Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / LiveIntervalUnion.cpp
blobb67f96667bfd90af7fb2a96406bb21f3f4ea6bed
1 //===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // LiveIntervalUnion represents a coalesced set of live intervals. This may be
11 // used during coalescing to represent a congruence class, or during register
12 // allocation to model liveness of a physical register.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "regalloc"
17 #include "LiveIntervalUnion.h"
18 #include "llvm/ADT/SparseBitVector.h"
19 #include "llvm/CodeGen/MachineLoopRanges.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
24 using namespace llvm;
27 // Merge a LiveInterval's segments. Guarantee no overlaps.
28 void LiveIntervalUnion::unify(LiveInterval &VirtReg) {
29 if (VirtReg.empty())
30 return;
31 ++Tag;
33 // Insert each of the virtual register's live segments into the map.
34 LiveInterval::iterator RegPos = VirtReg.begin();
35 LiveInterval::iterator RegEnd = VirtReg.end();
36 SegmentIter SegPos = Segments.find(RegPos->start);
38 while (SegPos.valid()) {
39 SegPos.insert(RegPos->start, RegPos->end, &VirtReg);
40 if (++RegPos == RegEnd)
41 return;
42 SegPos.advanceTo(RegPos->start);
45 // We have reached the end of Segments, so it is no longer necessary to search
46 // for the insertion position.
47 // It is faster to insert the end first.
48 --RegEnd;
49 SegPos.insert(RegEnd->start, RegEnd->end, &VirtReg);
50 for (; RegPos != RegEnd; ++RegPos, ++SegPos)
51 SegPos.insert(RegPos->start, RegPos->end, &VirtReg);
54 // Remove a live virtual register's segments from this union.
55 void LiveIntervalUnion::extract(LiveInterval &VirtReg) {
56 if (VirtReg.empty())
57 return;
58 ++Tag;
60 // Remove each of the virtual register's live segments from the map.
61 LiveInterval::iterator RegPos = VirtReg.begin();
62 LiveInterval::iterator RegEnd = VirtReg.end();
63 SegmentIter SegPos = Segments.find(RegPos->start);
65 for (;;) {
66 assert(SegPos.value() == &VirtReg && "Inconsistent LiveInterval");
67 SegPos.erase();
68 if (!SegPos.valid())
69 return;
71 // Skip all segments that may have been coalesced.
72 RegPos = VirtReg.advanceTo(RegPos, SegPos.start());
73 if (RegPos == RegEnd)
74 return;
76 SegPos.advanceTo(RegPos->start);
80 void
81 LiveIntervalUnion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
82 OS << "LIU " << PrintReg(RepReg, TRI);
83 if (empty()) {
84 OS << " empty\n";
85 return;
87 for (LiveSegments::const_iterator SI = Segments.begin(); SI.valid(); ++SI) {
88 OS << " [" << SI.start() << ' ' << SI.stop() << "):"
89 << PrintReg(SI.value()->reg, TRI);
91 OS << '\n';
94 void LiveIntervalUnion::InterferenceResult::print(raw_ostream &OS,
95 const TargetRegisterInfo *TRI) const {
96 OS << '[' << start() << ';' << stop() << "):"
97 << PrintReg(interference()->reg, TRI);
100 void LiveIntervalUnion::Query::print(raw_ostream &OS,
101 const TargetRegisterInfo *TRI) {
102 OS << "Interferences with ";
103 LiveUnion->print(OS, TRI);
104 InterferenceResult IR = firstInterference();
105 while (isInterference(IR)) {
106 OS << " ";
107 IR.print(OS, TRI);
108 OS << '\n';
109 nextInterference(IR);
113 #ifndef NDEBUG
114 // Verify the live intervals in this union and add them to the visited set.
115 void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) {
116 for (SegmentIter SI = Segments.begin(); SI.valid(); ++SI)
117 VisitedVRegs.set(SI.value()->reg);
119 #endif //!NDEBUG
121 // Private interface accessed by Query.
