Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / RegAllocLinearScan.cpp
blobb91f312b72c73fe312d54461b120b12764718490
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "Spiller.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/CalcSpillWeights.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterCoalescer.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <set>
44 #include <queue>
45 #include <memory>
46 #include <cmath>
48 using namespace llvm;
50 STATISTIC(NumIters , "Number of iterations performed");
51 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce, "Number of copies coalesced");
53 STATISTIC(NumDowngrade, "Number of registers downgraded");
55 static cl::opt<bool>
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 PreSplitIntervals("pre-alloc-split",
62 cl::desc("Pre-register allocation live interval splitting"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 TrivCoalesceEnds("trivial-coalesce-ends",
67 cl::desc("Attempt trivial coalescing of interval ends"),
68 cl::init(false), cl::Hidden);
70 static cl::opt<bool>
71 AvoidWAWHazard("avoid-waw-hazard",
72 cl::desc("Avoid write-write hazards for some register classes"),
73 cl::init(false), cl::Hidden);
75 static RegisterRegAlloc
76 linearscanRegAlloc("linearscan", "linear scan register allocator",
77 createLinearScanRegisterAllocator);
79 namespace {
80 // When we allocate a register, add it to a fixed-size queue of
81 // registers to skip in subsequent allocations. This trades a small
82 // amount of register pressure and increased spills for flexibility in
83 // the post-pass scheduler.
85 // Note that in a the number of registers used for reloading spills
86 // will be one greater than the value of this option.
88 // One big limitation of this is that it doesn't differentiate between
89 // different register classes. So on x86-64, if there is xmm register
90 // pressure, it can caused fewer GPRs to be held in the queue.
91 static cl::opt<unsigned>
92 NumRecentlyUsedRegs("linearscan-skip-count",
93 cl::desc("Number of registers for linearscan to remember"
94 "to skip."),
95 cl::init(0),
96 cl::Hidden);
98 struct RALinScan : public MachineFunctionPass {
99 static char ID;
100 RALinScan() : MachineFunctionPass(ID) {
101 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
102 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
103 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
104 initializeRegisterCoalescerAnalysisGroup(
105 *PassRegistry::getPassRegistry());
106 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
107 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
108 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
109 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
110 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
111 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
112 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
114 // Initialize the queue to record recently-used registers.
115 if (NumRecentlyUsedRegs > 0)
116 RecentRegs.resize(NumRecentlyUsedRegs, 0);
117 RecentNext = RecentRegs.begin();
118 avoidWAW_ = 0;
121 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
122 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
123 private:
124 /// RelatedRegClasses - This structure is built the first time a function is
125 /// compiled, and keeps track of which register classes have registers that
126 /// belong to multiple classes or have aliases that are in other classes.
127 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
128 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
130 // NextReloadMap - For each register in the map, it maps to the another
131 // register which is defined by a reload from the same stack slot and
132 // both reloads are in the same basic block.
133 DenseMap<unsigned, unsigned> NextReloadMap;
135 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
136 // un-favored for allocation.
137 SmallSet<unsigned, 8> DowngradedRegs;
139 // DowngradeMap - A map from virtual registers to physical registers being
140 // downgraded for the virtual registers.
141 DenseMap<unsigned, unsigned> DowngradeMap;
143 MachineFunction* mf_;
144 MachineRegisterInfo* mri_;
145 const TargetMachine* tm_;
146 const TargetRegisterInfo* tri_;
147 const TargetInstrInfo* tii_;
148 BitVector allocatableRegs_;
149 BitVector reservedRegs_;
150 LiveIntervals* li_;
151 MachineLoopInfo *loopInfo;
153 /// handled_ - Intervals are added to the handled_ set in the order of their
154 /// start value. This is uses for backtracking.
155 std::vector<LiveInterval*> handled_;
157 /// fixed_ - Intervals that correspond to machine registers.
159 IntervalPtrs fixed_;
161 /// active_ - Intervals that are currently being processed, and which have a
162 /// live range active for the current point.
163 IntervalPtrs active_;
165 /// inactive_ - Intervals that are currently being processed, but which have
166 /// a hold at the current point.
167 IntervalPtrs inactive_;
169 typedef std::priority_queue<LiveInterval*,
170 SmallVector<LiveInterval*, 64>,
171 greater_ptr<LiveInterval> > IntervalHeap;
172 IntervalHeap unhandled_;
174 /// regUse_ - Tracks register usage.
175 SmallVector<unsigned, 32> regUse_;
176 SmallVector<unsigned, 32> regUseBackUp_;
178 /// vrm_ - Tracks register assignments.
179 VirtRegMap* vrm_;
181 std::auto_ptr<VirtRegRewriter> rewriter_;
183 std::auto_ptr<Spiller> spiller_;
185 // The queue of recently-used registers.
186 SmallVector<unsigned, 4> RecentRegs;
187 SmallVector<unsigned, 4>::iterator RecentNext;
189 // Last write-after-write register written.
190 unsigned avoidWAW_;
192 // Record that we just picked this register.
193 void recordRecentlyUsed(unsigned reg) {
194 assert(reg != 0 && "Recently used register is NOREG!");
195 if (!RecentRegs.empty()) {
196 *RecentNext++ = reg;
197 if (RecentNext == RecentRegs.end())
198 RecentNext = RecentRegs.begin();
202 public:
203 virtual const char* getPassName() const {
204 return "Linear Scan Register Allocator";
207 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
208 AU.setPreservesCFG();
209 AU.addRequired<AliasAnalysis>();
210 AU.addPreserved<AliasAnalysis>();
211 AU.addRequired<LiveIntervals>();
212 AU.addPreserved<SlotIndexes>();
213 if (StrongPHIElim)
214 AU.addRequiredID(StrongPHIEliminationID);
215 // Make sure PassManager knows which analyses to make available
216 // to coalescing and which analyses coalescing invalidates.
