1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
29 CriticalAntiDepBreaker::
30 CriticalAntiDepBreaker(MachineFunction
& MFi
) :
31 AntiDepBreaker(), MF(MFi
),
33 TII(MF
.getTarget().getInstrInfo()),
34 TRI(MF
.getTarget().getRegisterInfo()),
35 AllocatableSet(TRI
->getAllocatableSet(MF
)),
36 Classes(TRI
->getNumRegs(), static_cast<const TargetRegisterClass
*>(0)),
37 KillIndices(TRI
->getNumRegs(), 0),
38 DefIndices(TRI
->getNumRegs(), 0) {}
40 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock
*BB
) {
44 const unsigned BBSize
= BB
->size();
45 for (unsigned i
= 0, e
= TRI
->getNumRegs(); i
!= e
; ++i
) {
46 // Clear out the register class data.
47 Classes
[i
] = static_cast<const TargetRegisterClass
*>(0);
49 // Initialize the indices to indicate that no registers are live.
51 DefIndices
[i
] = BBSize
;
54 // Clear "do not change" set.
57 bool IsReturnBlock
= (!BB
->empty() && BB
->back().getDesc().isReturn());
59 // Determine the live-out physregs for this block.
61 // In a return block, examine the function live-out regs.
62 for (MachineRegisterInfo::liveout_iterator I
= MRI
.liveout_begin(),
63 E
= MRI
.liveout_end(); I
!= E
; ++I
) {
65 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
66 KillIndices
[Reg
] = BB
->size();
67 DefIndices
[Reg
] = ~0u;
69 // Repeat, for all aliases.
70 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
71 unsigned AliasReg
= *Alias
;
72 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
73 KillIndices
[AliasReg
] = BB
->size();
74 DefIndices
[AliasReg
] = ~0u;
79 // In a non-return block, examine the live-in regs of all successors.
80 // Note a return block can have successors if the return instruction is
82 for (MachineBasicBlock::succ_iterator SI
= BB
->succ_begin(),
83 SE
= BB
->succ_end(); SI
!= SE
; ++SI
)
84 for (MachineBasicBlock::livein_iterator I
= (*SI
)->livein_begin(),
85 E
= (*SI
)->livein_end(); I
!= E
; ++I
) {
87 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
88 KillIndices
[Reg
] = BB
->size();
89 DefIndices
[Reg
] = ~0u;
91 // Repeat, for all aliases.
92 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
93 unsigned AliasReg
= *Alias
;
94 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
95 KillIndices
[AliasReg
] = BB
->size();
96 DefIndices
[AliasReg
] = ~0u;
100 // Mark live-out callee-saved registers. In a return block this is
101 // all callee-saved registers. In non-return this is any
102 // callee-saved register that is not saved in the prolog.
103 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
104 BitVector Pristine
= MFI
->getPristineRegs(BB
);
105 for (const unsigned *I
= TRI
->getCalleeSavedRegs(); *I
; ++I
) {
107 if (!IsReturnBlock
&& !Pristine
.test(Reg
)) continue;
108 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
109 KillIndices
[Reg
] = BB
->size();
110 DefIndices
[Reg
] = ~0u;
112 // Repeat, for all aliases.
113 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
114 unsigned AliasReg
= *Alias
;
115 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
116 KillIndices
[AliasReg
] = BB
->size();
117 DefIndices
[AliasReg
] = ~0u;
122 void CriticalAntiDepBreaker::FinishBlock() {
127 void CriticalAntiDepBreaker::Observe(MachineInstr
*MI
, unsigned Count
,
128 unsigned InsertPosIndex
) {
129 if (MI
->isDebugValue())
131 assert(Count
< InsertPosIndex
&& "Instruction index out of expected range!");
133 for (unsigned Reg
= 0; Reg
!= TRI
->getNumRegs(); ++Reg
) {
134 if (KillIndices
[Reg
] != ~0u) {
135 // If Reg is currently live, then mark that it can't be renamed as
136 // we don't know the extent of its live-range anymore (now that it
137 // has been scheduled).
