Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blob52ea87231ccd3c95379ef249862c10f36f0adbd1
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/STLExtras.h"
50 using namespace llvm;
52 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
54 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
55 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
57 STATISTIC(NumReMats, "Number of instructions re-materialized");
58 STATISTIC(NumDeletes, "Number of dead instructions deleted");
60 namespace {
61 class TwoAddressInstructionPass : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 MachineRegisterInfo *MRI;
65 LiveVariables *LV;
66 AliasAnalysis *AA;
68 // DistanceMap - Keep track the distance of a MI from the start of the
69 // current basic block.
70 DenseMap<MachineInstr*, unsigned> DistanceMap;
72 // SrcRegMap - A map from virtual registers to physical registers which
73 // are likely targets to be coalesced to due to copies from physical
74 // registers to virtual registers. e.g. v1024 = move r0.
75 DenseMap<unsigned, unsigned> SrcRegMap;
77 // DstRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies to physical
79 // registers from virtual registers. e.g. r1 = move v1024.
80 DenseMap<unsigned, unsigned> DstRegMap;
82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83 /// during the initial walk of the machine function.
84 SmallVector<MachineInstr*, 16> RegSequences;
86 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87 unsigned Reg,
88 MachineBasicBlock::iterator OldPos);
90 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91 MachineInstr *MI, MachineInstr *DefMI,
92 MachineBasicBlock *MBB, unsigned Loc);
94 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95 unsigned &LastDef);
97 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98 unsigned Dist);
100 bool isProfitableToCommute(unsigned regB, unsigned regC,
101 MachineInstr *MI, MachineBasicBlock *MBB,
102 unsigned Dist);
104 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105 MachineFunction::iterator &mbbi,
106 unsigned RegB, unsigned RegC, unsigned Dist);
108 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111 MachineBasicBlock::iterator &nmi,
112 MachineFunction::iterator &mbbi,
113 unsigned RegA, unsigned RegB, unsigned Dist);
115 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117 SmallVector<NewKill, 4> &NewKills,
118 MachineBasicBlock *MBB, unsigned Dist);
119 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120 MachineBasicBlock::iterator &nmi,
121 MachineFunction::iterator &mbbi, unsigned Dist);
123 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124 MachineBasicBlock::iterator &nmi,
125 MachineFunction::iterator &mbbi,
126 unsigned SrcIdx, unsigned DstIdx,
127 unsigned Dist,
128 SmallPtrSet<MachineInstr*, 8> &Processed);
130 void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
131 SmallPtrSet<MachineInstr*, 8> &Processed);
133 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
134 SmallPtrSet<MachineInstr*, 8> &Processed);
136 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
138 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140 /// sub-register references of the register defined by REG_SEQUENCE.
141 bool EliminateRegSequences();
143 public:
144 static char ID; // Pass identification, replacement for typeid
145 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
149 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
150 AU.setPreservesCFG();
151 AU.addRequired<AliasAnalysis>();
152 AU.addPreserved<LiveVariables>();
153 AU.addPreservedID(MachineLoopInfoID);
154 AU.addPreservedID(MachineDominatorsID);
155 AU.addPreservedID(PHIEliminationID);
156 MachineFunctionPass::getAnalysisUsage(AU);
159 /// runOnMachineFunction - Pass entry point.
160 bool runOnMachineFunction(MachineFunction&);
164 char TwoAddressInstructionPass::ID = 0;
165 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166 "Two-Address instruction pass", false, false)
167 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169 "Two-Address instruction pass", false, false)
171 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
173 /// Sink3AddrInstruction - A two-address instruction has been converted to a
174 /// three-address instruction to avoid clobbering a register. Try to sink it
175 /// past the instruction that would kill the above mentioned register to reduce
176 /// register pressure.
177 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
178 MachineInstr *MI, unsigned SavedReg,
179 MachineBasicBlock::iterator OldPos) {
180 // Check if it's safe to move this instruction.
181 bool SeenStore = true; // Be conservative.
182 if (!MI->isSafeToMove(TII, AA, SeenStore))
183 return false;
185 unsigned DefReg = 0;
186 SmallSet<unsigned, 4> UseRegs;
188 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
189 const MachineOperand &MO = MI->getOperand(i);
190 if (!MO.isReg())
191 continue;
192 unsigned MOReg = MO.getReg();
193 if (!MOReg)
194 continue;
195 if (MO.isUse() && MOReg != SavedReg)
196 UseRegs.insert(MO.getReg());
197 if (!MO.isDef())
198 continue;
199 if (MO.isImplicit())
200 // Don't try to move it if it implicitly defines a register.
201 return false;
202 if (DefReg)
203 // For now, don't move any instructions that define multiple registers.
204 return false;
205 DefReg = MO.getReg();
208 // Find the instruction that kills SavedReg.
209 MachineInstr *KillMI = NULL;
210 for (MachineRegisterInfo::use_nodbg_iterator
211 UI = MRI->use_nodbg_begin(SavedReg),
212 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
213 MachineOperand &UseMO = UI.getOperand();
214 if (!UseMO.isKill())
215 continue;
216 KillMI = UseMO.getParent();
217 break;
220 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
221 return false;
223 // If any of the definitions are used by another instruction between the
224 // position and the kill use, then it's not safe to sink it.
226 // FIXME: This can be sped up if there is an easy way to query whether an
227 // instruction is before or after another instruction. Then we can use
228 // MachineRegisterInfo def / use instead.