217 AU.addRequiredTransitive<RegisterCoalescer>();
218 AU.addRequired<CalculateSpillWeights>();
219 if (PreSplitIntervals)
220 AU.addRequiredID(PreAllocSplittingID);
221 AU.addRequiredID(LiveStacksID);
222 AU.addPreservedID(LiveStacksID);
223 AU.addRequired<MachineLoopInfo>();
224 AU.addPreserved<MachineLoopInfo>();
225 AU.addRequired<VirtRegMap>();
226 AU.addPreserved<VirtRegMap>();
227 AU.addRequired<LiveDebugVariables>();
228 AU.addPreserved<LiveDebugVariables>();
229 AU.addRequiredID(MachineDominatorsID);
230 AU.addPreservedID(MachineDominatorsID);
231 MachineFunctionPass::getAnalysisUsage(AU);
234 /// runOnMachineFunction - register allocate the whole function
235 bool runOnMachineFunction(MachineFunction&);
237 // Determine if we skip this register due to its being recently used.
238 bool isRecentlyUsed(unsigned reg) const {
239 return reg == avoidWAW_ ||
240 std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
243 private:
244 /// linearScan - the linear scan algorithm
245 void linearScan();
247 /// initIntervalSets - initialize the interval sets.
249 void initIntervalSets();
251 /// processActiveIntervals - expire old intervals and move non-overlapping
252 /// ones to the inactive list.
253 void processActiveIntervals(SlotIndex CurPoint);
255 /// processInactiveIntervals - expire old intervals and move overlapping
256 /// ones to the active list.
257 void processInactiveIntervals(SlotIndex CurPoint);
259 /// hasNextReloadInterval - Return the next liveinterval that's being
260 /// defined by a reload from the same SS as the specified one.
261 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
263 /// DowngradeRegister - Downgrade a register for allocation.
264 void DowngradeRegister(LiveInterval *li, unsigned Reg);
266 /// UpgradeRegister - Upgrade a register for allocation.
267 void UpgradeRegister(unsigned Reg);
269 /// assignRegOrStackSlotAtInterval - assign a register if one
270 /// is available, or spill.
271 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
273 void updateSpillWeights(std::vector<float> &Weights,
274 unsigned reg, float weight,
275 const TargetRegisterClass *RC);
277 /// findIntervalsToSpill - Determine the intervals to spill for the
278 /// specified interval. It's passed the physical registers whose spill
279 /// weight is the lowest among all the registers whose live intervals
280 /// conflict with the interval.
281 void findIntervalsToSpill(LiveInterval *cur,
282 std::vector<std::pair<unsigned,float> > &Candidates,
283 unsigned NumCands,
284 SmallVector<LiveInterval*, 8> &SpillIntervals);
286 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
287 /// try to allocate the definition to the same register as the source,
288 /// if the register is not defined during the life time of the interval.
289 /// This eliminates a copy, and is used to coalesce copies which were not
290 /// coalesced away before allocation either due to dest and src being in
291 /// different register classes or because the coalescer was overly
292 /// conservative.
293 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
296 /// Register usage / availability tracking helpers.
299 void initRegUses() {
300 regUse_.resize(tri_->getNumRegs(), 0);
301 regUseBackUp_.resize(tri_->getNumRegs(), 0);
304 void finalizeRegUses() {
305 #ifndef NDEBUG
306 // Verify all the registers are "freed".
307 bool Error = false;
308 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
309 if (regUse_[i] != 0) {
310 dbgs() << tri_->getName(i) << " is still in use!\n";
311 Error = true;
314 if (Error)
315 llvm_unreachable(0);
316 #endif
317 regUse_.clear();
318 regUseBackUp_.clear();
321 void addRegUse(unsigned physReg) {
322 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
323 "should be physical register!");
324 ++regUse_[physReg];
325 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
326 ++regUse_[*as];
329 void delRegUse(unsigned physReg) {
330 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
331 "should be physical register!");
332 assert(regUse_[physReg] != 0);
333 --regUse_[physReg];
334 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
335 assert(regUse_[*as] != 0);
336 --regUse_[*as];
340 bool isRegAvail(unsigned physReg) const {
341 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
342 "should be physical register!");
343 return regUse_[physReg] == 0;
346 void backUpRegUses() {
347 regUseBackUp_ = regUse_;
350 void restoreRegUses() {
351 regUse_ = regUseBackUp_;
355 /// Register handling helpers.
358 /// getFreePhysReg - return a free physical register for this virtual
359 /// register interval if we have one, otherwise return 0.
360 unsigned getFreePhysReg(LiveInterval* cur);
361 unsigned getFreePhysReg(LiveInterval* cur,
362 const TargetRegisterClass *RC,
363 unsigned MaxInactiveCount,
364 SmallVector<unsigned, 256> &inactiveCounts,
365 bool SkipDGRegs);
367 /// getFirstNonReservedPhysReg - return the first non-reserved physical
368 /// register in the register class.
369 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
370 TargetRegisterClass::iterator aoe = RC->allocation_order_end(*mf_);
371 TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_);
372 while (i != aoe && reservedRegs_.test(*i))
373 ++i;
374 assert(i != aoe && "All registers reserved?!");
375 return *i;
378 void ComputeRelatedRegClasses();
380 template <typename ItTy>
381 void printIntervals(const char* const str, ItTy i, ItTy e) const {
382 DEBUG({
383 if (str)
384 dbgs() << str << " intervals:\n";
386 for (; i != e; ++i) {
387 dbgs() << '\t' << *i->first << " -> ";
389 unsigned reg = i->first->reg;
390 if (TargetRegisterInfo::isVirtualRegister(reg))
391 reg = vrm_->getPhys(reg);
393 dbgs() << tri_->getName(reg) << '\n';
398 char RALinScan::ID = 0;
401 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
402 "Linear Scan Register Allocator", false, false)
403 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
404 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
405 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
406 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting)
407 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
408 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
409 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
410 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
411 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
412 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
413 "Linear Scan Register Allocator", false, false)
415 void RALinScan::ComputeRelatedRegClasses() {
416 // First pass, add all reg classes to the union, and determine at least one
417 // reg class that each register is in.
