an insert/extractvalue
1232 /// instruction. This sets AteExtraComma in the case where we eat an extra
1233 /// comma at the end of the line and find that it is followed by metadata.
1234 /// Clients that don't allow metadata can call the version of this function that
1235 /// only takes one argument.
1238 /// ::= (',' uint32)+
1240 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
,
1241 bool &AteExtraComma
) {
1242 AteExtraComma
= false;
1244 if (Lex
.getKind() != lltok::comma
)
1245 return TokError("expected ',' as start of index list");
1247 while (EatIfPresent(lltok::comma
)) {
1248 if (Lex
.getKind() == lltok::MetadataVar
) {
1249 AteExtraComma
= true;
1253 if (ParseUInt32(Idx
)) return true;
1254 Indices
.push_back(Idx
);
1260 //===----------------------------------------------------------------------===//
1262 //===----------------------------------------------------------------------===//
1264 /// ParseType - Parse and resolve a full type.
1265 bool LLParser::ParseType(PATypeHolder
&Result
, bool AllowVoid
) {
1266 LocTy TypeLoc
= Lex
.getLoc();
1267 if (ParseTypeRec(Result
)) return true;
1269 // Verify no unresolved uprefs.
1270 if (!UpRefs
.empty())
1271 return Error(UpRefs
.back().Loc
, "invalid unresolved type up reference");
1273 if (!AllowVoid
&& Result
.get()->isVoidTy())
1274 return Error(TypeLoc
, "void type only allowed for function results");
1279 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1280 /// called. It loops through the UpRefs vector, which is a list of the
1281 /// currently active types. For each type, if the up-reference is contained in
1282 /// the newly completed type, we decrement the level count. When the level
1283 /// count reaches zero, the up-referenced type is the type that is passed in:
1284 /// thus we can complete the cycle.
1286 PATypeHolder
LLParser::HandleUpRefs(const Type
*ty
) {
1287 // If Ty isn't abstract, or if there are no up-references in it, then there is
1288 // nothing to resolve here.
1289 if (!ty
->isAbstract() || UpRefs
.empty()) return ty
;
1291 PATypeHolder
Ty(ty
);
1293 dbgs() << "Type '" << Ty
->getDescription()
1294 << "' newly formed. Resolving upreferences.\n"
1295 << UpRefs
.size() << " upreferences active!\n";
1298 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1299 // to zero), we resolve them all together before we resolve them to Ty. At
1300 // the end of the loop, if there is anything to resolve to Ty, it will be in
1302 OpaqueType
*TypeToResolve
= 0;
1304 for (unsigned i
= 0; i
!= UpRefs
.size(); ++i
) {
1305 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1307 std::find(Ty
->subtype_begin(), Ty
->subtype_end(),
1308 UpRefs
[i
].LastContainedTy
) != Ty
->subtype_end();
1311 dbgs() << " UR#" << i
<< " - TypeContains(" << Ty
->getDescription() << ", "
1312 << UpRefs
[i
].LastContainedTy
->getDescription() << ") = "
1313 << (ContainsType
? "true" : "false")
1314 << " level=" << UpRefs
[i
].NestingLevel
<< "\n";
1319 // Decrement level of upreference
1320 unsigned Level
= --UpRefs
[i
].NestingLevel
;
1321 UpRefs
[i
].LastContainedTy
= Ty
;
1323 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1328 dbgs() << " * Resolving upreference for " << UpRefs
[i
].UpRefTy
<< "\n";
1331 TypeToResolve
= UpRefs
[i
].UpRefTy
;
1333 UpRefs
[i
].UpRefTy
->refineAbstractTypeTo(TypeToResolve
);
1334 UpRefs
.erase(UpRefs
.begin()+i
); // Remove from upreference list.
1335 --i
; // Do not skip the next element.
1339 TypeToResolve
->refineAbstractTypeTo(Ty
);
1345 /// ParseTypeRec - The recursive function used to process the internal
1346 /// implementation details of types.
1347 bool LLParser::ParseTypeRec(PATypeHolder
&Result
) {
1348 switch (Lex
.getKind()) {
1350 return TokError("expected type");
1352 // TypeRec ::= 'float' | 'void' (etc)
1353 Result
= Lex
.getTyVal();
1356 case lltok::kw_opaque
:
1357 // TypeRec ::= 'opaque'
1358 Result
= OpaqueType::get(Context
);
1362 // TypeRec ::= '{' ... '}'
1363 if (ParseStructType(Result
, false))
1366 case lltok::lsquare
:
1367 // TypeRec ::= '[' ... ']'
1368 Lex
.Lex(); // eat the lsquare.
1369 if (ParseArrayVectorType(Result
, false))
1372 case lltok::less
: // Either vector or packed struct.
1373 // TypeRec ::= '<' ... '>'
1375 if (Lex
.getKind() == lltok::lbrace
) {
1376 if (ParseStructType(Result
, true) ||
1377 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
1379 } else if (ParseArrayVectorType(Result
, true))
1382 case lltok::LocalVar
:
1383 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
1385 if (const Type
*T
= M
->getTypeByName(Lex
.getStrVal())) {
1388 Result
= OpaqueType::get(Context
);
1389 ForwardRefTypes
.insert(std::make_pair(Lex
.getStrVal(),
1390 std::make_pair(Result
,
1392 M
->addTypeName(Lex
.getStrVal(), Result
.get());
1397 case lltok::LocalVarID
:
1399 if (Lex
.getUIntVal() < NumberedTypes
.size())
1400 Result
= NumberedTypes
[Lex
.getUIntVal()];
1402 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
1403 I
= ForwardRefTypeIDs
.find(Lex
.getUIntVal());
1404 if (I
!= ForwardRefTypeIDs
.end())
1405 Result
= I
->second
.first
;
1407 Result
= OpaqueType::get(Context
);
1408 ForwardRefTypeIDs
.insert(std::make_pair(Lex
.getUIntVal(),
1409 std::make_pair(Result
,
1415 case lltok::backslash
: {
1416 // TypeRec ::= '\' 4
1419 if (ParseUInt32(Val
)) return true;
1420 OpaqueType
*OT
= OpaqueType::get(Context
); //Use temporary placeholder.
1421 UpRefs
.push_back(UpRefRecord(Lex
.getLoc(), Val
, OT
));
1427 // Parse the type suffixes.
1429 switch (Lex
.getKind()) {
1431 default: return false;
1433 // TypeRec ::= TypeRec '*'
1435 if (Result
.get()->isLabelTy())
1436 return TokError("basic block pointers are invalid");
1437 if (Result
.get()->isVoidTy())
1438 return TokError("pointers to void are invalid; use i8* instead");
1439 if (!PointerType::isValidElementType(Result
.get()))
1440 return TokError("pointer to this type is invalid");
1441 Result
= HandleUpRefs(PointerType::getUnqual(Result
.get()));
1445 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1446 case lltok::kw_addrspace
: {
1447 if (Result
.get()->isLabelTy())
1448 return TokError("basic block pointers are invalid");
1449 if (Result
.get()->isVoidTy())
1450 return TokError("pointers to void are invalid; use i8* instead");
1451 if (!PointerType::isValidElementType(Result
.get()))
1452 return TokError("pointer to this type is invalid");
1454 if (ParseOptionalAddrSpace(AddrSpace
) ||
1455 ParseToken(lltok::star
, "expected '*' in address space"))
1458 Result
= HandleUpRefs(PointerType::get(Result
.get(), AddrSpace
));
1462 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1464 if (ParseFunctionType(Result
))
1471 /// ParseParameterList
1473 /// ::= '(' Arg (',' Arg)* ')'
1475 /// ::= Type OptionalAttributes Value OptionalAttributes
1476 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
1477 PerFunctionState
&PFS
) {
1478 if (ParseToken(lltok::lparen
, "expected '(' in call"))
1481 while (Lex
.getKind() != lltok::rparen
) {
1482 // If this isn't the first argument, we need a comma.
1483 if (!ArgList
.empty() &&
1484 ParseToken(lltok::comma
, "expected ',' in argument list"))
1487 // Parse the argument.
1489 PATypeHolder
ArgTy(Type::getVoidTy(Context
));
1490 unsigned ArgAttrs1
= Attribute::None
;
1491 unsigned ArgAttrs2
= Attribute::None
;
1493 if (ParseType(ArgTy
, ArgLoc
))
1496 // Otherwise, handle normal operands.
1497 if (ParseOptionalAttrs(ArgAttrs1
, 0) ||
1498 ParseValue(ArgTy
, V
, PFS
) ||
1499 // FIXME: Should not allow attributes after the argument, remove this
1501 ParseOptionalAttrs(ArgAttrs2
, 3))
1503 ArgList
.push_back(ParamInfo(ArgLoc
, V
, ArgAttrs1
|ArgAttrs2
));
1506 Lex
.Lex(); // Lex the ')'.
1512 /// ParseArgumentList - Parse the argument list for a function type or function
1513 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1514 /// ::= '(' ArgTypeListI ')'
1518 /// ::= ArgTypeList ',' '...'
1519 /// ::= ArgType (',' ArgType)*
1521 bool LLParser::ParseArgumentList(std::vector
<ArgInfo
> &ArgList
,
1522 bool &isVarArg
, bool inType
) {
1524 assert(Lex
.getKind() == lltok::lparen
);
1525 Lex
.Lex(); // eat the (.
1527 if (Lex
.getKind() == lltok::rparen
) {
1529 } else if (Lex
.getKind() == lltok::dotdotdot
) {
1533 LocTy TypeLoc
= Lex
.getLoc();
1534 PATypeHolder
ArgTy(Type::getVoidTy(Context
));
1538 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1539 // types (such as a function returning a pointer to itself). If parsing a
1540 // function prototype, we require fully resolved types.
1541 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1542 ParseOptionalAttrs(Attrs
, 0)) return true;
1544 if (ArgTy
->isVoidTy())
1545 return Error(TypeLoc
, "argument can not have void type");
1547 if (Lex
.getKind() == lltok::LocalVar
||
1548 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1549 Name
= Lex
.getStrVal();
1553 if (!FunctionType::isValidArgumentType(ArgTy
))
1554 return Error(TypeLoc
, "invalid type for function argument");
1556 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1558 while (EatIfPresent(lltok::comma
)) {
1559 // Handle ... at end of arg list.
1560 if (EatIfPresent(lltok::dotdotdot
)) {
1565 // Otherwise must be an argument type.
1566 TypeLoc
= Lex
.getLoc();
1567 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1568 ParseOptionalAttrs(Attrs
, 0)) return true;
1570 if (ArgTy
->isVoidTy())
1571 return Error(TypeLoc
, "argument can not have void type");
1573 if (Lex
.getKind() == lltok::LocalVar
||
1574 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1575 Name
= Lex
.getStrVal();
1581 if (!ArgTy
->isFirstClassType() && !ArgTy
->isOpaqueTy())
1582 return Error(TypeLoc
, "invalid type for function argument");
1584 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1588 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
1591 /// ParseFunctionType
1592 /// ::= Type ArgumentList OptionalAttrs
1593 bool LLParser::ParseFunctionType(PATypeHolder
&Result
) {
1594 assert(Lex
.getKind() == lltok::lparen
);
1596 if (!FunctionType::isValidReturnType(Result
))
1597 return TokError("invalid function return type");
1599 std::vector
<ArgInfo
> ArgList
;
1602 if (ParseArgumentList(ArgList
, isVarArg
, true) ||
1603 // FIXME: Allow, but ignore attributes on function types!
