1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "LiveDebugVariables.h"
17 #include "LiveIntervalUnion.h"
18 #include "LiveRangeEdit.h"
19 #include "RegAllocBase.h"
20 #include "RenderMachineFunction.h"
22 #include "VirtRegMap.h"
23 #include "llvm/ADT/OwningPtr.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Function.h"
27 #include "llvm/PassAnalysisSupport.h"
28 #include "llvm/CodeGen/CalcSpillWeights.h"
29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
30 #include "llvm/CodeGen/LiveStackAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterCoalescer.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/ADT/SparseBitVector.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Support/Timer.h"
54 STATISTIC(NumAssigned
, "Number of registers assigned");
55 STATISTIC(NumUnassigned
, "Number of registers unassigned");
56 STATISTIC(NumNewQueued
, "Number of new live ranges queued");
58 static RegisterRegAlloc
basicRegAlloc("basic", "basic register allocator",
59 createBasicRegisterAllocator
);
61 // Temporary verification option until we can put verification inside
63 static cl::opt
<bool, true>
64 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled
),
65 cl::desc("Verify during register allocation"));
67 const char *RegAllocBase::TimerGroupName
= "Register Allocation";
68 bool RegAllocBase::VerifyEnabled
= false;
71 struct CompSpillWeight
{
72 bool operator()(LiveInterval
*A
, LiveInterval
*B
) const {
73 return A
->weight
< B
->weight
;
79 /// RABasic provides a minimal implementation of the basic register allocation
80 /// algorithm. It prioritizes live virtual registers by spill weight and spills
81 /// whenever a register is unavailable. This is not practical in production but
82 /// provides a useful baseline both for measuring other allocators and comparing
83 /// the speed of the basic algorithm against other styles of allocators.
84 class RABasic
: public MachineFunctionPass
, public RegAllocBase
88 BitVector ReservedRegs
;
92 RenderMachineFunction
*RMF
;
95 std::auto_ptr
<Spiller
> SpillerInstance
;
96 std::priority_queue
<LiveInterval
*, std::vector
<LiveInterval
*>,
97 CompSpillWeight
> Queue
;
101 /// Return the pass name.
102 virtual const char* getPassName() const {
103 return "Basic Register Allocator";
106 /// RABasic analysis usage.
107 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const;
109 virtual void releaseMemory();
111 virtual Spiller
&spiller() { return *SpillerInstance
; }
113 virtual float getPriority(LiveInterval
*LI
) { return LI
->weight
; }
115 virtual void enqueue(LiveInterval
*LI
) {
119 virtual LiveInterval
*dequeue() {
122 LiveInterval
*LI
= Queue
.top();
127 virtual unsigned selectOrSplit(LiveInterval
&VirtReg
,
128 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
);
130 /// Perform register allocation.
131 virtual bool runOnMachineFunction(MachineFunction
&mf
);
136 char RABasic::ID
= 0;
138 } // end anonymous namespace
140 RABasic::RABasic(): MachineFunctionPass(ID
) {
141 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
142 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
143 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
144 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
145 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
146 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
147 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
148 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
149 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
150 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
151 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
154 void RABasic::getAnalysisUsage(AnalysisUsage
&AU
) const {
155 AU
.setPreservesCFG();
156 AU
.addRequired
<AliasAnalysis
>();
157 AU
.addPreserved
<AliasAnalysis
>();
158 AU
.addRequired
<LiveIntervals
>();
159 AU
.addPreserved
<SlotIndexes
>();
160 AU
.addRequired
<LiveDebugVariables
>();
161 AU
.addPreserved
<LiveDebugVariables
>();
163 AU
.addRequiredID(StrongPHIEliminationID
);
164 AU
.addRequiredTransitive
<RegisterCoalescer
>();
165 AU
.addRequired
<CalculateSpillWeights
>();
166 AU
.addRequired
<LiveStacks
>();
167 AU
.addPreserved
<LiveStacks
>();
168 AU
.addRequiredID(MachineDominatorsID
);
169 AU
.addPreservedID(MachineDominatorsID
);
170 AU
.addRequired
<MachineLoopInfo
>();
171 AU
.addPreserved
<MachineLoopInfo
>();
172 AU
.addRequired
<VirtRegMap
>();
173 AU
.addPreserved
<VirtRegMap
>();
174 DEBUG(AU
.addRequired
<RenderMachineFunction
>());
175 MachineFunctionPass::getAnalysisUsage(AU
);
178 void RABasic::releaseMemory() {
179 SpillerInstance
.reset(0);
180 RegAllocBase::releaseMemory();
184 // Verify each LiveIntervalUnion.