138 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
139 KillIndices
[Reg
] = Count
;
140 } else if (DefIndices
[Reg
] < InsertPosIndex
&& DefIndices
[Reg
] >= Count
) {
141 // Any register which was defined within the previous scheduling region
142 // may have been rescheduled and its lifetime may overlap with registers
143 // in ways not reflected in our current liveness state. For each such
144 // register, adjust the liveness state to be conservatively correct.
145 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
147 // Move the def index to the end of the previous region, to reflect
148 // that the def could theoretically have been scheduled at the end.
149 DefIndices
[Reg
] = InsertPosIndex
;
153 PrescanInstruction(MI
);
154 ScanInstruction(MI
, Count
);
157 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
159 static const SDep
*CriticalPathStep(const SUnit
*SU
) {
160 const SDep
*Next
= 0;
161 unsigned NextDepth
= 0;
162 // Find the predecessor edge with the greatest depth.
163 for (SUnit::const_pred_iterator P
= SU
->Preds
.begin(), PE
= SU
->Preds
.end();
165 const SUnit
*PredSU
= P
->getSUnit();
166 unsigned PredLatency
= P
->getLatency();
167 unsigned PredTotalLatency
= PredSU
->getDepth() + PredLatency
;
168 // In the case of a latency tie, prefer an anti-dependency edge over
169 // other types of edges.
170 if (NextDepth
< PredTotalLatency
||
171 (NextDepth
== PredTotalLatency
&& P
->getKind() == SDep::Anti
)) {
172 NextDepth
= PredTotalLatency
;
179 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr
*MI
) {
180 // It's not safe to change register allocation for source operands of
181 // that have special allocation requirements. Also assume all registers
182 // used in a call must not be changed (ABI).
183 // FIXME: The issue with predicated instruction is more complex. We are being
184 // conservative here because the kill markers cannot be trusted after
186 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
188 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
189 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
190 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
192 // The first R6 kill is not really a kill since it's killed by a predicated
193 // instruction which may not be executed. The second R6 def may or may not
194 // re-define R6 so it's not safe to change it since the last R6 use cannot be
196 bool Special
= MI
->getDesc().isCall() ||
197 MI
->getDesc().hasExtraSrcRegAllocReq() ||
198 TII
->isPredicated(MI
);
200 // Scan the register operands for this instruction and update
201 // Classes and RegRefs.
202 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
203 MachineOperand
&MO
= MI
->getOperand(i
);
204 if (!MO
.isReg()) continue;
205 unsigned Reg
= MO
.getReg();
206 if (Reg
== 0) continue;
207 const TargetRegisterClass
*NewRC
= 0;
209 if (i
< MI
->getDesc().getNumOperands())
210 NewRC
= MI
->getDesc().OpInfo
[i
].getRegClass(TRI
);
212 // For now, only allow the register to be changed if its register
213 // class is consistent across all uses.
214 if (!Classes
[Reg
] && NewRC
)
215 Classes
[Reg
] = NewRC
;
216 else if (!NewRC
|| Classes
[Reg
] != NewRC
)
217 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
219 // Now check for aliases.
220 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
221 // If an alias of the reg is used during the live range, give up.
222 // Note that this allows us to skip checking if AntiDepReg
223 // overlaps with any of the aliases, among other things.
224 unsigned AliasReg
= *Alias
;
225 if (Classes
[AliasReg
]) {
226 Classes
[AliasReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
227 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
231 // If we're still willing to consider this register, note the reference.
232 if (Classes
[Reg
] != reinterpret_cast<TargetRegisterClass
*>(-1))
233 RegRefs
.insert(std::make_pair(Reg
, &MO
));
235 if (MO
.isUse() && Special
) {
236 if (KeepRegs
.insert(Reg
)) {
237 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
239 KeepRegs
.insert(*Subreg
);
245 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr
*MI
,
248 // Proceding upwards, registers that are defed but not used in this
249 // instruction are now dead.
