Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blob67c209ea19778e7ea8386d561460275171201922
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetRegisterInfo.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 using namespace llvm;
33 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
34 const MachineLoopInfo &mli,
35 const MachineDominatorTree &mdt)
36 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
37 InstrItins(mf.getTarget().getInstrItineraryData()),
38 Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
39 DbgValueVec.clear();
42 /// Run - perform scheduling.
43 ///
44 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
45 MachineBasicBlock::iterator begin,
46 MachineBasicBlock::iterator end,
47 unsigned endcount) {
48 BB = bb;
49 Begin = begin;
50 InsertPosIndex = endcount;
52 ScheduleDAG::Run(bb, end);
55 /// getUnderlyingObjectFromInt - This is the function that does the work of
56 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
57 static const Value *getUnderlyingObjectFromInt(const Value *V) {
58 do {
59 if (const Operator *U = dyn_cast<Operator>(V)) {
60 // If we find a ptrtoint, we can transfer control back to the
61 // regular getUnderlyingObjectFromInt.
62 if (U->getOpcode() == Instruction::PtrToInt)
63 return U->getOperand(0);
64 // If we find an add of a constant or a multiplied value, it's
65 // likely that the other operand will lead us to the base
66 // object. We don't have to worry about the case where the
67 // object address is somehow being computed by the multiply,
68 // because our callers only care when the result is an
69 // identifibale object.
70 if (U->getOpcode() != Instruction::Add ||
71 (!isa<ConstantInt>(U->getOperand(1)) &&
72 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
73 return V;
74 V = U->getOperand(0);
75 } else {
76 return V;
78 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
79 } while (1);
82 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
83 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
84 static const Value *getUnderlyingObject(const Value *V) {
85 // First just call Value::getUnderlyingObject to let it do what it does.
86 do {
87 V = GetUnderlyingObject(V);
88 // If it found an inttoptr, use special code to continue climing.
89 if (Operator::getOpcode(V) != Instruction::IntToPtr)
90 break;
91 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
92 // If that succeeded in finding a pointer, continue the search.
93 if (!O->getType()->isPointerTy())
94 break;
95 V = O;
96 } while (1);
97 return V;
100 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
101 /// information and it can be tracked to a normal reference to a known
102 /// object, return the Value for that object. Otherwise return null.
103 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
104 const MachineFrameInfo *MFI,
105 bool &MayAlias) {
106 MayAlias = true;
107 if (!MI->hasOneMemOperand() ||
108 !(*MI->memoperands_begin())->getValue() ||
109 (*MI->memoperands_begin())->isVolatile())
110 return 0;
112 const Value *V = (*MI->memoperands_begin())->getValue();
113 if (!V)
114 return 0;
116 V = getUnderlyingObject(V);
117 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
118 // For now, ignore PseudoSourceValues which may alias LLVM IR values
119 // because the code that uses this function has no way to cope with
120 // such aliases.
121 if (PSV->isAliased(MFI))
122 return 0;
124 MayAlias = PSV->mayAlias(MFI);
125 return V;
128 if (isIdentifiedObject(V))
129 return V;
131 return 0;
134 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
135 if (MachineLoop *ML = MLI.getLoopFor(BB))
136 if (BB == ML->getLoopLatch()) {
137 MachineBasicBlock *Header = ML->getHeader();
138 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
139 E = Header->livein_end(); I != E; ++I)
140 LoopLiveInRegs.insert(*I);
141 LoopRegs.VisitLoop(ML);
145 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
146 /// list of instructions being scheduled to scheduling barrier by adding
147 /// the exit SU to the register defs and use list. This is because we want to
148 /// make sure instructions which define registers that are either used by
149 /// the terminator or are live-out are properly scheduled. This is
150 /// especially important when the definition latency of the return value(s)
151 /// are too high to be hidden by the branch or when the liveout registers
152 /// used by instructions in the fallthrough block.
153 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
154 MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
155 ExitSU.setInstr(ExitMI);
156 bool AllDepKnown = ExitMI &&
157 (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
158 if (ExitMI && AllDepKnown) {
159 // If it's a call or a barrier, add dependencies on the defs and uses of
160 // instruction.
