1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/CalcSpillWeights.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterCoalescer.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
50 STATISTIC(NumIters
, "Number of iterations performed");
51 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce
, "Number of copies coalesced");
53 STATISTIC(NumDowngrade
, "Number of registers downgraded");
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden
);
61 PreSplitIntervals("pre-alloc-split",
62 cl::desc("Pre-register allocation live interval splitting"),
63 cl::init(false), cl::Hidden
);
66 TrivCoalesceEnds("trivial-coalesce-ends",
67 cl::desc("Attempt trivial coalescing of interval ends"),
68 cl::init(false), cl::Hidden
);
71 AvoidWAWHazard("avoid-waw-hazard",
72 cl::desc("Avoid write-write hazards for some register classes"),
73 cl::init(false), cl::Hidden
);
75 static RegisterRegAlloc
76 linearscanRegAlloc("linearscan", "linear scan register allocator",
77 createLinearScanRegisterAllocator
);
80 // When we allocate a register, add it to a fixed-size queue of
81 // registers to skip in subsequent allocations. This trades a small
82 // amount of register pressure and increased spills for flexibility in
83 // the post-pass scheduler.
85 // Note that in a the number of registers used for reloading spills
86 // will be one greater than the value of this option.
88 // One big limitation of this is that it doesn't differentiate between
89 // different register classes. So on x86-64, if there is xmm register
90 // pressure, it can caused fewer GPRs to be held in the queue.
91 static cl::opt
<unsigned>
92 NumRecentlyUsedRegs("linearscan-skip-count",
93 cl::desc("Number of registers for linearscan to remember"
98 struct RALinScan
: public MachineFunctionPass
{
100 RALinScan() : MachineFunctionPass(ID
) {
101 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
102 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
103 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
104 initializeRegisterCoalescerAnalysisGroup(
105 *PassRegistry::getPassRegistry());
106 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
107 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
108 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
109 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
110 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
111 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
112 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
114 // Initialize the queue to record recently-used registers.
115 if (NumRecentlyUsedRegs
> 0)
116 RecentRegs
.resize(NumRecentlyUsedRegs
, 0);
117 RecentNext
= RecentRegs
.begin();
121 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
122 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
124 /// RelatedRegClasses - This structure is built the first time a function is
125 /// compiled, and keeps track of which register classes have registers that
126 /// belong to multiple classes or have aliases that are in other classes.
127 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
128 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
130 // NextReloadMap - For each register in the map, it maps to the another
131 // register which is defined by a reload from the same stack slot and
132 // both reloads are in the same basic block.
133 DenseMap
<unsigned, unsigned> NextReloadMap
;
135 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
136 // un-favored for allocation.
137 SmallSet
<unsigned, 8> DowngradedRegs
;
139 // DowngradeMap - A map from virtual registers to physical registers being
140 // downgraded for the virtual registers.
141 DenseMap
<unsigned, unsigned> DowngradeMap
;
143 MachineFunction
* mf_
;
144 MachineRegisterInfo
* mri_
;
145 const TargetMachine
* tm_
;
146 const TargetRegisterInfo
* tri_
;
147 const TargetInstrInfo
* tii_
;
148 BitVector allocatableRegs_
;
149 BitVector reservedRegs_
;
151 MachineLoopInfo
*loopInfo
;
153 /// handled_ - Intervals are added to the handled_ set in the order of their
154 /// start value. This is uses for backtracking.
155 std::vector
<LiveInterval
*> handled_
;
157 /// fixed_ - Intervals that correspond to machine registers.
161 /// active_ - Intervals that are currently being processed, and which have a
162 /// live range active for the current point.
163 IntervalPtrs active_
;
165 /// inactive_ - Intervals that are currently being processed, but which have
166 /// a hold at the current point.
167 IntervalPtrs inactive_
;
169 typedef std::priority_queue
<LiveInterval
*,
170 SmallVector
<LiveInterval
*, 64>,
171 greater_ptr
<LiveInterval
> > IntervalHeap
;
172 IntervalHeap unhandled_
;
174 /// regUse_ - Tracks register usage.
175 SmallVector
<unsigned, 32> regUse_
;
176 SmallVector
<unsigned, 32> regUseBackUp_
;
178 /// vrm_ - Tracks register assignments.
181 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
183 std::auto_ptr
<Spiller
> spiller_
;
185 // The queue of recently-used registers.
186 SmallVector
<unsigned, 4> RecentRegs
;
187 SmallVector
<unsigned, 4>::iterator RecentNext
;
189 // Last write-after-write register written.
192 // Record that we just picked this register.
193 void recordRecentlyUsed(unsigned reg
) {
194 assert(reg
!= 0 && "Recently used register is NOREG!");
195 if (!RecentRegs
.empty()) {
197 if (RecentNext
== RecentRegs
.end())
198 RecentNext
= RecentRegs
.begin();
203 virtual const char* getPassName() const {
204 return "Linear Scan Register Allocator";
207 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
208 AU
.setPreservesCFG();
209 AU
.addRequired
<AliasAnalysis
>();
210 AU
.addPreserved
<AliasAnalysis
>();
211 AU
.addRequired
<LiveIntervals
>();
212 AU
.addPreserved
<SlotIndexes
>();
214 AU
.addRequiredID(StrongPHIEliminationID
);
215 // Make sure PassManager knows which analyses to make available
216 // to coalescing and which analyses coalescing invalidates.