251 if (!TII
->isPredicated(MI
)) {
252 // Predicated defs are modeled as read + write, i.e. similar to two
254 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
255 MachineOperand
&MO
= MI
->getOperand(i
);
256 if (!MO
.isReg()) continue;
257 unsigned Reg
= MO
.getReg();
258 if (Reg
== 0) continue;
259 if (!MO
.isDef()) continue;
260 // Ignore two-addr defs.
261 if (MI
->isRegTiedToUseOperand(i
)) continue;
263 DefIndices
[Reg
] = Count
;
264 KillIndices
[Reg
] = ~0u;
265 assert(((KillIndices
[Reg
] == ~0u) !=
266 (DefIndices
[Reg
] == ~0u)) &&
267 "Kill and Def maps aren't consistent for Reg!");
271 // Repeat, for all subregs.
272 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
274 unsigned SubregReg
= *Subreg
;
275 DefIndices
[SubregReg
] = Count
;
276 KillIndices
[SubregReg
] = ~0u;
277 KeepRegs
.erase(SubregReg
);
278 Classes
[SubregReg
] = 0;
279 RegRefs
.erase(SubregReg
);
281 // Conservatively mark super-registers as unusable.
282 for (const unsigned *Super
= TRI
->getSuperRegisters(Reg
);
284 unsigned SuperReg
= *Super
;
285 Classes
[SuperReg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
289 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
290 MachineOperand
&MO
= MI
->getOperand(i
);
291 if (!MO
.isReg()) continue;
292 unsigned Reg
= MO
.getReg();
293 if (Reg
== 0) continue;
294 if (!MO
.isUse()) continue;
296 const TargetRegisterClass
*NewRC
= 0;
297 if (i
< MI
->getDesc().getNumOperands())
298 NewRC
= MI
->getDesc().OpInfo
[i
].getRegClass(TRI
);
300 // For now, only allow the register to be changed if its register
301 // class is consistent across all uses.
302 if (!Classes
[Reg
] && NewRC
)
303 Classes
[Reg
] = NewRC
;
304 else if (!NewRC
|| Classes
[Reg
] != NewRC
)
305 Classes
[Reg
] = reinterpret_cast<TargetRegisterClass
*>(-1);
307 RegRefs
.insert(std::make_pair(Reg
, &MO
));
309 // It wasn't previously live but now it is, this is a kill.
310 if (KillIndices
[Reg
] == ~0u) {
311 KillIndices
[Reg
] = Count
;
312 DefIndices
[Reg
] = ~0u;
313 assert(((KillIndices
[Reg
] == ~0u) !=
314 (DefIndices
[Reg
] == ~0u)) &&
315 "Kill and Def maps aren't consistent for Reg!");
317 // Repeat, for all aliases.
318 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
319 unsigned AliasReg
= *Alias
;
320 if (KillIndices
[AliasReg
] == ~0u) {
321 KillIndices
[AliasReg
] = Count
;
322 DefIndices
[AliasReg
] = ~0u;
328 // Check all machine operands that reference the antidependent register and must
329 // be replaced by NewReg. Return true if any of their parent instructions may
330 // clobber the new register.
332 // Note: AntiDepReg may be referenced by a two-address instruction such that
333 // it's use operand is tied to a def operand. We guard against the case in which
334 // the two-address instruction also defines NewReg, as may happen with
335 // pre/postincrement loads. In this case, both the use and def operands are in
336 // RegRefs because the def is inserted by PrescanInstruction and not erased
337 // during ScanInstruction. So checking for an instructions with definitions of
338 // both NewReg and AntiDepReg covers it.
340 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin
,
341 RegRefIter RegRefEnd
,
344 for (RegRefIter I
= RegRefBegin
; I
!= RegRefEnd
; ++I
) {
345 MachineOperand
*RefOper
= I
->second
;
347 // Don't allow the instruction defining AntiDepReg to earlyclobber its
348 // operands, in case they may be assigned to NewReg. In this case antidep
349 // breaking must fail, but it's too rare to bother optimizing.