1604 // FIXME: Remove in LLVM 3.0
1605 ParseOptionalAttrs(Attrs
, 2))
1608 // Reject names on the arguments lists.
1609 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
1610 if (!ArgList
[i
].Name
.empty())
1611 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
1612 if (!ArgList
[i
].Attrs
!= 0) {
1613 // Allow but ignore attributes on function types; this permits
1615 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1619 std::vector
<const Type
*> ArgListTy
;
1620 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
1621 ArgListTy
.push_back(ArgList
[i
].Type
);
1623 Result
= HandleUpRefs(FunctionType::get(Result
.get(),
1624 ArgListTy
, isVarArg
));
1628 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1631 /// ::= '{' TypeRec (',' TypeRec)* '}'
1632 /// ::= '<' '{' '}' '>'
1633 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1634 bool LLParser::ParseStructType(PATypeHolder
&Result
, bool Packed
) {
1635 assert(Lex
.getKind() == lltok::lbrace
);
1636 Lex
.Lex(); // Consume the '{'
1638 if (EatIfPresent(lltok::rbrace
)) {
1639 Result
= StructType::get(Context
, Packed
);
1643 std::vector
<PATypeHolder
> ParamsList
;
1644 LocTy EltTyLoc
= Lex
.getLoc();
1645 if (ParseTypeRec(Result
)) return true;
1646 ParamsList
.push_back(Result
);
1648 if (Result
->isVoidTy())
1649 return Error(EltTyLoc
, "struct element can not have void type");
1650 if (!StructType::isValidElementType(Result
))
1651 return Error(EltTyLoc
, "invalid element type for struct");
1653 while (EatIfPresent(lltok::comma
)) {
1654 EltTyLoc
= Lex
.getLoc();
1655 if (ParseTypeRec(Result
)) return true;
1657 if (Result
->isVoidTy())
1658 return Error(EltTyLoc
, "struct element can not have void type");
1659 if (!StructType::isValidElementType(Result
))
1660 return Error(EltTyLoc
, "invalid element type for struct");
1662 ParamsList
.push_back(Result
);
1665 if (ParseToken(lltok::rbrace
, "expected '}' at end of struct"))
1668 std::vector
<const Type
*> ParamsListTy
;
1669 for (unsigned i
= 0, e
= ParamsList
.size(); i
!= e
; ++i
)
1670 ParamsListTy
.push_back(ParamsList
[i
].get());
1671 Result
= HandleUpRefs(StructType::get(Context
, ParamsListTy
, Packed
));
1675 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1676 /// token has already been consumed.
1678 /// ::= '[' APSINTVAL 'x' Types ']'
1679 /// ::= '<' APSINTVAL 'x' Types '>'
1680 bool LLParser::ParseArrayVectorType(PATypeHolder
&Result
, bool isVector
) {
1681 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
1682 Lex
.getAPSIntVal().getBitWidth() > 64)
1683 return TokError("expected number in address space");
1685 LocTy SizeLoc
= Lex
.getLoc();
1686 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
1689 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
1692 LocTy TypeLoc
= Lex
.getLoc();
1693 PATypeHolder
EltTy(Type::getVoidTy(Context
));
1694 if (ParseTypeRec(EltTy
)) return true;
1696 if (EltTy
->isVoidTy())
1697 return Error(TypeLoc
, "array and vector element type cannot be void");
1699 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
1700 "expected end of sequential type"))
1705 return Error(SizeLoc
, "zero element vector is illegal");
1706 if ((unsigned)Size
!= Size
)
1707 return Error(SizeLoc
, "size too large for vector");
1708 if (!VectorType::isValidElementType(EltTy
))
1709 return Error(TypeLoc
, "vector element type must be fp or integer");
1710 Result
= VectorType::get(EltTy
, unsigned(Size
));
1712 if (!ArrayType::isValidElementType(EltTy
))
1713 return Error(TypeLoc
, "invalid array element type");
1714 Result
= HandleUpRefs(ArrayType::get(EltTy
, Size
));
1719 //===----------------------------------------------------------------------===//
1720 // Function Semantic Analysis.
1721 //===----------------------------------------------------------------------===//
1723 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
,
1725 : P(p
), F(f
), FunctionNumber(functionNumber
) {
1727 // Insert unnamed arguments into the NumberedVals list.
1728 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
1731 NumberedVals
.push_back(AI
);
1734 LLParser::PerFunctionState::~PerFunctionState() {
1735 // If there were any forward referenced non-basicblock values, delete them.
1736 for (std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1737 I
= ForwardRefVals
.begin(), E
= ForwardRefVals
.end(); I
!= E
; ++I
)
1738 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1739 I
->second
.first
->replaceAllUsesWith(
1740 UndefValue::get(I
->second
.first
->getType()));
1741 delete I
->second
.first
;
1742 I
->second
.first
= 0;
1745 for (std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1746 I
= ForwardRefValIDs
.begin(), E
= ForwardRefValIDs
.end(); I
!= E
; ++I
)
1747 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1748 I
->second
.first
->replaceAllUsesWith(
1749 UndefValue::get(I
->second
.first
->getType()));
1750 delete I
->second
.first
;
1751 I
->second
.first
= 0;
1755 bool LLParser::PerFunctionState::FinishFunction() {
1756 // Check to see if someone took the address of labels in this block.
1757 if (!P
.ForwardRefBlockAddresses
.empty()) {
1759 if (!F
.getName().empty()) {
1760 FunctionID
.Kind
= ValID::t_GlobalName
;
1761 FunctionID
.StrVal
= F
.getName();
1763 FunctionID
.Kind
= ValID::t_GlobalID
;
1764 FunctionID
.UIntVal
= FunctionNumber
;
1767 std::map
<ValID
, std::vector
<std::pair
<ValID
, GlobalValue
*> > >::iterator
1768 FRBAI
= P
.ForwardRefBlockAddresses
.find(FunctionID
);
1769 if (FRBAI
!= P
.ForwardRefBlockAddresses
.end()) {
1770 // Resolve all these references.
1771 if (P
.ResolveForwardRefBlockAddresses(&F
, FRBAI
->second
, this))
1774 P
.ForwardRefBlockAddresses
.erase(FRBAI
);
1778 if (!ForwardRefVals
.empty())
1779 return P
.Error(ForwardRefVals
.begin()->second
.second
,
1780 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
1782 if (!ForwardRefValIDs
.empty())
1783 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
1784 "use of undefined value '%" +
1785 Twine(ForwardRefValIDs
.begin()->first
) + "'");
1790 /// GetVal - Get a value with the specified name or ID, creating a
1791 /// forward reference record if needed. This can return null if the value
1792 /// exists but does not have the right type.
1793 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
,
1794 const Type
*Ty
, LocTy Loc
) {
1795 // Look this name up in the normal function symbol table.
1796 Value
*Val
= F
.getValueSymbolTable().lookup(Name
);
1798 // If this is a forward reference for the value, see if we already created a
1799 // forward ref record.
1801 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1802 I
= ForwardRefVals
.find(Name
);
1803 if (I
!= ForwardRefVals
.end())
1804 Val
= I
->second
.first
;
1807 // If we have the value in the symbol table or fwd-ref table, return it.
1809 if (Val
->getType() == Ty
) return Val
;
1810 if (Ty
->isLabelTy())
1811 P
.Error(Loc
, "'%" + Name
+ "' is not a basic block");
1813 P
.Error(Loc
, "'%" + Name
+ "' defined with type '" +
1814 Val
->getType()->getDescription() + "'");
1818 // Don't make placeholders with invalid type.
1819 if (!Ty
->isFirstClassType() && !Ty
->isOpaqueTy() && !Ty
->isLabelTy()) {
1820 P
.Error(Loc
, "invalid use of a non-first-class type");
1824 // Otherwise, create a new forward reference for this value and remember it.
1826 if (Ty
->isLabelTy())
1827 FwdVal
= BasicBlock::Create(F
.getContext(), Name
, &F
);
1829 FwdVal
= new Argument(Ty
, Name
);
1831 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1835 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, const Type
*Ty
,
1837 // Look this name up in the normal function symbol table.
1838 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
1840 // If this is a forward reference for the value, see if we already created a
1841 // forward ref record.
1843 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1844 I
= ForwardRefValIDs
.find(ID
);
1845 if (I
!= ForwardRefValIDs
.end())
1846 Val
= I
->second
.first
;
1849 // If we have the value in the symbol table or fwd-ref table, return it.
1851 if (Val
->getType() == Ty
) return Val
;
1852 if (Ty
->isLabelTy())
1853 P
.Error(Loc
, "'%" + Twine(ID
) + "' is not a basic block");
1855 P
.Error(Loc
, "'%" + Twine(ID
) + "' defined with type '" +
1856 Val
->getType()->getDescription() + "'");
1860 if (!Ty
->isFirstClassType() && !Ty
->isOpaqueTy() && !Ty
->isLabelTy()) {
1861 P
.Error(Loc
, "invalid use of a non-first-class type");
1865 // Otherwise, create a new forward reference for this value and remember it.
1867 if (Ty
->isLabelTy())
1868 FwdVal
= BasicBlock::Create(F
.getContext(), "", &F
);
1870 FwdVal
= new Argument(Ty
);
1872 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1876 /// SetInstName - After an instruction is parsed and inserted into its
1877 /// basic block, this installs its name.
1878 bool LLParser::PerFunctionState::SetInstName(int NameID
,
1879 const std::string
&NameStr
,
1880 LocTy NameLoc
, Instruction
*Inst
) {
1881 // If this instruction has void type, it cannot have a name or ID specified.
1882 if (Inst
->getType()->isVoidTy()) {
1883 if (NameID
!= -1 || !NameStr
.empty())
1884 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
1888 // If this was a numbered instruction, verify that the instruction is the
1889 // expected value and resolve any forward references.
1890 if (NameStr
.empty()) {
1891 // If neither a name nor an ID was specified, just use the next ID.
1893 NameID
= NumberedVals
.size();
1895 if (unsigned(NameID
) != NumberedVals
.size())
1896 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
1897 Twine(NumberedVals
.size()) + "'");
1899 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator FI
=
1900 ForwardRefValIDs
.find(NameID
);
1901 if (FI
!= ForwardRefValIDs
.end()) {
1902 if (FI
->second
.first
->getType() != Inst
->getType())
1903 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1904 FI
->second
.first
->getType()->getDescription() + "'");
1905 FI
->second
.first
->replaceAllUsesWith(Inst
);
1906 delete FI
->second
.first
;
1907 ForwardRefValIDs
.erase(FI
);
1910 NumberedVals
.push_back(Inst
);
1914 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1915 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1916 FI
= ForwardRefVals
.find(NameStr
);
1917 if (FI
!= ForwardRefVals
.end()) {
1918 if (FI
->second
.first
->getType() != Inst
->getType())
1919 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1920 FI
->second
.first
->getType()->getDescription() + "'");
1921 FI
->second
.first
->replaceAllUsesWith(Inst
);
1922 delete FI
->second
.first
;
1923 ForwardRefVals
.erase(FI
);
1926 // Set the name on the instruction.