418 bool HasAliases = false;
419 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
420 E = tri_->regclass_end(); RCI != E; ++RCI) {
421 RelatedRegClasses.insert(*RCI);
422 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
423 I != E; ++I) {
424 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
426 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
427 if (PRC) {
428 // Already processed this register. Just make sure we know that
429 // multiple register classes share a register.
430 RelatedRegClasses.unionSets(PRC, *RCI);
431 } else {
432 PRC = *RCI;
437 // Second pass, now that we know conservatively what register classes each reg
438 // belongs to, add info about aliases. We don't need to do this for targets
439 // without register aliases.
440 if (HasAliases)
441 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
442 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
443 I != E; ++I)
444 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
445 const TargetRegisterClass *AliasClass =
446 OneClassForEachPhysReg.lookup(*AS);
447 if (AliasClass)
448 RelatedRegClasses.unionSets(I->second, AliasClass);
452 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
453 /// allocate the definition the same register as the source register if the
454 /// register is not defined during live time of the interval. If the interval is
455 /// killed by a copy, try to use the destination register. This eliminates a
456 /// copy. This is used to coalesce copies which were not coalesced away before
457 /// allocation either due to dest and src being in different register classes or
458 /// because the coalescer was overly conservative.
459 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
460 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
461 if ((Preference && Preference == Reg) || !cur.containsOneValue())
462 return Reg;
464 // We cannot handle complicated live ranges. Simple linear stuff only.
465 if (cur.ranges.size() != 1)
466 return Reg;
468 const LiveRange &range = cur.ranges.front();
470 VNInfo *vni = range.valno;
471 if (vni->isUnused() || !vni->def.isValid())
472 return Reg;
474 unsigned CandReg;
476 MachineInstr *CopyMI;
477 if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
478 // Defined by a copy, try to extend SrcReg forward
479 CandReg = CopyMI->getOperand(1).getReg();
480 else if (TrivCoalesceEnds &&
481 (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
482 CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
483 // Only used by a copy, try to extend DstReg backwards
484 CandReg = CopyMI->getOperand(0).getReg();
485 else
486 return Reg;
488 // If the target of the copy is a sub-register then don't coalesce.
489 if(CopyMI->getOperand(0).getSubReg())
490 return Reg;
493 if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
494 if (!vrm_->isAssignedReg(CandReg))
495 return Reg;
496 CandReg = vrm_->getPhys(CandReg);
498 if (Reg == CandReg)
499 return Reg;
501 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
502 if (!RC->contains(CandReg))
503 return Reg;
505 if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
506 return Reg;
508 // Try to coalesce.
509 DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
510 << '\n');
511 vrm_->clearVirt(cur.reg);
512 vrm_->assignVirt2Phys(cur.reg, CandReg);
514 ++NumCoalesce;
515 return CandReg;
518 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
519 mf_ = &fn;
520 mri_ = &fn.getRegInfo();
521 tm_ = &fn.getTarget();
522 tri_ = tm_->getRegisterInfo();
523 tii_ = tm_->getInstrInfo();
524 allocatableRegs_ = tri_->getAllocatableSet(fn);
525 reservedRegs_ = tri_->getReservedRegs(fn);
526 li_ = &getAnalysis<LiveIntervals>();
527 loopInfo = &getAnalysis<MachineLoopInfo>();
529 // We don't run the coalescer here because we have no reason to
530 // interact with it. If the coalescer requires interaction, it
531 // won't do anything. If it doesn't require interaction, we assume
532 // it was run as a separate pass.
534 // If this is the first function compiled, compute the related reg classes.
535 if (RelatedRegClasses.empty())
536 ComputeRelatedRegClasses();
538 // Also resize register usage trackers.
539 initRegUses();
541 vrm_ = &getAnalysis<VirtRegMap>();
542 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
544 spiller_.reset(createSpiller(*this, *mf_, *vrm_));
546 initIntervalSets();
548 linearScan();
550 // Rewrite spill code and update the PhysRegsUsed set.
551 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
553 // Write out new DBG_VALUE instructions.
554 getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
556 assert(unhandled_.empty() && "Unhandled live intervals remain!");
558 finalizeRegUses();
560 fixed_.clear();
561 active_.clear();
562 inactive_.clear();
563 handled_.clear();
564 NextReloadMap.clear();
565 DowngradedRegs.clear();
566 DowngradeMap.clear();
567 spiller_.reset(0);
569 return true;
572 /// initIntervalSets - initialize the interval sets.
574 void RALinScan::initIntervalSets()
576 assert(unhandled_.empty() && fixed_.empty() &&
577 active_.empty() && inactive_.empty() &&
578 "interval sets should be empty on initialization");
580 handled_.reserve(li_->getNumIntervals());
582 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
583 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
584 if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
585 mri_->setPhysRegUsed(i->second->reg);
586 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
588 } else {
589 if (i->second->empty()) {
590 assignRegOrStackSlotAtInterval(i->second);
592 else
593 unhandled_.push(i->second);
598 void RALinScan::linearScan() {
599 // linear scan algorithm
600 DEBUG({
601 dbgs() << "********** LINEAR SCAN **********\n"
602 << "********** Function: "
603 << mf_->getFunction()->getName() << '\n';
604 printIntervals("fixed", fixed_.begin(), fixed_.end());
607 while (!unhandled_.empty()) {
608 // pick the interval with the earliest start point
609 LiveInterval* cur = unhandled_.top();
610 unhandled_.pop();
611 ++NumIters;
612 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
614 assert(!cur->empty() && "Empty interval in unhandled set.");
616 processActiveIntervals(cur->beginIndex());
617 processInactiveIntervals(cur->beginIndex());
619 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
620 "Can only allocate virtual registers!");
622 // Allocating a virtual register. try to find a free
623 // physical register or spill an interval (possibly this one) in order to
624 // assign it one.
