Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / RegAllocGreedy.cpp
blob9e58ef6d0a415ec73e80c23b50f890333134259c
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "LiveRangeEdit.h"
20 #include "RegAllocBase.h"
21 #include "Spiller.h"
22 #include "SpillPlacement.h"
23 #include "SplitKit.h"
24 #include "VirtRegMap.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Function.h"
28 #include "llvm/PassAnalysisSupport.h"
29 #include "llvm/CodeGen/CalcSpillWeights.h"
30 #include "llvm/CodeGen/EdgeBundles.h"
31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
32 #include "llvm/CodeGen/LiveStackAnalysis.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineLoopRanges.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/RegAllocRegistry.h"
40 #include "llvm/CodeGen/RegisterCoalescer.h"
41 #include "llvm/Target/TargetOptions.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Support/Timer.h"
47 #include <queue>
49 using namespace llvm;
51 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52 STATISTIC(NumLocalSplits, "Number of split local live ranges");
53 STATISTIC(NumEvicted, "Number of interferences evicted");
55 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56 createGreedyRegisterAllocator);
58 namespace {
59 class RAGreedy : public MachineFunctionPass,
60 public RegAllocBase,
61 private LiveRangeEdit::Delegate {
63 // context
64 MachineFunction *MF;
65 BitVector ReservedRegs;
67 // analyses
68 SlotIndexes *Indexes;
69 LiveStacks *LS;
70 MachineDominatorTree *DomTree;
71 MachineLoopInfo *Loops;
72 MachineLoopRanges *LoopRanges;
73 EdgeBundles *Bundles;
74 SpillPlacement *SpillPlacer;
76 // state
77 std::auto_ptr<Spiller> SpillerInstance;
78 std::priority_queue<std::pair<unsigned, unsigned> > Queue;
80 // Live ranges pass through a number of stages as we try to allocate them.
81 // Some of the stages may also create new live ranges:
83 // - Region splitting.
84 // - Per-block splitting.
85 // - Local splitting.
86 // - Spilling.
88 // Ranges produced by one of the stages skip the previous stages when they are
89 // dequeued. This improves performance because we can skip interference checks
90 // that are unlikely to give any results. It also guarantees that the live
91 // range splitting algorithm terminates, something that is otherwise hard to
92 // ensure.
93 enum LiveRangeStage {
94 RS_New, ///< Never seen before.
95 RS_First, ///< First time in the queue.
96 RS_Second, ///< Second time in the queue.
97 RS_Global, ///< Produced by global splitting.
98 RS_Local, ///< Produced by local splitting.
99 RS_Spill ///< Produced by spilling.
102 IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
104 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
105 return LiveRangeStage(LRStage[VirtReg.reg]);
108 template<typename Iterator>
109 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
110 LRStage.resize(MRI->getNumVirtRegs());
111 for (;Begin != End; ++Begin) {
112 unsigned Reg = (*Begin)->reg;
113 if (LRStage[Reg] == RS_New)
114 LRStage[Reg] = NewStage;
118 // splitting state.
119 std::auto_ptr<SplitAnalysis> SA;
120 std::auto_ptr<SplitEditor> SE;
122 /// Cached per-block interference maps
123 InterferenceCache IntfCache;
125 /// All basic blocks where the current register has uses.
126 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
128 /// Global live range splitting candidate info.
129 struct GlobalSplitCandidate {
130 unsigned PhysReg;
131 BitVector LiveBundles;
132 SmallVector<unsigned, 8> ActiveBlocks;
134 void reset(unsigned Reg) {
135 PhysReg = Reg;
136 LiveBundles.clear();
137 ActiveBlocks.clear();
141 /// Candidate info for for each PhysReg in AllocationOrder.
142 /// This vector never shrinks, but grows to the size of the largest register
143 /// class.
144 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
146 /// For every instruction in SA->UseSlots, store the previous non-copy
147 /// instruction.
148 SmallVector<SlotIndex, 8> PrevSlot;
150 public:
151 RAGreedy();
153 /// Return the pass name.
154 virtual const char* getPassName() const {
155 return "Greedy Register Allocator";
158 /// RAGreedy analysis usage.
159 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
160 virtual void releaseMemory();
161 virtual Spiller &spiller() { return *SpillerInstance; }
162 virtual void enqueue(LiveInterval *LI);
163 virtual LiveInterval *dequeue();
164 virtual unsigned selectOrSplit(LiveInterval&,
165 SmallVectorImpl<LiveInterval*>&);
167 /// Perform register allocation.
