Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / RegAllocBasic.cpp
blobd92d80f181fc443086851950ee4a72aad86b1602
1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "LiveDebugVariables.h"
17 #include "LiveIntervalUnion.h"
18 #include "LiveRangeEdit.h"
19 #include "RegAllocBase.h"
20 #include "RenderMachineFunction.h"
21 #include "Spiller.h"
22 #include "VirtRegMap.h"
23 #include "llvm/ADT/OwningPtr.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Function.h"
27 #include "llvm/PassAnalysisSupport.h"
28 #include "llvm/CodeGen/CalcSpillWeights.h"
29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
30 #include "llvm/CodeGen/LiveStackAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterCoalescer.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #ifndef NDEBUG
42 #include "llvm/ADT/SparseBitVector.h"
43 #endif
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Support/Timer.h"
49 #include <cstdlib>
50 #include <queue>
52 using namespace llvm;
54 STATISTIC(NumAssigned , "Number of registers assigned");
55 STATISTIC(NumUnassigned , "Number of registers unassigned");
56 STATISTIC(NumNewQueued , "Number of new live ranges queued");
58 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
59 createBasicRegisterAllocator);
61 // Temporary verification option until we can put verification inside
62 // MachineVerifier.
63 static cl::opt<bool, true>
64 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
65 cl::desc("Verify during register allocation"));
67 const char *RegAllocBase::TimerGroupName = "Register Allocation";
68 bool RegAllocBase::VerifyEnabled = false;
70 namespace {
71 struct CompSpillWeight {
72 bool operator()(LiveInterval *A, LiveInterval *B) const {
73 return A->weight < B->weight;
78 namespace {
79 /// RABasic provides a minimal implementation of the basic register allocation
80 /// algorithm. It prioritizes live virtual registers by spill weight and spills
81 /// whenever a register is unavailable. This is not practical in production but
82 /// provides a useful baseline both for measuring other allocators and comparing
83 /// the speed of the basic algorithm against other styles of allocators.
84 class RABasic : public MachineFunctionPass, public RegAllocBase
86 // context
87 MachineFunction *MF;
88 BitVector ReservedRegs;
90 // analyses
91 LiveStacks *LS;
92 RenderMachineFunction *RMF;
94 // state
95 std::auto_ptr<Spiller> SpillerInstance;
96 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
97 CompSpillWeight> Queue;
98 public:
99 RABasic();
101 /// Return the pass name.
102 virtual const char* getPassName() const {
103 return "Basic Register Allocator";
106 /// RABasic analysis usage.
107 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
109 virtual void releaseMemory();
111 virtual Spiller &spiller() { return *SpillerInstance; }
113 virtual float getPriority(LiveInterval *LI) { return LI->weight; }
115 virtual void enqueue(LiveInterval *LI) {
116 Queue.push(LI);
119 virtual LiveInterval *dequeue() {
120 if (Queue.empty())
121 return 0;
122 LiveInterval *LI = Queue.top();
123 Queue.pop();
124 return LI;
127 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
128 SmallVectorImpl<LiveInterval*> &SplitVRegs);
130 /// Perform register allocation.
131 virtual bool runOnMachineFunction(MachineFunction &mf);
133 static char ID;
136 char RABasic::ID = 0;
138 } // end anonymous namespace
140 RABasic::RABasic(): MachineFunctionPass(ID) {
141 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
142 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
143 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
144 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
145 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
146 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
147 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
148 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
149 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
150 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
151 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
154 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.setPreservesCFG();
156 AU.addRequired<AliasAnalysis>();
157 AU.addPreserved<AliasAnalysis>();
158 AU.addRequired<LiveIntervals>();
159 AU.addPreserved<SlotIndexes>();
160 AU.addRequired<LiveDebugVariables>();
161 AU.addPreserved<LiveDebugVariables>();
162 if (StrongPHIElim)
163 AU.addRequiredID(StrongPHIEliminationID);
164 AU.addRequiredTransitive<RegisterCoalescer>();
165 AU.addRequired<CalculateSpillWeights>();
166 AU.addRequired<LiveStacks>();
167 AU.addPreserved<LiveStacks>();
168 AU.addRequiredID(MachineDominatorsID);
169 AU.addPreservedID(MachineDominatorsID);
170 AU.addRequired<MachineLoopInfo>();
171 AU.addPreserved<MachineLoopInfo>();
172 AU.addRequired<VirtRegMap>();
173 AU.addPreserved<VirtRegMap>();
174 DEBUG(AU.addRequired<RenderMachineFunction>());
175 MachineFunctionPass::getAnalysisUsage(AU);
178 void RABasic::releaseMemory() {
179 SpillerInstance.reset(0);
180 RegAllocBase::releaseMemory();
183 #ifndef NDEBUG
184 // Verify each LiveIntervalUnion.