1927 Inst
->setName(NameStr
);
1929 if (Inst
->getName() != NameStr
)
1930 return P
.Error(NameLoc
, "multiple definition of local value named '" +
1935 /// GetBB - Get a basic block with the specified name or ID, creating a
1936 /// forward reference record if needed.
1937 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
1939 return cast_or_null
<BasicBlock
>(GetVal(Name
,
1940 Type::getLabelTy(F
.getContext()), Loc
));
1943 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
1944 return cast_or_null
<BasicBlock
>(GetVal(ID
,
1945 Type::getLabelTy(F
.getContext()), Loc
));
1948 /// DefineBB - Define the specified basic block, which is either named or
1949 /// unnamed. If there is an error, this returns null otherwise it returns
1950 /// the block being defined.
1951 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
1955 BB
= GetBB(NumberedVals
.size(), Loc
);
1957 BB
= GetBB(Name
, Loc
);
1958 if (BB
== 0) return 0; // Already diagnosed error.
1960 // Move the block to the end of the function. Forward ref'd blocks are
1961 // inserted wherever they happen to be referenced.
1962 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
1964 // Remove the block from forward ref sets.
1966 ForwardRefValIDs
.erase(NumberedVals
.size());
1967 NumberedVals
.push_back(BB
);
1969 // BB forward references are already in the function symbol table.
1970 ForwardRefVals
.erase(Name
);
1976 //===----------------------------------------------------------------------===//
1978 //===----------------------------------------------------------------------===//
1980 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1981 /// type implied. For example, if we parse "4" we don't know what integer type
1982 /// it has. The value will later be combined with its type and checked for
1983 /// sanity. PFS is used to convert function-local operands of metadata (since
1984 /// metadata operands are not just parsed here but also converted to values).
1985 /// PFS can be null when we are not parsing metadata values inside a function.
1986 bool LLParser::ParseValID(ValID
&ID
, PerFunctionState
*PFS
) {
1987 ID
.Loc
= Lex
.getLoc();
1988 switch (Lex
.getKind()) {
1989 default: return TokError("expected value token");
1990 case lltok::GlobalID
: // @42
1991 ID
.UIntVal
= Lex
.getUIntVal();
1992 ID
.Kind
= ValID::t_GlobalID
;
1994 case lltok::GlobalVar
: // @foo
1995 ID
.StrVal
= Lex
.getStrVal();
1996 ID
.Kind
= ValID::t_GlobalName
;
1998 case lltok::LocalVarID
: // %42
1999 ID
.UIntVal
= Lex
.getUIntVal();
2000 ID
.Kind
= ValID::t_LocalID
;
2002 case lltok::LocalVar
: // %foo
2003 case lltok::StringConstant
: // "foo" - FIXME: REMOVE IN LLVM 3.0
2004 ID
.StrVal
= Lex
.getStrVal();
2005 ID
.Kind
= ValID::t_LocalName
;
2007 case lltok::exclaim
: // !42, !{...}, or !"foo"
2008 return ParseMetadataValue(ID
, PFS
);
2010 ID
.APSIntVal
= Lex
.getAPSIntVal();
2011 ID
.Kind
= ValID::t_APSInt
;
2013 case lltok::APFloat
:
2014 ID
.APFloatVal
= Lex
.getAPFloatVal();
2015 ID
.Kind
= ValID::t_APFloat
;
2017 case lltok::kw_true
:
2018 ID
.ConstantVal
= ConstantInt::getTrue(Context
);
2019 ID
.Kind
= ValID::t_Constant
;
2021 case lltok::kw_false
:
2022 ID
.ConstantVal
= ConstantInt::getFalse(Context
);
2023 ID
.Kind
= ValID::t_Constant
;
2025 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
2026 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
2027 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
2029 case lltok::lbrace
: {
2030 // ValID ::= '{' ConstVector '}'
2032 SmallVector
<Constant
*, 16> Elts
;
2033 if (ParseGlobalValueVector(Elts
) ||
2034 ParseToken(lltok::rbrace
, "expected end of struct constant"))
2037 ID
.ConstantVal
= ConstantStruct::get(Context
, Elts
.data(),
2038 Elts
.size(), false);
2039 ID
.Kind
= ValID::t_Constant
;
2043 // ValID ::= '<' ConstVector '>' --> Vector.
2044 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2046 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
2048 SmallVector
<Constant
*, 16> Elts
;
2049 LocTy FirstEltLoc
= Lex
.getLoc();
2050 if (ParseGlobalValueVector(Elts
) ||
2052 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
2053 ParseToken(lltok::greater
, "expected end of constant"))
2056 if (isPackedStruct
) {
2058 ConstantStruct::get(Context
, Elts
.data(), Elts
.size(), true);
2059 ID
.Kind
= ValID::t_Constant
;
2064 return Error(ID
.Loc
, "constant vector must not be empty");
2066 if (!Elts
[0]->getType()->isIntegerTy() &&
2067 !Elts
[0]->getType()->isFloatingPointTy())
2068 return Error(FirstEltLoc
,
2069 "vector elements must have integer or floating point type");
2071 // Verify that all the vector elements have the same type.
2072 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
2073 if (Elts
[i
]->getType() != Elts
[0]->getType())
2074 return Error(FirstEltLoc
,
2075 "vector element #" + Twine(i
) +
2076 " is not of type '" + Elts
[0]->getType()->getDescription());
2078 ID
.ConstantVal
= ConstantVector::get(Elts
);
2079 ID
.Kind
= ValID::t_Constant
;
2082 case lltok::lsquare
: { // Array Constant
2084 SmallVector
<Constant
*, 16> Elts
;
2085 LocTy FirstEltLoc
= Lex
.getLoc();
2086 if (ParseGlobalValueVector(Elts
) ||
2087 ParseToken(lltok::rsquare
, "expected end of array constant"))
2090 // Handle empty element.
2092 // Use undef instead of an array because it's inconvenient to determine
2093 // the element type at this point, there being no elements to examine.
2094 ID
.Kind
= ValID::t_EmptyArray
;
2098 if (!Elts
[0]->getType()->isFirstClassType())
2099 return Error(FirstEltLoc
, "invalid array element type: " +
2100 Elts
[0]->getType()->getDescription());
2102 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
2104 // Verify all elements are correct type!
2105 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
2106 if (Elts
[i
]->getType() != Elts
[0]->getType())
2107 return Error(FirstEltLoc
,
2108 "array element #" + Twine(i
) +
2109 " is not of type '" +Elts
[0]->getType()->getDescription());
2112 ID
.ConstantVal
= ConstantArray::get(ATy
, Elts
.data(), Elts
.size());
2113 ID
.Kind
= ValID::t_Constant
;
2116 case lltok::kw_c
: // c "foo"
2118 ID
.ConstantVal
= ConstantArray::get(Context
, Lex
.getStrVal(), false);
2119 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
2120 ID
.Kind
= ValID::t_Constant
;
2123 case lltok::kw_asm
: {
2124 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2125 bool HasSideEffect
, AlignStack
;
2127 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
2128 ParseOptionalToken(lltok::kw_alignstack
, AlignStack
) ||
2129 ParseStringConstant(ID
.StrVal
) ||
2130 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
2131 ParseToken(lltok::StringConstant
, "expected constraint string"))
2133 ID
.StrVal2
= Lex
.getStrVal();
2134 ID
.UIntVal
= unsigned(HasSideEffect
) | (unsigned(AlignStack
)<<1);
2135 ID
.Kind
= ValID::t_InlineAsm
;
2139 case lltok::kw_blockaddress
: {
2140 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2144 LocTy FnLoc
, LabelLoc
;
2146 if (ParseToken(lltok::lparen
, "expected '(' in block address expression") ||
2148 ParseToken(lltok::comma
, "expected comma in block address expression")||
2149 ParseValID(Label
) ||
2150 ParseToken(lltok::rparen
, "expected ')' in block address expression"))
2153 if (Fn
.Kind
!= ValID::t_GlobalID
&& Fn
.Kind
!= ValID::t_GlobalName
)
2154 return Error(Fn
.Loc
, "expected function name in blockaddress");
2155 if (Label
.Kind
!= ValID::t_LocalID
&& Label
.Kind
!= ValID::t_LocalName
)
2156 return Error(Label
.Loc
, "expected basic block name in blockaddress");
2158 // Make a global variable as a placeholder for this reference.
2159 GlobalVariable
*FwdRef
= new GlobalVariable(*M
, Type::getInt8Ty(Context
),
2160 false, GlobalValue::InternalLinkage
,
2162 ForwardRefBlockAddresses
[Fn
].push_back(std::make_pair(Label
, FwdRef
));
2163 ID
.ConstantVal
= FwdRef
;
2164 ID
.Kind
= ValID::t_Constant
;
2168 case lltok::kw_trunc
:
2169 case lltok::kw_zext
:
2170 case lltok::kw_sext
:
2171 case lltok::kw_fptrunc
:
2172 case lltok::kw_fpext
:
2173 case lltok::kw_bitcast
:
2174 case lltok::kw_uitofp
:
2175 case lltok::kw_sitofp
:
2176 case lltok::kw_fptoui
:
2177 case lltok::kw_fptosi
:
2178 case lltok::kw_inttoptr
:
2179 case lltok::kw_ptrtoint
: {
2180 unsigned Opc
= Lex
.getUIntVal();
2181 PATypeHolder
DestTy(Type::getVoidTy(Context
));
2184 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
2185 ParseGlobalTypeAndValue(SrcVal
) ||
2186 ParseToken(lltok::kw_to
, "expected 'to' in constantexpr cast") ||
2187 ParseType(DestTy
) ||
2188 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
2190 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
2191 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
2192 SrcVal
->getType()->getDescription() + "' to '" +
2193 DestTy
->getDescription() + "'");
2194 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
,
2196 ID
.Kind
= ValID::t_Constant
;
2199 case lltok::kw_extractvalue
: {
2202 SmallVector
<unsigned, 4> Indices
;
2203 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
2204 ParseGlobalTypeAndValue(Val
) ||
2205 ParseIndexList(Indices
) ||
2206 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
2209 if (!Val
->getType()->isAggregateType())
2210 return Error(ID
.Loc
, "extractvalue operand must be aggregate type");
2211 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
2213 return Error(ID
.Loc
, "invalid indices for extractvalue");
2215 ConstantExpr::getExtractValue(Val
, Indices
.data(), Indices
.size());
2216 ID
.Kind
= ValID::t_Constant
;
2219 case lltok::kw_insertvalue
: {
2221 Constant
*Val0
, *Val1
;
2222 SmallVector
<unsigned, 4> Indices
;
2223 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
2224 ParseGlobalTypeAndValue(Val0
) ||
2225 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
2226 ParseGlobalTypeAndValue(Val1
) ||
2227 ParseIndexList(Indices
) ||
2228 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
2230 if (!Val0
->getType()->isAggregateType())
2231 return Error(ID
.Loc
, "insertvalue operand must be aggregate type");
2232 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
2234 return Error(ID
.Loc
, "invalid indices for insertvalue");
2235 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
,
2236 Indices
.data(), Indices
.size());
2237 ID
.Kind
= ValID::t_Constant
;
2240 case lltok::kw_icmp
:
2241 case lltok::kw_fcmp
: {
2242 unsigned PredVal
, Opc
= Lex
.getUIntVal();
2243 Constant
*Val0
, *Val1
;
2245 if (ParseCmpPredicate(PredVal
, Opc
) ||
2246 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
2247 ParseGlobalTypeAndValue(Val0
) ||
2248 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
2249 ParseGlobalTypeAndValue(Val1
) ||
2250 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
2253 if (Val0
->getType() != Val1
->getType())
2254 return Error(ID
.Loc
, "compare operands must have the same type");
2256 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
2258 if (Opc
== Instruction::FCmp
) {
2259 if (!Val0
->getType()->isFPOrFPVectorTy())
2260 return Error(ID
.Loc
, "fcmp requires floating point operands");
2261 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
2263 assert(Opc
== Instruction::ICmp
&& "Unexpected opcode for CmpInst!");
2264 if (!Val0
->getType()->isIntOrIntVectorTy() &&
2265 !Val0
->getType()->isPointerTy())
2266 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
2267 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
2269 ID
.Kind
= ValID::t_Constant
;
2273 // Binary Operators.