350 if (RefOper
->isDef() && RefOper
->isEarlyClobber())
353 // Handle cases in which this instructions defines NewReg.
354 MachineInstr
*MI
= RefOper
->getParent();
355 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
356 const MachineOperand
&CheckOper
= MI
->getOperand(i
);
358 if (!CheckOper
.isReg() || !CheckOper
.isDef() ||
359 CheckOper
.getReg() != NewReg
)
362 // Don't allow the instruction to define NewReg and AntiDepReg.
363 // When AntiDepReg is renamed it will be an illegal op.
364 if (RefOper
->isDef())
367 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
369 if (CheckOper
.isEarlyClobber())
372 // Don't allow inline asm to define NewReg at all. Who know what it's
374 if (MI
->isInlineAsm())
382 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin
,
383 RegRefIter RegRefEnd
,
386 const TargetRegisterClass
*RC
)
388 for (TargetRegisterClass::iterator R
= RC
->allocation_order_begin(MF
),
389 RE
= RC
->allocation_order_end(MF
); R
!= RE
; ++R
) {
390 unsigned NewReg
= *R
;
391 // Don't consider non-allocatable registers
392 if (!AllocatableSet
.test(NewReg
)) continue;
393 // Don't replace a register with itself.
394 if (NewReg
== AntiDepReg
) continue;
395 // Don't replace a register with one that was recently used to repair
396 // an anti-dependence with this AntiDepReg, because that would
397 // re-introduce that anti-dependence.
398 if (NewReg
== LastNewReg
) continue;
399 // If any instructions that define AntiDepReg also define the NewReg, it's
400 // not suitable. For example, Instruction with multiple definitions can
401 // result in this condition.
402 if (isNewRegClobberedByRefs(RegRefBegin
, RegRefEnd
, NewReg
)) continue;
403 // If NewReg is dead and NewReg's most recent def is not before
404 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
405 assert(((KillIndices
[AntiDepReg
] == ~0u) != (DefIndices
[AntiDepReg
] == ~0u))
406 && "Kill and Def maps aren't consistent for AntiDepReg!");
407 assert(((KillIndices
[NewReg
] == ~0u) != (DefIndices
[NewReg
] == ~0u))
408 && "Kill and Def maps aren't consistent for NewReg!");
409 if (KillIndices
[NewReg
] != ~0u ||
410 Classes
[NewReg
] == reinterpret_cast<TargetRegisterClass
*>(-1) ||
411 KillIndices
[AntiDepReg
] > DefIndices
[NewReg
])
416 // No registers are free and available!
420 unsigned CriticalAntiDepBreaker::
421 BreakAntiDependencies(const std::vector
<SUnit
>& SUnits
,
422 MachineBasicBlock::iterator Begin
,
423 MachineBasicBlock::iterator End
,
424 unsigned InsertPosIndex
) {
425 // The code below assumes that there is at least one instruction,
426 // so just duck out immediately if the block is empty.
427 if (SUnits
.empty()) return 0;
429 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
430 // This is used for updating debug information.
431 DenseMap
<MachineInstr
*,const SUnit
*> MISUnitMap
;
433 // Find the node at the bottom of the critical path.
434 const SUnit
*Max
= 0;
435 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
436 const SUnit
*SU
= &SUnits
[i
];
437 MISUnitMap
[SU
->getInstr()] = SU
;
438 if (!Max
|| SU
->getDepth() + SU
->Latency
> Max
->getDepth() + Max
->Latency
)
444 DEBUG(dbgs() << "Critical path has total latency "
445 << (Max
->getDepth() + Max
->Latency
) << "\n");
446 DEBUG(dbgs() << "Available regs:");
447 for (unsigned Reg
= 0; Reg
< TRI
->getNumRegs(); ++Reg
) {
448 if (KillIndices
[Reg
] == ~0u)
449 DEBUG(dbgs() << " " << TRI
->getName(Reg
));
451 DEBUG(dbgs() << '\n');
455 // Track progress along the critical path through the SUnit graph as we walk
457 const SUnit
*CriticalPathSU
= Max
;
458 MachineInstr
*CriticalPathMI
= CriticalPathSU
->getInstr();
460 // Consider this pattern:
469 // There are three anti-dependencies here, and without special care,
470 // we'd break all of them using the same register:
479 // because at each anti-dependence, B is the first register that
480 // isn't A which is free. This re-introduces anti-dependencies
481 // at all but one of the original anti-dependencies that we were
482 // trying to break. To avoid this, keep track of the most recent
483 // register that each register was replaced with, avoid
484 // using it to repair an anti-dependence on the same register.