185 void RegAllocBase::verify() {
186 LiveVirtRegBitSet VisitedVRegs
;
187 OwningArrayPtr
<LiveVirtRegBitSet
>
188 unionVRegs(new LiveVirtRegBitSet
[PhysReg2LiveUnion
.numRegs()]);
190 // Verify disjoint unions.
191 for (unsigned PhysReg
= 0; PhysReg
< PhysReg2LiveUnion
.numRegs(); ++PhysReg
) {
192 DEBUG(PhysReg2LiveUnion
[PhysReg
].print(dbgs(), TRI
));
193 LiveVirtRegBitSet
&VRegs
= unionVRegs
[PhysReg
];
194 PhysReg2LiveUnion
[PhysReg
].verify(VRegs
);
195 // Union + intersection test could be done efficiently in one pass, but
196 // don't add a method to SparseBitVector unless we really need it.
197 assert(!VisitedVRegs
.intersects(VRegs
) && "vreg in multiple unions");
198 VisitedVRegs
|= VRegs
;
201 // Verify vreg coverage.
202 for (LiveIntervals::iterator liItr
= LIS
->begin(), liEnd
= LIS
->end();
203 liItr
!= liEnd
; ++liItr
) {
204 unsigned reg
= liItr
->first
;
205 if (TargetRegisterInfo::isPhysicalRegister(reg
)) continue;
206 if (!VRM
->hasPhys(reg
)) continue; // spilled?
207 unsigned PhysReg
= VRM
->getPhys(reg
);
208 if (!unionVRegs
[PhysReg
].test(reg
)) {
209 dbgs() << "LiveVirtReg " << reg
<< " not in union " <<
210 TRI
->getName(PhysReg
) << "\n";
211 llvm_unreachable("unallocated live vreg");
214 // FIXME: I'm not sure how to verify spilled intervals.
218 //===----------------------------------------------------------------------===//
219 // RegAllocBase Implementation
220 //===----------------------------------------------------------------------===//
222 // Instantiate a LiveIntervalUnion for each physical register.
223 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator
&allocator
,
227 static_cast<LiveIntervalUnion
*>(malloc(sizeof(LiveIntervalUnion
)*NRegs
));
228 for (unsigned r
= 0; r
!= NRegs
; ++r
)
229 new(Array
+ r
) LiveIntervalUnion(r
, allocator
);
232 void RegAllocBase::init(VirtRegMap
&vrm
, LiveIntervals
&lis
) {
233 NamedRegionTimer
T("Initialize", TimerGroupName
, TimePassesIsEnabled
);
234 TRI
= &vrm
.getTargetRegInfo();
235 MRI
= &vrm
.getRegInfo();
238 const unsigned NumRegs
= TRI
->getNumRegs();
239 if (NumRegs
!= PhysReg2LiveUnion
.numRegs()) {
240 PhysReg2LiveUnion
.init(UnionAllocator
, NumRegs
);
241 // Cache an interferece query for each physical reg
242 Queries
.reset(new LiveIntervalUnion::Query
[PhysReg2LiveUnion
.numRegs()]);
246 void RegAllocBase::LiveUnionArray::clear() {
249 for (unsigned r
= 0; r
!= NumRegs
; ++r
)
250 Array
[r
].~LiveIntervalUnion();
256 void RegAllocBase::releaseMemory() {
257 for (unsigned r
= 0, e
= PhysReg2LiveUnion
.numRegs(); r
!= e
; ++r
)
258 PhysReg2LiveUnion
[r
].clear();
261 // Visit all the live registers. If they are already assigned to a physical
262 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
263 // them on the priority queue for later assignment.
