1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
33 class MachineFunction
;
34 class MachineRegisterInfo
;
35 class TargetInstrInfo
;
36 class TargetRegisterInfo
;
40 class VirtRegMap
: public MachineFunctionPass
{
44 NO_STACK_SLOT
= (1L << 30)-1,
45 MAX_STACK_SLOT
= (1L << 18)-1
48 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
49 typedef std::multimap
<MachineInstr
*,
50 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
53 MachineRegisterInfo
*MRI
;
54 const TargetInstrInfo
*TII
;
55 const TargetRegisterInfo
*TRI
;
58 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
60 /// Virt2PhysMap - This is a virtual to physical register
61 /// mapping. Each virtual register is required to have an entry in
62 /// it; even spilled virtual registers (the register mapped to a
63 /// spilled register is the temporary used to load it from the
65 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
67 /// Virt2StackSlotMap - This is virtual register to stack slot
68 /// mapping. Each spilled virtual register has an entry in it
69 /// which corresponds to the stack slot this register is spilled
71 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
73 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
74 /// mapping. Each spilled virtual register that should be remat'd has an
75 /// entry in it which corresponds to the remat id.
76 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
78 /// Virt2SplitMap - This is virtual register to splitted virtual register
80 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
82 /// Virt2SplitKillMap - This is splitted virtual register to its last use
83 /// (kill) index mapping.
84 IndexedMap
<SlotIndex
, VirtReg2IndexFunctor
> Virt2SplitKillMap
;
86 /// ReMatMap - This is virtual register to re-materialized instruction
87 /// mapping. Each virtual register whose definition is going to be
88 /// re-materialized has an entry in it.
89 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
91 /// MI2VirtMap - This is MachineInstr to virtual register
92 /// mapping. In the case of memory spill code being folded into
93 /// instructions, we need to know which virtual register was
94 /// read/written by this instruction.
95 MI2VirtMapTy MI2VirtMap
;
97 /// SpillPt2VirtMap - This records the virtual registers which should
98 /// be spilled right after the MachineInstr due to live interval
100 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
103 /// RestorePt2VirtMap - This records the virtual registers which should
104 /// be restored right before the MachineInstr due to live interval
106 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
108 /// EmergencySpillMap - This records the physical registers that should
109 /// be spilled / restored around the MachineInstr since the register
110 /// allocator has run out of registers.
111 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
113 /// EmergencySpillSlots - This records emergency spill slots used to
114 /// spill physical registers when the register allocator runs out of
115 /// registers. Ideally only one stack slot is used per function per
117 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
119 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
120 /// virtual register, an unique id is being assigned. This keeps track of
121 /// the highest id used so far. Note, this starts at (1<<18) to avoid
122 /// conflicts with stack slot numbers.
125 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
126 int LowSpillSlot
, HighSpillSlot
;
128 /// SpillSlotToUsesMap - Records uses for each register spill slot.
129 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
131 /// ImplicitDefed - One bit for each virtual register. If set it indicates
132 /// the register is implicitly defined.
133 BitVector ImplicitDefed
;
135 /// UnusedRegs - A list of physical registers that have not been used.
136 BitVector UnusedRegs
;
138 /// createSpillSlot - Allocate a spill slot for RC from MFI.
139 unsigned createSpillSlot(const TargetRegisterClass
*RC
);
141 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
142 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
146 VirtRegMap() : MachineFunctionPass(ID
), Virt2PhysMap(NO_PHYS_REG
),
147 Virt2StackSlotMap(NO_STACK_SLOT
),
148 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
149 Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL
),
150 ReMatId(MAX_STACK_SLOT
+1),
151 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
152 virtual bool runOnMachineFunction(MachineFunction
&MF
);
154 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
155 AU
.setPreservesAll();
156 MachineFunctionPass::getAnalysisUsage(AU
);
159 MachineFunction
&getMachineFunction() const {
160 assert(MF
&& "getMachineFunction called before runOnMachineFunction");
164 MachineRegisterInfo
&getRegInfo() const { return *MRI
; }
165 const TargetRegisterInfo
&getTargetRegInfo() const { return *TRI
; }
169 /// @brief returns true if the specified virtual register is
170 /// mapped to a physical register
171 bool hasPhys(unsigned virtReg
) const {
172 return getPhys(virtReg
) != NO_PHYS_REG
;
175 /// @brief returns the physical register mapped to the specified
177 unsigned getPhys(unsigned virtReg
) const {
178 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
179 return Virt2PhysMap
[virtReg
];
182 /// @brief creates a mapping for the specified virtual register to
183 /// the specified physical register
184 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
185 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
186 TargetRegisterInfo::isPhysicalRegister(physReg
));
187 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
188 "attempt to assign physical register to already mapped "
190 Virt2PhysMap
[virtReg
] = physReg
;
193 /// @brief clears the specified virtual register's, physical
195 void clearVirt(unsigned virtReg
) {
196 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
197 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
198 "attempt to clear a not assigned virtual register");
199 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
202 /// @brief clears all virtual to physical register mappings
203 void clearAllVirt() {
204 Virt2PhysMap
.clear();
208 /// @brief returns the register allocation preference.