168 virtual bool runOnMachineFunction(MachineFunction &mf);
170 static char ID;
172 private:
173 void LRE_WillEraseInstruction(MachineInstr*);
174 bool LRE_CanEraseVirtReg(unsigned);
175 void LRE_WillShrinkVirtReg(unsigned);
176 void LRE_DidCloneVirtReg(unsigned, unsigned);
178 bool addSplitConstraints(InterferenceCache::Cursor, float&);
179 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
180 void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
181 float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
182 void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
183 SmallVectorImpl<LiveInterval*>&);
184 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
185 SlotIndex getPrevMappedIndex(const MachineInstr*);
186 void calcPrevSlots();
187 unsigned nextSplitPoint(unsigned);
188 bool canEvictInterference(LiveInterval&, unsigned, float&);
190 unsigned tryAssign(LiveInterval&, AllocationOrder&,
191 SmallVectorImpl<LiveInterval*>&);
192 unsigned tryEvict(LiveInterval&, AllocationOrder&,
193 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
194 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
195 SmallVectorImpl<LiveInterval*>&);
196 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
197 SmallVectorImpl<LiveInterval*>&);
198 unsigned trySplit(LiveInterval&, AllocationOrder&,
199 SmallVectorImpl<LiveInterval*>&);
201 } // end anonymous namespace
203 char RAGreedy::ID = 0;
205 FunctionPass* llvm::createGreedyRegisterAllocator() {
206 return new RAGreedy();
209 RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
210 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
211 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
212 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
213 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
214 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
215 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
216 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
217 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
218 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
219 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
220 initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
221 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
222 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
223 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
226 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
227 AU.setPreservesCFG();
228 AU.addRequired<AliasAnalysis>();
229 AU.addPreserved<AliasAnalysis>();
230 AU.addRequired<LiveIntervals>();
231 AU.addRequired<SlotIndexes>();
232 AU.addPreserved<SlotIndexes>();
233 AU.addRequired<LiveDebugVariables>();
234 AU.addPreserved<LiveDebugVariables>();
235 if (StrongPHIElim)
236 AU.addRequiredID(StrongPHIEliminationID);
237 AU.addRequiredTransitive<RegisterCoalescer>();
238 AU.addRequired<CalculateSpillWeights>();
239 AU.addRequired<LiveStacks>();
240 AU.addPreserved<LiveStacks>();
241 AU.addRequired<MachineDominatorTree>();
242 AU.addPreserved<MachineDominatorTree>();
243 AU.addRequired<MachineLoopInfo>();
244 AU.addPreserved<MachineLoopInfo>();
245 AU.addRequired<MachineLoopRanges>();
246 AU.addPreserved<MachineLoopRanges>();
247 AU.addRequired<VirtRegMap>();
248 AU.addPreserved<VirtRegMap>();
249 AU.addRequired<EdgeBundles>();
250 AU.addRequired<SpillPlacement>();
251 MachineFunctionPass::getAnalysisUsage(AU);
255 //===----------------------------------------------------------------------===//
256 // LiveRangeEdit delegate methods
257 //===----------------------------------------------------------------------===//
259 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
260 // LRE itself will remove from SlotIndexes and parent basic block.
261 VRM->RemoveMachineInstrFromMaps(MI);
264 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
265 if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
266 unassign(LIS->getInterval(VirtReg), PhysReg);
267 return true;
269 // Unassigned virtreg is probably in the priority queue.
270 // RegAllocBase will erase it after dequeueing.
271 return false;
274 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
275 unsigned PhysReg = VRM->getPhys(VirtReg);
276 if (!PhysReg)
277 return;
279 // Register is assigned, put it back on the queue for reassignment.
280 LiveInterval &LI = LIS->getInterval(VirtReg);
281 unassign(LI, PhysReg);
282 enqueue(&LI);
285 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
286 // LRE may clone a virtual register because dead code elimination causes it to
287 // be split into connected components. Ensure that the new register gets the
288 // same stage as the parent.
289 LRStage.grow(New);
290 LRStage[New] = LRStage[Old];
293 void RAGreedy::releaseMemory() {
294 SpillerInstance.reset(0);
295 LRStage.clear();
296 GlobalCand.clear();
297 RegAllocBase::releaseMemory();
300 void RAGreedy::enqueue(LiveInterval *LI) {
301 // Prioritize live ranges by size, assigning larger ranges first.
302 // The queue holds (size, reg) pairs.
303 const unsigned Size = LI->getSize();
304 const unsigned Reg = LI->reg;
305 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
306 "Can only enqueue virtual registers");
307 unsigned Prio;
309 LRStage.grow(Reg);
310 if (LRStage[Reg] == RS_New)
311 LRStage[Reg] = RS_First;
313 if (LRStage[Reg] == RS_Second)
314 // Unsplit ranges that couldn't be allocated immediately are deferred until
315 // everything else has been allocated. Long ranges are allocated last so
316 // they are split against realistic interference.
317 Prio = (1u << 31) - Size;
318 else {
319 // Everything else is allocated in long->short order. Long ranges that don't
320 // fit should be spilled ASAP so they don't create interference.
321 Prio = (1u << 31) + Size;
323 // Boost ranges that have a physical register hint.