229 MachineOperand *KillMO = NULL;
230 MachineBasicBlock::iterator KillPos = KillMI;
231 ++KillPos;
233 unsigned NumVisited = 0;
234 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
235 MachineInstr *OtherMI = I;
236 // DBG_VALUE cannot be counted against the limit.
237 if (OtherMI->isDebugValue())
238 continue;
239 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
240 return false;
241 ++NumVisited;
242 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
243 MachineOperand &MO = OtherMI->getOperand(i);
244 if (!MO.isReg())
245 continue;
246 unsigned MOReg = MO.getReg();
247 if (!MOReg)
248 continue;
249 if (DefReg == MOReg)
250 return false;
252 if (MO.isKill()) {
253 if (OtherMI == KillMI && MOReg == SavedReg)
254 // Save the operand that kills the register. We want to unset the kill
255 // marker if we can sink MI past it.
256 KillMO = &MO;
257 else if (UseRegs.count(MOReg))
258 // One of the uses is killed before the destination.
259 return false;
264 // Update kill and LV information.
265 KillMO->setIsKill(false);
266 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
267 KillMO->setIsKill(true);
269 if (LV)
270 LV->replaceKillInstruction(SavedReg, KillMI, MI);
272 // Move instruction to its destination.
273 MBB->remove(MI);
274 MBB->insert(KillPos, MI);
276 ++Num3AddrSunk;
277 return true;
280 /// isTwoAddrUse - Return true if the specified MI is using the specified
281 /// register as a two-address operand.
282 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
283 const TargetInstrDesc &TID = UseMI->getDesc();
284 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
285 MachineOperand &MO = UseMI->getOperand(i);
286 if (MO.isReg() && MO.getReg() == Reg &&
287 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
288 // Earlier use is a two-address one.
289 return true;
291 return false;
294 /// isProfitableToReMat - Return true if the heuristics determines it is likely
295 /// to be profitable to re-materialize the definition of Reg rather than copy
296 /// the register.
297 bool
298 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
299 const TargetRegisterClass *RC,
300 MachineInstr *MI, MachineInstr *DefMI,
301 MachineBasicBlock *MBB, unsigned Loc) {
302 bool OtherUse = false;
303 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
304 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
305 MachineOperand &UseMO = UI.getOperand();
306 MachineInstr *UseMI = UseMO.getParent();
307 MachineBasicBlock *UseMBB = UseMI->getParent();
308 if (UseMBB == MBB) {
309 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
310 if (DI != DistanceMap.end() && DI->second == Loc)
311 continue; // Current use.
312 OtherUse = true;
313 // There is at least one other use in the MBB that will clobber the
314 // register.
315 if (isTwoAddrUse(UseMI, Reg))
316 return true;
320 // If other uses in MBB are not two-address uses, then don't remat.
321 if (OtherUse)
322 return false;
324 // No other uses in the same block, remat if it's defined in the same
325 // block so it does not unnecessarily extend the live range.
326 return MBB == DefMI->getParent();
329 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
330 /// last instruction in the MBB that defines the specified register and the
331 /// two-address instruction which is being processed. It also returns the last
332 /// def location by reference
333 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
334 MachineBasicBlock *MBB, unsigned Dist,
335 unsigned &LastDef) {
336 LastDef = 0;
337 unsigned LastUse = Dist;
338 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339 E = MRI->reg_end(); I != E; ++I) {
340 MachineOperand &MO = I.getOperand();
341 MachineInstr *MI = MO.getParent();
342 if (MI->getParent() != MBB || MI->isDebugValue())
343 continue;
344 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345 if (DI == DistanceMap.end())
346 continue;
347 if (MO.isUse() && DI->second < LastUse)
348 LastUse = DI->second;
349 if (MO.isDef() && DI->second > LastDef)
350 LastDef = DI->second;
353 return !(LastUse > LastDef && LastUse < Dist);
356 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
357 MachineBasicBlock *MBB,
358 unsigned Dist) {
359 unsigned LastUseDist = 0;
360 MachineInstr *LastUse = 0;
361 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
362 E = MRI->reg_end(); I != E; ++I) {
363 MachineOperand &MO = I.getOperand();
364 MachineInstr *MI = MO.getParent();
365 if (MI->getParent() != MBB || MI->isDebugValue())
366 continue;
367 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
368 if (DI == DistanceMap.end())
369 continue;
370 if (DI->second >= Dist)
371 continue;
373 if (MO.isUse() && DI->second > LastUseDist) {
374 LastUse = DI->first;
375 LastUseDist = DI->second;
378 return LastUse;
381 /// isCopyToReg - Return true if the specified MI is a copy instruction or
382 /// a extract_subreg instruction. It also returns the source and destination
383 /// registers and whether they are physical registers by reference.
384 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
385 unsigned &SrcReg, unsigned &DstReg,
386 bool &IsSrcPhys, bool &IsDstPhys) {
387 SrcReg = 0;
388 DstReg = 0;
389 if (MI.isCopy()) {
390 DstReg = MI.getOperand(0).getReg();
391 SrcReg = MI.getOperand(1).getReg();
392 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
393 DstReg = MI.getOperand(0).getReg();
394 SrcReg = MI.getOperand(2).getReg();
395 } else
396 return false;
398 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
399 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
400 return true;
403 /// isKilled - Test if the given register value, which is used by the given
404 /// instruction, is killed by the given instruction. This looks through
405 /// coalescable copies to see if the original value is potentially not killed.
407 /// For example, in this code:
409 /// %reg1034 = copy %reg1024
410 /// %reg1035 = copy %reg1025<kill>
411 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
413 /// %reg1034 is not considered to be killed, since it is copied from a
414 /// register which is not killed. Treating it as not killed lets the
415 /// normal heuristics commute the (two-address) add, which lets
416 /// coalescing eliminate the extra copy.