217 AU
.addRequiredTransitive
<RegisterCoalescer
>();
218 AU
.addRequired
<CalculateSpillWeights
>();
219 if (PreSplitIntervals
)
220 AU
.addRequiredID(PreAllocSplittingID
);
221 AU
.addRequiredID(LiveStacksID
);
222 AU
.addPreservedID(LiveStacksID
);
223 AU
.addRequired
<MachineLoopInfo
>();
224 AU
.addPreserved
<MachineLoopInfo
>();
225 AU
.addRequired
<VirtRegMap
>();
226 AU
.addPreserved
<VirtRegMap
>();
227 AU
.addRequired
<LiveDebugVariables
>();
228 AU
.addPreserved
<LiveDebugVariables
>();
229 AU
.addRequiredID(MachineDominatorsID
);
230 AU
.addPreservedID(MachineDominatorsID
);
231 MachineFunctionPass::getAnalysisUsage(AU
);
234 /// runOnMachineFunction - register allocate the whole function
235 bool runOnMachineFunction(MachineFunction
&);
237 // Determine if we skip this register due to its being recently used.
238 bool isRecentlyUsed(unsigned reg
) const {
239 return reg
== avoidWAW_
||
240 std::find(RecentRegs
.begin(), RecentRegs
.end(), reg
) != RecentRegs
.end();
244 /// linearScan - the linear scan algorithm
247 /// initIntervalSets - initialize the interval sets.
249 void initIntervalSets();
251 /// processActiveIntervals - expire old intervals and move non-overlapping
252 /// ones to the inactive list.
253 void processActiveIntervals(SlotIndex CurPoint
);
255 /// processInactiveIntervals - expire old intervals and move overlapping
256 /// ones to the active list.
257 void processInactiveIntervals(SlotIndex CurPoint
);
259 /// hasNextReloadInterval - Return the next liveinterval that's being
260 /// defined by a reload from the same SS as the specified one.
261 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
263 /// DowngradeRegister - Downgrade a register for allocation.
264 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
266 /// UpgradeRegister - Upgrade a register for allocation.
267 void UpgradeRegister(unsigned Reg
);
269 /// assignRegOrStackSlotAtInterval - assign a register if one
270 /// is available, or spill.
271 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
273 void updateSpillWeights(std::vector
<float> &Weights
,
274 unsigned reg
, float weight
,
275 const TargetRegisterClass
*RC
);
277 /// findIntervalsToSpill - Determine the intervals to spill for the
278 /// specified interval. It's passed the physical registers whose spill
279 /// weight is the lowest among all the registers whose live intervals
280 /// conflict with the interval.
281 void findIntervalsToSpill(LiveInterval
*cur
,
282 std::vector
<std::pair
<unsigned,float> > &Candidates
,
284 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
286 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
287 /// try to allocate the definition to the same register as the source,
288 /// if the register is not defined during the life time of the interval.
289 /// This eliminates a copy, and is used to coalesce copies which were not
290 /// coalesced away before allocation either due to dest and src being in
291 /// different register classes or because the coalescer was overly
293 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
296 /// Register usage / availability tracking helpers.
300 regUse_
.resize(tri_
->getNumRegs(), 0);
301 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
304 void finalizeRegUses() {
306 // Verify all the registers are "freed".
308 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
309 if (regUse_
[i
] != 0) {
310 dbgs() << tri_
->getName(i
) << " is still in use!\n";
318 regUseBackUp_
.clear();
321 void addRegUse(unsigned physReg
) {
322 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
323 "should be physical register!");
325 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
329 void delRegUse(unsigned physReg
) {
330 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
331 "should be physical register!");
332 assert(regUse_
[physReg
] != 0);
334 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
335 assert(regUse_
[*as
] != 0);
340 bool isRegAvail(unsigned physReg
) const {
341 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
342 "should be physical register!");
343 return regUse_
[physReg
] == 0;
346 void backUpRegUses() {
347 regUseBackUp_
= regUse_
;
350 void restoreRegUses() {
351 regUse_
= regUseBackUp_
;
355 /// Register handling helpers.
358 /// getFreePhysReg - return a free physical register for this virtual
359 /// register interval if we have one, otherwise return 0.
360 unsigned getFreePhysReg(LiveInterval
* cur
);
361 unsigned getFreePhysReg(LiveInterval
* cur
,
362 const TargetRegisterClass
*RC
,
363 unsigned MaxInactiveCount
,
364 SmallVector
<unsigned, 256> &inactiveCounts
,
367 /// getFirstNonReservedPhysReg - return the first non-reserved physical
368 /// register in the register class.