2275 case lltok::kw_fadd
:
2277 case lltok::kw_fsub
:
2279 case lltok::kw_fmul
:
2280 case lltok::kw_udiv
:
2281 case lltok::kw_sdiv
:
2282 case lltok::kw_fdiv
:
2283 case lltok::kw_urem
:
2284 case lltok::kw_srem
:
2285 case lltok::kw_frem
:
2287 case lltok::kw_lshr
:
2288 case lltok::kw_ashr
: {
2292 unsigned Opc
= Lex
.getUIntVal();
2293 Constant
*Val0
, *Val1
;
2295 LocTy ModifierLoc
= Lex
.getLoc();
2296 if (Opc
== Instruction::Add
|| Opc
== Instruction::Sub
||
2297 Opc
== Instruction::Mul
|| Opc
== Instruction::Shl
) {
2298 if (EatIfPresent(lltok::kw_nuw
))
2300 if (EatIfPresent(lltok::kw_nsw
)) {
2302 if (EatIfPresent(lltok::kw_nuw
))
2305 } else if (Opc
== Instruction::SDiv
|| Opc
== Instruction::UDiv
||
2306 Opc
== Instruction::LShr
|| Opc
== Instruction::AShr
) {
2307 if (EatIfPresent(lltok::kw_exact
))
2310 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
2311 ParseGlobalTypeAndValue(Val0
) ||
2312 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
2313 ParseGlobalTypeAndValue(Val1
) ||
2314 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
2316 if (Val0
->getType() != Val1
->getType())
2317 return Error(ID
.Loc
, "operands of constexpr must have same type");
2318 if (!Val0
->getType()->isIntOrIntVectorTy()) {
2320 return Error(ModifierLoc
, "nuw only applies to integer operations");
2322 return Error(ModifierLoc
, "nsw only applies to integer operations");
2324 // Check that the type is valid for the operator.
2326 case Instruction::Add
:
2327 case Instruction::Sub
:
2328 case Instruction::Mul
:
2329 case Instruction::UDiv
:
2330 case Instruction::SDiv
:
2331 case Instruction::URem
:
2332 case Instruction::SRem
:
2333 case Instruction::Shl
:
2334 case Instruction::AShr
:
2335 case Instruction::LShr
:
2336 if (!Val0
->getType()->isIntOrIntVectorTy())
2337 return Error(ID
.Loc
, "constexpr requires integer operands");
2339 case Instruction::FAdd
:
2340 case Instruction::FSub
:
2341 case Instruction::FMul
:
2342 case Instruction::FDiv
:
2343 case Instruction::FRem
:
2344 if (!Val0
->getType()->isFPOrFPVectorTy())
2345 return Error(ID
.Loc
, "constexpr requires fp operands");
2347 default: llvm_unreachable("Unknown binary operator!");
2350 if (NUW
) Flags
|= OverflowingBinaryOperator::NoUnsignedWrap
;
2351 if (NSW
) Flags
|= OverflowingBinaryOperator::NoSignedWrap
;
2352 if (Exact
) Flags
|= PossiblyExactOperator::IsExact
;
2353 Constant
*C
= ConstantExpr::get(Opc
, Val0
, Val1
, Flags
);
2355 ID
.Kind
= ValID::t_Constant
;
2359 // Logical Operations
2362 case lltok::kw_xor
: {
2363 unsigned Opc
= Lex
.getUIntVal();
2364 Constant
*Val0
, *Val1
;
2366 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
2367 ParseGlobalTypeAndValue(Val0
) ||
2368 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
2369 ParseGlobalTypeAndValue(Val1
) ||
2370 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
2372 if (Val0
->getType() != Val1
->getType())
2373 return Error(ID
.Loc
, "operands of constexpr must have same type");
2374 if (!Val0
->getType()->isIntOrIntVectorTy())
2375 return Error(ID
.Loc
,
2376 "constexpr requires integer or integer vector operands");
2377 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
2378 ID
.Kind
= ValID::t_Constant
;
2382 case lltok::kw_getelementptr
:
2383 case lltok::kw_shufflevector
:
2384 case lltok::kw_insertelement
:
2385 case lltok::kw_extractelement
:
2386 case lltok::kw_select
: {
2387 unsigned Opc
= Lex
.getUIntVal();
2388 SmallVector
<Constant
*, 16> Elts
;
2389 bool InBounds
= false;
2391 if (Opc
== Instruction::GetElementPtr
)
2392 InBounds
= EatIfPresent(lltok::kw_inbounds
);
2393 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr") ||
2394 ParseGlobalValueVector(Elts
) ||
2395 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
2398 if (Opc
== Instruction::GetElementPtr
) {
2399 if (Elts
.size() == 0 || !Elts
[0]->getType()->isPointerTy())
2400 return Error(ID
.Loc
, "getelementptr requires pointer operand");
2402 if (!GetElementPtrInst::getIndexedType(Elts
[0]->getType(),
2403 (Value
**)(Elts
.data() + 1),
2405 return Error(ID
.Loc
, "invalid indices for getelementptr");
2406 ID
.ConstantVal
= InBounds
?
2407 ConstantExpr::getInBoundsGetElementPtr(Elts
[0],
2410 ConstantExpr::getGetElementPtr(Elts
[0],
2411 Elts
.data() + 1, Elts
.size() - 1);
2412 } else if (Opc
== Instruction::Select
) {
2413 if (Elts
.size() != 3)
2414 return Error(ID
.Loc
, "expected three operands to select");
2415 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
2417 return Error(ID
.Loc
, Reason
);
2418 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
2419 } else if (Opc
== Instruction::ShuffleVector
) {
2420 if (Elts
.size() != 3)
2421 return Error(ID
.Loc
, "expected three operands to shufflevector");
2422 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2423 return Error(ID
.Loc
, "invalid operands to shufflevector");
2425 ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
2426 } else if (Opc
== Instruction::ExtractElement
) {
2427 if (Elts
.size() != 2)
2428 return Error(ID
.Loc
, "expected two operands to extractelement");
2429 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
2430 return Error(ID
.Loc
, "invalid extractelement operands");
2431 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
2433 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
2434 if (Elts
.size() != 3)
2435 return Error(ID
.Loc
, "expected three operands to insertelement");
2436 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
2437 return Error(ID
.Loc
, "invalid insertelement operands");
2439 ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
2442 ID
.Kind
= ValID::t_Constant
;
2451 /// ParseGlobalValue - Parse a global value with the specified type.
2452 bool LLParser::ParseGlobalValue(const Type
*Ty
, Constant
*&C
) {
2456 bool Parsed
= ParseValID(ID
) ||
2457 ConvertValIDToValue(Ty
, ID
, V
, NULL
);
2458 if (V
&& !(C
= dyn_cast
<Constant
>(V
)))
2459 return Error(ID
.Loc
, "global values must be constants");
2463 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
2464 PATypeHolder
Type(Type::getVoidTy(Context
));
2465 return ParseType(Type
) ||
2466 ParseGlobalValue(Type
, V
);
2469 /// ParseGlobalValueVector
2471 /// ::= TypeAndValue (',' TypeAndValue)*
2472 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
) {
2474 if (Lex
.getKind() == lltok::rbrace
||
2475 Lex
.getKind() == lltok::rsquare
||
2476 Lex
.getKind() == lltok::greater
||
2477 Lex
.getKind() == lltok::rparen
)
2481 if (ParseGlobalTypeAndValue(C
)) return true;
2484 while (EatIfPresent(lltok::comma
)) {
2485 if (ParseGlobalTypeAndValue(C
)) return true;
2492 bool LLParser::ParseMetadataListValue(ValID
&ID
, PerFunctionState
*PFS
) {
2493 assert(Lex
.getKind() == lltok::lbrace
);
2496 SmallVector
<Value
*, 16> Elts
;
2497 if (ParseMDNodeVector(Elts
, PFS
) ||
2498 ParseToken(lltok::rbrace
, "expected end of metadata node"))
2501 ID
.MDNodeVal
= MDNode::get(Context
, Elts
.data(), Elts
.size());
2502 ID
.Kind
= ValID::t_MDNode
;
2506 /// ParseMetadataValue
2510 bool LLParser::ParseMetadataValue(ValID
&ID
, PerFunctionState
*PFS
) {
2511 assert(Lex
.getKind() == lltok::exclaim
);
2516 if (Lex
.getKind() == lltok::lbrace
)
2517 return ParseMetadataListValue(ID
, PFS
);
2519 // Standalone metadata reference
2521 if (Lex
.getKind() == lltok::APSInt
) {
2522 if (ParseMDNodeID(ID
.MDNodeVal
)) return true;
2523 ID
.Kind
= ValID::t_MDNode
;
2528 // ::= '!' STRINGCONSTANT
2529 if (ParseMDString(ID
.MDStringVal
)) return true;
2530 ID
.Kind
= ValID::t_MDString
;
2535 //===----------------------------------------------------------------------===//
2536 // Function Parsing.