185 void RegAllocBase::verify() {
186 LiveVirtRegBitSet VisitedVRegs;
187 OwningArrayPtr<LiveVirtRegBitSet>
188 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
190 // Verify disjoint unions.
191 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
192 DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
193 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
194 PhysReg2LiveUnion[PhysReg].verify(VRegs);
195 // Union + intersection test could be done efficiently in one pass, but
196 // don't add a method to SparseBitVector unless we really need it.
197 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
198 VisitedVRegs |= VRegs;
201 // Verify vreg coverage.
202 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
203 liItr != liEnd; ++liItr) {
204 unsigned reg = liItr->first;
205 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
206 if (!VRM->hasPhys(reg)) continue; // spilled?
207 unsigned PhysReg = VRM->getPhys(reg);
208 if (!unionVRegs[PhysReg].test(reg)) {
209 dbgs() << "LiveVirtReg " << reg << " not in union " <<
210 TRI->getName(PhysReg) << "\n";
211 llvm_unreachable("unallocated live vreg");
214 // FIXME: I'm not sure how to verify spilled intervals.
216 #endif //!NDEBUG
218 //===----------------------------------------------------------------------===//
219 // RegAllocBase Implementation
220 //===----------------------------------------------------------------------===//
222 // Instantiate a LiveIntervalUnion for each physical register.
223 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
224 unsigned NRegs) {
225 NumRegs = NRegs;
226 Array =
227 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
228 for (unsigned r = 0; r != NRegs; ++r)
229 new(Array + r) LiveIntervalUnion(r, allocator);
232 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
233 NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
234 TRI = &vrm.getTargetRegInfo();
235 MRI = &vrm.getRegInfo();
236 VRM = &vrm;
237 LIS = &lis;
238 const unsigned NumRegs = TRI->getNumRegs();
239 if (NumRegs != PhysReg2LiveUnion.numRegs()) {
240 PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
241 // Cache an interferece query for each physical reg
242 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
246 void RegAllocBase::LiveUnionArray::clear() {
247 if (!Array)
248 return;
249 for (unsigned r = 0; r != NumRegs; ++r)
250 Array[r].~LiveIntervalUnion();
251 free(Array);
252 NumRegs = 0;
253 Array = 0;
256 void RegAllocBase::releaseMemory() {
257 for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
258 PhysReg2LiveUnion[r].clear();
261 // Visit all the live registers. If they are already assigned to a physical
262 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
263 // them on the priority queue for later assignment.
264 void RegAllocBase::seedLiveRegs() {
265 NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
266 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
267 unsigned RegNum = I->first;
268 LiveInterval &VirtReg = *I->second;
269 if (TargetRegisterInfo::isPhysicalRegister(RegNum))
270 PhysReg2LiveUnion[RegNum].unify(VirtReg);
271 else
272 enqueue(&VirtReg);
276 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
277 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
278 << " to " << PrintReg(PhysReg, TRI) << '\n');
279 assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
280 VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
281 MRI->setPhysRegUsed(PhysReg);
282 PhysReg2LiveUnion[PhysReg].unify(VirtReg);
283 ++NumAssigned;
286 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
287 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
288 << " from " << PrintReg(PhysReg, TRI) << '\n');
289 assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
290 PhysReg2LiveUnion[PhysReg].extract(VirtReg);
291 VRM->clearVirt(VirtReg.reg);
292 ++NumUnassigned;
295 // Top-level driver to manage the queue of unassigned VirtRegs and call the
296 // selectOrSplit implementation.