209 unsigned getRegAllocPref(unsigned virtReg
);
211 /// @brief records virtReg is a split live interval from SReg.
212 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
213 Virt2SplitMap
[virtReg
] = SReg
;
216 /// @brief returns the live interval virtReg is split from.
217 unsigned getPreSplitReg(unsigned virtReg
) const {
218 return Virt2SplitMap
[virtReg
];
221 /// getOriginal - Return the original virtual register that VirtReg descends
222 /// from through splitting.
223 /// A register that was not created by splitting is its own original.
224 /// This operation is idempotent.
225 unsigned getOriginal(unsigned VirtReg
) const {
226 unsigned Orig
= getPreSplitReg(VirtReg
);
227 return Orig
? Orig
: VirtReg
;
230 /// @brief returns true if the specified virtual register is not
231 /// mapped to a stack slot or rematerialized.
232 bool isAssignedReg(unsigned virtReg
) const {
233 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
234 getReMatId(virtReg
) == NO_STACK_SLOT
)
236 // Split register can be assigned a physical register as well as a
237 // stack slot or remat id.
238 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
241 /// @brief returns the stack slot mapped to the specified virtual
243 int getStackSlot(unsigned virtReg
) const {
244 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
245 return Virt2StackSlotMap
[virtReg
];
248 /// @brief returns the rematerialization id mapped to the specified virtual
250 int getReMatId(unsigned virtReg
) const {
251 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
252 return Virt2ReMatIdMap
[virtReg
];
255 /// @brief create a mapping for the specifed virtual register to
256 /// the next available stack slot
257 int assignVirt2StackSlot(unsigned virtReg
);
258 /// @brief create a mapping for the specified virtual register to
259 /// the specified stack slot
260 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
262 /// @brief assign an unique re-materialization id to the specified
263 /// virtual register.
264 int assignVirtReMatId(unsigned virtReg
);
265 /// @brief assign an unique re-materialization id to the specified
266 /// virtual register.
267 void assignVirtReMatId(unsigned virtReg
, int id
);
269 /// @brief returns true if the specified virtual register is being
271 bool isReMaterialized(unsigned virtReg
) const {
272 return ReMatMap
[virtReg
] != NULL
;
275 /// @brief returns the original machine instruction being re-issued
276 /// to re-materialize the specified virtual register.
277 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
278 return ReMatMap
[virtReg
];
281 /// @brief records the specified virtual register will be
282 /// re-materialized and the original instruction which will be re-issed
283 /// for this purpose. If parameter all is true, then all uses of the
284 /// registers are rematerialized and it's safe to delete the definition.
285 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
286 ReMatMap
[virtReg
] = def
;
289 /// @brief record the last use (kill) of a split virtual register.
290 void addKillPoint(unsigned virtReg
, SlotIndex index
) {
291 Virt2SplitKillMap
[virtReg
] = index
;
294 SlotIndex
getKillPoint(unsigned virtReg
) const {
295 return Virt2SplitKillMap
[virtReg
];
298 /// @brief remove the last use (kill) of a split virtual register.
299 void removeKillPoint(unsigned virtReg
) {
300 Virt2SplitKillMap
[virtReg
] = SlotIndex();
303 /// @brief returns true if the specified MachineInstr is a spill point.
304 bool isSpillPt(MachineInstr
*Pt
) const {
305 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
308 /// @brief returns the virtual registers that should be spilled due to
309 /// splitting right after the specified MachineInstr.
310 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
311 return SpillPt2VirtMap
[Pt
];
314 /// @brief records the specified MachineInstr as a spill point for virtReg.
315 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
316 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
317 I
= SpillPt2VirtMap
.find(Pt
);
318 if (I
!= SpillPt2VirtMap
.end())
319 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
321 std::vector
<std::pair
<unsigned,bool> > Virts
;
322 Virts
.push_back(std::make_pair(virtReg
, isKill
));
323 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
327 /// @brief - transfer spill point information from one instruction to
329 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
330 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
331 I
= SpillPt2VirtMap
.find(Old
);
332 if (I
== SpillPt2VirtMap
.end())
334 while (!I
->second
.empty()) {
335 unsigned virtReg
= I
->second
.back().first
;
336 bool isKill
= I
->second
.back().second
;
337 I
->second
.pop_back();
338 addSpillPoint(virtReg
, isKill
, New
);
340 SpillPt2VirtMap
.erase(I
);
343 /// @brief returns true if the specified MachineInstr is a restore point.