369 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass
*RC
) {
370 TargetRegisterClass::iterator aoe
= RC
->allocation_order_end(*mf_
);
371 TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
);
372 while (i
!= aoe
&& reservedRegs_
.test(*i
))
374 assert(i
!= aoe
&& "All registers reserved?!");
378 void ComputeRelatedRegClasses();
380 template <typename ItTy
>
381 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
384 dbgs() << str
<< " intervals:\n";
386 for (; i
!= e
; ++i
) {
387 dbgs() << '\t' << *i
->first
<< " -> ";
389 unsigned reg
= i
->first
->reg
;
390 if (TargetRegisterInfo::isVirtualRegister(reg
))
391 reg
= vrm_
->getPhys(reg
);
393 dbgs() << tri_
->getName(reg
) << '\n';
398 char RALinScan::ID
= 0;
401 INITIALIZE_PASS_BEGIN(RALinScan
, "linearscan-regalloc",
402 "Linear Scan Register Allocator", false, false)
403 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
404 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
405 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights
)
406 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting
)
407 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
408 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
409 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
410 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer
)
411 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
412 INITIALIZE_PASS_END(RALinScan
, "linearscan-regalloc",
413 "Linear Scan Register Allocator", false, false)
415 void RALinScan::ComputeRelatedRegClasses() {
416 // First pass, add all reg classes to the union, and determine at least one
417 // reg class that each register is in.
418 bool HasAliases
= false;
419 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
420 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
421 RelatedRegClasses
.insert(*RCI
);
422 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
424 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
426 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
428 // Already processed this register. Just make sure we know that
429 // multiple register classes share a register.
430 RelatedRegClasses
.unionSets(PRC
, *RCI
);
437 // Second pass, now that we know conservatively what register classes each reg
438 // belongs to, add info about aliases. We don't need to do this for targets
439 // without register aliases.
441 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
442 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
444 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
) {
445 const TargetRegisterClass
*AliasClass
=
446 OneClassForEachPhysReg
.lookup(*AS
);
448 RelatedRegClasses
.unionSets(I
->second
, AliasClass
);
452 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
453 /// allocate the definition the same register as the source register if the
454 /// register is not defined during live time of the interval. If the interval is
455 /// killed by a copy, try to use the destination register. This eliminates a
456 /// copy. This is used to coalesce copies which were not coalesced away before
457 /// allocation either due to dest and src being in different register classes or
458 /// because the coalescer was overly conservative.
459 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
460 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
461 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
464 // We cannot handle complicated live ranges. Simple linear stuff only.
465 if (cur
.ranges
.size() != 1)
468 const LiveRange
&range
= cur
.ranges
.front();
470 VNInfo
*vni
= range
.valno
;
471 if (vni
->isUnused() || !vni
->def
.isValid())
476 MachineInstr
*CopyMI
;
477 if ((CopyMI
= li_
->getInstructionFromIndex(vni
->def
)) && CopyMI
->isCopy())
478 // Defined by a copy, try to extend SrcReg forward
479 CandReg
= CopyMI
->getOperand(1).getReg();
480 else if (TrivCoalesceEnds
&&
481 (CopyMI
= li_
->getInstructionFromIndex(range
.end
.getBaseIndex())) &&
482 CopyMI
->isCopy() && cur
.reg
== CopyMI
->getOperand(1).getReg())
483 // Only used by a copy, try to extend DstReg backwards
484 CandReg
= CopyMI
->getOperand(0).getReg();
488 // If the target of the copy is a sub-register then don't coalesce.
489 if(CopyMI
->getOperand(0).getSubReg())
493 if (TargetRegisterInfo::isVirtualRegister(CandReg
)) {
494 if (!vrm_
->isAssignedReg(CandReg
))
496 CandReg
= vrm_
->getPhys(CandReg
);
501 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
502 if (!RC
->contains(CandReg
))
505 if (li_
->conflictsWithPhysReg(cur
, *vrm_
, CandReg
))
509 DEBUG(dbgs() << "Coalescing: " << cur
<< " -> " << tri_
->getName(CandReg
)
511 vrm_
->clearVirt(cur
.reg
);
512 vrm_
->assignVirt2Phys(cur
.reg
, CandReg
);
518 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
520 mri_
= &fn
.getRegInfo();
521 tm_
= &fn
.getTarget();
522 tri_
= tm_
->getRegisterInfo();
523 tii_
= tm_
->getInstrInfo();
524 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
525 reservedRegs_
= tri_
->getReservedRegs(fn
);
526 li_
= &getAnalysis
<LiveIntervals
>();
527 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
529 // We don't run the coalescer here because we have no reason to
530 // interact with it. If the coalescer requires interaction, it
531 // won't do anything. If it doesn't require interaction, we assume
532 // it was run as a separate pass.
534 // If this is the first function compiled, compute the related reg classes.
535 if (RelatedRegClasses
.empty())
536 ComputeRelatedRegClasses();
538 // Also resize register usage trackers.
541 vrm_
= &getAnalysis
<VirtRegMap
>();
542 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
544 spiller_
.reset(createSpiller(*this, *mf_
, *vrm_
));
550 // Rewrite spill code and update the PhysRegsUsed set.
551 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
553 // Write out new DBG_VALUE instructions.
554 getAnalysis
<LiveDebugVariables
>().emitDebugValues(vrm_
);
556 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
564 NextReloadMap
.clear();
565 DowngradedRegs
.clear();
566 DowngradeMap
.clear();
572 /// initIntervalSets - initialize the interval sets.