297 void RegAllocBase::allocatePhysRegs() {
298 seedLiveRegs();
300 // Continue assigning vregs one at a time to available physical registers.
301 while (LiveInterval *VirtReg = dequeue()) {
302 assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
304 // Unused registers can appear when the spiller coalesces snippets.
305 if (MRI->reg_nodbg_empty(VirtReg->reg)) {
306 DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
307 LIS->removeInterval(VirtReg->reg);
308 continue;
311 // Invalidate all interference queries, live ranges could have changed.
312 ++UserTag;
314 // selectOrSplit requests the allocator to return an available physical
315 // register if possible and populate a list of new live intervals that
316 // result from splitting.
317 DEBUG(dbgs() << "\nselectOrSplit "
318 << MRI->getRegClass(VirtReg->reg)->getName()
319 << ':' << *VirtReg << '\n');
320 typedef SmallVector<LiveInterval*, 4> VirtRegVec;
321 VirtRegVec SplitVRegs;
322 unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
324 if (AvailablePhysReg)
325 assign(*VirtReg, AvailablePhysReg);
327 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
328 I != E; ++I) {
329 LiveInterval *SplitVirtReg = *I;
330 assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
331 if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
332 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
333 LIS->removeInterval(SplitVirtReg->reg);
334 continue;
336 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
337 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
338 "expect split value in virtual register");
339 enqueue(SplitVirtReg);
340 ++NumNewQueued;
345 // Check if this live virtual register interferes with a physical register. If
346 // not, then check for interference on each register that aliases with the
347 // physical register. Return the interfering register.
348 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
349 unsigned PhysReg) {
350 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
351 if (query(VirtReg, *AliasI).checkInterference())
352 return *AliasI;
353 return 0;
356 // Helper for spillInteferences() that spills all interfering vregs currently
357 // assigned to this physical register.
358 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
359 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
360 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
361 assert(Q.seenAllInterferences() && "need collectInterferences()");
362 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
364 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
365 E = PendingSpills.end(); I != E; ++I) {
366 LiveInterval &SpilledVReg = **I;
367 DEBUG(dbgs() << "extracting from " <<
368 TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
370 // Deallocate the interfering vreg by removing it from the union.
371 // A LiveInterval instance may not be in a union during modification!
372 unassign(SpilledVReg, PhysReg);
374 // Spill the extracted interval.
375 LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
376 spiller().spill(LRE);
378 // After extracting segments, the query's results are invalid. But keep the
379 // contents valid until we're done accessing pendingSpills.
380 Q.clear();
383 // Spill or split all live virtual registers currently unified under PhysReg
384 // that interfere with VirtReg. The newly spilled or split live intervals are
385 // returned by appending them to SplitVRegs.
386 bool
387 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
388 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
389 // Record each interference and determine if all are spillable before mutating
390 // either the union or live intervals.
391 unsigned NumInterferences = 0;
392 // Collect interferences assigned to any alias of the physical register.
393 for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
394 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
395 NumInterferences += QAlias.collectInterferingVRegs();
396 if (QAlias.seenUnspillableVReg()) {
397 return false;
400 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
401 " interferences with " << VirtReg << "\n");
402 assert(NumInterferences > 0 && "expect interference");
404 // Spill each interfering vreg allocated to PhysReg or an alias.
405 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
406 spillReg(VirtReg, *AliasI, SplitVRegs);
407 return true;
410 // Add newly allocated physical registers to the MBB live in sets.