161 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
162 const MachineOperand &MO = ExitMI->getOperand(i);
163 if (!MO.isReg() || MO.isDef()) continue;
164 unsigned Reg = MO.getReg();
165 if (Reg == 0) continue;
167 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
168 Uses[Reg].push_back(&ExitSU);
170 } else {
171 // For others, e.g. fallthrough, conditional branch, assume the exit
172 // uses all the registers that are livein to the successor blocks.
173 SmallSet<unsigned, 8> Seen;
174 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
175 SE = BB->succ_end(); SI != SE; ++SI)
176 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
177 E = (*SI)->livein_end(); I != E; ++I) {
178 unsigned Reg = *I;
179 if (Seen.insert(Reg))
180 Uses[Reg].push_back(&ExitSU);
185 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
186 // We'll be allocating one SUnit for each instruction, plus one for
187 // the region exit node.
188 SUnits.reserve(BB->size());
190 // We build scheduling units by walking a block's instruction list from bottom
191 // to top.
193 // Remember where a generic side-effecting instruction is as we procede.
194 SUnit *BarrierChain = 0, *AliasChain = 0;
196 // Memory references to specific known memory locations are tracked
197 // so that they can be given more precise dependencies. We track
198 // separately the known memory locations that may alias and those
199 // that are known not to alias
200 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
201 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
203 // Keep track of dangling debug references to registers.
204 std::vector<std::pair<MachineInstr*, unsigned> >
205 DanglingDebugValue(TRI->getNumRegs(),
206 std::make_pair(static_cast<MachineInstr*>(0), 0));
208 // Check to see if the scheduler cares about latencies.
209 bool UnitLatencies = ForceUnitLatencies();
211 // Ask the target if address-backscheduling is desirable, and if so how much.
212 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
213 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
215 // Remove any stale debug info; sometimes BuildSchedGraph is called again
216 // without emitting the info from the previous call.
217 DbgValueVec.clear();
219 // Model data dependencies between instructions being scheduled and the
220 // ExitSU.
221 AddSchedBarrierDeps();
223 // Walk the list of instructions, from bottom moving up.
224 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
225 MII != MIE; --MII) {
226 MachineInstr *MI = prior(MII);
227 // DBG_VALUE does not have SUnit's built, so just remember these for later
228 // reinsertion.
229 if (MI->isDebugValue()) {
230 if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
231 MI->getOperand(0).getReg())
232 DanglingDebugValue[MI->getOperand(0).getReg()] =
233 std::make_pair(MI, DbgValueVec.size());
234 DbgValueVec.push_back(MI);
235 continue;
237 const TargetInstrDesc &TID = MI->getDesc();
238 assert(!TID.isTerminator() && !MI->isLabel() &&
239 "Cannot schedule terminators or labels!");
240 // Create the SUnit for this MI.
241 SUnit *SU = NewSUnit(MI);
242 SU->isCall = TID.isCall();
243 SU->isCommutable = TID.isCommutable();
245 // Assign the Latency field of SU using target-provided information.
246 if (UnitLatencies)
247 SU->Latency = 1;
248 else
249 ComputeLatency(SU);
251 // Add register-based dependencies (data, anti, and output).
252 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
253 const MachineOperand &MO = MI->getOperand(j);
254 if (!MO.isReg()) continue;
255 unsigned Reg = MO.getReg();
256 if (Reg == 0) continue;
258 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
260 if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
261 SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
262 DbgValueVec[DanglingDebugValue[Reg].second] = 0;
263 DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
266 std::vector<SUnit *> &UseList = Uses[Reg];
267 std::vector<SUnit *> &DefList = Defs[Reg];
268 // Optionally add output and anti dependencies. For anti
269 // dependencies we use a latency of 0 because for a multi-issue
270 // target we want to allow the defining instruction to issue
271 // in the same cycle as the using instruction.
272 // TODO: Using a latency of 1 here for output dependencies assumes
273 // there's no cost for reusing registers.