2537 //===----------------------------------------------------------------------===//
2539 bool LLParser::ConvertValIDToValue(const Type
*Ty
, ValID
&ID
, Value
*&V
,
2540 PerFunctionState
*PFS
) {
2541 if (Ty
->isFunctionTy())
2542 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
2545 default: llvm_unreachable("Unknown ValID!");
2546 case ValID::t_LocalID
:
2547 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
2548 V
= PFS
->GetVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2550 case ValID::t_LocalName
:
2551 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
2552 V
= PFS
->GetVal(ID
.StrVal
, Ty
, ID
.Loc
);
2554 case ValID::t_InlineAsm
: {
2555 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
2556 const FunctionType
*FTy
=
2557 PTy
? dyn_cast
<FunctionType
>(PTy
->getElementType()) : 0;
2558 if (!FTy
|| !InlineAsm::Verify(FTy
, ID
.StrVal2
))
2559 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
2560 V
= InlineAsm::get(FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
&1, ID
.UIntVal
>>1);
2563 case ValID::t_MDNode
:
2564 if (!Ty
->isMetadataTy())
2565 return Error(ID
.Loc
, "metadata value must have metadata type");
2568 case ValID::t_MDString
:
2569 if (!Ty
->isMetadataTy())
2570 return Error(ID
.Loc
, "metadata value must have metadata type");
2573 case ValID::t_GlobalName
:
2574 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
);
2576 case ValID::t_GlobalID
:
2577 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2579 case ValID::t_APSInt
:
2580 if (!Ty
->isIntegerTy())
2581 return Error(ID
.Loc
, "integer constant must have integer type");
2582 ID
.APSIntVal
= ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
2583 V
= ConstantInt::get(Context
, ID
.APSIntVal
);
2585 case ValID::t_APFloat
:
2586 if (!Ty
->isFloatingPointTy() ||
2587 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
2588 return Error(ID
.Loc
, "floating point constant invalid for type");
2590 // The lexer has no type info, so builds all float and double FP constants
2591 // as double. Fix this here. Long double does not need this.
2592 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble
&&
2595 ID
.APFloatVal
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
,
2598 V
= ConstantFP::get(Context
, ID
.APFloatVal
);
2600 if (V
->getType() != Ty
)
2601 return Error(ID
.Loc
, "floating point constant does not have type '" +
2602 Ty
->getDescription() + "'");
2606 if (!Ty
->isPointerTy())
2607 return Error(ID
.Loc
, "null must be a pointer type");
2608 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
2610 case ValID::t_Undef
:
2611 // FIXME: LabelTy should not be a first-class type.
2612 if ((!Ty
->isFirstClassType() || Ty
->isLabelTy()) &&
2614 return Error(ID
.Loc
, "invalid type for undef constant");
2615 V
= UndefValue::get(Ty
);
2617 case ValID::t_EmptyArray
:
2618 if (!Ty
->isArrayTy() || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
2619 return Error(ID
.Loc
, "invalid empty array initializer");
2620 V
= UndefValue::get(Ty
);
2623 // FIXME: LabelTy should not be a first-class type.
2624 if (!Ty
->isFirstClassType() || Ty
->isLabelTy())
2625 return Error(ID
.Loc
, "invalid type for null constant");
2626 V
= Constant::getNullValue(Ty
);
2628 case ValID::t_Constant
:
2629 if (ID
.ConstantVal
->getType() != Ty
)
2630 return Error(ID
.Loc
, "constant expression type mismatch");
2637 bool LLParser::ParseValue(const Type
*Ty
, Value
*&V
, PerFunctionState
&PFS
) {
2640 return ParseValID(ID
, &PFS
) ||
2641 ConvertValIDToValue(Ty
, ID
, V
, &PFS
);
2644 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
&PFS
) {
2645 PATypeHolder
T(Type::getVoidTy(Context
));
2646 return ParseType(T
) ||
2647 ParseValue(T
, V
, PFS
);
2650 bool LLParser::ParseTypeAndBasicBlock(BasicBlock
*&BB
, LocTy
&Loc
,
2651 PerFunctionState
&PFS
) {
2654 if (ParseTypeAndValue(V
, PFS
)) return true;
2655 if (!isa
<BasicBlock
>(V
))
2656 return Error(Loc
, "expected a basic block");
2657 BB
= cast
<BasicBlock
>(V
);
2663 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2664 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2665 /// OptionalAlign OptGC
2666 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
2667 // Parse the linkage.
2668 LocTy LinkageLoc
= Lex
.getLoc();
2671 unsigned Visibility
, RetAttrs
;
2673 PATypeHolder
RetType(Type::getVoidTy(Context
));
2674 LocTy RetTypeLoc
= Lex
.getLoc();
2675 if (ParseOptionalLinkage(Linkage
) ||
2676 ParseOptionalVisibility(Visibility
) ||
2677 ParseOptionalCallingConv(CC
) ||
2678 ParseOptionalAttrs(RetAttrs
, 1) ||
2679 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
2682 // Verify that the linkage is ok.
2683 switch ((GlobalValue::LinkageTypes
)Linkage
) {
2684 case GlobalValue::ExternalLinkage
:
2685 break; // always ok.
2686 case GlobalValue::DLLImportLinkage
:
2687 case GlobalValue::ExternalWeakLinkage
:
2689 return Error(LinkageLoc
, "invalid linkage for function definition");
2691 case GlobalValue::PrivateLinkage
:
2692 case GlobalValue::LinkerPrivateLinkage
:
2693 case GlobalValue::LinkerPrivateWeakLinkage
:
2694 case GlobalValue::LinkerPrivateWeakDefAutoLinkage
:
2695 case GlobalValue::InternalLinkage
:
2696 case GlobalValue::AvailableExternallyLinkage
:
2697 case GlobalValue::LinkOnceAnyLinkage
:
2698 case GlobalValue::LinkOnceODRLinkage
:
2699 case GlobalValue::WeakAnyLinkage
:
2700 case GlobalValue::WeakODRLinkage
:
2701 case GlobalValue::DLLExportLinkage
:
2703 return Error(LinkageLoc
, "invalid linkage for function declaration");
2705 case GlobalValue::AppendingLinkage
:
2706 case GlobalValue::CommonLinkage
:
2707 return Error(LinkageLoc
, "invalid function linkage type");
2710 if (!FunctionType::isValidReturnType(RetType
) ||
2711 RetType
->isOpaqueTy())
2712 return Error(RetTypeLoc
, "invalid function return type");
2714 LocTy NameLoc
= Lex
.getLoc();
2716 std::string FunctionName
;
2717 if (Lex
.getKind() == lltok::GlobalVar
) {
2718 FunctionName
= Lex
.getStrVal();
2719 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
2720 unsigned NameID
= Lex
.getUIntVal();
2722 if (NameID
!= NumberedVals
.size())
2723 return TokError("function expected to be numbered '%" +
2724 Twine(NumberedVals
.size()) + "'");
2726 return TokError("expected function name");
2731 if (Lex
.getKind() != lltok::lparen
)
2732 return TokError("expected '(' in function argument list");
2734 std::vector
<ArgInfo
> ArgList
;
2737 std::string Section
;
2741 LocTy UnnamedAddrLoc
;
2743 if (ParseArgumentList(ArgList
, isVarArg
, false) ||
2744 ParseOptionalToken(lltok::kw_unnamed_addr
, UnnamedAddr
,
2746 ParseOptionalAttrs(FuncAttrs
, 2) ||
2747 (EatIfPresent(lltok::kw_section
) &&
2748 ParseStringConstant(Section
)) ||
2749 ParseOptionalAlignment(Alignment
) ||
2750 (EatIfPresent(lltok::kw_gc
) &&
2751 ParseStringConstant(GC
)))
2754 // If the alignment was parsed as an attribute, move to the alignment field.
2755 if (FuncAttrs
& Attribute::Alignment
) {
2756 Alignment
= Attribute::getAlignmentFromAttrs(FuncAttrs
);
2757 FuncAttrs
&= ~Attribute::Alignment
;
2760 // Okay, if we got here, the function is syntactically valid. Convert types
2761 // and do semantic checks.
2762 std::vector
<const Type
*> ParamTypeList
;
2763 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2764 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2766 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2767 if (FuncAttrs
& ObsoleteFuncAttrs
) {
2768 RetAttrs
|= FuncAttrs
& ObsoleteFuncAttrs
;
2769 FuncAttrs
&= ~ObsoleteFuncAttrs
;
2772 if (RetAttrs
!= Attribute::None
)
2773 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2775 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2776 ParamTypeList
.push_back(ArgList
[i
].Type
);
2777 if (ArgList
[i
].Attrs
!= Attribute::None
)
2778 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2781 if (FuncAttrs
!= Attribute::None
)
2782 Attrs
.push_back(AttributeWithIndex::get(~0, FuncAttrs
));
2784 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2786 if (PAL
.paramHasAttr(1, Attribute::StructRet
) && !RetType
->isVoidTy())
2787 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
2789 const FunctionType
*FT
=
2790 FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
2791 const PointerType
*PFT
= PointerType::getUnqual(FT
);
2794 if (!FunctionName
.empty()) {
2795 // If this was a definition of a forward reference, remove the definition
2796 // from the forward reference table and fill in the forward ref.
2797 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator FRVI
=
2798 ForwardRefVals
.find(FunctionName
);
2799 if (FRVI
!= ForwardRefVals
.end()) {
2800 Fn
= M
->getFunction(FunctionName
);
2801 if (Fn
->getType() != PFT
)
2802 return Error(FRVI
->second
.second
, "invalid forward reference to "
2803 "function '" + FunctionName
+ "' with wrong type!");
2805 ForwardRefVals
.erase(FRVI
);
2806 } else if ((Fn
= M
->getFunction(FunctionName
))) {
2807 // If this function already exists in the symbol table, then it is
2808 // multiply defined. We accept a few cases for old backwards compat.
2809 // FIXME: Remove this stuff for LLVM 3.0.
2810 if (Fn
->getType() != PFT
|| Fn
->getAttributes() != PAL
||
2811 (!Fn
->isDeclaration() && isDefine
)) {
2812 // If the redefinition has different type or different attributes,
2813 // reject it. If both have bodies, reject it.
2814 return Error(NameLoc
, "invalid redefinition of function '" +
2815 FunctionName
+ "'");
2816 } else if (Fn
->isDeclaration()) {
2817 // Make sure to strip off any argument names so we can't get conflicts.
2818 for (Function::arg_iterator AI
= Fn
->arg_begin(), AE
= Fn
->arg_end();
2822 } else if (M
->getNamedValue(FunctionName
)) {
2823 return Error(NameLoc
, "redefinition of function '@" + FunctionName
+ "'");
2827 // If this is a definition of a forward referenced function, make sure the
2829 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator I
2830 = ForwardRefValIDs
.find(NumberedVals
.size());
2831 if (I
!= ForwardRefValIDs
.end()) {
2832 Fn
= cast
<Function
>(I
->second
.first
);
2833 if (Fn
->getType() != PFT
)
2834 return Error(NameLoc
, "type of definition and forward reference of '@" +
2835 Twine(NumberedVals
.size()) + "' disagree");
2836 ForwardRefValIDs
.erase(I
);
2841 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, FunctionName
, M
);
2842 else // Move the forward-reference to the correct spot in the module.