324 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
325 Prio |= (1u << 30);
328 Queue.push(std::make_pair(Prio, Reg));
331 LiveInterval *RAGreedy::dequeue() {
332 if (Queue.empty())
333 return 0;
334 LiveInterval *LI = &LIS->getInterval(Queue.top().second);
335 Queue.pop();
336 return LI;
340 //===----------------------------------------------------------------------===//
341 // Direct Assignment
342 //===----------------------------------------------------------------------===//
344 /// tryAssign - Try to assign VirtReg to an available register.
345 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
346 AllocationOrder &Order,
347 SmallVectorImpl<LiveInterval*> &NewVRegs) {
348 Order.rewind();
349 unsigned PhysReg;
350 while ((PhysReg = Order.next()))
351 if (!checkPhysRegInterference(VirtReg, PhysReg))
352 break;
353 if (!PhysReg || Order.isHint(PhysReg))
354 return PhysReg;
356 // PhysReg is available. Try to evict interference from a cheaper alternative.
357 unsigned Cost = TRI->getCostPerUse(PhysReg);
359 // Most registers have 0 additional cost.
360 if (!Cost)
361 return PhysReg;
363 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
364 << '\n');
365 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
366 return CheapReg ? CheapReg : PhysReg;
370 //===----------------------------------------------------------------------===//
371 // Interference eviction
372 //===----------------------------------------------------------------------===//
374 /// canEvict - Return true if all interferences between VirtReg and PhysReg can
375 /// be evicted.
376 /// Return false if any interference is heavier than MaxWeight.
377 /// On return, set MaxWeight to the maximal spill weight of an interference.
378 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
379 float &MaxWeight) {
380 float Weight = 0;
381 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
382 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
383 // If there is 10 or more interferences, chances are one is heavier.
384 if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
385 return false;
387 // Check if any interfering live range is heavier than MaxWeight.
388 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
389 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
390 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
391 return false;
392 if (Intf->weight >= MaxWeight)
393 return false;
394 Weight = std::max(Weight, Intf->weight);
397 MaxWeight = Weight;
398 return true;
401 /// tryEvict - Try to evict all interferences for a physreg.
402 /// @param VirtReg Currently unassigned virtual register.
403 /// @param Order Physregs to try.
404 /// @return Physreg to assign VirtReg, or 0.
405 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
406 AllocationOrder &Order,
407 SmallVectorImpl<LiveInterval*> &NewVRegs,
408 unsigned CostPerUseLimit) {
409 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
411 // Keep track of the lightest single interference seen so far.
412 float BestWeight = VirtReg.weight;
413 unsigned BestPhys = 0;
415 Order.rewind();
416 while (unsigned PhysReg = Order.next()) {
417 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
418 continue;
419 // The first use of a register in a function has cost 1.
420 if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
421 continue;
423 float Weight = BestWeight;
424 if (!canEvictInterference(VirtReg, PhysReg, Weight))
425 continue;
427 // This is an eviction candidate.
428 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
429 << Weight << '\n');
430 if (BestPhys && Weight >= BestWeight)
431 continue;
433 // Best so far.
434 BestPhys = PhysReg;
435 BestWeight = Weight;
436 // Stop if the hint can be used.
437 if (Order.isHint(PhysReg))
438 break;
441 if (!BestPhys)
442 return 0;
444 DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
445 for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
446 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
447 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
448 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
449 LiveInterval *Intf = Q.interferingVRegs()[i];
450 unassign(*Intf, VRM->getPhys(Intf->reg));
451 ++NumEvicted;
452 NewVRegs.push_back(Intf);
455 return BestPhys;
459 //===----------------------------------------------------------------------===//
460 // Region Splitting
461 //===----------------------------------------------------------------------===//
463 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
464 /// interference pattern in Physreg and its aliases. Add the constraints to
465 /// SpillPlacement and return the static cost of this split in Cost, assuming
466 /// that all preferences in SplitConstraints are met.
467 /// Return false if there are no bundles with positive bias.
468 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
469 float &Cost) {
470 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
472 // Reset interference dependent info.
473 SplitConstraints.resize(UseBlocks.size());
474 float StaticCost = 0;
475 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
476 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
477 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
479 BC.Number = BI.MBB->getNumber();
480 Intf.moveToBlock(BC.Number);
481 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
482 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
484 if (!Intf.hasInterference())
485 continue;
487 // Number of spill code instructions to insert.
488 unsigned Ins = 0;
490 // Interference for the live-in value.
491 if (BI.LiveIn) {
492 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
493 BC.Entry = SpillPlacement::MustSpill, ++Ins;
494 else if (Intf.first() < BI.FirstUse)
495 BC.Entry = SpillPlacement::PrefSpill, ++Ins;
496 else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
497 ++Ins;
500 // Interference for the live-out value.