274 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
275 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
276 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
277 SUnit *DefSU = DefList[i];
278 if (DefSU == &ExitSU)
279 continue;
280 if (DefSU != SU &&
281 (Kind != SDep::Output || !MO.isDead() ||
282 !DefSU->getInstr()->registerDefIsDead(Reg)))
283 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
285 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
286 std::vector<SUnit *> &DefList = Defs[*Alias];
287 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
288 SUnit *DefSU = DefList[i];
289 if (DefSU == &ExitSU)
290 continue;
291 if (DefSU != SU &&
292 (Kind != SDep::Output || !MO.isDead() ||
293 !DefSU->getInstr()->registerDefIsDead(*Alias)))
294 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
298 if (MO.isDef()) {
299 // Add any data dependencies.
300 unsigned DataLatency = SU->Latency;
301 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
302 SUnit *UseSU = UseList[i];
303 if (UseSU == SU)
304 continue;
305 unsigned LDataLatency = DataLatency;
306 // Optionally add in a special extra latency for nodes that
307 // feed addresses.
308 // TODO: Do this for register aliases too.
309 // TODO: Perhaps we should get rid of
310 // SpecialAddressLatency and just move this into
311 // adjustSchedDependency for the targets that care about it.
312 if (SpecialAddressLatency != 0 && !UnitLatencies &&
313 UseSU != &ExitSU) {
314 MachineInstr *UseMI = UseSU->getInstr();
315 const TargetInstrDesc &UseTID = UseMI->getDesc();
316 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
317 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
318 if (RegUseIndex >= 0 &&
319 (UseTID.mayLoad() || UseTID.mayStore()) &&
320 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
321 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
322 LDataLatency += SpecialAddressLatency;
324 // Adjust the dependence latency using operand def/use
325 // information (if any), and then allow the target to
326 // perform its own adjustments.
327 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
328 if (!UnitLatencies) {
329 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
330 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
332 UseSU->addPred(dep);
334 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
335 std::vector<SUnit *> &UseList = Uses[*Alias];
336 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
337 SUnit *UseSU = UseList[i];
338 if (UseSU == SU)
339 continue;
340 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
341 if (!UnitLatencies) {
342 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
343 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
345 UseSU->addPred(dep);
349 // If a def is going to wrap back around to the top of the loop,
350 // backschedule it.
351 if (!UnitLatencies && DefList.empty()) {
352 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
353 if (I != LoopRegs.Deps.end()) {
354 const MachineOperand *UseMO = I->second.first;
355 unsigned Count = I->second.second;
356 const MachineInstr *UseMI = UseMO->getParent();
357 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
358 const TargetInstrDesc &UseTID = UseMI->getDesc();
359 // TODO: If we knew the total depth of the region here, we could
360 // handle the case where the whole loop is inside the region but
361 // is large enough that the isScheduleHigh trick isn't needed.
362 if (UseMOIdx < UseTID.getNumOperands()) {
363 // Currently, we only support scheduling regions consisting of
364 // single basic blocks. Check to see if the instruction is in
365 // the same region by checking to see if it has the same parent.
366 if (UseMI->getParent() != MI->getParent()) {
367 unsigned Latency = SU->Latency;
368 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
369 Latency += SpecialAddressLatency;
370 // This is a wild guess as to the portion of the latency which
371 // will be overlapped by work done outside the current
372 // scheduling region.
373 Latency -= std::min(Latency, Count);
374 // Add the artificial edge.
375 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
376 /*Reg=*/0, /*isNormalMemory=*/false,
377 /*isMustAlias=*/false,
378 /*isArtificial=*/true));
379 } else if (SpecialAddressLatency > 0 &&
380 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
381 // The entire loop body is within the current scheduling region
382 // and the latency of this operation is assumed to be greater
383 // than the latency of the loop.
384 // TODO: Recursively mark data-edge predecessors as
385 // isScheduleHigh too.
386 SU->isScheduleHigh = true;
389 LoopRegs.Deps.erase(I);
393 UseList.clear();
394 if (!MO.isDead())
395 DefList.clear();
396 DefList.push_back(SU);
397 } else {
398 UseList.push_back(SU);
402 // Add chain dependencies.
403 // Chain dependencies used to enforce memory order should have
404 // latency of 0 (except for true dependency of Store followed by
405 // aliased Load... we estimate that with a single cycle of latency
406 // assuming the hardware will bypass)
407 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
408 // after stack slots are lowered to actual addresses.