264 void RegAllocBase::seedLiveRegs() {
265 NamedRegionTimer
T("Seed Live Regs", TimerGroupName
, TimePassesIsEnabled
);
266 for (LiveIntervals::iterator I
= LIS
->begin(), E
= LIS
->end(); I
!= E
; ++I
) {
267 unsigned RegNum
= I
->first
;
268 LiveInterval
&VirtReg
= *I
->second
;
269 if (TargetRegisterInfo::isPhysicalRegister(RegNum
))
270 PhysReg2LiveUnion
[RegNum
].unify(VirtReg
);
276 void RegAllocBase::assign(LiveInterval
&VirtReg
, unsigned PhysReg
) {
277 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg
.reg
, TRI
)
278 << " to " << PrintReg(PhysReg
, TRI
) << '\n');
279 assert(!VRM
->hasPhys(VirtReg
.reg
) && "Duplicate VirtReg assignment");
280 VRM
->assignVirt2Phys(VirtReg
.reg
, PhysReg
);
281 MRI
->setPhysRegUsed(PhysReg
);
282 PhysReg2LiveUnion
[PhysReg
].unify(VirtReg
);
286 void RegAllocBase::unassign(LiveInterval
&VirtReg
, unsigned PhysReg
) {
287 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg
.reg
, TRI
)
288 << " from " << PrintReg(PhysReg
, TRI
) << '\n');
289 assert(VRM
->getPhys(VirtReg
.reg
) == PhysReg
&& "Inconsistent unassign");
290 PhysReg2LiveUnion
[PhysReg
].extract(VirtReg
);
291 VRM
->clearVirt(VirtReg
.reg
);
295 // Top-level driver to manage the queue of unassigned VirtRegs and call the
296 // selectOrSplit implementation.
297 void RegAllocBase::allocatePhysRegs() {
300 // Continue assigning vregs one at a time to available physical registers.
301 while (LiveInterval
*VirtReg
= dequeue()) {
302 assert(!VRM
->hasPhys(VirtReg
->reg
) && "Register already assigned");
304 // Unused registers can appear when the spiller coalesces snippets.
305 if (MRI
->reg_nodbg_empty(VirtReg
->reg
)) {
306 DEBUG(dbgs() << "Dropping unused " << *VirtReg
<< '\n');
307 LIS
->removeInterval(VirtReg
->reg
);
311 // Invalidate all interference queries, live ranges could have changed.
314 // selectOrSplit requests the allocator to return an available physical
315 // register if possible and populate a list of new live intervals that
316 // result from splitting.
317 DEBUG(dbgs() << "\nselectOrSplit "
318 << MRI
->getRegClass(VirtReg
->reg
)->getName()
319 << ':' << *VirtReg
<< '\n');
320 typedef SmallVector
<LiveInterval
*, 4> VirtRegVec
;
321 VirtRegVec SplitVRegs
;
322 unsigned AvailablePhysReg
= selectOrSplit(*VirtReg
, SplitVRegs
);
324 if (AvailablePhysReg
)
325 assign(*VirtReg
, AvailablePhysReg
);
327 for (VirtRegVec::iterator I
= SplitVRegs
.begin(), E
= SplitVRegs
.end();
329 LiveInterval
*SplitVirtReg
= *I
;
330 assert(!VRM
->hasPhys(SplitVirtReg
->reg
) && "Register already assigned");
331 if (MRI
->reg_nodbg_empty(SplitVirtReg
->reg
)) {
332 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg
<< '\n');
333 LIS
->removeInterval(SplitVirtReg
->reg
);
336 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg
<< "\n");
337 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg
->reg
) &&
338 "expect split value in virtual register");
339 enqueue(SplitVirtReg
);
345 // Check if this live virtual register interferes with a physical register. If
346 // not, then check for interference on each register that aliases with the
347 // physical register. Return the interfering register.
348 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval
&VirtReg
,
350 for (const unsigned *AliasI
= TRI
->getOverlaps(PhysReg
); *AliasI
; ++AliasI
)
351 if (query(VirtReg
, *AliasI
).checkInterference())
356 // Helper for spillInteferences() that spills all interfering vregs currently
357 // assigned to this physical register.