625 assignRegOrStackSlotAtInterval(cur);
627 DEBUG({
628 printIntervals("active", active_.begin(), active_.end());
629 printIntervals("inactive", inactive_.begin(), inactive_.end());
633 // Expire any remaining active intervals
634 while (!active_.empty()) {
635 IntervalPtr &IP = active_.back();
636 unsigned reg = IP.first->reg;
637 DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
638 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
639 "Can only allocate virtual registers!");
640 reg = vrm_->getPhys(reg);
641 delRegUse(reg);
642 active_.pop_back();
645 // Expire any remaining inactive intervals
646 DEBUG({
647 for (IntervalPtrs::reverse_iterator
648 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
649 dbgs() << "\tinterval " << *i->first << " expired\n";
651 inactive_.clear();
653 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
654 MachineFunction::iterator EntryMBB = mf_->begin();
655 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
656 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
657 LiveInterval &cur = *i->second;
658 unsigned Reg = 0;
659 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
660 if (isPhys)
661 Reg = cur.reg;
662 else if (vrm_->isAssignedReg(cur.reg))
663 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
664 if (!Reg)
665 continue;
666 // Ignore splited live intervals.
667 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
668 continue;
670 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
671 I != E; ++I) {
672 const LiveRange &LR = *I;
673 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
674 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
675 if (LiveInMBBs[i] != EntryMBB) {
676 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
677 "Adding a virtual register to livein set?");
678 LiveInMBBs[i]->addLiveIn(Reg);
680 LiveInMBBs.clear();
685 DEBUG(dbgs() << *vrm_);
687 // Look for physical registers that end up not being allocated even though
688 // register allocator had to spill other registers in its register class.
689 if (!vrm_->FindUnusedRegisters(li_))
690 return;
693 /// processActiveIntervals - expire old intervals and move non-overlapping ones
694 /// to the inactive list.
695 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
697 DEBUG(dbgs() << "\tprocessing active intervals:\n");
699 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
700 LiveInterval *Interval = active_[i].first;
701 LiveInterval::iterator IntervalPos = active_[i].second;
702 unsigned reg = Interval->reg;
704 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
706 if (IntervalPos == Interval->end()) { // Remove expired intervals.
707 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
708 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
709 "Can only allocate virtual registers!");
710 reg = vrm_->getPhys(reg);
711 delRegUse(reg);
713 // Pop off the end of the list.
714 active_[i] = active_.back();
715 active_.pop_back();
716 --i; --e;
718 } else if (IntervalPos->start > CurPoint) {
719 // Move inactive intervals to inactive list.
720 DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
721 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
722 "Can only allocate virtual registers!");
723 reg = vrm_->getPhys(reg);
724 delRegUse(reg);
725 // add to inactive.
726 inactive_.push_back(std::make_pair(Interval, IntervalPos));
728 // Pop off the end of the list.
729 active_[i] = active_.back();
730 active_.pop_back();
731 --i; --e;
732 } else {
733 // Otherwise, just update the iterator position.
734 active_[i].second = IntervalPos;
739 /// processInactiveIntervals - expire old intervals and move overlapping
740 /// ones to the active list.
741 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
743 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
745 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
746 LiveInterval *Interval = inactive_[i].first;
747 LiveInterval::iterator IntervalPos = inactive_[i].second;
748 unsigned reg = Interval->reg;
750 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
752 if (IntervalPos == Interval->end()) { // remove expired intervals.
753 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
755 // Pop off the end of the list.
756 inactive_[i] = inactive_.back();
757 inactive_.pop_back();
758 --i; --e;
759 } else if (IntervalPos->start <= CurPoint) {
760 // move re-activated intervals in active list
761 DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
762 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
763 "Can only allocate virtual registers!");
764 reg = vrm_->getPhys(reg);
765 addRegUse(reg);
766 // add to active
767 active_.push_back(std::make_pair(Interval, IntervalPos));
769 // Pop off the end of the list.
770 inactive_[i] = inactive_.back();
771 inactive_.pop_back();
772 --i; --e;
773 } else {
774 // Otherwise, just update the iterator position.
775 inactive_[i].second = IntervalPos;
780 /// updateSpillWeights - updates the spill weights of the specifed physical
781 /// register and its weight.
782 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
783 unsigned reg, float weight,
784 const TargetRegisterClass *RC) {
785 SmallSet<unsigned, 4> Processed;
786 SmallSet<unsigned, 4> SuperAdded;
787 SmallVector<unsigned, 4> Supers;
788 Weights[reg] += weight;
789 Processed.insert(reg);
790 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
791 Weights[*as] += weight;
792 Processed.insert(*as);
793 if (tri_->isSubRegister(*as, reg) &&
794 SuperAdded.insert(*as) &&
795 RC->contains(*as)) {
796 Supers.push_back(*as);
800 // If the alias is a super-register, and the super-register is in the
801 // register class we are trying to allocate. Then add the weight to all
802 // sub-registers of the super-register even if they are not aliases.
803 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
804 // bl should get the same spill weight otherwise it will be chosen
805 // as a spill candidate since spilling bh doesn't make ebx available.