409 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
410 // produce more precise dependence information.
411 #define STORE_LOAD_LATENCY 1
412 unsigned TrueMemOrderLatency = 0;
413 if (TID.isCall() || MI->hasUnmodeledSideEffects() ||
414 (MI->hasVolatileMemoryRef() &&
415 (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
416 // Be conservative with these and add dependencies on all memory
417 // references, even those that are known to not alias.
418 for (std::map<const Value *, SUnit *>::iterator I =
419 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
420 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
422 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
423 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
424 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
425 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
427 NonAliasMemDefs.clear();
428 NonAliasMemUses.clear();
429 // Add SU to the barrier chain.
430 if (BarrierChain)
431 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
432 BarrierChain = SU;
434 // fall-through
435 new_alias_chain:
436 // Chain all possibly aliasing memory references though SU.
437 if (AliasChain)
438 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
439 AliasChain = SU;
440 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
441 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
442 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
443 E = AliasMemDefs.end(); I != E; ++I) {
444 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
446 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
447 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
448 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
449 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
451 PendingLoads.clear();
452 AliasMemDefs.clear();
453 AliasMemUses.clear();
454 } else if (TID.mayStore()) {
455 bool MayAlias = true;
456 TrueMemOrderLatency = STORE_LOAD_LATENCY;
457 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
458 // A store to a specific PseudoSourceValue. Add precise dependencies.
459 // Record the def in MemDefs, first adding a dep if there is
460 // an existing def.
461 std::map<const Value *, SUnit *>::iterator I =
462 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
463 std::map<const Value *, SUnit *>::iterator IE =
464 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
465 if (I != IE) {
466 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
467 /*isNormalMemory=*/true));
468 I->second = SU;
469 } else {
470 if (MayAlias)
471 AliasMemDefs[V] = SU;
472 else
473 NonAliasMemDefs[V] = SU;
475 // Handle the uses in MemUses, if there are any.
476 std::map<const Value *, std::vector<SUnit *> >::iterator J =
477 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
478 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
479 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
480 if (J != JE) {
481 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
482 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
483 /*Reg=*/0, /*isNormalMemory=*/true));
484 J->second.clear();
486 if (MayAlias) {
487 // Add dependencies from all the PendingLoads, i.e. loads
488 // with no underlying object.
489 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
490 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
491 // Add dependence on alias chain, if needed.
492 if (AliasChain)
493 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
495 // Add dependence on barrier chain, if needed.
496 if (BarrierChain)
497 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
498 } else {
499 // Treat all other stores conservatively.
500 goto new_alias_chain;
503 if (!ExitSU.isPred(SU))
504 // Push store's up a bit to avoid them getting in between cmp
505 // and branches.
506 ExitSU.addPred(SDep(SU, SDep::Order, 0,
507 /*Reg=*/0, /*isNormalMemory=*/false,
508 /*isMustAlias=*/false,
509 /*isArtificial=*/true));
510 } else if (TID.mayLoad()) {
511 bool MayAlias = true;
512 TrueMemOrderLatency = 0;
513 if (MI->isInvariantLoad(AA)) {
514 // Invariant load, no chain dependencies needed!
515 } else {
516 if (const Value *V =
517 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
518 // A load from a specific PseudoSourceValue. Add precise dependencies.
519 std::map<const Value *, SUnit *>::iterator I =
520 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
521 std::map<const Value *, SUnit *>::iterator IE =
522 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
523 if (I != IE)
524 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
525 /*isNormalMemory=*/true));
526 if (MayAlias)
527 AliasMemUses[V].push_back(SU);
528 else
529 NonAliasMemUses[V].push_back(SU);
530 } else {
531 // A load with no underlying object. Depend on all
532 // potentially aliasing stores.
533 for (std::map<const Value *, SUnit *>::iterator I =
534 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
535 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
537 PendingLoads.push_back(SU);
538 MayAlias = true;
541 // Add dependencies on alias and barrier chains, if needed.