501 if (BI.LiveOut) {
502 if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
503 BC.Exit = SpillPlacement::MustSpill, ++Ins;
504 else if (Intf.last() > BI.LastUse)
505 BC.Exit = SpillPlacement::PrefSpill, ++Ins;
506 else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
507 ++Ins;
510 // Accumulate the total frequency of inserted spill code.
511 if (Ins)
512 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
514 Cost = StaticCost;
516 // Add constraints for use-blocks. Note that these are the only constraints
517 // that may add a positive bias, it is downhill from here.
518 SpillPlacer->addConstraints(SplitConstraints);
519 return SpillPlacer->scanActiveBundles();
523 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
524 /// live-through blocks in Blocks.
525 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
526 ArrayRef<unsigned> Blocks) {
527 const unsigned GroupSize = 8;
528 SpillPlacement::BlockConstraint BCS[GroupSize];
529 unsigned TBS[GroupSize];
530 unsigned B = 0, T = 0;
532 for (unsigned i = 0; i != Blocks.size(); ++i) {
533 unsigned Number = Blocks[i];
534 Intf.moveToBlock(Number);
536 if (!Intf.hasInterference()) {
537 assert(T < GroupSize && "Array overflow");
538 TBS[T] = Number;
539 if (++T == GroupSize) {
540 SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
541 T = 0;
543 continue;
546 assert(B < GroupSize && "Array overflow");
547 BCS[B].Number = Number;
549 // Interference for the live-in value.
550 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
551 BCS[B].Entry = SpillPlacement::MustSpill;
552 else
553 BCS[B].Entry = SpillPlacement::PrefSpill;
555 // Interference for the live-out value.
556 if (Intf.last() >= SA->getLastSplitPoint(Number))
557 BCS[B].Exit = SpillPlacement::MustSpill;
558 else
559 BCS[B].Exit = SpillPlacement::PrefSpill;
561 if (++B == GroupSize) {
562 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
563 SpillPlacer->addConstraints(Array);
564 B = 0;
568 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
569 SpillPlacer->addConstraints(Array);
570 SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
573 void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
574 InterferenceCache::Cursor Intf) {
575 // Keep track of through blocks that have not been added to SpillPlacer.
576 BitVector Todo = SA->getThroughBlocks();
577 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
578 unsigned AddedTo = 0;
579 #ifndef NDEBUG
580 unsigned Visited = 0;
581 #endif
583 for (;;) {
584 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
585 if (NewBundles.empty())
586 break;
587 // Find new through blocks in the periphery of PrefRegBundles.
588 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
589 unsigned Bundle = NewBundles[i];
590 // Look at all blocks connected to Bundle in the full graph.
591 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
592 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
593 I != E; ++I) {
594 unsigned Block = *I;
595 if (!Todo.test(Block))
596 continue;
597 Todo.reset(Block);
598 // This is a new through block. Add it to SpillPlacer later.
599 ActiveBlocks.push_back(Block);
600 #ifndef NDEBUG
601 ++Visited;
602 #endif
605 // Any new blocks to add?
606 if (ActiveBlocks.size() > AddedTo) {
607 ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
608 ActiveBlocks.size() - AddedTo);
609 addThroughConstraints(Intf, Add);
610 AddedTo = ActiveBlocks.size();
612 // Perhaps iterating can enable more bundles?
613 SpillPlacer->iterate();
615 DEBUG(dbgs() << ", v=" << Visited);
618 /// calcGlobalSplitCost - Return the global split cost of following the split
619 /// pattern in LiveBundles. This cost should be added to the local cost of the
620 /// interference pattern in SplitConstraints.
622 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
623 InterferenceCache::Cursor Intf) {
624 float GlobalCost = 0;
625 const BitVector &LiveBundles = Cand.LiveBundles;
626 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
627 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
628 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
629 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
630 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
631 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
632 unsigned Ins = 0;
634 if (BI.LiveIn)
635 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
636 if (BI.LiveOut)
637 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
638 if (Ins)
639 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
642 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
643 unsigned Number = Cand.ActiveBlocks[i];
644 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
645 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
646 if (!RegIn && !RegOut)
647 continue;
648 if (RegIn && RegOut) {
649 // We need double spill code if this block has interference.
650 Intf.moveToBlock(Number);
651 if (Intf.hasInterference())
652 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
653 continue;
655 // live-in / stack-out or stack-in live-out.
656 GlobalCost += SpillPlacer->getBlockFrequency(Number);
658 return GlobalCost;
661 /// splitAroundRegion - Split VirtReg around the region determined by
662 /// LiveBundles. Make an effort to avoid interference from PhysReg.
664 /// The 'register' interval is going to contain as many uses as possible while
665 /// avoiding interference. The 'stack' interval is the complement constructed by
666 /// SplitEditor. It will contain the rest.
668 void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
669 GlobalSplitCandidate &Cand,
670 SmallVectorImpl<LiveInterval*> &NewVRegs) {
671 const BitVector &LiveBundles = Cand.LiveBundles;
673 DEBUG({
674 dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
675 << " with bundles";
676 for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
677 dbgs() << " EB#" << i;
678 dbgs() << ".\n";
681 InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
682 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
683 SE->reset(LREdit);
685 // Create the main cross-block interval.