806 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
807 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
808 if (!Processed.count(*sr))
809 Weights[*sr] += weight;
813 static
814 RALinScan::IntervalPtrs::iterator
815 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
816 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
817 I != E; ++I)
818 if (I->first == LI) return I;
819 return IP.end();
822 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
823 SlotIndex Point){
824 for (unsigned i = 0, e = V.size(); i != e; ++i) {
825 RALinScan::IntervalPtr &IP = V[i];
826 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
827 IP.second, Point);
828 if (I != IP.first->begin()) --I;
829 IP.second = I;
833 /// getConflictWeight - Return the number of conflicts between cur
834 /// live interval and defs and uses of Reg weighted by loop depthes.
835 static
836 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
837 MachineRegisterInfo *mri_,
838 MachineLoopInfo *loopInfo) {
839 float Conflicts = 0;
840 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
841 E = mri_->reg_end(); I != E; ++I) {
842 MachineInstr *MI = &*I;
843 if (cur->liveAt(li_->getInstructionIndex(MI))) {
844 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
845 Conflicts += std::pow(10.0f, (float)loopDepth);
848 return Conflicts;
851 /// findIntervalsToSpill - Determine the intervals to spill for the
852 /// specified interval. It's passed the physical registers whose spill
853 /// weight is the lowest among all the registers whose live intervals
854 /// conflict with the interval.
855 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
856 std::vector<std::pair<unsigned,float> > &Candidates,
857 unsigned NumCands,
858 SmallVector<LiveInterval*, 8> &SpillIntervals) {
859 // We have figured out the *best* register to spill. But there are other
860 // registers that are pretty good as well (spill weight within 3%). Spill
861 // the one that has fewest defs and uses that conflict with cur.
862 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
863 SmallVector<LiveInterval*, 8> SLIs[3];
865 DEBUG({
866 dbgs() << "\tConsidering " << NumCands << " candidates: ";
867 for (unsigned i = 0; i != NumCands; ++i)
868 dbgs() << tri_->getName(Candidates[i].first) << " ";
869 dbgs() << "\n";
872 // Calculate the number of conflicts of each candidate.
873 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
874 unsigned Reg = i->first->reg;
875 unsigned PhysReg = vrm_->getPhys(Reg);
876 if (!cur->overlapsFrom(*i->first, i->second))
877 continue;
878 for (unsigned j = 0; j < NumCands; ++j) {
879 unsigned Candidate = Candidates[j].first;
880 if (tri_->regsOverlap(PhysReg, Candidate)) {
881 if (NumCands > 1)
882 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
883 SLIs[j].push_back(i->first);
888 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
889 unsigned Reg = i->first->reg;
890 unsigned PhysReg = vrm_->getPhys(Reg);
891 if (!cur->overlapsFrom(*i->first, i->second-1))
892 continue;
893 for (unsigned j = 0; j < NumCands; ++j) {
894 unsigned Candidate = Candidates[j].first;
895 if (tri_->regsOverlap(PhysReg, Candidate)) {
896 if (NumCands > 1)
897 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
898 SLIs[j].push_back(i->first);
903 // Which is the best candidate?
904 unsigned BestCandidate = 0;
905 float MinConflicts = Conflicts[0];
906 for (unsigned i = 1; i != NumCands; ++i) {
907 if (Conflicts[i] < MinConflicts) {
908 BestCandidate = i;
909 MinConflicts = Conflicts[i];
913 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
914 std::back_inserter(SpillIntervals));
917 namespace {
918 struct WeightCompare {
919 private:
920 const RALinScan &Allocator;
922 public:
923 WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
925 typedef std::pair<unsigned, float> RegWeightPair;
926 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
927 return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
932 static bool weightsAreClose(float w1, float w2) {
933 if (!NewHeuristic)
934 return false;
936 float diff = w1 - w2;
937 if (diff <= 0.02f) // Within 0.02f
938 return true;
939 return (diff / w2) <= 0.05f; // Within 5%.
942 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
943 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
944 if (I == NextReloadMap.end())
945 return 0;
946 return &li_->getInterval(I->second);
949 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
950 for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
951 bool isNew = DowngradedRegs.insert(*AS);
952 (void)isNew; // Silence compiler warning.
953 assert(isNew && "Multiple reloads holding the same register?");
954 DowngradeMap.insert(std::make_pair(li->reg, *AS));
956 ++NumDowngrade;
959 void RALinScan::UpgradeRegister(unsigned Reg) {
960 if (Reg) {
961 DowngradedRegs.erase(Reg);
962 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
963 DowngradedRegs.erase(*AS);
967 namespace {
968 struct LISorter {
969 bool operator()(LiveInterval* A, LiveInterval* B) {
970 return A->beginIndex() < B->beginIndex();
975 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
976 /// spill.
977 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
978 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
979 DEBUG(dbgs() << "\tallocating current interval from "
980 << RC->getName() << ": ");
982 // This is an implicitly defined live interval, just assign any register.
983 if (cur->empty()) {
984 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
985 if (!physReg)
986 physReg = getFirstNonReservedPhysReg(RC);
987 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
988 // Note the register is not really in use.
989 vrm_->assignVirt2Phys(cur->reg, physReg);
990 return;
993 backUpRegUses();
995 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
996 SlotIndex StartPosition = cur->beginIndex();
997 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
999 // If start of this live interval is defined by a move instruction and its
1000 // source is assigned a physical register that is compatible with the target
1001 // register class, then we should try to assign it the same register.