418 static bool isKilled(MachineInstr &MI, unsigned Reg,
419 const MachineRegisterInfo *MRI,
420 const TargetInstrInfo *TII) {
421 MachineInstr *DefMI = &MI;
422 for (;;) {
423 if (!DefMI->killsRegister(Reg))
424 return false;
425 if (TargetRegisterInfo::isPhysicalRegister(Reg))
426 return true;
427 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
428 // If there are multiple defs, we can't do a simple analysis, so just
429 // go with what the kill flag says.
430 if (llvm::next(Begin) != MRI->def_end())
431 return true;
432 DefMI = &*Begin;
433 bool IsSrcPhys, IsDstPhys;
434 unsigned SrcReg, DstReg;
435 // If the def is something other than a copy, then it isn't going to
436 // be coalesced, so follow the kill flag.
437 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
438 return true;
439 Reg = SrcReg;
443 /// isTwoAddrUse - Return true if the specified MI uses the specified register
444 /// as a two-address use. If so, return the destination register by reference.
445 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
446 const TargetInstrDesc &TID = MI.getDesc();
447 unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
448 for (unsigned i = 0; i != NumOps; ++i) {
449 const MachineOperand &MO = MI.getOperand(i);
450 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
451 continue;
452 unsigned ti;
453 if (MI.isRegTiedToDefOperand(i, &ti)) {
454 DstReg = MI.getOperand(ti).getReg();
455 return true;
458 return false;
461 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
462 /// use, return the use instruction if it's a copy or a two-address use.
463 static
464 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
465 MachineRegisterInfo *MRI,
466 const TargetInstrInfo *TII,
467 bool &IsCopy,
468 unsigned &DstReg, bool &IsDstPhys) {
469 if (!MRI->hasOneNonDBGUse(Reg))
470 // None or more than one use.
471 return 0;
472 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
473 if (UseMI.getParent() != MBB)
474 return 0;
475 unsigned SrcReg;
476 bool IsSrcPhys;
477 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
478 IsCopy = true;
479 return &UseMI;
481 IsDstPhys = false;
482 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
483 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
484 return &UseMI;
486 return 0;
489 /// getMappedReg - Return the physical register the specified virtual register
490 /// might be mapped to.
491 static unsigned
492 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
493 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
494 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
495 if (SI == RegMap.end())
496 return 0;
497 Reg = SI->second;
499 if (TargetRegisterInfo::isPhysicalRegister(Reg))
500 return Reg;
501 return 0;
504 /// regsAreCompatible - Return true if the two registers are equal or aliased.
506 static bool
507 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
508 if (RegA == RegB)
509 return true;
510 if (!RegA || !RegB)
511 return false;
512 return TRI->regsOverlap(RegA, RegB);
516 /// isProfitableToReMat - Return true if it's potentially profitable to commute
517 /// the two-address instruction that's being processed.
518 bool
519 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
520 MachineInstr *MI, MachineBasicBlock *MBB,
521 unsigned Dist) {
522 // Determine if it's profitable to commute this two address instruction. In
523 // general, we want no uses between this instruction and the definition of
524 // the two-address register.
525 // e.g.
526 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
527 // %reg1029<def> = MOV8rr %reg1028
528 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
529 // insert => %reg1030<def> = MOV8rr %reg1028
530 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
531 // In this case, it might not be possible to coalesce the second MOV8rr
532 // instruction if the first one is coalesced. So it would be profitable to
533 // commute it:
534 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
535 // %reg1029<def> = MOV8rr %reg1028
536 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
537 // insert => %reg1030<def> = MOV8rr %reg1029
538 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
540 if (!MI->killsRegister(regC))
541 return false;
543 // Ok, we have something like:
544 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
545 // let's see if it's worth commuting it.
547 // Look for situations like this:
548 // %reg1024<def> = MOV r1
549 // %reg1025<def> = MOV r0
550 // %reg1026<def> = ADD %reg1024, %reg1025
551 // r0 = MOV %reg1026
552 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
553 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
554 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
555 unsigned ToRegB = getMappedReg(regB, DstRegMap);
556 unsigned ToRegC = getMappedReg(regC, DstRegMap);
557 if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
558 ((!FromRegC && !ToRegC) ||
559 regsAreCompatible(FromRegB, ToRegC, TRI) ||
560 regsAreCompatible(FromRegC, ToRegB, TRI)))
561 return true;
563 // If there is a use of regC between its last def (could be livein) and this
564 // instruction, then bail.
565 unsigned LastDefC = 0;
566 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
567 return false;
569 // If there is a use of regB between its last def (could be livein) and this
570 // instruction, then go ahead and make this transformation.
571 unsigned LastDefB = 0;
572 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
573 return true;
575 // Since there are no intervening uses for both registers, then commute
576 // if the def of regC is closer. Its live interval is shorter.
577 return LastDefB && LastDefC && LastDefC > LastDefB;
580 /// CommuteInstruction - Commute a two-address instruction and update the basic
581 /// block, distance map, and live variables if needed. Return true if it is
582 /// successful.
583 bool
584 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
585 MachineFunction::iterator &mbbi,
586 unsigned RegB, unsigned RegC, unsigned Dist) {
587 MachineInstr *MI = mi;
588 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
589 MachineInstr *NewMI = TII->commuteInstruction(MI);
591 if (NewMI == 0) {
592 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
593 return false;
596 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
597 // If the instruction changed to commute it, update livevar.
