1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
31 STATISTIC(NumFinished
, "Number of splits finished");
32 STATISTIC(NumSimple
, "Number of splits that were simple");
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 SplitAnalysis::SplitAnalysis(const VirtRegMap
&vrm
,
39 const LiveIntervals
&lis
,
40 const MachineLoopInfo
&mli
)
41 : MF(vrm
.getMachineFunction()),
45 TII(*MF
.getTarget().getInstrInfo()),
47 LastSplitPoint(MF
.getNumBlockIDs()) {}
49 void SplitAnalysis::clear() {
52 ThroughBlocks
.clear();
56 SlotIndex
SplitAnalysis::computeLastSplitPoint(unsigned Num
) {
57 const MachineBasicBlock
*MBB
= MF
.getBlockNumbered(Num
);
58 const MachineBasicBlock
*LPad
= MBB
->getLandingPadSuccessor();
59 std::pair
<SlotIndex
, SlotIndex
> &LSP
= LastSplitPoint
[Num
];
61 // Compute split points on the first call. The pair is independent of the
62 // current live interval.
63 if (!LSP
.first
.isValid()) {
64 MachineBasicBlock::const_iterator FirstTerm
= MBB
->getFirstTerminator();
65 if (FirstTerm
== MBB
->end())
66 LSP
.first
= LIS
.getMBBEndIdx(MBB
);
68 LSP
.first
= LIS
.getInstructionIndex(FirstTerm
);
70 // If there is a landing pad successor, also find the call instruction.
73 // There may not be a call instruction (?) in which case we ignore LPad.
74 LSP
.second
= LSP
.first
;
75 for (MachineBasicBlock::const_iterator I
= FirstTerm
, E
= MBB
->begin();
77 if (I
->getDesc().isCall()) {
78 LSP
.second
= LIS
.getInstructionIndex(I
);
83 // If CurLI is live into a landing pad successor, move the last split point
84 // back to the call that may throw.
85 if (LPad
&& LSP
.second
.isValid() && LIS
.isLiveInToMBB(*CurLI
, LPad
))
91 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
92 void SplitAnalysis::analyzeUses() {
93 assert(UseSlots
.empty() && "Call clear first");
95 // First get all the defs from the interval values. This provides the correct
96 // slots for early clobbers.
97 for (LiveInterval::const_vni_iterator I
= CurLI
->vni_begin(),
98 E
= CurLI
->vni_end(); I
!= E
; ++I
)
99 if (!(*I
)->isPHIDef() && !(*I
)->isUnused())
100 UseSlots
.push_back((*I
)->def
);
102 // Get use slots form the use-def chain.
103 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
104 for (MachineRegisterInfo::use_nodbg_iterator
105 I
= MRI
.use_nodbg_begin(CurLI
->reg
), E
= MRI
.use_nodbg_end(); I
!= E
;
107 if (!I
.getOperand().isUndef())
108 UseSlots
.push_back(LIS
.getInstructionIndex(&*I
).getDefIndex());
110 array_pod_sort(UseSlots
.begin(), UseSlots
.end());
112 // Remove duplicates, keeping the smaller slot for each instruction.
113 // That is what we want for early clobbers.
114 UseSlots
.erase(std::unique(UseSlots
.begin(), UseSlots
.end(),
115 SlotIndex::isSameInstr
),
118 // Compute per-live block info.
119 if (!calcLiveBlockInfo()) {
120 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
121 // I am looking at you, SimpleRegisterCoalescing!
122 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
123 const_cast<LiveIntervals
&>(LIS
)
124 .shrinkToUses(const_cast<LiveInterval
*>(CurLI
));
126 ThroughBlocks
.clear();
127 bool fixed
= calcLiveBlockInfo();
129 assert(fixed
&& "Couldn't fix broken live interval");
132 DEBUG(dbgs() << "Analyze counted "
133 << UseSlots
.size() << " instrs in "
134 << UseBlocks
.size() << " blocks, through "
135 << NumThroughBlocks
<< " blocks.\n");
138 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
139 /// where CurLI is live.
140 bool SplitAnalysis::calcLiveBlockInfo() {
141 ThroughBlocks
.resize(MF
.getNumBlockIDs());
142 NumThroughBlocks
= 0;
146 LiveInterval::const_iterator LVI
= CurLI
->begin();
147 LiveInterval::const_iterator LVE
= CurLI
->end();
149 SmallVectorImpl
<SlotIndex
>::const_iterator UseI
, UseE
;
150 UseI
= UseSlots
.begin();
151 UseE
= UseSlots
.end();
153 // Loop over basic blocks where CurLI is live.
154 MachineFunction::iterator MFI
= LIS
.getMBBFromIndex(LVI
->start
);
158 SlotIndex Start
, Stop
;
159 tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
161 // LVI is the first live segment overlapping MBB.