1002 // This can happen when the move is from a larger register class to a smaller
1003 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
1004 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
1005 VNInfo *vni = cur->begin()->valno;
1006 if (!vni->isUnused() && vni->def.isValid()) {
1007 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1008 if (CopyMI && CopyMI->isCopy()) {
1009 unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
1010 unsigned SrcReg = CopyMI->getOperand(1).getReg();
1011 unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1012 unsigned Reg = 0;
1013 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1014 Reg = SrcReg;
1015 else if (vrm_->isAssignedReg(SrcReg))
1016 Reg = vrm_->getPhys(SrcReg);
1017 if (Reg) {
1018 if (SrcSubReg)
1019 Reg = tri_->getSubReg(Reg, SrcSubReg);
1020 if (DstSubReg)
1021 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1022 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1023 mri_->setRegAllocationHint(cur->reg, 0, Reg);
1029 // For every interval in inactive we overlap with, mark the
1030 // register as not free and update spill weights.
1031 for (IntervalPtrs::const_iterator i = inactive_.begin(),
1032 e = inactive_.end(); i != e; ++i) {
1033 unsigned Reg = i->first->reg;
1034 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1035 "Can only allocate virtual registers!");
1036 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1037 // If this is not in a related reg class to the register we're allocating,
1038 // don't check it.
1039 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1040 cur->overlapsFrom(*i->first, i->second-1)) {
1041 Reg = vrm_->getPhys(Reg);
1042 addRegUse(Reg);
1043 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1047 // Speculatively check to see if we can get a register right now. If not,
1048 // we know we won't be able to by adding more constraints. If so, we can
1049 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1050 // is very bad (it contains all callee clobbered registers for any functions
1051 // with a call), so we want to avoid doing that if possible.
1052 unsigned physReg = getFreePhysReg(cur);
1053 unsigned BestPhysReg = physReg;
1054 if (physReg) {
1055 // We got a register. However, if it's in the fixed_ list, we might
1056 // conflict with it. Check to see if we conflict with it or any of its
1057 // aliases.
1058 SmallSet<unsigned, 8> RegAliases;
1059 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1060 RegAliases.insert(*AS);
1062 bool ConflictsWithFixed = false;
1063 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1064 IntervalPtr &IP = fixed_[i];
1065 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1066 // Okay, this reg is on the fixed list. Check to see if we actually
1067 // conflict.
1068 LiveInterval *I = IP.first;
1069 if (I->endIndex() > StartPosition) {
1070 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1071 IP.second = II;
1072 if (II != I->begin() && II->start > StartPosition)
1073 --II;
1074 if (cur->overlapsFrom(*I, II)) {
1075 ConflictsWithFixed = true;
1076 break;
1082 // Okay, the register picked by our speculative getFreePhysReg call turned
1083 // out to be in use. Actually add all of the conflicting fixed registers to
1084 // regUse_ so we can do an accurate query.
1085 if (ConflictsWithFixed) {
1086 // For every interval in fixed we overlap with, mark the register as not
1087 // free and update spill weights.
1088 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1089 IntervalPtr &IP = fixed_[i];
1090 LiveInterval *I = IP.first;
1092 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1093 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1094 I->endIndex() > StartPosition) {
1095 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1096 IP.second = II;
1097 if (II != I->begin() && II->start > StartPosition)
1098 --II;
1099 if (cur->overlapsFrom(*I, II)) {
1100 unsigned reg = I->reg;
1101 addRegUse(reg);
1102 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1107 // Using the newly updated regUse_ object, which includes conflicts in the
1108 // future, see if there are any registers available.
1109 physReg = getFreePhysReg(cur);
1113 // Restore the physical register tracker, removing information about the
1114 // future.
1115 restoreRegUses();
1117 // If we find a free register, we are done: assign this virtual to
1118 // the free physical register and add this interval to the active
1119 // list.
1120 if (physReg) {
1121 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
1122 assert(RC->contains(physReg) && "Invalid candidate");
1123 vrm_->assignVirt2Phys(cur->reg, physReg);
1124 addRegUse(physReg);
1125 active_.push_back(std::make_pair(cur, cur->begin()));
1126 handled_.push_back(cur);
1128 // Remember physReg for avoiding a write-after-write hazard in the next
1129 // instruction.
1130 if (AvoidWAWHazard &&
1131 tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
1132 avoidWAW_ = physReg;
1134 // "Upgrade" the physical register since it has been allocated.
1135 UpgradeRegister(physReg);
1136 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1137 // "Downgrade" physReg to try to keep physReg from being allocated until
1138 // the next reload from the same SS is allocated.
1139 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1140 DowngradeRegister(cur, physReg);
1142 return;
1144 DEBUG(dbgs() << "no free registers\n");
1146 // Compile the spill weights into an array that is better for scanning.
1147 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1148 for (std::vector<std::pair<unsigned, float> >::iterator
1149 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1150 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1152 // for each interval in active, update spill weights.
1153 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1154 i != e; ++i) {
1155 unsigned reg = i->first->reg;
1156 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1157 "Can only allocate virtual registers!");
1158 reg = vrm_->getPhys(reg);
1159 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1162 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1164 // Find a register to spill.
1165 float minWeight = HUGE_VALF;
1166 unsigned minReg = 0;
1168 bool Found = false;
1169 std::vector<std::pair<unsigned,float> > RegsWeights;
1170 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1171 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1172 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1173 unsigned reg = *i;
1174 float regWeight = SpillWeights[reg];
1175 // Don't even consider reserved regs.
1176 if (reservedRegs_.test(reg))
1177 continue;
1178 // Skip recently allocated registers and reserved registers.
1179 if (minWeight > regWeight && !isRecentlyUsed(reg))
1180 Found = true;
1181 RegsWeights.push_back(std::make_pair(reg, regWeight));
1184 // If we didn't find a register that is spillable, try aliases?
1185 if (!Found) {
1186 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1187 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1188 unsigned reg = *i;
1189 if (reservedRegs_.test(reg))
1190 continue;
1191 // No need to worry about if the alias register size < regsize of RC.
1192 // We are going to spill all registers that alias it anyway.