598 if (NewMI != MI) {
599 if (LV)
600 // Update live variables
601 LV->replaceKillInstruction(RegC, MI, NewMI);
603 mbbi->insert(mi, NewMI); // Insert the new inst
604 mbbi->erase(mi); // Nuke the old inst.
605 mi = NewMI;
606 DistanceMap.insert(std::make_pair(NewMI, Dist));
609 // Update source register map.
610 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
611 if (FromRegC) {
612 unsigned RegA = MI->getOperand(0).getReg();
613 SrcRegMap[RegA] = FromRegC;
616 return true;
619 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
620 /// given 2-address instruction to a 3-address one.
621 bool
622 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
623 // Look for situations like this:
624 // %reg1024<def> = MOV r1
625 // %reg1025<def> = MOV r0
626 // %reg1026<def> = ADD %reg1024, %reg1025
627 // r2 = MOV %reg1026
628 // Turn ADD into a 3-address instruction to avoid a copy.
629 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
630 if (!FromRegB)
631 return false;
632 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
633 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
636 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
637 /// three address one. Return true if this transformation was successful.
638 bool
639 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
640 MachineBasicBlock::iterator &nmi,
641 MachineFunction::iterator &mbbi,
642 unsigned RegA, unsigned RegB,
643 unsigned Dist) {
644 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
645 if (NewMI) {
646 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
647 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
648 bool Sunk = false;
650 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
651 // FIXME: Temporary workaround. If the new instruction doesn't
652 // uses RegB, convertToThreeAddress must have created more
653 // then one instruction.
654 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
656 mbbi->erase(mi); // Nuke the old inst.
658 if (!Sunk) {
659 DistanceMap.insert(std::make_pair(NewMI, Dist));
660 mi = NewMI;
661 nmi = llvm::next(mi);
664 // Update source and destination register maps.
665 SrcRegMap.erase(RegA);
666 DstRegMap.erase(RegB);
667 return true;
670 return false;
673 /// ScanUses - Scan forward recursively for only uses, update maps if the use
674 /// is a copy or a two-address instruction.
675 void
676 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
677 SmallPtrSet<MachineInstr*, 8> &Processed) {
678 SmallVector<unsigned, 4> VirtRegPairs;
679 bool IsDstPhys;
680 bool IsCopy = false;
681 unsigned NewReg = 0;
682 unsigned Reg = DstReg;
683 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
684 NewReg, IsDstPhys)) {
685 if (IsCopy && !Processed.insert(UseMI))
686 break;
688 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
689 if (DI != DistanceMap.end())
690 // Earlier in the same MBB.Reached via a back edge.
691 break;
693 if (IsDstPhys) {
694 VirtRegPairs.push_back(NewReg);
695 break;
697 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
698 if (!isNew)
699 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
700 VirtRegPairs.push_back(NewReg);
701 Reg = NewReg;
704 if (!VirtRegPairs.empty()) {
705 unsigned ToReg = VirtRegPairs.back();
706 VirtRegPairs.pop_back();
707 while (!VirtRegPairs.empty()) {
708 unsigned FromReg = VirtRegPairs.back();
709 VirtRegPairs.pop_back();
710 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
711 if (!isNew)
712 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
713 ToReg = FromReg;
715 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
716 if (!isNew)
717 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
721 /// ProcessCopy - If the specified instruction is not yet processed, process it
722 /// if it's a copy. For a copy instruction, we find the physical registers the
723 /// source and destination registers might be mapped to. These are kept in
724 /// point-to maps used to determine future optimizations. e.g.
725 /// v1024 = mov r0
726 /// v1025 = mov r1
727 /// v1026 = add v1024, v1025
728 /// r1 = mov r1026
729 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
730 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
731 /// potentially joined with r1 on the output side. It's worthwhile to commute
732 /// 'add' to eliminate a copy.
733 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
734 MachineBasicBlock *MBB,
735 SmallPtrSet<MachineInstr*, 8> &Processed) {
736 if (Processed.count(MI))
737 return;
739 bool IsSrcPhys, IsDstPhys;
740 unsigned SrcReg, DstReg;
741 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
742 return;
744 if (IsDstPhys && !IsSrcPhys)
745 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
746 else if (!IsDstPhys && IsSrcPhys) {
747 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
748 if (!isNew)
749 assert(SrcRegMap[DstReg] == SrcReg &&
750 "Can't map to two src physical registers!");
752 ScanUses(DstReg, MBB, Processed);
755 Processed.insert(MI);
756 return;
759 /// isSafeToDelete - If the specified instruction does not produce any side
760 /// effects and all of its defs are dead, then it's safe to delete.
761 static bool isSafeToDelete(MachineInstr *MI,
762 const TargetInstrInfo *TII,
763 SmallVector<unsigned, 4> &Kills) {
764 const TargetInstrDesc &TID = MI->getDesc();
765 if (TID.mayStore() || TID.isCall())
766 return false;
767 if (TID.isTerminator() || MI->hasUnmodeledSideEffects())
768 return false;
770 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771 MachineOperand &MO = MI->getOperand(i);
772 if (!MO.isReg())
773 continue;
774 if (MO.isDef() && !MO.isDead())
775 return false;
776 if (MO.isUse() && MO.isKill())
777 Kills.push_back(MO.getReg());
779 return true;
782 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
783 /// killed by instructions in MBB preceding the current instruction at
784 /// position Dist. If so, return true and record information about the
785 /// preceding kills in NewKills.