686 const unsigned MainIntv = SE->openIntv();
688 // First add all defs that are live out of a block.
689 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
690 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
691 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
692 bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
693 bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
695 // Create separate intervals for isolated blocks with multiple uses.
696 if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
697 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
698 SE->splitSingleBlock(BI);
699 SE->selectIntv(MainIntv);
700 continue;
703 // Should the register be live out?
704 if (!BI.LiveOut || !RegOut)
705 continue;
707 SlotIndex Start, Stop;
708 tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
709 Intf.moveToBlock(BI.MBB->getNumber());
710 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
711 << Bundles->getBundle(BI.MBB->getNumber(), 1)
712 << " [" << Start << ';'
713 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
714 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
716 // The interference interval should either be invalid or overlap MBB.
717 assert((!Intf.hasInterference() || Intf.first() < Stop)
718 && "Bad interference");
719 assert((!Intf.hasInterference() || Intf.last() > Start)
720 && "Bad interference");
722 // Check interference leaving the block.
723 if (!Intf.hasInterference()) {
724 // Block is interference-free.
725 DEBUG(dbgs() << ", no interference");
726 if (!BI.LiveThrough) {
727 DEBUG(dbgs() << ", not live-through.\n");
728 SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
729 continue;
731 if (!RegIn) {
732 // Block is live-through, but entry bundle is on the stack.
733 // Reload just before the first use.
734 DEBUG(dbgs() << ", not live-in, enter before first use.\n");
735 SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
736 continue;
738 DEBUG(dbgs() << ", live-through.\n");
739 continue;
742 // Block has interference.
743 DEBUG(dbgs() << ", interference to " << Intf.last());
745 if (!BI.LiveThrough && Intf.last() <= BI.Def) {
746 // The interference doesn't reach the outgoing segment.
747 DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
748 SE->useIntv(BI.Def, Stop);
749 continue;
752 SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
753 if (Intf.last().getBoundaryIndex() < BI.LastUse) {
754 // There are interference-free uses at the end of the block.
755 // Find the first use that can get the live-out register.
756 SmallVectorImpl<SlotIndex>::const_iterator UI =
757 std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
758 Intf.last().getBoundaryIndex());
759 assert(UI != SA->UseSlots.end() && "Couldn't find last use");
760 SlotIndex Use = *UI;
761 assert(Use <= BI.LastUse && "Couldn't find last use");
762 // Only attempt a split befroe the last split point.
763 if (Use.getBaseIndex() <= LastSplitPoint) {
764 DEBUG(dbgs() << ", free use at " << Use << ".\n");
765 SlotIndex SegStart = SE->enterIntvBefore(Use);
766 assert(SegStart >= Intf.last() && "Couldn't avoid interference");
767 assert(SegStart < LastSplitPoint && "Impossible split point");
768 SE->useIntv(SegStart, Stop);
769 continue;
773 // Interference is after the last use.
774 DEBUG(dbgs() << " after last use.\n");
775 SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
776 assert(SegStart >= Intf.last() && "Couldn't avoid interference");
779 // Now all defs leading to live bundles are handled, do everything else.
780 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
781 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
782 bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
783 bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
785 // Is the register live-in?
786 if (!BI.LiveIn || !RegIn)
787 continue;
789 // We have an incoming register. Check for interference.
790 SlotIndex Start, Stop;
791 tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
792 Intf.moveToBlock(BI.MBB->getNumber());
793 DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
794 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
795 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
796 << ')');
798 // Check interference entering the block.
799 if (!Intf.hasInterference()) {
800 // Block is interference-free.
801 DEBUG(dbgs() << ", no interference");
802 if (!BI.LiveThrough) {
803 DEBUG(dbgs() << ", killed in block.\n");
804 SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
805 continue;
807 if (!RegOut) {
808 SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
809 // Block is live-through, but exit bundle is on the stack.
810 // Spill immediately after the last use.
811 if (BI.LastUse < LastSplitPoint) {
812 DEBUG(dbgs() << ", uses, stack-out.\n");
813 SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
814 continue;
816 // The last use is after the last split point, it is probably an
817 // indirect jump.
818 DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
819 << LastSplitPoint << ", stack-out.\n");
820 SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
821 SE->useIntv(Start, SegEnd);
822 // Run a double interval from the split to the last use.
823 // This makes it possible to spill the complement without affecting the
824 // indirect branch.
825 SE->overlapIntv(SegEnd, BI.LastUse);
826 continue;
828 // Register is live-through.
829 DEBUG(dbgs() << ", uses, live-through.\n");
830 SE->useIntv(Start, Stop);
831 continue;
834 // Block has interference.
835 DEBUG(dbgs() << ", interference from " << Intf.first());
837 if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
838 // The interference doesn't reach the outgoing segment.