162 BI
.LiveIn
= LVI
->start
<= Start
;
166 // Find the first and last uses in the block.
167 bool Uses
= UseI
!= UseE
&& *UseI
< Stop
;
170 assert(BI
.FirstUse
>= Start
);
172 while (UseI
!= UseE
&& *UseI
< Stop
);
173 BI
.LastUse
= UseI
[-1];
174 assert(BI
.LastUse
< Stop
);
177 // Look for gaps in the live range.
180 while (LVI
->end
< Stop
) {
181 SlotIndex LastStop
= LVI
->end
;
182 if (++LVI
== LVE
|| LVI
->start
>= Stop
) {
187 if (LastStop
< LVI
->start
) {
194 // Don't set LiveThrough when the block has a gap.
195 BI
.LiveThrough
= !hasGap
&& BI
.LiveIn
&& BI
.LiveOut
;
197 UseBlocks
.push_back(BI
);
200 ThroughBlocks
.set(BI
.MBB
->getNumber());
202 // FIXME: This should never happen. The live range stops or starts without a
203 // corresponding use. An earlier pass did something wrong.
204 if (!BI
.LiveThrough
&& !Uses
)
207 // LVI is now at LVE or LVI->end >= Stop.
211 // Live segment ends exactly at Stop. Move to the next segment.
212 if (LVI
->end
== Stop
&& ++LVI
== LVE
)
215 // Pick the next basic block.
216 if (LVI
->start
< Stop
)
219 MFI
= LIS
.getMBBFromIndex(LVI
->start
);
224 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx
) const {
225 unsigned OrigReg
= VRM
.getOriginal(CurLI
->reg
);
226 const LiveInterval
&Orig
= LIS
.getInterval(OrigReg
);
227 assert(!Orig
.empty() && "Splitting empty interval?");
228 LiveInterval::const_iterator I
= Orig
.find(Idx
);
230 // Range containing Idx should begin at Idx.
231 if (I
!= Orig
.end() && I
->start
<= Idx
)
232 return I
->start
== Idx
;
234 // Range does not contain Idx, previous must end at Idx.
235 return I
!= Orig
.begin() && (--I
)->end
== Idx
;
238 void SplitAnalysis::analyze(const LiveInterval
*li
) {
245 //===----------------------------------------------------------------------===//
247 //===----------------------------------------------------------------------===//
249 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
250 SplitEditor::SplitEditor(SplitAnalysis
&sa
,
253 MachineDominatorTree
&mdt
)
254 : SA(sa
), LIS(lis
), VRM(vrm
),
255 MRI(vrm
.getMachineFunction().getRegInfo()),
257 TII(*vrm
.getMachineFunction().getTarget().getInstrInfo()),
258 TRI(*vrm
.getMachineFunction().getTarget().getRegisterInfo()),
264 void SplitEditor::reset(LiveRangeEdit
&lre
) {
270 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
273 // We don't need an AliasAnalysis since we will only be performing
274 // cheap-as-a-copy remats anyway.
275 Edit
->anyRematerializable(LIS
, TII
, 0);
278 void SplitEditor::dump() const {
279 if (RegAssign
.empty()) {
280 dbgs() << " empty\n";
284 for (RegAssignMap::const_iterator I
= RegAssign
.begin(); I
.valid(); ++I
)
285 dbgs() << " [" << I
.start() << ';' << I
.stop() << "):" << I
.value();
289 VNInfo
*SplitEditor::defValue(unsigned RegIdx
,
290 const VNInfo
*ParentVNI
,
292 assert(ParentVNI
&& "Mapping NULL value");
293 assert(Idx
.isValid() && "Invalid SlotIndex");
294 assert(Edit
->getParent().getVNInfoAt(Idx
) == ParentVNI
&& "Bad Parent VNI");
295 LiveInterval
*LI
= Edit
->get(RegIdx
);
297 // Create a new value.
298 VNInfo
*VNI
= LI
->getNextValue(Idx
, 0, LIS
.getVNInfoAllocator());
300 // Use insert for lookup, so we can add missing values with a second lookup.
301 std::pair
<ValueMap::iterator
, bool> InsP
=
302 Values
.insert(std::make_pair(std::make_pair(RegIdx
, ParentVNI
->id
), VNI
));
304 // This was the first time (RegIdx, ParentVNI) was mapped.
305 // Keep it as a simple def without any liveness.
309 // If the previous value was a simple mapping, add liveness for it now.
310 if (VNInfo
*OldVNI
= InsP
.first
->second
) {
311 SlotIndex Def
= OldVNI
->def
;
312 LI
->addRange(LiveRange(Def
, Def
.getNextSlot(), OldVNI
));
313 // No longer a simple mapping.