786 bool TwoAddressInstructionPass::
787 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
788 SmallVector<NewKill, 4> &NewKills,
789 MachineBasicBlock *MBB, unsigned Dist) {
790 while (!Kills.empty()) {
791 unsigned Kill = Kills.back();
792 Kills.pop_back();
793 if (TargetRegisterInfo::isPhysicalRegister(Kill))
794 return false;
796 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
797 if (!LastKill)
798 return false;
800 bool isModRef = LastKill->definesRegister(Kill);
801 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
802 LastKill));
804 return true;
807 /// DeleteUnusedInstr - If an instruction with a tied register operand can
808 /// be safely deleted, just delete it.
809 bool
810 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
811 MachineBasicBlock::iterator &nmi,
812 MachineFunction::iterator &mbbi,
813 unsigned Dist) {
814 // Check if the instruction has no side effects and if all its defs are dead.
815 SmallVector<unsigned, 4> Kills;
816 if (!isSafeToDelete(mi, TII, Kills))
817 return false;
819 // If this instruction kills some virtual registers, we need to
820 // update the kill information. If it's not possible to do so,
821 // then bail out.
822 SmallVector<NewKill, 4> NewKills;
823 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
824 return false;
826 if (LV) {
827 while (!NewKills.empty()) {
828 MachineInstr *NewKill = NewKills.back().second;
829 unsigned Kill = NewKills.back().first.first;
830 bool isDead = NewKills.back().first.second;
831 NewKills.pop_back();
832 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
833 if (isDead)
834 LV->addVirtualRegisterDead(Kill, NewKill);
835 else
836 LV->addVirtualRegisterKilled(Kill, NewKill);
841 mbbi->erase(mi); // Nuke the old inst.
842 mi = nmi;
843 return true;
846 /// TryInstructionTransform - For the case where an instruction has a single
847 /// pair of tied register operands, attempt some transformations that may
848 /// either eliminate the tied operands or improve the opportunities for
849 /// coalescing away the register copy. Returns true if the tied operands
850 /// are eliminated altogether.
851 bool TwoAddressInstructionPass::
852 TryInstructionTransform(MachineBasicBlock::iterator &mi,
853 MachineBasicBlock::iterator &nmi,
854 MachineFunction::iterator &mbbi,
855 unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
856 SmallPtrSet<MachineInstr*, 8> &Processed) {
857 const TargetInstrDesc &TID = mi->getDesc();
858 unsigned regA = mi->getOperand(DstIdx).getReg();
859 unsigned regB = mi->getOperand(SrcIdx).getReg();
861 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
862 "cannot make instruction into two-address form");
864 // If regA is dead and the instruction can be deleted, just delete
865 // it so it doesn't clobber regB.
866 bool regBKilled = isKilled(*mi, regB, MRI, TII);
867 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
868 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
869 ++NumDeletes;
870 return true; // Done with this instruction.
873 // Check if it is profitable to commute the operands.
874 unsigned SrcOp1, SrcOp2;
875 unsigned regC = 0;
876 unsigned regCIdx = ~0U;
877 bool TryCommute = false;
878 bool AggressiveCommute = false;
879 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
880 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
881 if (SrcIdx == SrcOp1)
882 regCIdx = SrcOp2;
883 else if (SrcIdx == SrcOp2)
884 regCIdx = SrcOp1;
886 if (regCIdx != ~0U) {
887 regC = mi->getOperand(regCIdx).getReg();
888 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
889 // If C dies but B does not, swap the B and C operands.
890 // This makes the live ranges of A and C joinable.
891 TryCommute = true;
892 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
893 TryCommute = true;
894 AggressiveCommute = true;
899 // If it's profitable to commute, try to do so.
900 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
901 ++NumCommuted;
902 if (AggressiveCommute)
903 ++NumAggrCommuted;
904 return false;
907 if (TargetRegisterInfo::isVirtualRegister(regA))
908 ScanUses(regA, &*mbbi, Processed);
910 if (TID.isConvertibleTo3Addr()) {
911 // This instruction is potentially convertible to a true
912 // three-address instruction. Check if it is profitable.
913 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
914 // Try to convert it.
915 if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
916 ++NumConvertedTo3Addr;
917 return true; // Done with this instruction.
922 // If this is an instruction with a load folded into it, try unfolding
923 // the load, e.g. avoid this:
924 // movq %rdx, %rcx
925 // addq (%rax), %rcx
926 // in favor of this:
927 // movq (%rax), %rcx
928 // addq %rdx, %rcx
929 // because it's preferable to schedule a load than a register copy.
930 if (TID.mayLoad() && !regBKilled) {
931 // Determine if a load can be unfolded.
932 unsigned LoadRegIndex;
933 unsigned NewOpc =
934 TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
935 /*UnfoldLoad=*/true,
936 /*UnfoldStore=*/false,
937 &LoadRegIndex);
938 if (NewOpc != 0) {
939 const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
940 if (UnfoldTID.getNumDefs() == 1) {
941 MachineFunction &MF = *mbbi->getParent();
943 // Unfold the load.
944 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi);
945 const TargetRegisterClass *RC =
946 UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
947 unsigned Reg = MRI->createVirtualRegister(RC);
948 SmallVector<MachineInstr *, 2> NewMIs;
949 if (!TII->unfoldMemoryOperand(MF, mi, Reg,
950 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
951 NewMIs)) {
952 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
953 return false;
955 assert(NewMIs.size() == 2 &&
956 "Unfolded a load into multiple instructions!");
957 // The load was previously folded, so this is the only use.
958 NewMIs[1]->addRegisterKilled(Reg, TRI);
960 // Tentatively insert the instructions into the block so that they
961 // look "normal" to the transformation logic.