839 DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
840 SE->useIntv(Start, BI.Kill);
841 continue;
844 if (Intf.first().getBaseIndex() > BI.FirstUse) {
845 // There are interference-free uses at the beginning of the block.
846 // Find the last use that can get the register.
847 SmallVectorImpl<SlotIndex>::const_iterator UI =
848 std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
849 Intf.first().getBaseIndex());
850 assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
851 SlotIndex Use = (--UI)->getBoundaryIndex();
852 DEBUG(dbgs() << ", free use at " << *UI << ".\n");
853 SlotIndex SegEnd = SE->leaveIntvAfter(Use);
854 assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
855 SE->useIntv(Start, SegEnd);
856 continue;
859 // Interference is before the first use.
860 DEBUG(dbgs() << " before first use.\n");
861 SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
862 assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
865 // Handle live-through blocks.
866 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
867 unsigned Number = Cand.ActiveBlocks[i];
868 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
869 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
870 DEBUG(dbgs() << "Live through BB#" << Number << '\n');
871 if (RegIn && RegOut) {
872 Intf.moveToBlock(Number);
873 if (!Intf.hasInterference()) {
874 SE->useIntv(Indexes->getMBBStartIdx(Number),
875 Indexes->getMBBEndIdx(Number));
876 continue;
879 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
880 if (RegIn)
881 SE->leaveIntvAtTop(*MBB);
882 if (RegOut)
883 SE->enterIntvAtEnd(*MBB);
886 // FIXME: Should we be more aggressive about splitting the stack region into
887 // per-block segments? The current approach allows the stack region to
888 // separate into connected components. Some components may be allocatable.
889 SE->finish();
890 ++NumGlobalSplits;
892 if (VerifyEnabled)
893 MF->verify(this, "After splitting live range around region");
896 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
897 SmallVectorImpl<LiveInterval*> &NewVRegs) {
898 float BestCost = 0;
899 const unsigned NoCand = ~0u;
900 unsigned BestCand = NoCand;
902 Order.rewind();
903 for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
904 if (GlobalCand.size() <= Cand)
905 GlobalCand.resize(Cand+1);
906 GlobalCand[Cand].reset(PhysReg);
908 SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
909 float Cost;
910 InterferenceCache::Cursor Intf(IntfCache, PhysReg);
911 if (!addSplitConstraints(Intf, Cost)) {
912 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
913 continue;
915 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
916 if (BestCand != NoCand && Cost >= BestCost) {
917 DEBUG(dbgs() << " worse than "
918 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n');
919 continue;
921 growRegion(GlobalCand[Cand], Intf);
923 SpillPlacer->finish();
925 // No live bundles, defer to splitSingleBlocks().
926 if (!GlobalCand[Cand].LiveBundles.any()) {
927 DEBUG(dbgs() << " no bundles.\n");
928 continue;
931 Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
932 DEBUG({
933 dbgs() << ", total = " << Cost << " with bundles";
934 for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
935 i = GlobalCand[Cand].LiveBundles.find_next(i))
936 dbgs() << " EB#" << i;
937 dbgs() << ".\n";
939 if (BestCand == NoCand || Cost < BestCost) {
940 BestCand = Cand;
941 BestCost = 0.98f * Cost; // Prevent rounding effects.
945 if (BestCand == NoCand)
946 return 0;
948 splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
949 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
950 return 0;
954 //===----------------------------------------------------------------------===//
955 // Local Splitting
956 //===----------------------------------------------------------------------===//
959 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
960 /// in order to use PhysReg between two entries in SA->UseSlots.
962 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
964 void RAGreedy::calcGapWeights(unsigned PhysReg,
965 SmallVectorImpl<float> &GapWeight) {
966 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
967 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
968 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
969 const unsigned NumGaps = Uses.size()-1;
971 // Start and end points for the interference check.
972 SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
973 SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
975 GapWeight.assign(NumGaps, 0.0f);
977 // Add interference from each overlapping register.
978 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
979 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
980 .checkInterference())
981 continue;
983 // We know that VirtReg is a continuous interval from FirstUse to LastUse,
984 // so we don't need InterferenceQuery.
986 // Interference that overlaps an instruction is counted in both gaps
987 // surrounding the instruction. The exception is interference before
988 // StartIdx and after StopIdx.
990 LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
991 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
992 // Skip the gaps before IntI.
993 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
994 if (++Gap == NumGaps)
995 break;
996 if (Gap == NumGaps)
997 break;
999 // Update the gaps covered by IntI.
1000 const float weight = IntI.value()->weight;
1001 for (; Gap != NumGaps; ++Gap) {
1002 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1003 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1004 break;
1006 if (Gap == NumGaps)
1007 break;
1012 /// getPrevMappedIndex - Return the slot index of the last non-copy instruction
1013 /// before MI that has a slot index. If MI is the first mapped instruction in
1014 /// its block, return the block start index instead.