574 void RALinScan::initIntervalSets()
576 assert(unhandled_
.empty() && fixed_
.empty() &&
577 active_
.empty() && inactive_
.empty() &&
578 "interval sets should be empty on initialization");
580 handled_
.reserve(li_
->getNumIntervals());
582 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
583 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
584 if (!i
->second
->empty() && allocatableRegs_
.test(i
->second
->reg
)) {
585 mri_
->setPhysRegUsed(i
->second
->reg
);
586 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
589 if (i
->second
->empty()) {
590 assignRegOrStackSlotAtInterval(i
->second
);
593 unhandled_
.push(i
->second
);
598 void RALinScan::linearScan() {
599 // linear scan algorithm
601 dbgs() << "********** LINEAR SCAN **********\n"
602 << "********** Function: "
603 << mf_
->getFunction()->getName() << '\n';
604 printIntervals("fixed", fixed_
.begin(), fixed_
.end());
607 while (!unhandled_
.empty()) {
608 // pick the interval with the earliest start point
609 LiveInterval
* cur
= unhandled_
.top();
612 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur
<< '\n');
614 assert(!cur
->empty() && "Empty interval in unhandled set.");
616 processActiveIntervals(cur
->beginIndex());
617 processInactiveIntervals(cur
->beginIndex());
619 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
620 "Can only allocate virtual registers!");
622 // Allocating a virtual register. try to find a free
623 // physical register or spill an interval (possibly this one) in order to
625 assignRegOrStackSlotAtInterval(cur
);
628 printIntervals("active", active_
.begin(), active_
.end());
629 printIntervals("inactive", inactive_
.begin(), inactive_
.end());
633 // Expire any remaining active intervals
634 while (!active_
.empty()) {
635 IntervalPtr
&IP
= active_
.back();
636 unsigned reg
= IP
.first
->reg
;
637 DEBUG(dbgs() << "\tinterval " << *IP
.first
<< " expired\n");
638 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
639 "Can only allocate virtual registers!");
640 reg
= vrm_
->getPhys(reg
);
645 // Expire any remaining inactive intervals
647 for (IntervalPtrs::reverse_iterator
648 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
649 dbgs() << "\tinterval " << *i
->first
<< " expired\n";
653 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
654 MachineFunction::iterator EntryMBB
= mf_
->begin();
655 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
656 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
657 LiveInterval
&cur
= *i
->second
;
659 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
662 else if (vrm_
->isAssignedReg(cur
.reg
))
663 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
666 // Ignore splited live intervals.
667 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
670 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
672 const LiveRange
&LR
= *I
;
673 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
674 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
675 if (LiveInMBBs
[i
] != EntryMBB
) {
676 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
677 "Adding a virtual register to livein set?");
678 LiveInMBBs
[i
]->addLiveIn(Reg
);
685 DEBUG(dbgs() << *vrm_
);
687 // Look for physical registers that end up not being allocated even though
688 // register allocator had to spill other registers in its register class.
689 if (!vrm_
->FindUnusedRegisters(li_
))
693 /// processActiveIntervals - expire old intervals and move non-overlapping ones
694 /// to the inactive list.
695 void RALinScan::processActiveIntervals(SlotIndex CurPoint
)
697 DEBUG(dbgs() << "\tprocessing active intervals:\n");
699 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
700 LiveInterval
*Interval
= active_
[i
].first
;
701 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
702 unsigned reg
= Interval
->reg
;
704 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
706 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
707 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
708 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
709 "Can only allocate virtual registers!");
710 reg
= vrm_
->getPhys(reg
);
713 // Pop off the end of the list.
714 active_
[i
] = active_
.back();
718 } else if (IntervalPos
->start
> CurPoint
) {
719 // Move inactive intervals to inactive list.
720 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " inactive\n");
721 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
722 "Can only allocate virtual registers!");
723 reg
= vrm_
->getPhys(reg
);
726 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
728 // Pop off the end of the list.
729 active_
[i
] = active_
.back();
733 // Otherwise, just update the iterator position.
734 active_
[i
].second
= IntervalPos
;
739 /// processInactiveIntervals - expire old intervals and move overlapping
740 /// ones to the active list.
741 void RALinScan::processInactiveIntervals(SlotIndex CurPoint
)
743 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
745 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
746 LiveInterval
*Interval
= inactive_
[i
].first
;
747 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
748 unsigned reg
= Interval
->reg
;
750 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
752 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
753 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
755 // Pop off the end of the list.
756 inactive_
[i
] = inactive_
.back();
757 inactive_
.pop_back();
759 } else if (IntervalPos
->start
<= CurPoint
) {
760 // move re-activated intervals in active list
761 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " active\n");
762 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
763 "Can only allocate virtual registers!");
764 reg
= vrm_
->getPhys(reg
);
767 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
769 // Pop off the end of the list.
770 inactive_
[i
] = inactive_
.back();
771 inactive_
.pop_back();
774 // Otherwise, just update the iterator position.
775 inactive_
[i
].second
= IntervalPos
;
780 /// updateSpillWeights - updates the spill weights of the specifed physical
781 /// register and its weight.
782 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
783 unsigned reg
, float weight
,
784 const TargetRegisterClass
*RC
) {
785 SmallSet
<unsigned, 4> Processed
;
786 SmallSet
<unsigned, 4> SuperAdded
;
787 SmallVector
<unsigned, 4> Supers
;
788 Weights
[reg
] += weight
;
789 Processed
.insert(reg
);
790 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
791 Weights
[*as
] += weight
;
792 Processed
.insert(*as
);
793 if (tri_
->isSubRegister(*as
, reg
) &&
794 SuperAdded
.insert(*as
) &&
796 Supers
.push_back(*as
);
800 // If the alias is a super-register, and the super-register is in the
801 // register class we are trying to allocate. Then add the weight to all
802 // sub-registers of the super-register even if they are not aliases.