962 mbbi->insert(mi, NewMIs[0]);
963 mbbi->insert(mi, NewMIs[1]);
965 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
966 << "2addr: NEW INST: " << *NewMIs[1]);
968 // Transform the instruction, now that it no longer has a load.
969 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
970 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
971 MachineBasicBlock::iterator NewMI = NewMIs[1];
972 bool TransformSuccess =
973 TryInstructionTransform(NewMI, mi, mbbi,
974 NewSrcIdx, NewDstIdx, Dist, Processed);
975 if (TransformSuccess ||
976 NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
977 // Success, or at least we made an improvement. Keep the unfolded
978 // instructions and discard the original.
979 if (LV) {
980 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
981 MachineOperand &MO = mi->getOperand(i);
982 if (MO.isReg() &&
983 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
984 if (MO.isUse()) {
985 if (MO.isKill()) {
986 if (NewMIs[0]->killsRegister(MO.getReg()))
987 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
988 else {
989 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
990 "Kill missing after load unfold!");
991 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
994 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
995 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
996 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
997 else {
998 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
999 "Dead flag missing after load unfold!");
1000 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1005 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1007 mi->eraseFromParent();
1008 mi = NewMIs[1];
1009 if (TransformSuccess)
1010 return true;
1011 } else {
1012 // Transforming didn't eliminate the tie and didn't lead to an
1013 // improvement. Clean up the unfolded instructions and keep the
1014 // original.
1015 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1016 NewMIs[0]->eraseFromParent();
1017 NewMIs[1]->eraseFromParent();
1023 return false;
1026 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1028 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1029 DEBUG(dbgs() << "Machine Function\n");
1030 const TargetMachine &TM = MF.getTarget();
1031 MRI = &MF.getRegInfo();
1032 TII = TM.getInstrInfo();
1033 TRI = TM.getRegisterInfo();
1034 LV = getAnalysisIfAvailable<LiveVariables>();
1035 AA = &getAnalysis<AliasAnalysis>();
1037 bool MadeChange = false;
1039 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1040 DEBUG(dbgs() << "********** Function: "
1041 << MF.getFunction()->getName() << '\n');
1043 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1044 BitVector ReMatRegs(MRI->getNumVirtRegs());
1046 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1047 TiedOperandMap;
1048 TiedOperandMap TiedOperands(4);
1050 SmallPtrSet<MachineInstr*, 8> Processed;
1051 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1052 mbbi != mbbe; ++mbbi) {
1053 unsigned Dist = 0;
1054 DistanceMap.clear();
1055 SrcRegMap.clear();
1056 DstRegMap.clear();
1057 Processed.clear();
1058 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1059 mi != me; ) {
1060 MachineBasicBlock::iterator nmi = llvm::next(mi);
1061 if (mi->isDebugValue()) {
1062 mi = nmi;
1063 continue;
1066 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1067 if (mi->isRegSequence())
1068 RegSequences.push_back(&*mi);
1070 const TargetInstrDesc &TID = mi->getDesc();
1071 bool FirstTied = true;
1073 DistanceMap.insert(std::make_pair(mi, ++Dist));
1075 ProcessCopy(&*mi, &*mbbi, Processed);
1077 // First scan through all the tied register uses in this instruction
1078 // and record a list of pairs of tied operands for each register.
1079 unsigned NumOps = mi->isInlineAsm()
1080 ? mi->getNumOperands() : TID.getNumOperands();
1081 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1082 unsigned DstIdx = 0;
1083 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1084 continue;
1086 if (FirstTied) {
1087 FirstTied = false;
1088 ++NumTwoAddressInstrs;
1089 DEBUG(dbgs() << '\t' << *mi);
1092 assert(mi->getOperand(SrcIdx).isReg() &&
1093 mi->getOperand(SrcIdx).getReg() &&
1094 mi->getOperand(SrcIdx).isUse() &&
1095 "two address instruction invalid");
1097 unsigned regB = mi->getOperand(SrcIdx).getReg();
1098 TiedOperandMap::iterator OI = TiedOperands.find(regB);
1099 if (OI == TiedOperands.end()) {
1100 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1101 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1103 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1106 // Now iterate over the information collected above.
1107 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1108 OE = TiedOperands.end(); OI != OE; ++OI) {
1109 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1111 // If the instruction has a single pair of tied operands, try some
1112 // transformations that may either eliminate the tied operands or
1113 // improve the opportunities for coalescing away the register copy.
1114 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1115 unsigned SrcIdx = TiedPairs[0].first;
1116 unsigned DstIdx = TiedPairs[0].second;
1118 // If the registers are already equal, nothing needs to be done.
1119 if (mi->getOperand(SrcIdx).getReg() ==
1120 mi->getOperand(DstIdx).getReg())
1121 break; // Done with this instruction.
1123 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1124 Processed))
1125 break; // The tied operands have been eliminated.
1128 bool RemovedKillFlag = false;
1129 bool AllUsesCopied = true;
1130 unsigned LastCopiedReg = 0;
1131 unsigned regB = OI->first;
1132 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1133 unsigned SrcIdx = TiedPairs[tpi].first;
1134 unsigned DstIdx = TiedPairs[tpi].second;
1135 unsigned regA = mi->getOperand(DstIdx).getReg();
1136 // Grab regB from the instruction because it may have changed if the
1137 // instruction was commuted.
1138 regB = mi->getOperand(SrcIdx).getReg();
1140 if (regA == regB) {
1141 // The register is tied to multiple destinations (or else we would
1142 // not have continued this far), but this use of the register
1143 // already matches the tied destination. Leave it.