485 // This lets us produce this:
494 // This still has an anti-dependence on B, but at least it isn't on the
495 // original critical path.
497 // TODO: If we tracked more than one register here, we could potentially
498 // fix that remaining critical edge too. This is a little more involved,
499 // because unlike the most recent register, less recent registers should
500 // still be considered, though only if no other registers are available.
501 std::vector
<unsigned> LastNewReg(TRI
->getNumRegs(), 0);
503 // Attempt to break anti-dependence edges on the critical path. Walk the
504 // instructions from the bottom up, tracking information about liveness
505 // as we go to help determine which registers are available.
507 unsigned Count
= InsertPosIndex
- 1;
508 for (MachineBasicBlock::iterator I
= End
, E
= Begin
;
510 MachineInstr
*MI
= --I
;
511 if (MI
->isDebugValue())
514 // Check if this instruction has a dependence on the critical path that
515 // is an anti-dependence that we may be able to break. If it is, set
516 // AntiDepReg to the non-zero register associated with the anti-dependence.
518 // We limit our attention to the critical path as a heuristic to avoid
519 // breaking anti-dependence edges that aren't going to significantly
520 // impact the overall schedule. There are a limited number of registers
521 // and we want to save them for the important edges.
523 // TODO: Instructions with multiple defs could have multiple
524 // anti-dependencies. The current code here only knows how to break one
525 // edge per instruction. Note that we'd have to be able to break all of
526 // the anti-dependencies in an instruction in order to be effective.
527 unsigned AntiDepReg
= 0;
528 if (MI
== CriticalPathMI
) {
529 if (const SDep
*Edge
= CriticalPathStep(CriticalPathSU
)) {
530 const SUnit
*NextSU
= Edge
->getSUnit();
532 // Only consider anti-dependence edges.
533 if (Edge
->getKind() == SDep::Anti
) {
534 AntiDepReg
= Edge
->getReg();
535 assert(AntiDepReg
!= 0 && "Anti-dependence on reg0?");
536 if (!AllocatableSet
.test(AntiDepReg
))
537 // Don't break anti-dependencies on non-allocatable registers.
539 else if (KeepRegs
.count(AntiDepReg
))
540 // Don't break anti-dependencies if an use down below requires
541 // this exact register.
544 // If the SUnit has other dependencies on the SUnit that it
545 // anti-depends on, don't bother breaking the anti-dependency
546 // since those edges would prevent such units from being
547 // scheduled past each other regardless.
549 // Also, if there are dependencies on other SUnits with the
550 // same register as the anti-dependency, don't attempt to
552 for (SUnit::const_pred_iterator P
= CriticalPathSU
->Preds
.begin(),
553 PE
= CriticalPathSU
->Preds
.end(); P
!= PE
; ++P
)
554 if (P
->getSUnit() == NextSU
?
555 (P
->getKind() != SDep::Anti
|| P
->getReg() != AntiDepReg
) :
556 (P
->getKind() == SDep::Data
&& P
->getReg() == AntiDepReg
)) {
562 CriticalPathSU
= NextSU
;
563 CriticalPathMI
= CriticalPathSU
->getInstr();
565 // We've reached the end of the critical path.
571 PrescanInstruction(MI
);
573 // If MI's defs have a special allocation requirement, don't allow
574 // any def registers to be changed. Also assume all registers
575 // defined in a call must not be changed (ABI).