542 if (MayAlias && AliasChain)
543 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
544 if (BarrierChain)
545 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
550 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
551 Defs[i].clear();
552 Uses[i].clear();
554 PendingLoads.clear();
557 void ScheduleDAGInstrs::FinishBlock() {
558 // Nothing to do.
561 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
562 // Compute the latency for the node.
563 if (!InstrItins || InstrItins->isEmpty()) {
564 SU->Latency = 1;
566 // Simplistic target-independent heuristic: assume that loads take
567 // extra time.
568 if (SU->getInstr()->getDesc().mayLoad())
569 SU->Latency += 2;
570 } else {
571 SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
575 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
576 SDep& dep) const {
577 if (!InstrItins || InstrItins->isEmpty())
578 return;
580 // For a data dependency with a known register...
581 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
582 return;
584 const unsigned Reg = dep.getReg();
586 // ... find the definition of the register in the defining
587 // instruction
588 MachineInstr *DefMI = Def->getInstr();
589 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
590 if (DefIdx != -1) {
591 const MachineOperand &MO = DefMI->getOperand(DefIdx);
592 if (MO.isReg() && MO.isImplicit() &&
593 DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
594 // This is an implicit def, getOperandLatency() won't return the correct
595 // latency. e.g.
596 // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
597 // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
598 // What we want is to compute latency between def of %D6/%D7 and use of
599 // %Q3 instead.
600 DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
602 MachineInstr *UseMI = Use->getInstr();
603 // For all uses of the register, calculate the maxmimum latency
604 int Latency = -1;
605 if (UseMI) {
606 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
607 const MachineOperand &MO = UseMI->getOperand(i);
608 if (!MO.isReg() || !MO.isUse())
609 continue;
610 unsigned MOReg = MO.getReg();
611 if (MOReg != Reg)
612 continue;
614 int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
615 UseMI, i);
616 Latency = std::max(Latency, UseCycle);
618 } else {
619 // UseMI is null, then it must be a scheduling barrier.
620 if (!InstrItins || InstrItins->isEmpty())
621 return;
622 unsigned DefClass = DefMI->getDesc().getSchedClass();
623 Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
626 // If we found a latency, then replace the existing dependence latency.
627 if (Latency >= 0)
628 dep.setLatency(Latency);
632 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
633 SU->getInstr()->dump();
636 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
637 std::string s;
638 raw_string_ostream oss(s);
639 if (SU == &EntrySU)
640 oss << "<entry>";
641 else if (SU == &ExitSU)
642 oss << "<exit>";
643 else
644 SU->getInstr()->print(oss);
645 return oss.str();
648 // EmitSchedule - Emit the machine code in scheduled order.
649 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
650 // For MachineInstr-based scheduling, we're rescheduling the instructions in
651 // the block, so start by removing them from the block.
652 while (Begin != InsertPos) {
653 MachineBasicBlock::iterator I = Begin;
654 ++Begin;
655 BB->remove(I);
658 // First reinsert any remaining debug_values; these are either constants,
659 // or refer to live-in registers. The beginning of the block is the right
660 // place for the latter. The former might reasonably be placed elsewhere
661 // using some kind of ordering algorithm, but right now it doesn't matter.
662 for (int i = DbgValueVec.size()-1; i>=0; --i)
663 if (DbgValueVec[i])
664 BB->insert(InsertPos, DbgValueVec[i]);
666 // Then re-insert them according to the given schedule.
667 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
668 SUnit *SU = Sequence[i];
669 if (!SU) {
670 // Null SUnit* is a noop.
671 EmitNoop();
672 continue;
675 BB->insert(InsertPos, SU->getInstr());
676 for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
677 BB->insert(InsertPos, SU->DbgInstrList[i]);
680 // Update the Begin iterator, as the first instruction in the block
681 // may have been scheduled later.
682 if (!DbgValueVec.empty()) {
683 for (int i = DbgValueVec.size()-1; i>=0; --i)
684 if (DbgValueVec[i]!=0) {
685 Begin = DbgValueVec[DbgValueVec.size()-1];
686 break;
688 } else if (!Sequence.empty())
689 Begin = Sequence[0]->getInstr();
691 DbgValueVec.clear();
692 return BB;