1144 AllUsesCopied = false;
1145 continue;
1147 LastCopiedReg = regA;
1149 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1150 "cannot make instruction into two-address form");
1152 #ifndef NDEBUG
1153 // First, verify that we don't have a use of "a" in the instruction
1154 // (a = b + a for example) because our transformation will not
1155 // work. This should never occur because we are in SSA form.
1156 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1157 assert(i == DstIdx ||
1158 !mi->getOperand(i).isReg() ||
1159 mi->getOperand(i).getReg() != regA);
1160 #endif
1162 // Emit a copy or rematerialize the definition.
1163 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1164 MachineInstr *DefMI = MRI->getVRegDef(regB);
1165 // If it's safe and profitable, remat the definition instead of
1166 // copying it.
1167 if (DefMI &&
1168 DefMI->getDesc().isAsCheapAsAMove() &&
1169 DefMI->isSafeToReMat(TII, AA, regB) &&
1170 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1171 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1172 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1173 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1174 ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1175 ++NumReMats;
1176 } else {
1177 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1178 regA).addReg(regB);
1181 MachineBasicBlock::iterator prevMI = prior(mi);
1182 // Update DistanceMap.
1183 DistanceMap.insert(std::make_pair(prevMI, Dist));
1184 DistanceMap[mi] = ++Dist;
1186 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1188 MachineOperand &MO = mi->getOperand(SrcIdx);
1189 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1190 "inconsistent operand info for 2-reg pass");
1191 if (MO.isKill()) {
1192 MO.setIsKill(false);
1193 RemovedKillFlag = true;
1195 MO.setReg(regA);
1198 if (AllUsesCopied) {
1199 // Replace other (un-tied) uses of regB with LastCopiedReg.
1200 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1201 MachineOperand &MO = mi->getOperand(i);
1202 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1203 if (MO.isKill()) {
1204 MO.setIsKill(false);
1205 RemovedKillFlag = true;
1207 MO.setReg(LastCopiedReg);
1211 // Update live variables for regB.
1212 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1213 LV->addVirtualRegisterKilled(regB, prior(mi));
1215 } else if (RemovedKillFlag) {
1216 // Some tied uses of regB matched their destination registers, so
1217 // regB is still used in this instruction, but a kill flag was
1218 // removed from a different tied use of regB, so now we need to add
1219 // a kill flag to one of the remaining uses of regB.
1220 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1221 MachineOperand &MO = mi->getOperand(i);
1222 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1223 MO.setIsKill(true);
1224 break;
1229 // Schedule the source copy / remat inserted to form two-address
1230 // instruction. FIXME: Does it matter the distance map may not be
1231 // accurate after it's scheduled?
1232 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1234 MadeChange = true;
1236 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1239 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1240 if (mi->isInsertSubreg()) {
1241 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1242 // To %reg:subidx = COPY %subreg
1243 unsigned SubIdx = mi->getOperand(3).getImm();
1244 mi->RemoveOperand(3);
1245 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1246 mi->getOperand(0).setSubReg(SubIdx);
1247 mi->RemoveOperand(1);
1248 mi->setDesc(TII->get(TargetOpcode::COPY));
1249 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1252 // Clear TiedOperands here instead of at the top of the loop
1253 // since most instructions do not have tied operands.
1254 TiedOperands.clear();
1255 mi = nmi;
1259 // Some remat'ed instructions are dead.
1260 for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1261 unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1262 if (MRI->use_nodbg_empty(VReg)) {
1263 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1264 DefMI->eraseFromParent();
1268 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1269 // SSA form. It's now safe to de-SSA.
1270 MadeChange |= EliminateRegSequences();
1272 return MadeChange;
1275 static void UpdateRegSequenceSrcs(unsigned SrcReg,
1276 unsigned DstReg, unsigned SubIdx,
1277 MachineRegisterInfo *MRI,
1278 const TargetRegisterInfo &TRI) {
1279 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1280 RE = MRI->reg_end(); RI != RE; ) {
1281 MachineOperand &MO = RI.getOperand();
1282 ++RI;
1283 MO.substVirtReg(DstReg, SubIdx, TRI);
1287 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1288 /// EXTRACT_SUBREG from the same register and to the same virtual register
1289 /// with different sub-register indices, attempt to combine the
1290 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1291 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1292 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1293 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1294 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1295 /// reg1026 to reg1029.
1296 void
1297 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1298 unsigned DstReg) {
1299 SmallSet<unsigned, 4> Seen;
1300 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1301 unsigned SrcReg = Srcs[i];
1302 if (!Seen.insert(SrcReg))
1303 continue;
1305 // Check that the instructions are all in the same basic block.
1306 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1307 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1308 if (SrcDefMI->getParent() != DstDefMI->getParent())
1309 continue;
1311 // If there are no other uses than copies which feed into
1312 // the reg_sequence, then we might be able to coalesce them.
1313 bool CanCoalesce = true;
1314 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1315 for (MachineRegisterInfo::use_nodbg_iterator
1316 UI = MRI->use_nodbg_begin(SrcReg),
1317 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1318 MachineInstr *UseMI = &*UI;
1319 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1320 CanCoalesce = false;
1321 break;
1323 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1324 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1327 if (!CanCoalesce || SrcSubIndices.size() < 2)
1328 continue;
1330 // Check that the source subregisters can be combined.
1331 std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1332 unsigned NewSrcSubIdx = 0;
1333 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1334 NewSrcSubIdx))
1335 continue;
1337 // Check that the destination subregisters can also be combined.
