Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / TargetInstrInfoImpl.cpp
blobb9fcd3804d7f4bf4c2b05a0acf5061f1d3203bfa
1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
33 static cl::opt<bool> DisableHazardRecognizer(
34 "disable-sched-hazard", cl::Hidden, cl::init(false),
35 cl::desc("Disable hazard detection during preRA scheduling"));
37 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
38 /// after it, replacing it with an unconditional branch to NewDest.
39 void
40 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
41 MachineBasicBlock *NewDest) const {
42 MachineBasicBlock *MBB = Tail->getParent();
44 // Remove all the old successors of MBB from the CFG.
45 while (!MBB->succ_empty())
46 MBB->removeSuccessor(MBB->succ_begin());
48 // Remove all the dead instructions from the end of MBB.
49 MBB->erase(Tail, MBB->end());
51 // If MBB isn't immediately before MBB, insert a branch to it.
52 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
53 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
54 Tail->getDebugLoc());
55 MBB->addSuccessor(NewDest);
58 // commuteInstruction - The default implementation of this method just exchanges
59 // the two operands returned by findCommutedOpIndices.
60 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
61 bool NewMI) const {
62 const TargetInstrDesc &TID = MI->getDesc();
63 bool HasDef = TID.getNumDefs();
64 if (HasDef && !MI->getOperand(0).isReg())
65 // No idea how to commute this instruction. Target should implement its own.
66 return 0;
67 unsigned Idx1, Idx2;
68 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
69 std::string msg;
70 raw_string_ostream Msg(msg);
71 Msg << "Don't know how to commute: " << *MI;
72 report_fatal_error(Msg.str());
75 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
76 "This only knows how to commute register operands so far");
77 unsigned Reg1 = MI->getOperand(Idx1).getReg();
78 unsigned Reg2 = MI->getOperand(Idx2).getReg();
79 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
80 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
81 bool ChangeReg0 = false;
82 if (HasDef && MI->getOperand(0).getReg() == Reg1) {
83 // Must be two address instruction!
84 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
85 "Expecting a two-address instruction!");
86 Reg2IsKill = false;
87 ChangeReg0 = true;
90 if (NewMI) {
91 // Create a new instruction.
92 unsigned Reg0 = HasDef
93 ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
94 bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
95 MachineFunction &MF = *MI->getParent()->getParent();
96 if (HasDef)
97 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
98 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
99 .addReg(Reg2, getKillRegState(Reg2IsKill))
100 .addReg(Reg1, getKillRegState(Reg2IsKill));
101 else
102 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
103 .addReg(Reg2, getKillRegState(Reg2IsKill))
104 .addReg(Reg1, getKillRegState(Reg2IsKill));
107 if (ChangeReg0)
108 MI->getOperand(0).setReg(Reg2);
109 MI->getOperand(Idx2).setReg(Reg1);
110 MI->getOperand(Idx1).setReg(Reg2);
111 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
112 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
113 return MI;
116 /// findCommutedOpIndices - If specified MI is commutable, return the two
117 /// operand indices that would swap value. Return true if the instruction
118 /// is not in a form which this routine understands.
119 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
120 unsigned &SrcOpIdx1,
121 unsigned &SrcOpIdx2) const {
122 const TargetInstrDesc &TID = MI->getDesc();
123 if (!TID.isCommutable())
124 return false;
125 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
126 // is not true, then the target must implement this.
127 SrcOpIdx1 = TID.getNumDefs();
128 SrcOpIdx2 = SrcOpIdx1 + 1;
129 if (!MI->getOperand(SrcOpIdx1).isReg() ||
130 !MI->getOperand(SrcOpIdx2).isReg())
131 // No idea.