576 if (MI
->getDesc().isCall() || MI
->getDesc().hasExtraDefRegAllocReq() ||
577 TII
->isPredicated(MI
))
578 // If this instruction's defs have special allocation requirement, don't
579 // break this anti-dependency.
581 else if (AntiDepReg
) {
582 // If this instruction has a use of AntiDepReg, breaking it
584 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
585 MachineOperand
&MO
= MI
->getOperand(i
);
586 if (!MO
.isReg()) continue;
587 unsigned Reg
= MO
.getReg();
588 if (Reg
== 0) continue;
589 if (MO
.isUse() && TRI
->regsOverlap(AntiDepReg
, Reg
)) {
596 // Determine AntiDepReg's register class, if it is live and is
597 // consistently used within a single class.
598 const TargetRegisterClass
*RC
= AntiDepReg
!= 0 ? Classes
[AntiDepReg
] : 0;
599 assert((AntiDepReg
== 0 || RC
!= NULL
) &&
600 "Register should be live if it's causing an anti-dependence!");
601 if (RC
== reinterpret_cast<TargetRegisterClass
*>(-1))
604 // Look for a suitable register to use to break the anti-depenence.
606 // TODO: Instead of picking the first free register, consider which might
608 if (AntiDepReg
!= 0) {
609 std::pair
<std::multimap
<unsigned, MachineOperand
*>::iterator
,
610 std::multimap
<unsigned, MachineOperand
*>::iterator
>
611 Range
= RegRefs
.equal_range(AntiDepReg
);
612 if (unsigned NewReg
= findSuitableFreeRegister(Range
.first
, Range
.second
,
614 LastNewReg
[AntiDepReg
],
616 DEBUG(dbgs() << "Breaking anti-dependence edge on "
617 << TRI
->getName(AntiDepReg
)
618 << " with " << RegRefs
.count(AntiDepReg
) << " references"
619 << " using " << TRI
->getName(NewReg
) << "!\n");
621 // Update the references to the old register to refer to the new
623 for (std::multimap
<unsigned, MachineOperand
*>::iterator
624 Q
= Range
.first
, QE
= Range
.second
; Q
!= QE
; ++Q
) {
625 Q
->second
->setReg(NewReg
);
626 // If the SU for the instruction being updated has debug information
627 // related to the anti-dependency register, make sure to update that
629 const SUnit
*SU
= MISUnitMap
[Q
->second
->getParent()];
631 for (unsigned i
= 0, e
= SU
->DbgInstrList
.size() ; i
< e
; ++i
) {
632 MachineInstr
*DI
= SU
->DbgInstrList
[i
];
633 assert (DI
->getNumOperands()==3 && DI
->getOperand(0).isReg() &&
634 DI
->getOperand(0).getReg()
635 && "Non register dbg_value attached to SUnit!");
636 if (DI
->getOperand(0).getReg() == AntiDepReg
)
637 DI
->getOperand(0).setReg(NewReg
);
641 // We just went back in time and modified history; the
642 // liveness information for the anti-dependence reg is now
643 // inconsistent. Set the state as if it were dead.
644 Classes
[NewReg
] = Classes
[AntiDepReg
];
645 DefIndices
[NewReg
] = DefIndices
[AntiDepReg
];
646 KillIndices
[NewReg
] = KillIndices
[AntiDepReg
];
647 assert(((KillIndices
[NewReg
] == ~0u) !=
648 (DefIndices
[NewReg
] == ~0u)) &&
649 "Kill and Def maps aren't consistent for NewReg!");
651 Classes
[AntiDepReg
] = 0;
652 DefIndices
[AntiDepReg
] = KillIndices
[AntiDepReg
];
653 KillIndices
[AntiDepReg
] = ~0u;
654 assert(((KillIndices
[AntiDepReg
] == ~0u) !=
655 (DefIndices
[AntiDepReg
] == ~0u)) &&
656 "Kill and Def maps aren't consistent for AntiDepReg!");
658 RegRefs
.erase(AntiDepReg
);
659 LastNewReg
[AntiDepReg
] = NewReg
;
664 ScanInstruction(MI
, Count
);