123 // Find a pair of segments that intersect, one in the live virtual register
124 // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
125 // is responsible for advancing the LiveIntervalUnion segments to find a
126 // "notable" intersection, which requires query-specific logic.
128 // This design assumes only a fast mechanism for intersecting a single live
129 // virtual register segment with a set of LiveIntervalUnion segments. This may
130 // be ok since most virtual registers have very few segments. If we had a data
131 // structure that optimizd MxN intersection of segments, then we would bypass
132 // the loop that advances within the LiveInterval.
134 // If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first
135 // segment whose start point is greater than LiveInterval's end point.
137 // Assumes that segments are sorted by start position in both
138 // LiveInterval and LiveSegments.
139 void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const {
140 // Search until reaching the end of the LiveUnion segments.
141 LiveInterval::iterator VirtRegEnd = VirtReg->end();
142 if (IR.VirtRegI == VirtRegEnd)
143 return;
144 while (IR.LiveUnionI.valid()) {
145 // Slowly advance the live virtual reg iterator until we surpass the next
146 // segment in LiveUnion.
148 // Note: If this is ever used for coalescing of fixed registers and we have
149 // a live vreg with thousands of segments, then change this code to use
150 // upperBound instead.
151 IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start());
152 if (IR.VirtRegI == VirtRegEnd)
153 break; // Retain current (nonoverlapping) LiveUnionI
155 // VirtRegI may have advanced far beyond LiveUnionI, catch up.
156 IR.LiveUnionI.advanceTo(IR.VirtRegI->start);
158 // Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end
159 if (!IR.LiveUnionI.valid())
160 break;
161 if (IR.LiveUnionI.start() < IR.VirtRegI->end) {
162 assert(overlap(*IR.VirtRegI, IR.LiveUnionI) &&
163 "upperBound postcondition");
164 break;
167 if (!IR.LiveUnionI.valid())
168 IR.VirtRegI = VirtRegEnd;
171 // Find the first intersection, and cache interference info
172 // (retain segment iterators into both VirtReg and LiveUnion).
173 const LiveIntervalUnion::InterferenceResult &
174 LiveIntervalUnion::Query::firstInterference() {
175 if (CheckedFirstInterference)
176 return FirstInterference;
177 CheckedFirstInterference = true;
178 InterferenceResult &IR = FirstInterference;
179 IR.LiveUnionI.setMap(LiveUnion->getMap());
181 // Quickly skip interference check for empty sets.
182 if (VirtReg->empty() || LiveUnion->empty()) {
183 IR.VirtRegI = VirtReg->end();
184 } else if (VirtReg->beginIndex() < LiveUnion->startIndex()) {
185 // VirtReg starts first, perform double binary search.
186 IR.VirtRegI = VirtReg->find(LiveUnion->startIndex());
187 if (IR.VirtRegI != VirtReg->end())
188 IR.LiveUnionI.find(IR.VirtRegI->start);
189 } else {
190 // LiveUnion starts first, perform double binary search.
191 IR.LiveUnionI.find(VirtReg->beginIndex());
192 if (IR.LiveUnionI.valid())
193 IR.VirtRegI = VirtReg->find(IR.LiveUnionI.start());
194 else
195 IR.VirtRegI = VirtReg->end();
197 findIntersection(FirstInterference);
198 assert((IR.VirtRegI == VirtReg->end() || IR.LiveUnionI.valid())
199 && "Uninitialized iterator");
200 return FirstInterference;
203 // Treat the result as an iterator and advance to the next interfering pair
204 // of segments. This is a plain iterator with no filter.
205 bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const {
206 assert(isInterference(IR) && "iteration past end of interferences");
208 // Advance either the VirtReg or LiveUnion segment to ensure that we visit all
209 // unique overlapping pairs.
210 if (IR.VirtRegI->end < IR.LiveUnionI.stop()) {
211 if (++IR.VirtRegI == VirtReg->end())
212 return false;
214 else {
215 if (!(++IR.LiveUnionI).valid()) {
216 IR.VirtRegI = VirtReg->end();
217 return false;
220 // Short-circuit findIntersection() if possible.