314 InsP
.first
->second
= 0;
317 // This is a complex mapping, add liveness for VNI
318 SlotIndex Def
= VNI
->def
;
319 LI
->addRange(LiveRange(Def
, Def
.getNextSlot(), VNI
));
324 void SplitEditor::markComplexMapped(unsigned RegIdx
, const VNInfo
*ParentVNI
) {
325 assert(ParentVNI
&& "Mapping NULL value");
326 VNInfo
*&VNI
= Values
[std::make_pair(RegIdx
, ParentVNI
->id
)];
328 // ParentVNI was either unmapped or already complex mapped. Either way.
332 // This was previously a single mapping. Make sure the old def is represented
333 // by a trivial live range.
334 SlotIndex Def
= VNI
->def
;
335 Edit
->get(RegIdx
)->addRange(LiveRange(Def
, Def
.getNextSlot(), VNI
));
339 // extendRange - Extend the live range to reach Idx.
340 // Potentially create phi-def values.
341 void SplitEditor::extendRange(unsigned RegIdx
, SlotIndex Idx
) {
342 assert(Idx
.isValid() && "Invalid SlotIndex");
343 MachineBasicBlock
*IdxMBB
= LIS
.getMBBFromIndex(Idx
);
344 assert(IdxMBB
&& "No MBB at Idx");
345 LiveInterval
*LI
= Edit
->get(RegIdx
);
347 // Is there a def in the same MBB we can extend?
348 if (LI
->extendInBlock(LIS
.getMBBStartIdx(IdxMBB
), Idx
))
351 // Now for the fun part. We know that ParentVNI potentially has multiple defs,
352 // and we may need to create even more phi-defs to preserve VNInfo SSA form.
353 // Perform a search for all predecessor blocks where we know the dominating
355 VNInfo
*VNI
= findReachingDefs(LI
, IdxMBB
, Idx
.getNextSlot());
357 // When there were multiple different values, we may need new PHIs.
361 // Poor man's SSA update for the single-value case.
362 LiveOutPair
LOP(VNI
, MDT
[LIS
.getMBBFromIndex(VNI
->def
)]);
363 for (SmallVectorImpl
<LiveInBlock
>::iterator I
= LiveInBlocks
.begin(),
364 E
= LiveInBlocks
.end(); I
!= E
; ++I
) {
365 MachineBasicBlock
*MBB
= I
->DomNode
->getBlock();
366 SlotIndex Start
= LIS
.getMBBStartIdx(MBB
);
367 if (I
->Kill
.isValid())
368 LI
->addRange(LiveRange(Start
, I
->Kill
, VNI
));
370 LiveOutCache
[MBB
] = LOP
;
371 LI
->addRange(LiveRange(Start
, LIS
.getMBBEndIdx(MBB
), VNI
));
376 /// findReachingDefs - Search the CFG for known live-out values.
377 /// Add required live-in blocks to LiveInBlocks.
378 VNInfo
*SplitEditor::findReachingDefs(LiveInterval
*LI
,
379 MachineBasicBlock
*KillMBB
,
381 // Initialize the live-out cache the first time it is needed.
382 if (LiveOutSeen
.empty()) {
383 unsigned N
= VRM
.getMachineFunction().getNumBlockIDs();
384 LiveOutSeen
.resize(N
);
385 LiveOutCache
.resize(N
);
388 // Blocks where LI should be live-in.
389 SmallVector
<MachineBasicBlock
*, 16> WorkList(1, KillMBB
);
391 // Remember if we have seen more than one value.
392 bool UniqueVNI
= true;
395 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
396 for (unsigned i
= 0; i
!= WorkList
.size(); ++i
) {
397 MachineBasicBlock
*MBB
= WorkList
[i
];
398 assert(!MBB
->pred_empty() && "Value live-in to entry block?");
399 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
400 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
401 MachineBasicBlock
*Pred
= *PI
;
402 LiveOutPair
&LOP
= LiveOutCache
[Pred
];
404 // Is this a known live-out block?
405 if (LiveOutSeen
.test(Pred
->getNumber())) {
406 if (VNInfo
*VNI
= LOP
.first
) {
407 if (TheVNI
&& TheVNI
!= VNI
)
414 // First time. LOP is garbage and must be cleared below.
415 LiveOutSeen
.set(Pred
->getNumber());
417 // Does Pred provide a live-out value?
418 SlotIndex Start
, Last
;
419 tie(Start
, Last
) = LIS
.getSlotIndexes()->getMBBRange(Pred
);
420 Last
= Last
.getPrevSlot();
421 VNInfo
*VNI
= LI
->extendInBlock(Start
, Last
);
424 LOP
.second
= MDT
[LIS
.getMBBFromIndex(VNI
->def
)];
425 if (TheVNI
&& TheVNI
!= VNI
)
432 // No, we need a live-in value for Pred as well
434 WorkList
.push_back(Pred
);
436 // Loopback to KillMBB, so value is really live through.
441 // Transfer WorkList to LiveInBlocks in reverse order.