358 void RegAllocBase::spillReg(LiveInterval
& VirtReg
, unsigned PhysReg
,
359 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
360 LiveIntervalUnion::Query
&Q
= query(VirtReg
, PhysReg
);
361 assert(Q
.seenAllInterferences() && "need collectInterferences()");
362 const SmallVectorImpl
<LiveInterval
*> &PendingSpills
= Q
.interferingVRegs();
364 for (SmallVectorImpl
<LiveInterval
*>::const_iterator I
= PendingSpills
.begin(),
365 E
= PendingSpills
.end(); I
!= E
; ++I
) {
366 LiveInterval
&SpilledVReg
= **I
;
367 DEBUG(dbgs() << "extracting from " <<
368 TRI
->getName(PhysReg
) << " " << SpilledVReg
<< '\n');
370 // Deallocate the interfering vreg by removing it from the union.
371 // A LiveInterval instance may not be in a union during modification!
372 unassign(SpilledVReg
, PhysReg
);
374 // Spill the extracted interval.
375 LiveRangeEdit
LRE(SpilledVReg
, SplitVRegs
, 0, &PendingSpills
);
376 spiller().spill(LRE
);
378 // After extracting segments, the query's results are invalid. But keep the
379 // contents valid until we're done accessing pendingSpills.
383 // Spill or split all live virtual registers currently unified under PhysReg
384 // that interfere with VirtReg. The newly spilled or split live intervals are
385 // returned by appending them to SplitVRegs.
387 RegAllocBase::spillInterferences(LiveInterval
&VirtReg
, unsigned PhysReg
,
388 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
389 // Record each interference and determine if all are spillable before mutating
390 // either the union or live intervals.
391 unsigned NumInterferences
= 0;
392 // Collect interferences assigned to any alias of the physical register.
393 for (const unsigned *asI
= TRI
->getOverlaps(PhysReg
); *asI
; ++asI
) {
394 LiveIntervalUnion::Query
&QAlias
= query(VirtReg
, *asI
);
395 NumInterferences
+= QAlias
.collectInterferingVRegs();
396 if (QAlias
.seenUnspillableVReg()) {
400 DEBUG(dbgs() << "spilling " << TRI
->getName(PhysReg
) <<
401 " interferences with " << VirtReg
<< "\n");
402 assert(NumInterferences
> 0 && "expect interference");
404 // Spill each interfering vreg allocated to PhysReg or an alias.
405 for (const unsigned *AliasI
= TRI
->getOverlaps(PhysReg
); *AliasI
; ++AliasI
)
406 spillReg(VirtReg
, *AliasI
, SplitVRegs
);
410 // Add newly allocated physical registers to the MBB live in sets.
411 void RegAllocBase::addMBBLiveIns(MachineFunction
*MF
) {
412 NamedRegionTimer
T("MBB Live Ins", TimerGroupName
, TimePassesIsEnabled
);
413 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
417 LiveIntervalUnion::SegmentIter SI
;
418 for (unsigned PhysReg
= 0; PhysReg
< PhysReg2LiveUnion
.numRegs(); ++PhysReg
) {
419 LiveIntervalUnion
&LiveUnion
= PhysReg2LiveUnion
[PhysReg
];
420 if (LiveUnion
.empty())
422 MachineFunction::iterator MBB
= llvm::next(MF
->begin());
423 MachineFunction::iterator MFE
= MF
->end();
424 SlotIndex Start
, Stop
;
425 tie(Start
, Stop
) = Indexes
->getMBBRange(MBB
);
426 SI
.setMap(LiveUnion
.getMap());
429 if (SI
.start() <= Start
) {
430 if (!MBB
->isLiveIn(PhysReg
))
431 MBB
->addLiveIn(PhysReg
);
432 } else if (SI
.start() > Stop
)
433 MBB
= Indexes
->getMBBFromIndex(SI
.start().getPrevIndex());
436 tie(Start
, Stop
) = Indexes
->getMBBRange(MBB
);
443 //===----------------------------------------------------------------------===//
444 // RABasic Implementation
445 //===----------------------------------------------------------------------===//
447 // Driver for the register assignment and splitting heuristics.
448 // Manages iteration over the LiveIntervalUnions.
450 // This is a minimal implementation of register assignment and splitting that
451 // spills whenever we run out of registers.