221 if (overlap(*IR.VirtRegI, IR.LiveUnionI))
222 return true;
224 // Find the next intersection.
225 findIntersection(IR);
226 return isInterference(IR);
229 // Scan the vector of interfering virtual registers in this union. Assume it's
230 // quite small.
231 bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const {
232 SmallVectorImpl<LiveInterval*>::const_iterator I =
233 std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg);
234 return I != InterferingVRegs.end();
237 // Count the number of virtual registers in this union that interfere with this
238 // query's live virtual register.
240 // The number of times that we either advance IR.VirtRegI or call
241 // LiveUnion.upperBound() will be no more than the number of holes in
242 // VirtReg. So each invocation of collectInterferingVRegs() takes
243 // time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()).
245 // For comments on how to speed it up, see Query::findIntersection().
246 unsigned LiveIntervalUnion::Query::
247 collectInterferingVRegs(unsigned MaxInterferingRegs, float MaxWeight) {
248 InterferenceResult IR = firstInterference();
249 LiveInterval::iterator VirtRegEnd = VirtReg->end();
250 LiveInterval *RecentInterferingVReg = NULL;
251 if (IR.VirtRegI != VirtRegEnd) while (IR.LiveUnionI.valid()) {
252 // Advance the union's iterator to reach an unseen interfering vreg.
253 do {
254 if (IR.LiveUnionI.value() == RecentInterferingVReg)
255 continue;
257 if (!isSeenInterference(IR.LiveUnionI.value()))
258 break;
260 // Cache the most recent interfering vreg to bypass isSeenInterference.
261 RecentInterferingVReg = IR.LiveUnionI.value();
263 } while ((++IR.LiveUnionI).valid());
264 if (!IR.LiveUnionI.valid())
265 break;
267 // Advance the VirtReg iterator until surpassing the next segment in
268 // LiveUnion.
269 IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start());
270 if (IR.VirtRegI == VirtRegEnd)
271 break;
273 // Check for intersection with the union's segment.
274 if (overlap(*IR.VirtRegI, IR.LiveUnionI)) {
276 if (!IR.LiveUnionI.value()->isSpillable())
277 SeenUnspillableVReg = true;
279 if (InterferingVRegs.size() == MaxInterferingRegs)
280 // Leave SeenAllInterferences set to false to indicate that at least one
281 // interference exists beyond those we collected.
282 return MaxInterferingRegs;
284 InterferingVRegs.push_back(IR.LiveUnionI.value());
286 // Cache the most recent interfering vreg to bypass isSeenInterference.
287 RecentInterferingVReg = IR.LiveUnionI.value();
288 ++IR.LiveUnionI;
290 // Stop collecting when the max weight is exceeded.
291 if (RecentInterferingVReg->weight >= MaxWeight)
292 return InterferingVRegs.size();
294 continue;
296 // VirtRegI may have advanced far beyond LiveUnionI,
297 // do a fast intersection test to "catch up"
298 IR.LiveUnionI.advanceTo(IR.VirtRegI->start);
300 SeenAllInterferences = true;
301 return InterferingVRegs.size();
304 bool LiveIntervalUnion::Query::checkLoopInterference(MachineLoopRange *Loop) {
305 // VirtReg is likely live throughout the loop, so start by checking LIU-Loop
306 // overlaps.
307 IntervalMapOverlaps<LiveIntervalUnion::Map, MachineLoopRange::Map>
308 Overlaps(LiveUnion->getMap(), Loop->getMap());
309 if (!Overlaps.valid())
310 return false;
312 // The loop is overlapping an LIU assignment. Check VirtReg as well.
313 LiveInterval::iterator VRI = VirtReg->find(Overlaps.start());
315 for (;;) {
316 if (VRI == VirtReg->end())
317 return false;
318 if (VRI->start < Overlaps.stop())
319 return true;
321 Overlaps.advanceTo(VRI->start);
322 if (!Overlaps.valid())
323 return false;
324 if (Overlaps.start() < VRI->end)
325 return true;
327 VRI = VirtReg->advanceTo(VRI, Overlaps.start());