442 // This ordering works best with updateSSA().
443 LiveInBlocks
.clear();
444 LiveInBlocks
.reserve(WorkList
.size());
445 while(!WorkList
.empty())
446 LiveInBlocks
.push_back(MDT
[WorkList
.pop_back_val()]);
448 // The kill block may not be live-through.
449 assert(LiveInBlocks
.back().DomNode
->getBlock() == KillMBB
);
450 LiveInBlocks
.back().Kill
= Kill
;
452 return UniqueVNI
? TheVNI
: 0;
455 void SplitEditor::updateSSA() {
456 // This is essentially the same iterative algorithm that SSAUpdater uses,
457 // except we already have a dominator tree, so we don't have to recompute it.
461 // Propagate live-out values down the dominator tree, inserting phi-defs
463 for (SmallVectorImpl
<LiveInBlock
>::iterator I
= LiveInBlocks
.begin(),
464 E
= LiveInBlocks
.end(); I
!= E
; ++I
) {
465 MachineDomTreeNode
*Node
= I
->DomNode
;
466 // Skip block if the live-in value has already been determined.
469 MachineBasicBlock
*MBB
= Node
->getBlock();
470 MachineDomTreeNode
*IDom
= Node
->getIDom();
471 LiveOutPair IDomValue
;
473 // We need a live-in value to a block with no immediate dominator?
474 // This is probably an unreachable block that has survived somehow.
475 bool needPHI
= !IDom
|| !LiveOutSeen
.test(IDom
->getBlock()->getNumber());
477 // IDom dominates all of our predecessors, but it may not be their
478 // immediate dominator. Check if any of them have live-out values that are
479 // properly dominated by IDom. If so, we need a phi-def here.
481 IDomValue
= LiveOutCache
[IDom
->getBlock()];
482 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
483 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
484 LiveOutPair Value
= LiveOutCache
[*PI
];
485 if (!Value
.first
|| Value
.first
== IDomValue
.first
)
487 // This predecessor is carrying something other than IDomValue.
488 // It could be because IDomValue hasn't propagated yet, or it could be
489 // because MBB is in the dominance frontier of that value.
490 if (MDT
.dominates(IDom
, Value
.second
)) {
497 // The value may be live-through even if Kill is set, as can happen when
498 // we are called from extendRange. In that case LiveOutSeen is true, and
499 // LiveOutCache indicates a foreign or missing value.
500 LiveOutPair
&LOP
= LiveOutCache
[MBB
];
502 // Create a phi-def if required.
505 SlotIndex Start
= LIS
.getMBBStartIdx(MBB
);
506 unsigned RegIdx
= RegAssign
.lookup(Start
);
507 LiveInterval
*LI
= Edit
->get(RegIdx
);
508 VNInfo
*VNI
= LI
->getNextValue(Start
, 0, LIS
.getVNInfoAllocator());
509 VNI
->setIsPHIDef(true);
511 // This block is done, we know the final value.
513 if (I
->Kill
.isValid())
514 LI
->addRange(LiveRange(Start
, I
->Kill
, VNI
));
516 LI
->addRange(LiveRange(Start
, LIS
.getMBBEndIdx(MBB
), VNI
));
517 LOP
= LiveOutPair(VNI
, Node
);
519 } else if (IDomValue
.first
) {
520 // No phi-def here. Remember incoming value.
521 I
->Value
= IDomValue
.first
;
522 if (I
->Kill
.isValid())
524 // Propagate IDomValue if needed:
525 // MBB is live-out and doesn't define its own value.
526 if (LOP
.second
!= Node
&& LOP
.first
!= IDomValue
.first
) {
534 // The values in LiveInBlocks are now accurate. No more phi-defs are needed
535 // for these blocks, so we can color the live ranges.
536 for (SmallVectorImpl
<LiveInBlock
>::iterator I
= LiveInBlocks
.begin(),
537 E
= LiveInBlocks
.end(); I
!= E
; ++I
) {
540 assert(I
->Value
&& "No live-in value found");
541 MachineBasicBlock
*MBB
= I
->DomNode
->getBlock();
542 SlotIndex Start
= LIS
.getMBBStartIdx(MBB
);
543 unsigned RegIdx
= RegAssign
.lookup(Start
);
544 LiveInterval
*LI
= Edit
->get(RegIdx
);
545 LI
->addRange(LiveRange(Start
, I
->Kill
.isValid() ?
546 I
->Kill
: LIS
.getMBBEndIdx(MBB
), I
->Value
));
550 VNInfo
*SplitEditor::defFromParent(unsigned RegIdx
,
553 MachineBasicBlock
&MBB
,
554 MachineBasicBlock::iterator I
) {
555 MachineInstr
*CopyMI
= 0;
557 LiveInterval
*LI
= Edit
->get(RegIdx
);
559 // Attempt cheap-as-a-copy rematerialization.