1193 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1194 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1198 // Sort all potential spill candidates by weight.
1199 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1200 minReg = RegsWeights[0].first;
1201 minWeight = RegsWeights[0].second;
1202 if (minWeight == HUGE_VALF) {
1203 // All registers must have inf weight. Just grab one!
1204 minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1205 if (cur->weight == HUGE_VALF ||
1206 li_->getApproximateInstructionCount(*cur) == 0) {
1207 // Spill a physical register around defs and uses.
1208 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1209 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1210 // in fixed_. Reset them.
1211 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1212 IntervalPtr &IP = fixed_[i];
1213 LiveInterval *I = IP.first;
1214 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1215 IP.second = I->advanceTo(I->begin(), StartPosition);
1218 DowngradedRegs.clear();
1219 assignRegOrStackSlotAtInterval(cur);
1220 } else {
1221 assert(false && "Ran out of registers during register allocation!");
1222 report_fatal_error("Ran out of registers during register allocation!");
1224 return;
1228 // Find up to 3 registers to consider as spill candidates.
1229 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1230 while (LastCandidate > 1) {
1231 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1232 break;
1233 --LastCandidate;
1236 DEBUG({
1237 dbgs() << "\t\tregister(s) with min weight(s): ";
1239 for (unsigned i = 0; i != LastCandidate; ++i)
1240 dbgs() << tri_->getName(RegsWeights[i].first)
1241 << " (" << RegsWeights[i].second << ")\n";
1244 // If the current has the minimum weight, we need to spill it and
1245 // add any added intervals back to unhandled, and restart
1246 // linearscan.
1247 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1248 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1249 SmallVector<LiveInterval*, 8> added;
1250 LiveRangeEdit LRE(*cur, added);
1251 spiller_->spill(LRE);
1253 std::sort(added.begin(), added.end(), LISorter());
1254 if (added.empty())
1255 return; // Early exit if all spills were folded.
1257 // Merge added with unhandled. Note that we have already sorted
1258 // intervals returned by addIntervalsForSpills by their starting
1259 // point.
1260 // This also update the NextReloadMap. That is, it adds mapping from a
1261 // register defined by a reload from SS to the next reload from SS in the
1262 // same basic block.
1263 MachineBasicBlock *LastReloadMBB = 0;
1264 LiveInterval *LastReload = 0;
1265 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1266 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1267 LiveInterval *ReloadLi = added[i];
1268 if (ReloadLi->weight == HUGE_VALF &&
1269 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1270 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1271 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1272 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1273 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1274 // Last reload of same SS is in the same MBB. We want to try to
1275 // allocate both reloads the same register and make sure the reg
1276 // isn't clobbered in between if at all possible.
1277 assert(LastReload->beginIndex() < ReloadIdx);
1278 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1280 LastReloadMBB = ReloadMBB;
1281 LastReload = ReloadLi;
1282 LastReloadSS = ReloadSS;
1284 unhandled_.push(ReloadLi);
1286 return;
1289 ++NumBacktracks;
1291 // Push the current interval back to unhandled since we are going
1292 // to re-run at least this iteration. Since we didn't modify it it
1293 // should go back right in the front of the list
1294 unhandled_.push(cur);
1296 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1297 "did not choose a register to spill?");
1299 // We spill all intervals aliasing the register with
1300 // minimum weight, rollback to the interval with the earliest
1301 // start point and let the linear scan algorithm run again
1302 SmallVector<LiveInterval*, 8> spillIs;
1304 // Determine which intervals have to be spilled.
1305 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1307 // Set of spilled vregs (used later to rollback properly)
1308 SmallSet<unsigned, 8> spilled;
1310 // The earliest start of a Spilled interval indicates up to where
1311 // in handled we need to roll back
1312 assert(!spillIs.empty() && "No spill intervals?");
1313 SlotIndex earliestStart = spillIs[0]->beginIndex();
1315 // Spill live intervals of virtual regs mapped to the physical register we
1316 // want to clear (and its aliases). We only spill those that overlap with the
1317 // current interval as the rest do not affect its allocation. we also keep
1318 // track of the earliest start of all spilled live intervals since this will
1319 // mark our rollback point.
1320 SmallVector<LiveInterval*, 8> added;
1321 while (!spillIs.empty()) {
1322 LiveInterval *sli = spillIs.back();
1323 spillIs.pop_back();
1324 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1325 if (sli->beginIndex() < earliestStart)
1326 earliestStart = sli->beginIndex();
1327 LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1328 spiller_->spill(LRE);
1329 spilled.insert(sli->reg);
1332 // Include any added intervals in earliestStart.
1333 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1334 SlotIndex SI = added[i]->beginIndex();
1335 if (SI < earliestStart)
1336 earliestStart = SI;
1339 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1341 // Scan handled in reverse order up to the earliest start of a
1342 // spilled live interval and undo each one, restoring the state of
1343 // unhandled.
1344 while (!handled_.empty()) {
1345 LiveInterval* i = handled_.back();
1346 // If this interval starts before t we are done.
1347 if (!i->empty() && i->beginIndex() < earliestStart)
1348 break;
1349 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1350 handled_.pop_back();
1352 // When undoing a live interval allocation we must know if it is active or
1353 // inactive to properly update regUse_ and the VirtRegMap.
1354 IntervalPtrs::iterator it;
1355 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1356 active_.erase(it);
1357 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1358 if (!spilled.count(i->reg))
1359 unhandled_.push(i);
1360 delRegUse(vrm_->getPhys(i->reg));
1361 vrm_->clearVirt(i->reg);
1362 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1363 inactive_.erase(it);
1364 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1365 if (!spilled.count(i->reg))
1366 unhandled_.push(i);
1367 vrm_->clearVirt(i->reg);
1368 } else {
1369 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1370 "Can only allocate virtual registers!");
1371 vrm_->clearVirt(i->reg);
1372 unhandled_.push(i);
1375 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1376 if (ii == DowngradeMap.end())
1377 // It interval has a preference, it must be defined by a copy. Clear the
1378 // preference now since the source interval allocation may have been
1379 // undone as well.