803 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
804 // bl should get the same spill weight otherwise it will be chosen
805 // as a spill candidate since spilling bh doesn't make ebx available.
806 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
807 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
808 if (!Processed
.count(*sr
))
809 Weights
[*sr
] += weight
;
814 RALinScan::IntervalPtrs::iterator
815 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
816 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
818 if (I
->first
== LI
) return I
;
822 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
,
824 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
825 RALinScan::IntervalPtr
&IP
= V
[i
];
826 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
828 if (I
!= IP
.first
->begin()) --I
;
833 /// getConflictWeight - Return the number of conflicts between cur
834 /// live interval and defs and uses of Reg weighted by loop depthes.
836 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
837 MachineRegisterInfo
*mri_
,
838 MachineLoopInfo
*loopInfo
) {
840 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
841 E
= mri_
->reg_end(); I
!= E
; ++I
) {
842 MachineInstr
*MI
= &*I
;
843 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
844 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
845 Conflicts
+= std::pow(10.0f
, (float)loopDepth
);
851 /// findIntervalsToSpill - Determine the intervals to spill for the
852 /// specified interval. It's passed the physical registers whose spill
853 /// weight is the lowest among all the registers whose live intervals
854 /// conflict with the interval.
855 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
856 std::vector
<std::pair
<unsigned,float> > &Candidates
,
858 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
859 // We have figured out the *best* register to spill. But there are other
860 // registers that are pretty good as well (spill weight within 3%). Spill
861 // the one that has fewest defs and uses that conflict with cur.
862 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
863 SmallVector
<LiveInterval
*, 8> SLIs
[3];
866 dbgs() << "\tConsidering " << NumCands
<< " candidates: ";
867 for (unsigned i
= 0; i
!= NumCands
; ++i
)
868 dbgs() << tri_
->getName(Candidates
[i
].first
) << " ";
872 // Calculate the number of conflicts of each candidate.
873 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
874 unsigned Reg
= i
->first
->reg
;
875 unsigned PhysReg
= vrm_
->getPhys(Reg
);
876 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
878 for (unsigned j
= 0; j
< NumCands
; ++j
) {
879 unsigned Candidate
= Candidates
[j
].first
;
880 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
882 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
883 SLIs
[j
].push_back(i
->first
);
888 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
889 unsigned Reg
= i
->first
->reg
;
890 unsigned PhysReg
= vrm_
->getPhys(Reg
);
891 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
893 for (unsigned j
= 0; j
< NumCands
; ++j
) {
894 unsigned Candidate
= Candidates
[j
].first
;
895 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
897 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
898 SLIs
[j
].push_back(i
->first
);
903 // Which is the best candidate?
904 unsigned BestCandidate
= 0;
905 float MinConflicts
= Conflicts
[0];
906 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
907 if (Conflicts
[i
] < MinConflicts
) {
909 MinConflicts
= Conflicts
[i
];
913 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
914 std::back_inserter(SpillIntervals
));
918 struct WeightCompare
{
920 const RALinScan
&Allocator
;
923 WeightCompare(const RALinScan
&Alloc
) : Allocator(Alloc
) {}
925 typedef std::pair
<unsigned, float> RegWeightPair
;
926 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
927 return LHS
.second
< RHS
.second
&& !Allocator
.isRecentlyUsed(LHS
.first
);
932 static bool weightsAreClose(float w1
, float w2
) {
936 float diff
= w1
- w2
;
937 if (diff
<= 0.02f
) // Within 0.02f
939 return (diff
/ w2
) <= 0.05f
; // Within 5%.
942 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
943 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
944 if (I
== NextReloadMap
.end())
946 return &li_
->getInterval(I
->second
);
949 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
950 for (const unsigned *AS
= tri_
->getOverlaps(Reg
); *AS
; ++AS
) {
951 bool isNew
= DowngradedRegs
.insert(*AS
);
952 (void)isNew
; // Silence compiler warning.
953 assert(isNew
&& "Multiple reloads holding the same register?");
954 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
959 void RALinScan::UpgradeRegister(unsigned Reg
) {
961 DowngradedRegs
.erase(Reg
);
962 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
963 DowngradedRegs
.erase(*AS
);
969 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
970 return A
->beginIndex() < B
->beginIndex();
975 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
977 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
) {
978 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
979 DEBUG(dbgs() << "\tallocating current interval from "
980 << RC
->getName() << ": ");
982 // This is an implicitly defined live interval, just assign any register.
984 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
986 physReg
= getFirstNonReservedPhysReg(RC
);
987 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
988 // Note the register is not really in use.
989 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
995 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
996 SlotIndex StartPosition
= cur
->beginIndex();
997 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
999 // If start of this live interval is defined by a move instruction and its
1000 // source is assigned a physical register that is compatible with the target
1001 // register class, then we should try to assign it the same register.
1002 // This can happen when the move is from a larger register class to a smaller
1003 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
1004 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
1005 VNInfo
*vni
= cur
->begin()->valno
;
1006 if (!vni
->isUnused() && vni
->def
.isValid()) {
1007 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1008 if (CopyMI
&& CopyMI
->isCopy()) {
1009 unsigned DstSubReg
= CopyMI
->getOperand(0).getSubReg();
1010 unsigned SrcReg
= CopyMI
->getOperand(1).getReg();
1011 unsigned SrcSubReg
= CopyMI
->getOperand(1).getSubReg();
1013 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
1015 else if (vrm_
->isAssignedReg(SrcReg
))
1016 Reg
= vrm_
->getPhys(SrcReg
);
1019 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
1021 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
1022 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
1023 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
1029 // For every interval in inactive we overlap with, mark the
1030 // register as not free and update spill weights.