560 LiveRangeEdit::Remat
RM(ParentVNI
);
561 if (Edit
->canRematerializeAt(RM
, UseIdx
, true, LIS
)) {
562 Def
= Edit
->rematerializeAt(MBB
, I
, LI
->reg
, RM
, LIS
, TII
, TRI
);
564 // Can't remat, just insert a copy from parent.
565 CopyMI
= BuildMI(MBB
, I
, DebugLoc(), TII
.get(TargetOpcode::COPY
), LI
->reg
)
566 .addReg(Edit
->getReg());
567 Def
= LIS
.InsertMachineInstrInMaps(CopyMI
).getDefIndex();
570 // Define the value in Reg.
571 VNInfo
*VNI
= defValue(RegIdx
, ParentVNI
, Def
);
572 VNI
->setCopy(CopyMI
);
576 /// Create a new virtual register and live interval.
577 unsigned SplitEditor::openIntv() {
578 // Create the complement as index 0.
580 Edit
->create(LIS
, VRM
);
582 // Create the open interval.
583 OpenIdx
= Edit
->size();
584 Edit
->create(LIS
, VRM
);
588 void SplitEditor::selectIntv(unsigned Idx
) {
589 assert(Idx
!= 0 && "Cannot select the complement interval");
590 assert(Idx
< Edit
->size() && "Can only select previously opened interval");
594 SlotIndex
SplitEditor::enterIntvBefore(SlotIndex Idx
) {
595 assert(OpenIdx
&& "openIntv not called before enterIntvBefore");
596 DEBUG(dbgs() << " enterIntvBefore " << Idx
);
597 Idx
= Idx
.getBaseIndex();
598 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
600 DEBUG(dbgs() << ": not live\n");
603 DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
604 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
605 assert(MI
&& "enterIntvBefore called with invalid index");
607 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Idx
, *MI
->getParent(), MI
);
611 SlotIndex
SplitEditor::enterIntvAtEnd(MachineBasicBlock
&MBB
) {
612 assert(OpenIdx
&& "openIntv not called before enterIntvAtEnd");
613 SlotIndex End
= LIS
.getMBBEndIdx(&MBB
);
614 SlotIndex Last
= End
.getPrevSlot();
615 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB
.getNumber() << ", " << Last
);
616 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Last
);
618 DEBUG(dbgs() << ": not live\n");
621 DEBUG(dbgs() << ": valno " << ParentVNI
->id
);
622 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Last
, MBB
,
623 LIS
.getLastSplitPoint(Edit
->getParent(), &MBB
));
624 RegAssign
.insert(VNI
->def
, End
, OpenIdx
);
629 /// useIntv - indicate that all instructions in MBB should use OpenLI.
630 void SplitEditor::useIntv(const MachineBasicBlock
&MBB
) {
631 useIntv(LIS
.getMBBStartIdx(&MBB
), LIS
.getMBBEndIdx(&MBB
));
634 void SplitEditor::useIntv(SlotIndex Start
, SlotIndex End
) {
635 assert(OpenIdx
&& "openIntv not called before useIntv");
636 DEBUG(dbgs() << " useIntv [" << Start
<< ';' << End
<< "):");
637 RegAssign
.insert(Start
, End
, OpenIdx
);
641 SlotIndex
SplitEditor::leaveIntvAfter(SlotIndex Idx
) {
642 assert(OpenIdx
&& "openIntv not called before leaveIntvAfter");
643 DEBUG(dbgs() << " leaveIntvAfter " << Idx
);
645 // The interval must be live beyond the instruction at Idx.
646 Idx
= Idx
.getBoundaryIndex();
647 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
649 DEBUG(dbgs() << ": not live\n");
650 return Idx
.getNextSlot();
652 DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
654 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
655 assert(MI
&& "No instruction at index");
656 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(),
657 llvm::next(MachineBasicBlock::iterator(MI
)));
661 SlotIndex
SplitEditor::leaveIntvBefore(SlotIndex Idx
) {
662 assert(OpenIdx
&& "openIntv not called before leaveIntvBefore");
663 DEBUG(dbgs() << " leaveIntvBefore " << Idx
);
665 // The interval must be live into the instruction at Idx.