1380 mri_->setRegAllocationHint(i->reg, 0, 0);
1381 else {
1382 UpgradeRegister(ii->second);
1386 // Rewind the iterators in the active, inactive, and fixed lists back to the
1387 // point we reverted to.
1388 RevertVectorIteratorsTo(active_, earliestStart);
1389 RevertVectorIteratorsTo(inactive_, earliestStart);
1390 RevertVectorIteratorsTo(fixed_, earliestStart);
1392 // Scan the rest and undo each interval that expired after t and
1393 // insert it in active (the next iteration of the algorithm will
1394 // put it in inactive if required)
1395 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1396 LiveInterval *HI = handled_[i];
1397 if (!HI->expiredAt(earliestStart) &&
1398 HI->expiredAt(cur->beginIndex())) {
1399 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1400 active_.push_back(std::make_pair(HI, HI->begin()));
1401 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1402 addRegUse(vrm_->getPhys(HI->reg));
1406 // Merge added with unhandled.
1407 // This also update the NextReloadMap. That is, it adds mapping from a
1408 // register defined by a reload from SS to the next reload from SS in the
1409 // same basic block.
1410 MachineBasicBlock *LastReloadMBB = 0;
1411 LiveInterval *LastReload = 0;
1412 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1413 std::sort(added.begin(), added.end(), LISorter());
1414 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1415 LiveInterval *ReloadLi = added[i];
1416 if (ReloadLi->weight == HUGE_VALF &&
1417 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1418 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1419 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1420 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1421 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1422 // Last reload of same SS is in the same MBB. We want to try to
1423 // allocate both reloads the same register and make sure the reg
1424 // isn't clobbered in between if at all possible.
1425 assert(LastReload->beginIndex() < ReloadIdx);
1426 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1428 LastReloadMBB = ReloadMBB;
1429 LastReload = ReloadLi;
1430 LastReloadSS = ReloadSS;
1432 unhandled_.push(ReloadLi);
1436 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1437 const TargetRegisterClass *RC,
1438 unsigned MaxInactiveCount,
1439 SmallVector<unsigned, 256> &inactiveCounts,
1440 bool SkipDGRegs) {
1441 unsigned FreeReg = 0;
1442 unsigned FreeRegInactiveCount = 0;
1444 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1445 // Resolve second part of the hint (if possible) given the current allocation.
1446 unsigned physReg = Hint.second;
1447 if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1448 physReg = vrm_->getPhys(physReg);
1450 TargetRegisterClass::iterator I, E;
1451 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1452 assert(I != E && "No allocatable register in this register class!");
1454 // Scan for the first available register.
1455 for (; I != E; ++I) {
1456 unsigned Reg = *I;
1457 // Ignore "downgraded" registers.
1458 if (SkipDGRegs && DowngradedRegs.count(Reg))
1459 continue;
1460 // Skip reserved registers.
1461 if (reservedRegs_.test(Reg))
1462 continue;
1463 // Skip recently allocated registers.
1464 if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1465 FreeReg = Reg;
1466 if (FreeReg < inactiveCounts.size())
1467 FreeRegInactiveCount = inactiveCounts[FreeReg];
1468 else
1469 FreeRegInactiveCount = 0;
1470 break;
1474 // If there are no free regs, or if this reg has the max inactive count,
1475 // return this register.
1476 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1477 // Remember what register we picked so we can skip it next time.
1478 if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1479 return FreeReg;
1482 // Continue scanning the registers, looking for the one with the highest
1483 // inactive count. Alkis found that this reduced register pressure very
1484 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1485 // reevaluated now.
1486 for (; I != E; ++I) {
1487 unsigned Reg = *I;
1488 // Ignore "downgraded" registers.
1489 if (SkipDGRegs && DowngradedRegs.count(Reg))
1490 continue;
1491 // Skip reserved registers.
1492 if (reservedRegs_.test(Reg))
1493 continue;
1494 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1495 FreeRegInactiveCount < inactiveCounts[Reg] &&
1496 (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1497 FreeReg = Reg;
1498 FreeRegInactiveCount = inactiveCounts[Reg];
1499 if (FreeRegInactiveCount == MaxInactiveCount)
1500 break; // We found the one with the max inactive count.
1504 // Remember what register we picked so we can skip it next time.
1505 recordRecentlyUsed(FreeReg);
1507 return FreeReg;
1510 /// getFreePhysReg - return a free physical register for this virtual register
1511 /// interval if we have one, otherwise return 0.
1512 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1513 SmallVector<unsigned, 256> inactiveCounts;
1514 unsigned MaxInactiveCount = 0;
1516 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1517 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1519 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1520 i != e; ++i) {
1521 unsigned reg = i->first->reg;
1522 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1523 "Can only allocate virtual registers!");
1525 // If this is not in a related reg class to the register we're allocating,
1526 // don't check it.
1527 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1528 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1529 reg = vrm_->getPhys(reg);
1530 if (inactiveCounts.size() <= reg)
1531 inactiveCounts.resize(reg+1);
1532 ++inactiveCounts[reg];
1533 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1537 // If copy coalescer has assigned a "preferred" register, check if it's
1538 // available first.
1539 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1540 if (Preference) {
1541 DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1542 if (isRegAvail(Preference) &&
1543 RC->contains(Preference))
1544 return Preference;
1547 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1548 true);
1549 if (FreeReg)
1550 return FreeReg;
1551 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1554 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1555 return new RALinScan();