453 // selectOrSplit can only be called once per live virtual register. We then do a
454 // single interference test for each register the correct class until we find an
455 // available register. So, the number of interference tests in the worst case is
456 // |vregs| * |machineregs|. And since the number of interference tests is
457 // minimal, there is no value in caching them outside the scope of
459 unsigned RABasic::selectOrSplit(LiveInterval
&VirtReg
,
460 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
461 // Populate a list of physical register spill candidates.
462 SmallVector
<unsigned, 8> PhysRegSpillCands
;
464 // Check for an available register in this class.
465 const TargetRegisterClass
*TRC
= MRI
->getRegClass(VirtReg
.reg
);
467 for (TargetRegisterClass::iterator I
= TRC
->allocation_order_begin(*MF
),
468 E
= TRC
->allocation_order_end(*MF
);
471 unsigned PhysReg
= *I
;
472 if (ReservedRegs
.test(PhysReg
)) continue;
474 // Check interference and as a side effect, intialize queries for this
475 // VirtReg and its aliases.
476 unsigned interfReg
= checkPhysRegInterference(VirtReg
, PhysReg
);
477 if (interfReg
== 0) {
478 // Found an available register.
481 LiveInterval
*interferingVirtReg
=
482 Queries
[interfReg
].firstInterference().liveUnionPos().value();
484 // The current VirtReg must either be spillable, or one of its interferences
485 // must have less spill weight.
486 if (interferingVirtReg
->weight
< VirtReg
.weight
) {
487 PhysRegSpillCands
.push_back(PhysReg
);
490 // Try to spill another interfering reg with less spill weight.
491 for (SmallVectorImpl
<unsigned>::iterator PhysRegI
= PhysRegSpillCands
.begin(),
492 PhysRegE
= PhysRegSpillCands
.end(); PhysRegI
!= PhysRegE
; ++PhysRegI
) {
494 if (!spillInterferences(VirtReg
, *PhysRegI
, SplitVRegs
)) continue;
496 assert(checkPhysRegInterference(VirtReg
, *PhysRegI
) == 0 &&
497 "Interference after spill.");
498 // Tell the caller to allocate to this newly freed physical register.
501 // No other spill candidates were found, so spill the current VirtReg.
502 DEBUG(dbgs() << "spilling: " << VirtReg
<< '\n');
503 LiveRangeEdit
LRE(VirtReg
, SplitVRegs
);
504 spiller().spill(LRE
);
506 // The live virtual register requesting allocation was spilled, so tell
507 // the caller not to allocate anything during this round.
511 bool RABasic::runOnMachineFunction(MachineFunction
&mf
) {
512 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
513 << "********** Function: "
514 << ((Value
*)mf
.getFunction())->getName() << '\n');
517 DEBUG(RMF
= &getAnalysis
<RenderMachineFunction
>());
519 RegAllocBase::init(getAnalysis
<VirtRegMap
>(), getAnalysis
<LiveIntervals
>());
521 ReservedRegs
= TRI
->getReservedRegs(*MF
);
523 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
));
529 // Diagnostic output before rewriting
530 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM
<< "\n");
532 // optional HTML output
533 DEBUG(RMF
->renderMachineFunction("After basic register allocation.", VRM
));
535 // FIXME: Verification currently must run before VirtRegRewriter. We should
536 // make the rewriter a separate pass and override verifyAnalysis instead. When
537 // that happens, verification naturally falls under VerifyMachineCode.
540 // Verify accuracy of LiveIntervals. The standard machine code verifier
541 // ensures that each LiveIntervals covers all uses of the virtual reg.
543 // FIXME: MachineVerifier is badly broken when using the standard
544 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
545 // inline spiller, some tests fail to verify because the coalescer does not
546 // always generate verifiable code.
547 MF
->verify(this, "In RABasic::verify");
549 // Verify that LiveIntervals are partitioned into unions and disjoint within
556 VRM
->rewrite(LIS
->getSlotIndexes());
558 // Write out new DBG_VALUE instructions.
559 getAnalysis
<LiveDebugVariables
>().emitDebugValues(VRM
);
561 // The pass output is in VirtRegMap. Release all the transient data.
567 FunctionPass
* llvm::createBasicRegisterAllocator()
569 return new RABasic();