666 Idx
= Idx
.getBoundaryIndex();
667 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
669 DEBUG(dbgs() << ": not live\n");
670 return Idx
.getNextSlot();
672 DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
674 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
675 assert(MI
&& "No instruction at index");
676 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(), MI
);
680 SlotIndex
SplitEditor::leaveIntvAtTop(MachineBasicBlock
&MBB
) {
681 assert(OpenIdx
&& "openIntv not called before leaveIntvAtTop");
682 SlotIndex Start
= LIS
.getMBBStartIdx(&MBB
);
683 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB
.getNumber() << ", " << Start
);
685 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
687 DEBUG(dbgs() << ": not live\n");
691 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Start
, MBB
,
692 MBB
.SkipPHIsAndLabels(MBB
.begin()));
693 RegAssign
.insert(Start
, VNI
->def
, OpenIdx
);
698 void SplitEditor::overlapIntv(SlotIndex Start
, SlotIndex End
) {
699 assert(OpenIdx
&& "openIntv not called before overlapIntv");
700 const VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
701 assert(ParentVNI
== Edit
->getParent().getVNInfoAt(End
.getPrevSlot()) &&
702 "Parent changes value in extended range");
703 assert(LIS
.getMBBFromIndex(Start
) == LIS
.getMBBFromIndex(End
) &&
704 "Range cannot span basic blocks");
706 // The complement interval will be extended as needed by extendRange().
708 markComplexMapped(0, ParentVNI
);
709 DEBUG(dbgs() << " overlapIntv [" << Start
<< ';' << End
<< "):");
710 RegAssign
.insert(Start
, End
, OpenIdx
);
714 /// transferValues - Transfer all possible values to the new live ranges.
715 /// Values that were rematerialized are left alone, they need extendRange().
716 bool SplitEditor::transferValues() {
717 bool Skipped
= false;
718 LiveInBlocks
.clear();
719 RegAssignMap::const_iterator AssignI
= RegAssign
.begin();
720 for (LiveInterval::const_iterator ParentI
= Edit
->getParent().begin(),
721 ParentE
= Edit
->getParent().end(); ParentI
!= ParentE
; ++ParentI
) {
722 DEBUG(dbgs() << " blit " << *ParentI
<< ':');
723 VNInfo
*ParentVNI
= ParentI
->valno
;
724 // RegAssign has holes where RegIdx 0 should be used.
725 SlotIndex Start
= ParentI
->start
;
726 AssignI
.advanceTo(Start
);
729 SlotIndex End
= ParentI
->end
;
730 if (!AssignI
.valid()) {
732 } else if (AssignI
.start() <= Start
) {
733 RegIdx
= AssignI
.value();
734 if (AssignI
.stop() < End
) {
735 End
= AssignI
.stop();
740 End
= std::min(End
, AssignI
.start());
743 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
744 DEBUG(dbgs() << " [" << Start
<< ';' << End
<< ")=" << RegIdx
);
745 LiveInterval
*LI
= Edit
->get(RegIdx
);
747 // Check for a simply defined value that can be blitted directly.
748 if (VNInfo
*VNI
= Values
.lookup(std::make_pair(RegIdx
, ParentVNI
->id
))) {
749 DEBUG(dbgs() << ':' << VNI
->id
);
750 LI
->addRange(LiveRange(Start
, End
, VNI
));
755 // Skip rematerialized values, we need to use extendRange() and
756 // extendPHIKillRanges() to completely recompute the live ranges.
757 if (Edit
->didRematerialize(ParentVNI
)) {
758 DEBUG(dbgs() << "(remat)");
764 // Initialize the live-out cache the first time it is needed.
765 if (LiveOutSeen
.empty()) {
766 unsigned N
= VRM
.getMachineFunction().getNumBlockIDs();
767 LiveOutSeen
.resize(N
);
768 LiveOutCache
.resize(N
);
771 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
772 // so the live range is accurate. Add live-in blocks in [Start;End) to the
774 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(Start
);
775 SlotIndex BlockStart
, BlockEnd
;
776 tie(BlockStart
, BlockEnd
) = LIS
.getSlotIndexes()->getMBBRange(MBB
);
778 // The first block may be live-in, or it may have its own def.
779 if (Start
!= BlockStart
) {
780 VNInfo
*VNI
= LI
->extendInBlock(BlockStart
,
781 std::min(BlockEnd
, End
).getPrevSlot());
782 assert(VNI
&& "Missing def for complex mapped value");
783 DEBUG(dbgs() << ':' << VNI
->id
<< "*BB#" << MBB
->getNumber());
784 // MBB has its own def. Is it also live-out?
785 if (BlockEnd
<= End
) {
786 LiveOutSeen
.set(MBB
->getNumber());
787 LiveOutCache
[MBB
] = LiveOutPair(VNI
, MDT
[MBB
]);
789 // Skip to the next block for live-in.
791 BlockStart
= BlockEnd
;
794 // Handle the live-in blocks covered by [Start;End).
795 assert(Start
<= BlockStart
&& "Expected live-in block");
796 while (BlockStart
< End
) {
797 DEBUG(dbgs() << ">BB#" << MBB
->getNumber());
798 BlockEnd
= LIS
.getMBBEndIdx(MBB
);
799 if (BlockStart
== ParentVNI
->def
) {
800 // This block has the def of a parent PHI, so it isn't live-in.