1338 std::sort(DstSubIndices.begin(), DstSubIndices.end());
1339 unsigned NewDstSubIdx = 0;
1340 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1341 NewDstSubIdx))
1342 continue;
1344 // If neither source nor destination can be combined to the full register,
1345 // just give up. This could be improved if it ever matters.
1346 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1347 continue;
1349 // Now that we know that all the uses are extract_subregs and that those
1350 // subregs can somehow be combined, scan all the extract_subregs again to
1351 // make sure the subregs are in the right order and can be composed.
1352 MachineInstr *SomeMI = 0;
1353 CanCoalesce = true;
1354 for (MachineRegisterInfo::use_nodbg_iterator
1355 UI = MRI->use_nodbg_begin(SrcReg),
1356 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1357 MachineInstr *UseMI = &*UI;
1358 assert(UseMI->isCopy());
1359 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1360 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1361 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1362 if ((NewDstSubIdx == 0 &&
1363 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1364 (NewSrcSubIdx == 0 &&
1365 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1366 CanCoalesce = false;
1367 break;
1369 // Keep track of one of the uses.
1370 SomeMI = UseMI;
1372 if (!CanCoalesce)
1373 continue;
1375 // Insert a copy to replace the original.
1376 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1377 SomeMI->getDebugLoc(),
1378 TII->get(TargetOpcode::COPY))
1379 .addReg(DstReg, RegState::Define, NewDstSubIdx)
1380 .addReg(SrcReg, 0, NewSrcSubIdx);
1382 // Remove all the old extract instructions.
1383 for (MachineRegisterInfo::use_nodbg_iterator
1384 UI = MRI->use_nodbg_begin(SrcReg),
1385 UE = MRI->use_nodbg_end(); UI != UE; ) {
1386 MachineInstr *UseMI = &*UI;
1387 ++UI;
1388 if (UseMI == CopyMI)
1389 continue;
1390 assert(UseMI->isCopy());
1391 // Move any kills to the new copy or extract instruction.
1392 if (UseMI->getOperand(1).isKill()) {
1393 CopyMI->getOperand(1).setIsKill();
1394 if (LV)
1395 // Update live variables
1396 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1398 UseMI->eraseFromParent();
1403 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1404 MachineRegisterInfo *MRI) {
1405 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1406 UE = MRI->use_end(); UI != UE; ++UI) {
1407 MachineInstr *UseMI = &*UI;
1408 if (UseMI != RegSeq && UseMI->isRegSequence())
1409 return true;
1411 return false;
1414 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1415 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1416 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1418 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1419 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1420 /// =>
1421 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1422 bool TwoAddressInstructionPass::EliminateRegSequences() {
1423 if (RegSequences.empty())
1424 return false;
1426 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1427 MachineInstr *MI = RegSequences[i];
1428 unsigned DstReg = MI->getOperand(0).getReg();
1429 if (MI->getOperand(0).getSubReg() ||
1430 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1431 !(MI->getNumOperands() & 1)) {
1432 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1433 llvm_unreachable(0);
1436 bool IsImpDef = true;
1437 SmallVector<unsigned, 4> RealSrcs;
1438 SmallSet<unsigned, 4> Seen;
1439 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1440 unsigned SrcReg = MI->getOperand(i).getReg();
1441 unsigned SubIdx = MI->getOperand(i+1).getImm();
1442 if (MI->getOperand(i).getSubReg() ||
1443 TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1444 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1445 llvm_unreachable(0);
1448 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1449 if (DefMI->isImplicitDef()) {
1450 DefMI->eraseFromParent();
1451 continue;
1453 IsImpDef = false;
1455 // Remember COPY sources. These might be candidate for coalescing.
1456 if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1457 RealSrcs.push_back(DefMI->getOperand(1).getReg());
1459 bool isKill = MI->getOperand(i).isKill();
1460 if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1461 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1462 !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1463 MRI->getRegClass(SrcReg), SubIdx)) {
1464 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1465 // Also add an copy if the source is live-in the block. We don't want
1466 // to end up with a partial-redef of a livein, e.g.
1467 // BB0:
1468 // reg1051:10<def> =
1469 // ...
1470 // BB1:
1471 // ... = reg1051:10
1472 // BB2:
1473 // reg1051:9<def> =
1474 // LiveIntervalAnalysis won't like it.
1476 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1477 // correctly up to date becomes very difficult. Insert a copy.
1479 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1480 // might insert a COPY that uses SrcReg after is was killed.
1481 if (isKill)
1482 for (unsigned j = i + 2; j < e; j += 2)
1483 if (MI->getOperand(j).getReg() == SrcReg) {
1484 MI->getOperand(j).setIsKill();
1485 isKill = false;
1486 break;
1489 MachineBasicBlock::iterator InsertLoc = MI;
1490 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1491 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1492 .addReg(DstReg, RegState::Define, SubIdx)
1493 .addReg(SrcReg, getKillRegState(isKill));
1494 MI->getOperand(i).setReg(0);
1495 if (LV && isKill)
1496 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1497 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1501 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1502 unsigned SrcReg = MI->getOperand(i).getReg();
1503 if (!SrcReg) continue;
1504 unsigned SubIdx = MI->getOperand(i+1).getImm();
1505 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1508 if (IsImpDef) {
1509 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1510 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1511 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1512 MI->RemoveOperand(j);
1513 } else {
1514 DEBUG(dbgs() << "Eliminated: " << *MI);
1515 MI->eraseFromParent();
1518 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1519 // INSERT_SUBREG instructions that must have <undef> flags added by
1520 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1521 if (LV)
1522 CoalesceExtSubRegs(RealSrcs, DstReg);
1525 RegSequences.clear();
1526 return true;