132 return false;
133 return true;
137 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
138 const SmallVectorImpl<MachineOperand> &Pred) const {
139 bool MadeChange = false;
140 const TargetInstrDesc &TID = MI->getDesc();
141 if (!TID.isPredicable())
142 return false;
144 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
145 if (TID.OpInfo[i].isPredicate()) {
146 MachineOperand &MO = MI->getOperand(i);
147 if (MO.isReg()) {
148 MO.setReg(Pred[j].getReg());
149 MadeChange = true;
150 } else if (MO.isImm()) {
151 MO.setImm(Pred[j].getImm());
152 MadeChange = true;
153 } else if (MO.isMBB()) {
154 MO.setMBB(Pred[j].getMBB());
155 MadeChange = true;
157 ++j;
160 return MadeChange;
163 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
164 MachineBasicBlock::iterator I,
165 unsigned DestReg,
166 unsigned SubIdx,
167 const MachineInstr *Orig,
168 const TargetRegisterInfo &TRI) const {
169 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
170 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
171 MBB.insert(I, MI);
174 bool
175 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
176 const MachineInstr *MI1,
177 const MachineRegisterInfo *MRI) const {
178 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
181 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
182 MachineFunction &MF) const {
183 assert(!Orig->getDesc().isNotDuplicable() &&
184 "Instruction cannot be duplicated");
185 return MF.CloneMachineInstr(Orig);
188 // If the COPY instruction in MI can be folded to a stack operation, return
189 // the register class to use.
190 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
191 unsigned FoldIdx) {
192 assert(MI->isCopy() && "MI must be a COPY instruction");
193 if (MI->getNumOperands() != 2)
194 return 0;
195 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
197 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
198 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
200 if (FoldOp.getSubReg() || LiveOp.getSubReg())
201 return 0;
203 unsigned FoldReg = FoldOp.getReg();
204 unsigned LiveReg = LiveOp.getReg();
206 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
207 "Cannot fold physregs");
209 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
210 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
212 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
213 return RC->contains(LiveOp.getReg()) ? RC : 0;
215 const TargetRegisterClass *LiveRC = MRI.getRegClass(LiveReg);
216 if (RC == LiveRC || RC->hasSubClass(LiveRC))
217 return RC;
219 // FIXME: Allow folding when register classes are memory compatible.
220 return 0;
223 bool TargetInstrInfoImpl::
224 canFoldMemoryOperand(const MachineInstr *MI,
225 const SmallVectorImpl<unsigned> &Ops) const {
226 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
229 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
230 /// slot into the specified machine instruction for the specified operand(s).
231 /// If this is possible, a new instruction is returned with the specified
232 /// operand folded, otherwise NULL is returned. The client is responsible for
233 /// removing the old instruction and adding the new one in the instruction
234 /// stream.
235 MachineInstr*
236 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
237 const SmallVectorImpl<unsigned> &Ops,
238 int FI) const {
239 unsigned Flags = 0;
240 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
241 if (MI->getOperand(Ops[i]).isDef())
242 Flags |= MachineMemOperand::MOStore;
243 else
244 Flags |= MachineMemOperand::MOLoad;
246 MachineBasicBlock *MBB = MI->getParent();
247 assert(MBB && "foldMemoryOperand needs an inserted instruction");
248 MachineFunction &MF = *MBB->getParent();
250 // Ask the target to do the actual folding.
251 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
252 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
253 assert((!(Flags & MachineMemOperand::MOStore) ||
254 NewMI->getDesc().mayStore()) &&
255 "Folded a def to a non-store!");
256 assert((!(Flags & MachineMemOperand::MOLoad) ||
257 NewMI->getDesc().mayLoad()) &&
258 "Folded a use to a non-load!");
259 const MachineFrameInfo &MFI = *MF.getFrameInfo();
260 assert(MFI.getObjectOffset(FI) != -1);
261 MachineMemOperand *MMO =
262 MF.getMachineMemOperand(
263 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
264 Flags, MFI.getObjectSize(FI),
265 MFI.getObjectAlignment(FI));
266 NewMI->addMemOperand(MF, MMO);
268 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
269 return MBB->insert(MI, NewMI);
272 // Straight COPY may fold as load/store.
273 if (!MI->isCopy() || Ops.size() != 1)
274 return 0;
276 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
277 if (!RC)
278 return 0;
280 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
281 MachineBasicBlock::iterator Pos = MI;
282 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
284 if (Flags == MachineMemOperand::MOStore)
285 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
286 else
287 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
288 return --Pos;
291 /// foldMemoryOperand - Same as the previous version except it allows folding
292 /// of any load and store from / to any address, not just from a specific
293 /// stack slot.
294 MachineInstr*
295 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
296 const SmallVectorImpl<unsigned> &Ops,
297 MachineInstr* LoadMI) const {
298 assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
299 #ifndef NDEBUG
300 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
301 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
302 #endif
303 MachineBasicBlock &MBB = *MI->getParent();
304 MachineFunction &MF = *MBB.getParent();
306 // Ask the target to do the actual folding.