801 assert(ParentVNI
->isPHIDef() && "Non-phi defined at block start?");
802 VNInfo
*VNI
= LI
->extendInBlock(BlockStart
,
803 std::min(BlockEnd
, End
).getPrevSlot());
804 assert(VNI
&& "Missing def for complex mapped parent PHI");
805 if (End
>= BlockEnd
) {
807 LiveOutSeen
.set(MBB
->getNumber());
808 LiveOutCache
[MBB
] = LiveOutPair(VNI
, MDT
[MBB
]);
811 // This block needs a live-in value.
812 LiveInBlocks
.push_back(MDT
[MBB
]);
813 // The last block covered may not be live-out.
815 LiveInBlocks
.back().Kill
= End
;
817 // Live-out, but we need updateSSA to tell us the value.
818 LiveOutSeen
.set(MBB
->getNumber());
819 LiveOutCache
[MBB
] = LiveOutPair((VNInfo
*)0,
820 (MachineDomTreeNode
*)0);
823 BlockStart
= BlockEnd
;
827 } while (Start
!= ParentI
->end
);
828 DEBUG(dbgs() << '\n');
831 if (!LiveInBlocks
.empty())
837 void SplitEditor::extendPHIKillRanges() {
838 // Extend live ranges to be live-out for successor PHI values.
839 for (LiveInterval::const_vni_iterator I
= Edit
->getParent().vni_begin(),
840 E
= Edit
->getParent().vni_end(); I
!= E
; ++I
) {
841 const VNInfo
*PHIVNI
= *I
;
842 if (PHIVNI
->isUnused() || !PHIVNI
->isPHIDef())
844 unsigned RegIdx
= RegAssign
.lookup(PHIVNI
->def
);
845 MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(PHIVNI
->def
);
846 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
847 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
848 SlotIndex End
= LIS
.getMBBEndIdx(*PI
).getPrevSlot();
849 // The predecessor may not have a live-out value. That is OK, like an
850 // undef PHI operand.
851 if (Edit
->getParent().liveAt(End
)) {
852 assert(RegAssign
.lookup(End
) == RegIdx
&&
853 "Different register assignment in phi predecessor");
854 extendRange(RegIdx
, End
);
860 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
861 void SplitEditor::rewriteAssigned(bool ExtendRanges
) {
862 for (MachineRegisterInfo::reg_iterator RI
= MRI
.reg_begin(Edit
->getReg()),
863 RE
= MRI
.reg_end(); RI
!= RE
;) {
864 MachineOperand
&MO
= RI
.getOperand();
865 MachineInstr
*MI
= MO
.getParent();
867 // LiveDebugVariables should have handled all DBG_VALUE instructions.
868 if (MI
->isDebugValue()) {
869 DEBUG(dbgs() << "Zapping " << *MI
);
874 // <undef> operands don't really read the register, so just assign them to
876 if (MO
.isUse() && MO
.isUndef()) {
877 MO
.setReg(Edit
->get(0)->reg
);
881 SlotIndex Idx
= LIS
.getInstructionIndex(MI
);
883 Idx
= MO
.isEarlyClobber() ? Idx
.getUseIndex() : Idx
.getDefIndex();
885 // Rewrite to the mapped register at Idx.
886 unsigned RegIdx
= RegAssign
.lookup(Idx
);
887 MO
.setReg(Edit
->get(RegIdx
)->reg
);
888 DEBUG(dbgs() << " rewr BB#" << MI
->getParent()->getNumber() << '\t'
889 << Idx
<< ':' << RegIdx
<< '\t' << *MI
);
891 // Extend liveness to Idx if the instruction reads reg.
895 // Skip instructions that don't read Reg.
897 if (!MO
.getSubReg() && !MO
.isEarlyClobber())
899 // We may wan't to extend a live range for a partial redef, or for a use
900 // tied to an early clobber.
901 Idx
= Idx
.getPrevSlot();
902 if (!Edit
->getParent().liveAt(Idx
))
905 Idx
= Idx
.getUseIndex();
907 extendRange(RegIdx
, Idx
);
911 void SplitEditor::deleteRematVictims() {
912 SmallVector
<MachineInstr
*, 8> Dead
;
913 for (LiveRangeEdit::iterator I
= Edit
->begin(), E
= Edit
->end(); I
!= E
; ++I
){
914 LiveInterval
*LI
= *I
;
915 for (LiveInterval::const_iterator LII
= LI
->begin(), LIE
= LI
->end();
917 // Dead defs end at the store slot.
918 if (LII
->end
!= LII
->valno
->def
.getNextSlot())
920 MachineInstr
*MI
= LIS
.getInstructionFromIndex(LII
->valno
->def
);
921 assert(MI
&& "Missing instruction for dead def");
922 MI
->addRegisterDead(LI
->reg
, &TRI
);
924 if (!MI
->allDefsAreDead())
927 DEBUG(dbgs() << "All defs dead: " << *MI
);
935 Edit
->eliminateDeadDefs(Dead
, LIS
, VRM
, TII
);
938 void SplitEditor::finish() {
941 // At this point, the live intervals in Edit contain VNInfos corresponding to
942 // the inserted copies.