1031 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
1032 e
= inactive_
.end(); i
!= e
; ++i
) {
1033 unsigned Reg
= i
->first
->reg
;
1034 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
1035 "Can only allocate virtual registers!");
1036 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
1037 // If this is not in a related reg class to the register we're allocating,
1039 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1040 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
1041 Reg
= vrm_
->getPhys(Reg
);
1043 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
1047 // Speculatively check to see if we can get a register right now. If not,
1048 // we know we won't be able to by adding more constraints. If so, we can
1049 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1050 // is very bad (it contains all callee clobbered registers for any functions
1051 // with a call), so we want to avoid doing that if possible.
1052 unsigned physReg
= getFreePhysReg(cur
);
1053 unsigned BestPhysReg
= physReg
;
1055 // We got a register. However, if it's in the fixed_ list, we might
1056 // conflict with it. Check to see if we conflict with it or any of its
1058 SmallSet
<unsigned, 8> RegAliases
;
1059 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
1060 RegAliases
.insert(*AS
);
1062 bool ConflictsWithFixed
= false;
1063 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1064 IntervalPtr
&IP
= fixed_
[i
];
1065 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
1066 // Okay, this reg is on the fixed list. Check to see if we actually
1068 LiveInterval
*I
= IP
.first
;
1069 if (I
->endIndex() > StartPosition
) {
1070 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1072 if (II
!= I
->begin() && II
->start
> StartPosition
)
1074 if (cur
->overlapsFrom(*I
, II
)) {
1075 ConflictsWithFixed
= true;
1082 // Okay, the register picked by our speculative getFreePhysReg call turned
1083 // out to be in use. Actually add all of the conflicting fixed registers to
1084 // regUse_ so we can do an accurate query.
1085 if (ConflictsWithFixed
) {
1086 // For every interval in fixed we overlap with, mark the register as not
1087 // free and update spill weights.
1088 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1089 IntervalPtr
&IP
= fixed_
[i
];
1090 LiveInterval
*I
= IP
.first
;
1092 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
1093 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1094 I
->endIndex() > StartPosition
) {
1095 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1097 if (II
!= I
->begin() && II
->start
> StartPosition
)
1099 if (cur
->overlapsFrom(*I
, II
)) {
1100 unsigned reg
= I
->reg
;
1102 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1107 // Using the newly updated regUse_ object, which includes conflicts in the
1108 // future, see if there are any registers available.
1109 physReg
= getFreePhysReg(cur
);
1113 // Restore the physical register tracker, removing information about the
1117 // If we find a free register, we are done: assign this virtual to
1118 // the free physical register and add this interval to the active
1121 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
1122 assert(RC
->contains(physReg
) && "Invalid candidate");
1123 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1125 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1126 handled_
.push_back(cur
);
1128 // Remember physReg for avoiding a write-after-write hazard in the next
1130 if (AvoidWAWHazard
&&
1131 tri_
->avoidWriteAfterWrite(mri_
->getRegClass(cur
->reg
)))
1132 avoidWAW_
= physReg
;
1134 // "Upgrade" the physical register since it has been allocated.
1135 UpgradeRegister(physReg
);
1136 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1137 // "Downgrade" physReg to try to keep physReg from being allocated until
1138 // the next reload from the same SS is allocated.
1139 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1140 DowngradeRegister(cur
, physReg
);
1144 DEBUG(dbgs() << "no free registers\n");
1146 // Compile the spill weights into an array that is better for scanning.
1147 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1148 for (std::vector
<std::pair
<unsigned, float> >::iterator
1149 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1150 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1152 // for each interval in active, update spill weights.
1153 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1155 unsigned reg
= i
->first
->reg
;
1156 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1157 "Can only allocate virtual registers!");
1158 reg
= vrm_
->getPhys(reg
);
1159 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1162 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur
<< ":\n");
1164 // Find a register to spill.
1165 float minWeight
= HUGE_VALF
;
1166 unsigned minReg
= 0;
1169 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1170 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1171 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1172 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1174 float regWeight
= SpillWeights
[reg
];
1175 // Don't even consider reserved regs.
1176 if (reservedRegs_
.test(reg
))
1178 // Skip recently allocated registers and reserved registers.
1179 if (minWeight
> regWeight
&& !isRecentlyUsed(reg
))
1181 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1184 // If we didn't find a register that is spillable, try aliases?
1186 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1187 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1189 if (reservedRegs_
.test(reg
))
1191 // No need to worry about if the alias register size < regsize of RC.
1192 // We are going to spill all registers that alias it anyway.
1193 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1194 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1198 // Sort all potential spill candidates by weight.
1199 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare(*this));
1200 minReg
= RegsWeights
[0].first
;
1201 minWeight
= RegsWeights
[0].second
;
1202 if (minWeight
== HUGE_VALF
) {
1203 // All registers must have inf weight. Just grab one!