1016 SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
1017 assert(MI && "Missing MachineInstr");
1018 const MachineBasicBlock *MBB = MI->getParent();
1019 MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
1020 while (I != B)
1021 if (!(--I)->isDebugValue() && !I->isCopy())
1022 return Indexes->getInstructionIndex(I);
1023 return Indexes->getMBBStartIdx(MBB);
1026 /// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
1027 /// real non-copy instruction for each instruction in SA->UseSlots.
1029 void RAGreedy::calcPrevSlots() {
1030 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1031 PrevSlot.clear();
1032 PrevSlot.reserve(Uses.size());
1033 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
1034 const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
1035 PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
1039 /// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
1040 /// be beneficial to split before UseSlots[i].
1042 /// 0 is always a valid split point
1043 unsigned RAGreedy::nextSplitPoint(unsigned i) {
1044 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1045 const unsigned Size = Uses.size();
1046 assert(i != Size && "No split points after the end");
1047 // Allow split before i when Uses[i] is not adjacent to the previous use.
1048 while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
1050 return i;
1053 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1054 /// basic block.
1056 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1057 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1058 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1059 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1061 // Note that it is possible to have an interval that is live-in or live-out
1062 // while only covering a single block - A phi-def can use undef values from
1063 // predecessors, and the block could be a single-block loop.
1064 // We don't bother doing anything clever about such a case, we simply assume
1065 // that the interval is continuous from FirstUse to LastUse. We should make
1066 // sure that we don't do anything illegal to such an interval, though.
1068 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1069 if (Uses.size() <= 2)
1070 return 0;
1071 const unsigned NumGaps = Uses.size()-1;
1073 DEBUG({
1074 dbgs() << "tryLocalSplit: ";
1075 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1076 dbgs() << ' ' << SA->UseSlots[i];
1077 dbgs() << '\n';
1080 // For every use, find the previous mapped non-copy instruction.
1081 // We use this to detect valid split points, and to estimate new interval
1082 // sizes.
1083 calcPrevSlots();
1085 unsigned BestBefore = NumGaps;
1086 unsigned BestAfter = 0;
1087 float BestDiff = 0;
1089 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1090 SmallVector<float, 8> GapWeight;
1092 Order.rewind();
1093 while (unsigned PhysReg = Order.next()) {
1094 // Keep track of the largest spill weight that would need to be evicted in
1095 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1096 calcGapWeights(PhysReg, GapWeight);
1098 // Try to find the best sequence of gaps to close.
1099 // The new spill weight must be larger than any gap interference.
1101 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1102 unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
1104 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1105 // It is the spill weight that needs to be evicted.
1106 float MaxGap = GapWeight[0];
1107 for (unsigned i = 1; i != SplitAfter; ++i)
1108 MaxGap = std::max(MaxGap, GapWeight[i]);
1110 for (;;) {
1111 // Live before/after split?
1112 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1113 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1115 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1116 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1117 << " i=" << MaxGap);
1119 // Stop before the interval gets so big we wouldn't be making progress.
1120 if (!LiveBefore && !LiveAfter) {
1121 DEBUG(dbgs() << " all\n");
1122 break;
1124 // Should the interval be extended or shrunk?
1125 bool Shrink = true;
1126 if (MaxGap < HUGE_VALF) {
1127 // Estimate the new spill weight.
1129 // Each instruction reads and writes the register, except the first
1130 // instr doesn't read when !FirstLive, and the last instr doesn't write
1131 // when !LastLive.
1133 // We will be inserting copies before and after, so the total number of
1134 // reads and writes is 2 * EstUses.
1136 const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
1137 2*(LiveBefore + LiveAfter);
1139 // Try to guess the size of the new interval. This should be trivial,
1140 // but the slot index of an inserted copy can be a lot smaller than the
1141 // instruction it is inserted before if there are many dead indexes
1142 // between them.
1144 // We measure the distance from the instruction before SplitBefore to
1145 // get a conservative estimate.
1147 // The final distance can still be different if inserting copies
1148 // triggers a slot index renumbering.
1150 const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
1151 PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
1152 // Would this split be possible to allocate?
1153 // Never allocate all gaps, we wouldn't be making progress.
1154 float Diff = EstWeight - MaxGap;
1155 DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
1156 if (Diff > 0) {
1157 Shrink = false;
1158 if (Diff > BestDiff) {
1159 DEBUG(dbgs() << " (best)");
1160 BestDiff = Diff;
1161 BestBefore = SplitBefore;
1162 BestAfter = SplitAfter;
1167 // Try to shrink.
1168 if (Shrink) {
1169 SplitBefore = nextSplitPoint(SplitBefore);
1170 if (SplitBefore < SplitAfter) {
1171 DEBUG(dbgs() << " shrink\n");
1172 // Recompute the max when necessary.