944 // Add the original defs from the parent interval.
945 for (LiveInterval::const_vni_iterator I
= Edit
->getParent().vni_begin(),
946 E
= Edit
->getParent().vni_end(); I
!= E
; ++I
) {
947 const VNInfo
*ParentVNI
= *I
;
948 if (ParentVNI
->isUnused())
950 unsigned RegIdx
= RegAssign
.lookup(ParentVNI
->def
);
951 VNInfo
*VNI
= defValue(RegIdx
, ParentVNI
, ParentVNI
->def
);
952 VNI
->setIsPHIDef(ParentVNI
->isPHIDef());
953 VNI
->setCopy(ParentVNI
->getCopy());
955 // Mark rematted values as complex everywhere to force liveness computation.
956 // The new live ranges may be truncated.
957 if (Edit
->didRematerialize(ParentVNI
))
958 for (unsigned i
= 0, e
= Edit
->size(); i
!= e
; ++i
)
959 markComplexMapped(i
, ParentVNI
);
963 // Every new interval must have a def by now, otherwise the split is bogus.
964 for (LiveRangeEdit::iterator I
= Edit
->begin(), E
= Edit
->end(); I
!= E
; ++I
)
965 assert((*I
)->hasAtLeastOneValue() && "Split interval has no value");
968 // Transfer the simply mapped values, check if any are skipped.
969 bool Skipped
= transferValues();
971 extendPHIKillRanges();
975 // Rewrite virtual registers, possibly extending ranges.
976 rewriteAssigned(Skipped
);
978 // Delete defs that were rematted everywhere.
980 deleteRematVictims();
982 // Get rid of unused values and set phi-kill flags.
983 for (LiveRangeEdit::iterator I
= Edit
->begin(), E
= Edit
->end(); I
!= E
; ++I
)
984 (*I
)->RenumberValues(LIS
);
986 // Now check if any registers were separated into multiple components.
987 ConnectedVNInfoEqClasses
ConEQ(LIS
);
988 for (unsigned i
= 0, e
= Edit
->size(); i
!= e
; ++i
) {
989 // Don't use iterators, they are invalidated by create() below.
990 LiveInterval
*li
= Edit
->get(i
);
991 unsigned NumComp
= ConEQ
.Classify(li
);
994 DEBUG(dbgs() << " " << NumComp
<< " components: " << *li
<< '\n');
995 SmallVector
<LiveInterval
*, 8> dups
;
997 for (unsigned i
= 1; i
!= NumComp
; ++i
)
998 dups
.push_back(&Edit
->create(LIS
, VRM
));
999 ConEQ
.Distribute(&dups
[0], MRI
);
1002 // Calculate spill weight and allocation hints for new intervals.
1003 Edit
->calculateRegClassAndHint(VRM
.getMachineFunction(), LIS
, SA
.Loops
);
1007 //===----------------------------------------------------------------------===//
1008 // Single Block Splitting
1009 //===----------------------------------------------------------------------===//
1011 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1012 /// may be an advantage to split CurLI for the duration of the block.
1013 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet
&Blocks
) {
1014 // If CurLI is local to one block, there is no point to splitting it.
1015 if (UseBlocks
.size() <= 1)
1017 // Add blocks with multiple uses.
1018 for (unsigned i
= 0, e
= UseBlocks
.size(); i
!= e
; ++i
) {
1019 const BlockInfo
&BI
= UseBlocks
[i
];
1020 if (BI
.FirstUse
== BI
.LastUse
)
1022 Blocks
.insert(BI
.MBB
);
1024 return !Blocks
.empty();
1027 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo
&BI
) {
1029 SlotIndex LastSplitPoint
= SA
.getLastSplitPoint(BI
.MBB
->getNumber());
1030 SlotIndex SegStart
= enterIntvBefore(std::min(BI
.FirstUse
,
1032 if (!BI
.LiveOut
|| BI
.LastUse
< LastSplitPoint
) {
1033 useIntv(SegStart
, leaveIntvAfter(BI
.LastUse
));
1035 // The last use is after the last valid split point.
1036 SlotIndex SegStop
= leaveIntvBefore(LastSplitPoint
);
1037 useIntv(SegStart
, SegStop
);
1038 overlapIntv(SegStop
, BI
.LastUse
);
1042 /// splitSingleBlocks - Split CurLI into a separate live interval inside each
1043 /// basic block in Blocks.
1044 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet
&Blocks
) {
1045 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks
.size() << " blocks.\n");
1046 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
.getUseBlocks();
1047 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1048 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1049 if (Blocks
.count(BI
.MBB
))
1050 splitSingleBlock(BI
);