1204 minReg
= BestPhysReg
? BestPhysReg
: getFirstNonReservedPhysReg(RC
);
1205 if (cur
->weight
== HUGE_VALF
||
1206 li_
->getApproximateInstructionCount(*cur
) == 0) {
1207 // Spill a physical register around defs and uses.
1208 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1209 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1210 // in fixed_. Reset them.
1211 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1212 IntervalPtr
&IP
= fixed_
[i
];
1213 LiveInterval
*I
= IP
.first
;
1214 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1215 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1218 DowngradedRegs
.clear();
1219 assignRegOrStackSlotAtInterval(cur
);
1221 assert(false && "Ran out of registers during register allocation!");
1222 report_fatal_error("Ran out of registers during register allocation!");
1228 // Find up to 3 registers to consider as spill candidates.
1229 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1230 while (LastCandidate
> 1) {
1231 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1237 dbgs() << "\t\tregister(s) with min weight(s): ";
1239 for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1240 dbgs() << tri_
->getName(RegsWeights
[i
].first
)
1241 << " (" << RegsWeights
[i
].second
<< ")\n";
1244 // If the current has the minimum weight, we need to spill it and
1245 // add any added intervals back to unhandled, and restart
1247 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1248 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur
<< '\n');
1249 SmallVector
<LiveInterval
*, 8> added
;
1250 LiveRangeEdit
LRE(*cur
, added
);
1251 spiller_
->spill(LRE
);
1253 std::sort(added
.begin(), added
.end(), LISorter());
1255 return; // Early exit if all spills were folded.
1257 // Merge added with unhandled. Note that we have already sorted
1258 // intervals returned by addIntervalsForSpills by their starting
1260 // This also update the NextReloadMap. That is, it adds mapping from a
1261 // register defined by a reload from SS to the next reload from SS in the
1262 // same basic block.
1263 MachineBasicBlock
*LastReloadMBB
= 0;
1264 LiveInterval
*LastReload
= 0;
1265 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1266 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1267 LiveInterval
*ReloadLi
= added
[i
];
1268 if (ReloadLi
->weight
== HUGE_VALF
&&
1269 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1270 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1271 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1272 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1273 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1274 // Last reload of same SS is in the same MBB. We want to try to
1275 // allocate both reloads the same register and make sure the reg
1276 // isn't clobbered in between if at all possible.
1277 assert(LastReload
->beginIndex() < ReloadIdx
);
1278 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1280 LastReloadMBB
= ReloadMBB
;
1281 LastReload
= ReloadLi
;
1282 LastReloadSS
= ReloadSS
;
1284 unhandled_
.push(ReloadLi
);
1291 // Push the current interval back to unhandled since we are going
1292 // to re-run at least this iteration. Since we didn't modify it it
1293 // should go back right in the front of the list
1294 unhandled_
.push(cur
);
1296 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1297 "did not choose a register to spill?");
1299 // We spill all intervals aliasing the register with
1300 // minimum weight, rollback to the interval with the earliest
1301 // start point and let the linear scan algorithm run again
1302 SmallVector
<LiveInterval
*, 8> spillIs
;
1304 // Determine which intervals have to be spilled.
1305 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1307 // Set of spilled vregs (used later to rollback properly)
1308 SmallSet
<unsigned, 8> spilled
;
1310 // The earliest start of a Spilled interval indicates up to where
1311 // in handled we need to roll back
1312 assert(!spillIs
.empty() && "No spill intervals?");
1313 SlotIndex earliestStart
= spillIs
[0]->beginIndex();
1315 // Spill live intervals of virtual regs mapped to the physical register we
1316 // want to clear (and its aliases). We only spill those that overlap with the
1317 // current interval as the rest do not affect its allocation. we also keep
1318 // track of the earliest start of all spilled live intervals since this will
1319 // mark our rollback point.
1320 SmallVector
<LiveInterval
*, 8> added
;
1321 while (!spillIs
.empty()) {
1322 LiveInterval
*sli
= spillIs
.back();
1324 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli
<< '\n');
1325 if (sli
->beginIndex() < earliestStart
)
1326 earliestStart
= sli
->beginIndex();
1327 LiveRangeEdit
LRE(*sli
, added
, 0, &spillIs
);
1328 spiller_
->spill(LRE
);
1329 spilled
.insert(sli
->reg
);
1332 // Include any added intervals in earliestStart.
1333 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1334 SlotIndex SI
= added
[i
]->beginIndex();
1335 if (SI
< earliestStart
)
1339 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart
<< '\n');
1341 // Scan handled in reverse order up to the earliest start of a
1342 // spilled live interval and undo each one, restoring the state of
1344 while (!handled_
.empty()) {
1345 LiveInterval
* i
= handled_
.back();
1346 // If this interval starts before t we are done.
1347 if (!i
->empty() && i
->beginIndex() < earliestStart
)
1349 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i
<< '\n');
1350 handled_
.pop_back();
1352 // When undoing a live interval allocation we must know if it is active or
1353 // inactive to properly update regUse_ and the VirtRegMap.