411 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
412 NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
413 SlotIndexes *Indexes = LIS->getSlotIndexes();
414 if (MF->size() <= 1)
415 return;
417 LiveIntervalUnion::SegmentIter SI;
418 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
419 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
420 if (LiveUnion.empty())
421 continue;
422 MachineFunction::iterator MBB = llvm::next(MF->begin());
423 MachineFunction::iterator MFE = MF->end();
424 SlotIndex Start, Stop;
425 tie(Start, Stop) = Indexes->getMBBRange(MBB);
426 SI.setMap(LiveUnion.getMap());
427 SI.find(Start);
428 while (SI.valid()) {
429 if (SI.start() <= Start) {
430 if (!MBB->isLiveIn(PhysReg))
431 MBB->addLiveIn(PhysReg);
432 } else if (SI.start() > Stop)
433 MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
434 if (++MBB == MFE)
435 break;
436 tie(Start, Stop) = Indexes->getMBBRange(MBB);
437 SI.advanceTo(Start);
443 //===----------------------------------------------------------------------===//
444 // RABasic Implementation
445 //===----------------------------------------------------------------------===//
447 // Driver for the register assignment and splitting heuristics.
448 // Manages iteration over the LiveIntervalUnions.
450 // This is a minimal implementation of register assignment and splitting that
451 // spills whenever we run out of registers.
453 // selectOrSplit can only be called once per live virtual register. We then do a
454 // single interference test for each register the correct class until we find an
455 // available register. So, the number of interference tests in the worst case is
456 // |vregs| * |machineregs|. And since the number of interference tests is
457 // minimal, there is no value in caching them outside the scope of
458 // selectOrSplit().
459 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
460 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
461 // Populate a list of physical register spill candidates.
462 SmallVector<unsigned, 8> PhysRegSpillCands;
464 // Check for an available register in this class.
465 const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
467 for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
468 E = TRC->allocation_order_end(*MF);
469 I != E; ++I) {
471 unsigned PhysReg = *I;
472 if (ReservedRegs.test(PhysReg)) continue;
474 // Check interference and as a side effect, intialize queries for this
475 // VirtReg and its aliases.
476 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
477 if (interfReg == 0) {
478 // Found an available register.
479 return PhysReg;
481 LiveInterval *interferingVirtReg =
482 Queries[interfReg].firstInterference().liveUnionPos().value();
484 // The current VirtReg must either be spillable, or one of its interferences
485 // must have less spill weight.
486 if (interferingVirtReg->weight < VirtReg.weight ) {
487 PhysRegSpillCands.push_back(PhysReg);
490 // Try to spill another interfering reg with less spill weight.
491 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
492 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
494 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
496 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
497 "Interference after spill.");
498 // Tell the caller to allocate to this newly freed physical register.
499 return *PhysRegI;
501 // No other spill candidates were found, so spill the current VirtReg.
502 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
503 LiveRangeEdit LRE(VirtReg, SplitVRegs);
504 spiller().spill(LRE);
506 // The live virtual register requesting allocation was spilled, so tell
507 // the caller not to allocate anything during this round.
508 return 0;
511 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
512 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
513 << "********** Function: "
514 << ((Value*)mf.getFunction())->getName() << '\n');
516 MF = &mf;
517 DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
519 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
521 ReservedRegs = TRI->getReservedRegs(*MF);
523 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
525 allocatePhysRegs();
527 addMBBLiveIns(MF);
529 // Diagnostic output before rewriting
530 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
532 // optional HTML output
533 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
535 // FIXME: Verification currently must run before VirtRegRewriter. We should
536 // make the rewriter a separate pass and override verifyAnalysis instead. When
537 // that happens, verification naturally falls under VerifyMachineCode.
538 #ifndef NDEBUG
539 if (VerifyEnabled) {
540 // Verify accuracy of LiveIntervals. The standard machine code verifier
541 // ensures that each LiveIntervals covers all uses of the virtual reg.
543 // FIXME: MachineVerifier is badly broken when using the standard
544 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
545 // inline spiller, some tests fail to verify because the coalescer does not
546 // always generate verifiable code.
547 MF->verify(this, "In RABasic::verify");
549 // Verify that LiveIntervals are partitioned into unions and disjoint within
550 // the unions.
551 verify();
553 #endif // !NDEBUG
555 // Run rewriter
556 VRM->rewrite(LIS->getSlotIndexes());
558 // Write out new DBG_VALUE instructions.
559 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
561 // The pass output is in VirtRegMap. Release all the transient data.
562 releaseMemory();
564 return true;
567 FunctionPass* llvm::createBasicRegisterAllocator()
569 return new RABasic();