307 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
308 if (!NewMI) return 0;
310 NewMI = MBB.insert(MI, NewMI);
312 // Copy the memoperands from the load to the folded instruction.
313 NewMI->setMemRefs(LoadMI->memoperands_begin(),
314 LoadMI->memoperands_end());
316 return NewMI;
319 bool TargetInstrInfo::
320 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
321 AliasAnalysis *AA) const {
322 const MachineFunction &MF = *MI->getParent()->getParent();
323 const MachineRegisterInfo &MRI = MF.getRegInfo();
324 const TargetMachine &TM = MF.getTarget();
325 const TargetInstrInfo &TII = *TM.getInstrInfo();
326 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
328 // A load from a fixed stack slot can be rematerialized. This may be
329 // redundant with subsequent checks, but it's target-independent,
330 // simple, and a common case.
331 int FrameIdx = 0;
332 if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
333 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
334 return true;
336 const TargetInstrDesc &TID = MI->getDesc();
338 // Avoid instructions obviously unsafe for remat.
339 if (TID.isNotDuplicable() || TID.mayStore() ||
340 MI->hasUnmodeledSideEffects())
341 return false;
343 // Don't remat inline asm. We have no idea how expensive it is
344 // even if it's side effect free.
345 if (MI->isInlineAsm())
346 return false;
348 // Avoid instructions which load from potentially varying memory.
349 if (TID.mayLoad() && !MI->isInvariantLoad(AA))
350 return false;
352 // If any of the registers accessed are non-constant, conservatively assume
353 // the instruction is not rematerializable.
354 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
355 const MachineOperand &MO = MI->getOperand(i);
356 if (!MO.isReg()) continue;
357 unsigned Reg = MO.getReg();
358 if (Reg == 0)
359 continue;
361 // Check for a well-behaved physical register.
362 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
363 if (MO.isUse()) {
364 // If the physreg has no defs anywhere, it's just an ambient register
365 // and we can freely move its uses. Alternatively, if it's allocatable,
366 // it could get allocated to something with a def during allocation.
367 if (!MRI.def_empty(Reg))
368 return false;
369 BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
370 if (AllocatableRegs.test(Reg))
371 return false;
372 // Check for a def among the register's aliases too.
373 for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
374 unsigned AliasReg = *Alias;
375 if (!MRI.def_empty(AliasReg))
376 return false;
377 if (AllocatableRegs.test(AliasReg))
378 return false;
380 } else {
381 // A physreg def. We can't remat it.
382 return false;
384 continue;
387 // Only allow one virtual-register def, and that in the first operand.
388 if (MO.isDef() != (i == 0))
389 return false;
391 // Don't allow any virtual-register uses. Rematting an instruction with
392 // virtual register uses would length the live ranges of the uses, which
393 // is not necessarily a good idea, certainly not "trivial".
394 if (MO.isUse())
395 return false;
398 // Everything checked out.
399 return true;
402 /// isSchedulingBoundary - Test if the given instruction should be
403 /// considered a scheduling boundary. This primarily includes labels
404 /// and terminators.
405 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
406 const MachineBasicBlock *MBB,
407 const MachineFunction &MF) const{
408 // Terminators and labels can't be scheduled around.
409 if (MI->getDesc().isTerminator() || MI->isLabel())
410 return true;
412 // Don't attempt to schedule around any instruction that defines
413 // a stack-oriented pointer, as it's unlikely to be profitable. This
414 // saves compile time, because it doesn't require every single
415 // stack slot reference to depend on the instruction that does the
416 // modification.
417 const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
418 if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
419 return true;
421 return false;
424 // Provide a global flag for disabling the PreRA hazard recognizer that targets
425 // may choose to honor.
426 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
427 return !DisableHazardRecognizer;
430 // Default implementation of CreateTargetRAHazardRecognizer.
431 ScheduleHazardRecognizer *TargetInstrInfoImpl::
432 CreateTargetHazardRecognizer(const TargetMachine *TM,
433 const ScheduleDAG *DAG) const {
434 // Dummy hazard recognizer allows all instructions to issue.
435 return new ScheduleHazardRecognizer();
438 // Default implementation of CreateTargetPostRAHazardRecognizer.
439 ScheduleHazardRecognizer *TargetInstrInfoImpl::
440 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
441 const ScheduleDAG *DAG) const {
442 return (ScheduleHazardRecognizer *)
443 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");