1354 IntervalPtrs::iterator it
;
1355 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1357 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1358 if (!spilled
.count(i
->reg
))
1360 delRegUse(vrm_
->getPhys(i
->reg
));
1361 vrm_
->clearVirt(i
->reg
);
1362 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1363 inactive_
.erase(it
);
1364 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1365 if (!spilled
.count(i
->reg
))
1367 vrm_
->clearVirt(i
->reg
);
1369 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1370 "Can only allocate virtual registers!");
1371 vrm_
->clearVirt(i
->reg
);
1375 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1376 if (ii
== DowngradeMap
.end())
1377 // It interval has a preference, it must be defined by a copy. Clear the
1378 // preference now since the source interval allocation may have been
1380 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1382 UpgradeRegister(ii
->second
);
1386 // Rewind the iterators in the active, inactive, and fixed lists back to the
1387 // point we reverted to.
1388 RevertVectorIteratorsTo(active_
, earliestStart
);
1389 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1390 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1392 // Scan the rest and undo each interval that expired after t and
1393 // insert it in active (the next iteration of the algorithm will
1394 // put it in inactive if required)
1395 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1396 LiveInterval
*HI
= handled_
[i
];
1397 if (!HI
->expiredAt(earliestStart
) &&
1398 HI
->expiredAt(cur
->beginIndex())) {
1399 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI
<< '\n');
1400 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1401 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1402 addRegUse(vrm_
->getPhys(HI
->reg
));
1406 // Merge added with unhandled.
1407 // This also update the NextReloadMap. That is, it adds mapping from a
1408 // register defined by a reload from SS to the next reload from SS in the
1409 // same basic block.
1410 MachineBasicBlock
*LastReloadMBB
= 0;
1411 LiveInterval
*LastReload
= 0;
1412 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1413 std::sort(added
.begin(), added
.end(), LISorter());
1414 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1415 LiveInterval
*ReloadLi
= added
[i
];
1416 if (ReloadLi
->weight
== HUGE_VALF
&&
1417 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1418 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1419 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1420 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1421 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1422 // Last reload of same SS is in the same MBB. We want to try to
1423 // allocate both reloads the same register and make sure the reg
1424 // isn't clobbered in between if at all possible.
1425 assert(LastReload
->beginIndex() < ReloadIdx
);
1426 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1428 LastReloadMBB
= ReloadMBB
;
1429 LastReload
= ReloadLi
;
1430 LastReloadSS
= ReloadSS
;
1432 unhandled_
.push(ReloadLi
);
1436 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1437 const TargetRegisterClass
*RC
,
1438 unsigned MaxInactiveCount
,
1439 SmallVector
<unsigned, 256> &inactiveCounts
,
1441 unsigned FreeReg
= 0;
1442 unsigned FreeRegInactiveCount
= 0;
1444 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1445 // Resolve second part of the hint (if possible) given the current allocation.
1446 unsigned physReg
= Hint
.second
;
1447 if (TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1448 physReg
= vrm_
->getPhys(physReg
);
1450 TargetRegisterClass::iterator I
, E
;
1451 tie(I
, E
) = tri_
->getAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1452 assert(I
!= E
&& "No allocatable register in this register class!");
1454 // Scan for the first available register.
1455 for (; I
!= E
; ++I
) {
1457 // Ignore "downgraded" registers.
1458 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1460 // Skip reserved registers.
1461 if (reservedRegs_
.test(Reg
))
1463 // Skip recently allocated registers.
1464 if (isRegAvail(Reg
) && (!SkipDGRegs
|| !isRecentlyUsed(Reg
))) {
1466 if (FreeReg
< inactiveCounts
.size())
1467 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1469 FreeRegInactiveCount
= 0;
1474 // If there are no free regs, or if this reg has the max inactive count,
1475 // return this register.
1476 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
) {
1477 // Remember what register we picked so we can skip it next time.
1478 if (FreeReg
!= 0) recordRecentlyUsed(FreeReg
);
1482 // Continue scanning the registers, looking for the one with the highest
1483 // inactive count. Alkis found that this reduced register pressure very
1484 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1486 for (; I
!= E
; ++I
) {
1488 // Ignore "downgraded" registers.
1489 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1491 // Skip reserved registers.
1492 if (reservedRegs_
.test(Reg
))
1494 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1495 FreeRegInactiveCount
< inactiveCounts
[Reg
] &&
1496 (!SkipDGRegs
|| !isRecentlyUsed(Reg
))) {
1498 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1499 if (FreeRegInactiveCount
== MaxInactiveCount
)
1500 break; // We found the one with the max inactive count.
1504 // Remember what register we picked so we can skip it next time.
1505 recordRecentlyUsed(FreeReg
);
1510 /// getFreePhysReg - return a free physical register for this virtual register
1511 /// interval if we have one, otherwise return 0.
1512 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1513 SmallVector
<unsigned, 256> inactiveCounts
;
1514 unsigned MaxInactiveCount
= 0;
1516 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1517 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1519 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1521 unsigned reg
= i
->first
->reg
;
1522 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1523 "Can only allocate virtual registers!");
1525 // If this is not in a related reg class to the register we're allocating,
1527 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1528 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1529 reg
= vrm_
->getPhys(reg
);
1530 if (inactiveCounts
.size() <= reg
)
1531 inactiveCounts
.resize(reg
+1);
1532 ++inactiveCounts
[reg
];
1533 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1537 // If copy coalescer has assigned a "preferred" register, check if it's
1539 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1541 DEBUG(dbgs() << "(preferred: " << tri_
->getName(Preference
) << ") ");
1542 if (isRegAvail(Preference
) &&
1543 RC
->contains(Preference
))
1547 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1551 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1554 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1555 return new RALinScan();