2843 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
2845 if (FunctionName
.empty())
2846 NumberedVals
.push_back(Fn
);
2848 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
2849 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
2850 Fn
->setCallingConv(CC
);
2851 Fn
->setAttributes(PAL
);
2852 Fn
->setUnnamedAddr(UnnamedAddr
);
2853 Fn
->setAlignment(Alignment
);
2854 Fn
->setSection(Section
);
2855 if (!GC
.empty()) Fn
->setGC(GC
.c_str());
2857 // Add all of the arguments we parsed to the function.
2858 Function::arg_iterator ArgIt
= Fn
->arg_begin();
2859 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
2860 // If we run out of arguments in the Function prototype, exit early.
2861 // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2862 if (ArgIt
== Fn
->arg_end()) break;
2864 // If the argument has a name, insert it into the argument symbol table.
2865 if (ArgList
[i
].Name
.empty()) continue;
2867 // Set the name, if it conflicted, it will be auto-renamed.
2868 ArgIt
->setName(ArgList
[i
].Name
);
2870 if (ArgIt
->getName() != ArgList
[i
].Name
)
2871 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
2872 ArgList
[i
].Name
+ "'");
2879 /// ParseFunctionBody
2880 /// ::= '{' BasicBlock+ '}'
2881 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2883 bool LLParser::ParseFunctionBody(Function
&Fn
) {
2884 if (Lex
.getKind() != lltok::lbrace
&& Lex
.getKind() != lltok::kw_begin
)
2885 return TokError("expected '{' in function body");
2886 Lex
.Lex(); // eat the {.
2888 int FunctionNumber
= -1;
2889 if (!Fn
.hasName()) FunctionNumber
= NumberedVals
.size()-1;
2891 PerFunctionState
PFS(*this, Fn
, FunctionNumber
);
2893 // We need at least one basic block.
2894 if (Lex
.getKind() == lltok::rbrace
|| Lex
.getKind() == lltok::kw_end
)
2895 return TokError("function body requires at least one basic block");
2897 while (Lex
.getKind() != lltok::rbrace
&& Lex
.getKind() != lltok::kw_end
)
2898 if (ParseBasicBlock(PFS
)) return true;
2903 // Verify function is ok.
2904 return PFS
.FinishFunction();
2908 /// ::= LabelStr? Instruction*
2909 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
2910 // If this basic block starts out with a name, remember it.
2912 LocTy NameLoc
= Lex
.getLoc();
2913 if (Lex
.getKind() == lltok::LabelStr
) {
2914 Name
= Lex
.getStrVal();
2918 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameLoc
);
2919 if (BB
== 0) return true;
2921 std::string NameStr
;
2923 // Parse the instructions in this block until we get a terminator.
2925 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MetadataOnInst
;
2927 // This instruction may have three possibilities for a name: a) none
2928 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2929 LocTy NameLoc
= Lex
.getLoc();
2933 if (Lex
.getKind() == lltok::LocalVarID
) {
2934 NameID
= Lex
.getUIntVal();
2936 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
2938 } else if (Lex
.getKind() == lltok::LocalVar
||
2939 // FIXME: REMOVE IN LLVM 3.0
2940 Lex
.getKind() == lltok::StringConstant
) {
2941 NameStr
= Lex
.getStrVal();
2943 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
2947 switch (ParseInstruction(Inst
, BB
, PFS
)) {
2948 default: assert(0 && "Unknown ParseInstruction result!");
2949 case InstError
: return true;
2951 BB
->getInstList().push_back(Inst
);
2953 // With a normal result, we check to see if the instruction is followed by
2954 // a comma and metadata.
2955 if (EatIfPresent(lltok::comma
))
2956 if (ParseInstructionMetadata(Inst
, &PFS
))
2959 case InstExtraComma
:
2960 BB
->getInstList().push_back(Inst
);
2962 // If the instruction parser ate an extra comma at the end of it, it
2963 // *must* be followed by metadata.
2964 if (ParseInstructionMetadata(Inst
, &PFS
))
2969 // Set the name on the instruction.
2970 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
2971 } while (!isa
<TerminatorInst
>(Inst
));
2976 //===----------------------------------------------------------------------===//
2977 // Instruction Parsing.
2978 //===----------------------------------------------------------------------===//
2980 /// ParseInstruction - Parse one of the many different instructions.
2982 int LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
2983 PerFunctionState
&PFS
) {
2984 lltok::Kind Token
= Lex
.getKind();
2985 if (Token
== lltok::Eof
)
2986 return TokError("found end of file when expecting more instructions");
2987 LocTy Loc
= Lex
.getLoc();
2988 unsigned KeywordVal
= Lex
.getUIntVal();
2989 Lex
.Lex(); // Eat the keyword.
2992 default: return Error(Loc
, "expected instruction opcode");
2993 // Terminator Instructions.
2994 case lltok::kw_unwind
: Inst
= new UnwindInst(Context
); return false;
2995 case lltok::kw_unreachable
: Inst
= new UnreachableInst(Context
); return false;
2996 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
2997 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
2998 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
2999 case lltok::kw_indirectbr
: return ParseIndirectBr(Inst
, PFS
);
3000 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
3001 // Binary Operators.
3005 case lltok::kw_shl
: {
3006 LocTy ModifierLoc
= Lex
.getLoc();
3007 bool NUW
= EatIfPresent(lltok::kw_nuw
);
3008 bool NSW
= EatIfPresent(lltok::kw_nsw
);
3009 if (!NUW
) NUW
= EatIfPresent(lltok::kw_nuw
);
3011 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, 1)) return true;
3013 if (NUW
) cast
<BinaryOperator
>(Inst
)->setHasNoUnsignedWrap(true);
3014 if (NSW
) cast
<BinaryOperator
>(Inst
)->setHasNoSignedWrap(true);
3017 case lltok::kw_fadd
:
3018 case lltok::kw_fsub
:
3019 case lltok::kw_fmul
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
3021 case lltok::kw_sdiv
:
3022 case lltok::kw_udiv
:
3023 case lltok::kw_lshr
:
3024 case lltok::kw_ashr
: {
3025 bool Exact
= EatIfPresent(lltok::kw_exact
);
3027 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, 1)) return true;
3028 if (Exact
) cast
<BinaryOperator
>(Inst
)->setIsExact(true);
3032 case lltok::kw_urem
:
3033 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
3034 case lltok::kw_fdiv
:
3035 case lltok::kw_frem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
3038 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
3039 case lltok::kw_icmp
:
3040 case lltok::kw_fcmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
3042 case lltok::kw_trunc
:
3043 case lltok::kw_zext
:
3044 case lltok::kw_sext
:
3045 case lltok::kw_fptrunc
:
3046 case lltok::kw_fpext
:
3047 case lltok::kw_bitcast
:
3048 case lltok::kw_uitofp
:
3049 case lltok::kw_sitofp
:
3050 case lltok::kw_fptoui
:
3051 case lltok::kw_fptosi
:
3052 case lltok::kw_inttoptr
:
3053 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
3055 case lltok::kw_select
: return ParseSelect(Inst
, PFS
);
3056 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
3057 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
3058 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
3059 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
3060 case lltok::kw_phi
: return ParsePHI(Inst
, PFS
);
3061 case lltok::kw_call
: return ParseCall(Inst
, PFS
, false);
3062 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, true);
3064 case lltok::kw_alloca
: return ParseAlloc(Inst
, PFS
);
3065 case lltok::kw_malloc
: return ParseAlloc(Inst
, PFS
, BB
, false);
3066 case lltok::kw_free
: return ParseFree(Inst
, PFS
, BB
);
3067 case lltok::kw_load
: return ParseLoad(Inst
, PFS
, false);
3068 case lltok::kw_store
: return ParseStore(Inst
, PFS
, false);
3069 case lltok::kw_volatile
:
3070 if (EatIfPresent(lltok::kw_load
))
3071 return ParseLoad(Inst
, PFS
, true);
3072 else if (EatIfPresent(lltok::kw_store
))
3073 return ParseStore(Inst
, PFS
, true);
3075 return TokError("expected 'load' or 'store'");
3076 case lltok::kw_getresult
: return ParseGetResult(Inst
, PFS
);
3077 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
3078 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
3079 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
3083 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3084 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
3085 if (Opc
== Instruction::FCmp
) {
3086 switch (Lex
.getKind()) {
3087 default: TokError("expected fcmp predicate (e.g. 'oeq')");
3088 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
3089 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
3090 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
3091 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
3092 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
3093 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
3094 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
3095 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
3096 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
3097 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
3098 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
3099 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
3100 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
3101 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
3102 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
3103 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
3106 switch (Lex
.getKind()) {
3107 default: TokError("expected icmp predicate (e.g. 'eq')");
3108 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
3109 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
3110 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
3111 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
3112 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
3113 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
3114 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
3115 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
3116 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
3117 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
3124 //===----------------------------------------------------------------------===//
3125 // Terminator Instructions.
3126 //===----------------------------------------------------------------------===//
3128 /// ParseRet - Parse a return instruction.
3129 /// ::= 'ret' void (',' !dbg, !1)*
3130 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
3131 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)*
3132 /// [[obsolete: LLVM 3.0]]
3133 int LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
3134 PerFunctionState
&PFS
) {
3135 PATypeHolder
Ty(Type::getVoidTy(Context
));
3136 if (ParseType(Ty
, true /*void allowed*/)) return true;
3138 if (Ty
->isVoidTy()) {
3139 Inst
= ReturnInst::Create(Context
);
3144 if (ParseValue(Ty
, RV
, PFS
)) return true;
3146 bool ExtraComma
= false;
3147 if (EatIfPresent(lltok::comma
)) {
3148 // Parse optional custom metadata, e.g. !dbg
3149 if (Lex
.getKind() == lltok::MetadataVar
) {
3152 // The normal case is one return value.
3153 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3154 // use of 'ret {i32,i32} {i32 1, i32 2}'
3155 SmallVector
<Value
*, 8> RVs
;
3159 // If optional custom metadata, e.g. !dbg is seen then this is the
3161 if (Lex
.getKind() == lltok::MetadataVar
)
3163 if (ParseTypeAndValue(RV
, PFS
)) return true;
3165 } while (EatIfPresent(lltok::comma
));
3167 RV
= UndefValue::get(PFS
.getFunction().getReturnType());
3168 for (unsigned i
= 0, e
= RVs
.size(); i
!= e
; ++i
) {
3169 Instruction
*I
= InsertValueInst::Create(RV
, RVs
[i
], i
, "mrv");
3170 BB
->getInstList().push_back(I
);
3176 Inst
= ReturnInst::Create(Context
, RV
);
3177 return ExtraComma
? InstExtraComma
: InstNormal
;
3182 /// ::= 'br' TypeAndValue
3183 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3184 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3187 BasicBlock
*Op1
, *Op2
;
3188 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
3190 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
3191 Inst
= BranchInst::Create(BB
);
3195 if (Op0
->getType() != Type::getInt1Ty(Context
))
3196 return Error(Loc
, "branch condition must have 'i1' type");
3198 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
3199 ParseTypeAndBasicBlock(Op1
, Loc
, PFS
) ||
3200 ParseToken(lltok::comma
, "expected ',' after true destination") ||
3201 ParseTypeAndBasicBlock(Op2
, Loc2
, PFS
))
3204 Inst
= BranchInst::Create(Op1
, Op2
, Op0
);
3210 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3212 /// ::= (TypeAndValue ',' TypeAndValue)*
3213 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3214 LocTy CondLoc
, BBLoc
;
3216 BasicBlock
*DefaultBB
;
3217 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
3218 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
3219 ParseTypeAndBasicBlock(DefaultBB
, BBLoc
, PFS
) ||
3220 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
3223 if (!Cond
->getType()->isIntegerTy())
3224 return Error(CondLoc
, "switch condition must have integer type");
3226 // Parse the jump table pairs.