1173 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1174 MaxGap = GapWeight[SplitBefore];
1175 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1176 MaxGap = std::max(MaxGap, GapWeight[i]);
1178 continue;
1180 MaxGap = 0;
1183 // Try to extend the interval.
1184 if (SplitAfter >= NumGaps) {
1185 DEBUG(dbgs() << " end\n");
1186 break;
1189 DEBUG(dbgs() << " extend\n");
1190 for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
1191 SplitAfter != e; ++SplitAfter)
1192 MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
1193 continue;
1197 // Didn't find any candidates?
1198 if (BestBefore == NumGaps)
1199 return 0;
1201 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1202 << '-' << Uses[BestAfter] << ", " << BestDiff
1203 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1205 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1206 SE->reset(LREdit);
1208 SE->openIntv();
1209 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1210 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1211 SE->useIntv(SegStart, SegStop);
1212 SE->finish();
1213 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
1214 ++NumLocalSplits;
1216 return 0;
1219 //===----------------------------------------------------------------------===//
1220 // Live Range Splitting
1221 //===----------------------------------------------------------------------===//
1223 /// trySplit - Try to split VirtReg or one of its interferences, making it
1224 /// assignable.
1225 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1226 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1227 SmallVectorImpl<LiveInterval*>&NewVRegs) {
1228 // Local intervals are handled separately.
1229 if (LIS->intervalIsInOneMBB(VirtReg)) {
1230 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1231 SA->analyze(&VirtReg);
1232 return tryLocalSplit(VirtReg, Order, NewVRegs);
1235 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1237 // Don't iterate global splitting.
1238 // Move straight to spilling if this range was produced by a global split.
1239 if (getStage(VirtReg) >= RS_Global)
1240 return 0;
1242 SA->analyze(&VirtReg);
1244 // First try to split around a region spanning multiple blocks.
1245 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1246 if (PhysReg || !NewVRegs.empty())
1247 return PhysReg;
1249 // Then isolate blocks with multiple uses.
1250 SplitAnalysis::BlockPtrSet Blocks;
1251 if (SA->getMultiUseBlocks(Blocks)) {
1252 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1253 SE->reset(LREdit);
1254 SE->splitSingleBlocks(Blocks);
1255 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1256 if (VerifyEnabled)
1257 MF->verify(this, "After splitting live range around basic blocks");
1260 // Don't assign any physregs.
1261 return 0;
1265 //===----------------------------------------------------------------------===//
1266 // Main Entry Point
1267 //===----------------------------------------------------------------------===//
1269 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1270 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1271 // First try assigning a free register.
1272 AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
1273 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1274 return PhysReg;
1276 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1277 return PhysReg;
1279 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1281 // The first time we see a live range, don't try to split or spill.
1282 // Wait until the second time, when all smaller ranges have been allocated.
1283 // This gives a better picture of the interference to split around.
1284 LiveRangeStage Stage = getStage(VirtReg);
1285 if (Stage == RS_First) {
1286 LRStage[VirtReg.reg] = RS_Second;
1287 DEBUG(dbgs() << "wait for second round\n");
1288 NewVRegs.push_back(&VirtReg);
1289 return 0;
1292 assert(Stage < RS_Spill && "Cannot allocate after spilling");
1294 // Try splitting VirtReg or interferences.
1295 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1296 if (PhysReg || !NewVRegs.empty())
1297 return PhysReg;
1299 // Finally spill VirtReg itself.
1300 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1301 LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1302 spiller().spill(LRE);
1303 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1305 if (VerifyEnabled)
1306 MF->verify(this, "After spilling");
1308 // The live virtual register requesting allocation was spilled, so tell
1309 // the caller not to allocate anything during this round.
1310 return 0;
1313 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1314 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1315 << "********** Function: "
1316 << ((Value*)mf.getFunction())->getName() << '\n');
1318 MF = &mf;
1319 if (VerifyEnabled)
1320 MF->verify(this, "Before greedy register allocator");
1322 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1323 Indexes = &getAnalysis<SlotIndexes>();
1324 DomTree = &getAnalysis<MachineDominatorTree>();
1325 ReservedRegs = TRI->getReservedRegs(*MF);
1326 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1327 Loops = &getAnalysis<MachineLoopInfo>();
1328 LoopRanges = &getAnalysis<MachineLoopRanges>();
1329 Bundles = &getAnalysis<EdgeBundles>();
1330 SpillPlacer = &getAnalysis<SpillPlacement>();
1332 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1333 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1334 LRStage.clear();
1335 LRStage.resize(MRI->getNumVirtRegs());
1336 IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1338 allocatePhysRegs();
1339 addMBBLiveIns(MF);
1340 LIS->addKillFlags();
1342 // Run rewriter
1344 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1345 VRM->rewrite(Indexes);
1348 // Write out new DBG_VALUE instructions.
1349 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
1351 // The pass output is in VirtRegMap. Release all the transient data.
1352 releaseMemory();
1354 return true;