3227 SmallPtrSet
<Value
*, 32> SeenCases
;
3228 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
3229 while (Lex
.getKind() != lltok::rsquare
) {
3233 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
3234 ParseToken(lltok::comma
, "expected ',' after case value") ||
3235 ParseTypeAndBasicBlock(DestBB
, PFS
))
3238 if (!SeenCases
.insert(Constant
))
3239 return Error(CondLoc
, "duplicate case value in switch");
3240 if (!isa
<ConstantInt
>(Constant
))
3241 return Error(CondLoc
, "case value is not a constant integer");
3243 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
), DestBB
));
3246 Lex
.Lex(); // Eat the ']'.
3248 SwitchInst
*SI
= SwitchInst::Create(Cond
, DefaultBB
, Table
.size());
3249 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
3250 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
3257 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3258 bool LLParser::ParseIndirectBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3261 if (ParseTypeAndValue(Address
, AddrLoc
, PFS
) ||
3262 ParseToken(lltok::comma
, "expected ',' after indirectbr address") ||
3263 ParseToken(lltok::lsquare
, "expected '[' with indirectbr"))
3266 if (!Address
->getType()->isPointerTy())
3267 return Error(AddrLoc
, "indirectbr address must have pointer type");
3269 // Parse the destination list.
3270 SmallVector
<BasicBlock
*, 16> DestList
;
3272 if (Lex
.getKind() != lltok::rsquare
) {
3274 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
3276 DestList
.push_back(DestBB
);
3278 while (EatIfPresent(lltok::comma
)) {
3279 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
3281 DestList
.push_back(DestBB
);
3285 if (ParseToken(lltok::rsquare
, "expected ']' at end of block list"))
3288 IndirectBrInst
*IBI
= IndirectBrInst::Create(Address
, DestList
.size());
3289 for (unsigned i
= 0, e
= DestList
.size(); i
!= e
; ++i
)
3290 IBI
->addDestination(DestList
[i
]);
3297 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3298 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3299 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3300 LocTy CallLoc
= Lex
.getLoc();
3301 unsigned RetAttrs
, FnAttrs
;
3303 PATypeHolder
RetType(Type::getVoidTy(Context
));
3306 SmallVector
<ParamInfo
, 16> ArgList
;
3308 BasicBlock
*NormalBB
, *UnwindBB
;
3309 if (ParseOptionalCallingConv(CC
) ||
3310 ParseOptionalAttrs(RetAttrs
, 1) ||
3311 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3312 ParseValID(CalleeID
) ||
3313 ParseParameterList(ArgList
, PFS
) ||
3314 ParseOptionalAttrs(FnAttrs
, 2) ||
3315 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
3316 ParseTypeAndBasicBlock(NormalBB
, PFS
) ||
3317 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
3318 ParseTypeAndBasicBlock(UnwindBB
, PFS
))
3321 // If RetType is a non-function pointer type, then this is the short syntax
3322 // for the call, which means that RetType is just the return type. Infer the
3323 // rest of the function argument types from the arguments that are present.
3324 const PointerType
*PFTy
= 0;
3325 const FunctionType
*Ty
= 0;
3326 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3327 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3328 // Pull out the types of all of the arguments...
3329 std::vector
<const Type
*> ParamTypes
;
3330 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3331 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3333 if (!FunctionType::isValidReturnType(RetType
))
3334 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3336 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3337 PFTy
= PointerType::getUnqual(Ty
);
3340 // Look up the callee.
3342 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, &PFS
)) return true;
3344 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3345 // function attributes.
3346 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
3347 if (FnAttrs
& ObsoleteFuncAttrs
) {
3348 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
3349 FnAttrs
&= ~ObsoleteFuncAttrs
;
3352 // Set up the Attributes for the function.
3353 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3354 if (RetAttrs
!= Attribute::None
)
3355 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3357 SmallVector
<Value
*, 8> Args
;
3359 // Loop through FunctionType's arguments and ensure they are specified
3360 // correctly. Also, gather any parameter attributes.
3361 FunctionType::param_iterator I
= Ty
->param_begin();
3362 FunctionType::param_iterator E
= Ty
->param_end();
3363 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3364 const Type
*ExpectedTy
= 0;
3367 } else if (!Ty
->isVarArg()) {
3368 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3371 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3372 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3373 ExpectedTy
->getDescription() + "'");
3374 Args
.push_back(ArgList
[i
].V
);
3375 if (ArgList
[i
].Attrs
!= Attribute::None
)
3376 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3380 return Error(CallLoc
, "not enough parameters specified for call");
3382 if (FnAttrs
!= Attribute::None
)
3383 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3385 // Finish off the Attributes and check them
3386 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3388 InvokeInst
*II
= InvokeInst::Create(Callee
, NormalBB
, UnwindBB
,
3389 Args
.begin(), Args
.end());
3390 II
->setCallingConv(CC
);
3391 II
->setAttributes(PAL
);
3398 //===----------------------------------------------------------------------===//
3399 // Binary Operators.
3400 //===----------------------------------------------------------------------===//
3403 /// ::= ArithmeticOps TypeAndValue ',' Value
3405 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3406 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3407 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
3408 unsigned Opc
, unsigned OperandType
) {
3409 LocTy Loc
; Value
*LHS
, *RHS
;
3410 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3411 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
3412 ParseValue(LHS
->getType(), RHS
, PFS
))
3416 switch (OperandType
) {
3417 default: llvm_unreachable("Unknown operand type!");
3418 case 0: // int or FP.
3419 Valid
= LHS
->getType()->isIntOrIntVectorTy() ||
3420 LHS
->getType()->isFPOrFPVectorTy();
3422 case 1: Valid
= LHS
->getType()->isIntOrIntVectorTy(); break;
3423 case 2: Valid
= LHS
->getType()->isFPOrFPVectorTy(); break;
3427 return Error(Loc
, "invalid operand type for instruction");
3429 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3434 /// ::= ArithmeticOps TypeAndValue ',' Value {
3435 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
3437 LocTy Loc
; Value
*LHS
, *RHS
;
3438 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3439 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
3440 ParseValue(LHS
->getType(), RHS
, PFS
))
3443 if (!LHS
->getType()->isIntOrIntVectorTy())
3444 return Error(Loc
,"instruction requires integer or integer vector operands");
3446 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
3452 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3453 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3454 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
3456 // Parse the integer/fp comparison predicate.
3460 if (ParseCmpPredicate(Pred
, Opc
) ||
3461 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
3462 ParseToken(lltok::comma
, "expected ',' after compare value") ||
3463 ParseValue(LHS
->getType(), RHS
, PFS
))
3466 if (Opc
== Instruction::FCmp
) {
3467 if (!LHS
->getType()->isFPOrFPVectorTy())
3468 return Error(Loc
, "fcmp requires floating point operands");
3469 Inst
= new FCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
3471 assert(Opc
== Instruction::ICmp
&& "Unknown opcode for CmpInst!");
3472 if (!LHS
->getType()->isIntOrIntVectorTy() &&
3473 !LHS
->getType()->isPointerTy())
3474 return Error(Loc
, "icmp requires integer operands");
3475 Inst
= new ICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
3480 //===----------------------------------------------------------------------===//
3481 // Other Instructions.
3482 //===----------------------------------------------------------------------===//
3486 /// ::= CastOpc TypeAndValue 'to' Type
3487 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
3489 LocTy Loc
; Value
*Op
;
3490 PATypeHolder
DestTy(Type::getVoidTy(Context
));
3491 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
3492 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
3496 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
3497 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
3498 return Error(Loc
, "invalid cast opcode for cast from '" +
3499 Op
->getType()->getDescription() + "' to '" +
3500 DestTy
->getDescription() + "'");
3502 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
3507 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3508 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3510 Value
*Op0
, *Op1
, *Op2
;
3511 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3512 ParseToken(lltok::comma
, "expected ',' after select condition") ||
3513 ParseTypeAndValue(Op1
, PFS
) ||
3514 ParseToken(lltok::comma
, "expected ',' after select value") ||
3515 ParseTypeAndValue(Op2
, PFS
))
3518 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
3519 return Error(Loc
, Reason
);
3521 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
3526 /// ::= 'va_arg' TypeAndValue ',' Type
3527 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3529 PATypeHolder
EltTy(Type::getVoidTy(Context
));
3531 if (ParseTypeAndValue(Op
, PFS
) ||
3532 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
3533 ParseType(EltTy
, TypeLoc
))
3536 if (!EltTy
->isFirstClassType())
3537 return Error(TypeLoc
, "va_arg requires operand with first class type");
3539 Inst
= new VAArgInst(Op
, EltTy
);
3543 /// ParseExtractElement
3544 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3545 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3548 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3549 ParseToken(lltok::comma
, "expected ',' after extract value") ||
3550 ParseTypeAndValue(Op1
, PFS
))
3553 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
3554 return Error(Loc
, "invalid extractelement operands");
3556 Inst
= ExtractElementInst::Create(Op0
, Op1
);
3560 /// ParseInsertElement
3561 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3562 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3564 Value
*Op0
, *Op1
, *Op2
;
3565 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3566 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3567 ParseTypeAndValue(Op1
, PFS
) ||
3568 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3569 ParseTypeAndValue(Op2
, PFS
))
3572 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
3573 return Error(Loc
, "invalid insertelement operands");
3575 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
3579 /// ParseShuffleVector
3580 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3581 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3583 Value
*Op0
, *Op1
, *Op2
;
3584 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
3585 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
3586 ParseTypeAndValue(Op1
, PFS
) ||
3587 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
3588 ParseTypeAndValue(Op2
, PFS
))
3591 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
3592 return Error(Loc
, "invalid extractelement operands");
3594 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
3599 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3600 int LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3601 PATypeHolder
Ty(Type::getVoidTy(Context
));
3603 LocTy TypeLoc
= Lex
.getLoc();
3605 if (ParseType(Ty
) ||
3606 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3607 ParseValue(Ty
, Op0
, PFS
) ||
3608 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3609 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3610 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3613 bool AteExtraComma
= false;
3614 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
3616 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
3618 if (!EatIfPresent(lltok::comma
))
3621 if (Lex
.getKind() == lltok::MetadataVar
) {
3622 AteExtraComma
= true;
3626 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
3627 ParseValue(Ty
, Op0
, PFS
) ||
3628 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
3629 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
3630 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
3634 if (!Ty
->isFirstClassType())
3635 return Error(TypeLoc
, "phi node must have first class type");
3637 PHINode
*PN
= PHINode::Create(Ty
, PHIVals
.size());
3638 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
3639 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
3641 return AteExtraComma
? InstExtraComma
: InstNormal
;
3645 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3646 /// ParameterList OptionalAttrs
3647 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
3649 unsigned RetAttrs
, FnAttrs
;
3651 PATypeHolder
RetType(Type::getVoidTy(Context
));
3654 SmallVector
<ParamInfo
, 16> ArgList
;
3655 LocTy CallLoc
= Lex
.getLoc();
3657 if ((isTail
&& ParseToken(lltok::kw_call
, "expected 'tail call'")) ||
3658 ParseOptionalCallingConv(CC
) ||
3659 ParseOptionalAttrs(RetAttrs
, 1) ||
3660 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3661 ParseValID(CalleeID
) ||
3662 ParseParameterList(ArgList
, PFS
) ||
3663 ParseOptionalAttrs(FnAttrs
, 2))
3666 // If RetType is a non-function pointer type, then this is the short syntax
3667 // for the call, which means that RetType is just the return type. Infer the
3668 // rest of the function argument types from the arguments that are present.
3669 const PointerType
*PFTy
= 0;
3670 const FunctionType
*Ty
= 0;
3671 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3672 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3673 // Pull out the types of all of the arguments...
3674 std::vector
<const Type
*> ParamTypes
;
3675 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3676 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3678 if (!FunctionType::isValidReturnType(RetType
))
3679 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3681 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3682 PFTy
= PointerType::getUnqual(Ty
);
3685 // Look up the callee.
3687 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, &PFS
)) return true;
3689 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3690 // function attributes.
3691 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
3692 if (FnAttrs
& ObsoleteFuncAttrs
) {
3693 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
3694 FnAttrs
&= ~ObsoleteFuncAttrs
;
3697 // Set up the Attributes for the function.
3698 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3699 if (RetAttrs
!= Attribute::None
)
3700 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3702 SmallVector
<Value
*, 8> Args
;
3704 // Loop through FunctionType's arguments and ensure they are specified
3705 // correctly. Also, gather any parameter attributes.
3706 FunctionType::param_iterator I
= Ty
->param_begin();
3707 FunctionType::param_iterator E
= Ty
->param_end();
3708 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3709 const Type
*ExpectedTy
= 0;
3712 } else if (!Ty
->isVarArg()) {
3713 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3716 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3717 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3718 ExpectedTy
->getDescription() + "'");
3719 Args
.push_back(ArgList
[i
].V
);
3720 if (ArgList
[i
].Attrs
!= Attribute::None
)
3721 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3725 return Error(CallLoc
, "not enough parameters specified for call");
3727 if (FnAttrs
!= Attribute::None
)
3728 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3730 // Finish off the Attributes and check them
3731 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3733 CallInst
*CI
= CallInst::Create(Callee
, Args
.begin(), Args
.end());
3734 CI
->setTailCall(isTail
);
3735 CI
->setCallingConv(CC
);
3736 CI
->setAttributes(PAL
);
3741 //===----------------------------------------------------------------------===//
3742 // Memory Instructions.
3743 //===----------------------------------------------------------------------===//
3746 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3747 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3748 int LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
,
3749 BasicBlock
* BB
, bool isAlloca
) {
3750 PATypeHolder
Ty(Type::getVoidTy(Context
));
3753 unsigned Alignment
= 0;
3754 if (ParseType(Ty
)) return true;
3756 bool AteExtraComma
= false;
3757 if (EatIfPresent(lltok::comma
)) {
3758 if (Lex
.getKind() == lltok::kw_align
) {
3759 if (ParseOptionalAlignment(Alignment
)) return true;
3760 } else if (Lex
.getKind() == lltok::MetadataVar
) {
3761 AteExtraComma
= true;
3763 if (ParseTypeAndValue(Size
, SizeLoc
, PFS
) ||
3764 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3769 if (Size
&& !Size
->getType()->isIntegerTy())
3770 return Error(SizeLoc
, "element count must have integer type");
3773 Inst
= new AllocaInst(Ty
, Size
, Alignment
);
3774 return AteExtraComma
? InstExtraComma
: InstNormal
;
3777 // Autoupgrade old malloc instruction to malloc call.
3778 // FIXME: Remove in LLVM 3.0.
3779 if (Size
&& !Size
->getType()->isIntegerTy(32))
3780 return Error(SizeLoc
, "element count must be i32");
3781 const Type
*IntPtrTy
= Type::getInt32Ty(Context
);
3782 Constant
*AllocSize
= ConstantExpr::getSizeOf(Ty
);
3783 AllocSize
= ConstantExpr::getTruncOrBitCast(AllocSize
, IntPtrTy
);
3785 // Prototype malloc as "void *(int32)".
3786 // This function is renamed as "malloc" in ValidateEndOfModule().
3787 MallocF
= cast
<Function
>(
3788 M
->getOrInsertFunction("", Type::getInt8PtrTy(Context
), IntPtrTy
, NULL
));
3789 Inst
= CallInst::CreateMalloc(BB
, IntPtrTy
, Ty
, AllocSize
, Size
, MallocF
);
3790 return AteExtraComma
? InstExtraComma
: InstNormal
;
3794 /// ::= 'free' TypeAndValue
3795 bool LLParser::ParseFree(Instruction
*&Inst
, PerFunctionState
&PFS
,
3797 Value
*Val
; LocTy Loc
;
3798 if (ParseTypeAndValue(Val
, Loc
, PFS
)) return true;
3799 if (!Val
->getType()->isPointerTy())
3800 return Error(Loc
, "operand to free must be a pointer");
3801 Inst
= CallInst::CreateFree(Val
, BB
);
3806 /// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3807 int LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
,
3809 Value
*Val
; LocTy Loc
;
3810 unsigned Alignment
= 0;
3811 bool AteExtraComma
= false;
3812 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3813 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3816 if (!Val
->getType()->isPointerTy() ||
3817 !cast
<PointerType
>(Val
->getType())->getElementType()->isFirstClassType())
3818 return Error(Loc
, "load operand must be a pointer to a first class type");
3820 Inst
= new LoadInst(Val
, "", isVolatile
, Alignment
);
3821 return AteExtraComma
? InstExtraComma
: InstNormal
;
3825 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3826 int LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
,
3828 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
3829 unsigned Alignment
= 0;
3830 bool AteExtraComma
= false;
3831 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3832 ParseToken(lltok::comma
, "expected ',' after store operand") ||
3833 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
3834 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
3837 if (!Ptr
->getType()->isPointerTy())
3838 return Error(PtrLoc
, "store operand must be a pointer");
3839 if (!Val
->getType()->isFirstClassType())
3840 return Error(Loc
, "store operand must be a first class value");
3841 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
3842 return Error(Loc
, "stored value and pointer type do not match");
3844 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
);
3845 return AteExtraComma
? InstExtraComma
: InstNormal
;
3849 /// ::= 'getresult' TypeAndValue ',' i32
3850 /// FIXME: Remove support for getresult in LLVM 3.0
3851 bool LLParser::ParseGetResult(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3852 Value
*Val
; LocTy ValLoc
, EltLoc
;
3854 if (ParseTypeAndValue(Val
, ValLoc
, PFS
) ||
3855 ParseToken(lltok::comma
, "expected ',' after getresult operand") ||
3856 ParseUInt32(Element
, EltLoc
))
3859 if (!Val
->getType()->isStructTy() && !Val
->getType()->isArrayTy())
3860 return Error(ValLoc
, "getresult inst requires an aggregate operand");
3861 if (!ExtractValueInst::getIndexedType(Val
->getType(), Element
))
3862 return Error(EltLoc
, "invalid getresult index for value");
3863 Inst
= ExtractValueInst::Create(Val
, Element
);
3867 /// ParseGetElementPtr
3868 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3869 int LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3870 Value
*Ptr
, *Val
; LocTy Loc
, EltLoc
;
3872 bool InBounds
= EatIfPresent(lltok::kw_inbounds
);
3874 if (ParseTypeAndValue(Ptr
, Loc
, PFS
)) return true;
3876 if (!Ptr
->getType()->isPointerTy())
3877 return Error(Loc
, "base of getelementptr must be a pointer");
3879 SmallVector
<Value
*, 16> Indices
;
3880 bool AteExtraComma
= false;
3881 while (EatIfPresent(lltok::comma
)) {
3882 if (Lex
.getKind() == lltok::MetadataVar
) {
3883 AteExtraComma
= true;
3886 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
3887 if (!Val
->getType()->isIntegerTy())
3888 return Error(EltLoc
, "getelementptr index must be an integer");
3889 Indices
.push_back(Val
);
3892 if (!GetElementPtrInst::getIndexedType(Ptr
->getType(),
3893 Indices
.begin(), Indices
.end()))
3894 return Error(Loc
, "invalid getelementptr indices");
3895 Inst
= GetElementPtrInst::Create(Ptr
, Indices
.begin(), Indices
.end());
3897 cast
<GetElementPtrInst
>(Inst
)->setIsInBounds(true);
3898 return AteExtraComma
? InstExtraComma
: InstNormal
;
3901 /// ParseExtractValue
3902 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3903 int LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3904 Value
*Val
; LocTy Loc
;
3905 SmallVector
<unsigned, 4> Indices
;
3907 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3908 ParseIndexList(Indices
, AteExtraComma
))
3911 if (!Val
->getType()->isAggregateType())
3912 return Error(Loc
, "extractvalue operand must be aggregate type");
3914 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
3916 return Error(Loc
, "invalid indices for extractvalue");
3917 Inst
= ExtractValueInst::Create(Val
, Indices
.begin(), Indices
.end());
3918 return AteExtraComma
? InstExtraComma
: InstNormal
;
3921 /// ParseInsertValue
3922 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3923 int LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3924 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
3925 SmallVector
<unsigned, 4> Indices
;
3927 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
3928 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
3929 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
3930 ParseIndexList(Indices
, AteExtraComma
))
3933 if (!Val0
->getType()->isAggregateType())
3934 return Error(Loc0
, "insertvalue operand must be aggregate type");
3936 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
3938 return Error(Loc0
, "invalid indices for insertvalue");
3939 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
.begin(), Indices
.end());
3940 return AteExtraComma
? InstExtraComma
: InstNormal
;
3943 //===----------------------------------------------------------------------===//
3944 // Embedded metadata.
3945 //===----------------------------------------------------------------------===//
3947 /// ParseMDNodeVector
3948 /// ::= Element (',' Element)*
3950 /// ::= 'null' | TypeAndValue
3951 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Value
*> &Elts
,
3952 PerFunctionState
*PFS
) {
3953 // Check for an empty list.
3954 if (Lex
.getKind() == lltok::rbrace
)
3958 // Null is a special case since it is typeless.
3959 if (EatIfPresent(lltok::kw_null
)) {
3965 PATypeHolder
Ty(Type::getVoidTy(Context
));
3967 if (ParseType(Ty
) || ParseValID(ID
, PFS
) ||
3968 ConvertValIDToValue(Ty
, ID
, V
, PFS
))
3972 } while (EatIfPresent(lltok::comma
));