344 bool isRestorePt(MachineInstr
*Pt
) const {
345 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
348 /// @brief returns the virtual registers that should be restoreed due to
349 /// splitting right after the specified MachineInstr.
350 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
351 return RestorePt2VirtMap
[Pt
];
354 /// @brief records the specified MachineInstr as a restore point for virtReg.
355 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
356 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
357 RestorePt2VirtMap
.find(Pt
);
358 if (I
!= RestorePt2VirtMap
.end())
359 I
->second
.push_back(virtReg
);
361 std::vector
<unsigned> Virts
;
362 Virts
.push_back(virtReg
);
363 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
367 /// @brief - transfer restore point information from one instruction to
369 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
370 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
371 RestorePt2VirtMap
.find(Old
);
372 if (I
== RestorePt2VirtMap
.end())
374 while (!I
->second
.empty()) {
375 unsigned virtReg
= I
->second
.back();
376 I
->second
.pop_back();
377 addRestorePoint(virtReg
, New
);
379 RestorePt2VirtMap
.erase(I
);
382 /// @brief records that the specified physical register must be spilled
383 /// around the specified machine instr.
384 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
385 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
386 EmergencySpillMap
[MI
].push_back(PhysReg
);
388 std::vector
<unsigned> PhysRegs
;
389 PhysRegs
.push_back(PhysReg
);
390 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
394 /// @brief returns true if one or more physical registers must be spilled
395 /// around the specified instruction.
396 bool hasEmergencySpills(MachineInstr
*MI
) const {
397 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
400 /// @brief returns the physical registers to be spilled and restored around
402 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
403 return EmergencySpillMap
[MI
];
406 /// @brief - transfer emergency spill information from one instruction to
408 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
409 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
410 EmergencySpillMap
.find(Old
);
411 if (I
== EmergencySpillMap
.end())
413 while (!I
->second
.empty()) {
414 unsigned virtReg
= I
->second
.back();
415 I
->second
.pop_back();
416 addEmergencySpill(virtReg
, New
);
418 EmergencySpillMap
.erase(I
);
421 /// @brief return or get a emergency spill slot for the register class.
422 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
424 /// @brief Return lowest spill slot index.
425 int getLowSpillSlot() const {
429 /// @brief Return highest spill slot index.
430 int getHighSpillSlot() const {
431 return HighSpillSlot
;
434 /// @brief Records a spill slot use.
435 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
437 /// @brief Returns true if spill slot has been used.
438 bool isSpillSlotUsed(int FrameIndex
) const {
439 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
440 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
443 /// @brief Mark the specified register as being implicitly defined.
444 void setIsImplicitlyDefined(unsigned VirtReg
) {
445 ImplicitDefed
.set(TargetRegisterInfo::virtReg2Index(VirtReg
));
448 /// @brief Returns true if the virtual register is implicitly defined.
449 bool isImplicitlyDefined(unsigned VirtReg
) const {
450 return ImplicitDefed
[TargetRegisterInfo::virtReg2Index(VirtReg
)];
453 /// @brief Updates information about the specified virtual register's value
454 /// folded into newMI machine instruction.
455 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
458 /// @brief Updates information about the specified virtual register's value
459 /// folded into the specified machine instruction.
460 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
462 /// @brief returns the virtual registers' values folded in memory
463 /// operands of this instruction
464 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
465 getFoldedVirts(MachineInstr
* MI
) const {
466 return MI2VirtMap
.equal_range(MI
);
469 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
470 /// the folded instruction map and spill point map.
471 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
473 /// FindUnusedRegisters - Gather a list of allocatable registers that
474 /// have not been allocated to any virtual register.
475 bool FindUnusedRegisters(LiveIntervals
* LIs
);
477 /// HasUnusedRegisters - Return true if there are any allocatable registers
478 /// that have not been allocated to any virtual register.
479 bool HasUnusedRegisters() const {
480 return !UnusedRegs
.none();
483 /// setRegisterUsed - Remember the physical register is now used.
484 void setRegisterUsed(unsigned Reg
) {
485 UnusedRegs
.reset(Reg
);
488 /// isRegisterUnused - Return true if the physical register has not been
490 bool isRegisterUnused(unsigned Reg
) const {
491 return UnusedRegs
[Reg
];
494 /// getFirstUnusedRegister - Return the first physical register that has not
496 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
497 int Reg
= UnusedRegs
.find_first();
499 if (allocatableRCRegs
[RC
][Reg
])
500 return (unsigned)Reg
;
501 Reg
= UnusedRegs
.find_next(Reg
);
506 /// rewrite - Rewrite all instructions in MF to use only physical registers
507 /// by mapping all virtual register operands to their assigned physical
510 /// @param Indexes Optionally remove deleted instructions from indexes.
511 void rewrite(SlotIndexes
*Indexes
);
513 void print(raw_ostream
&OS
, const Module
* M
= 0) const;
517 inline raw_ostream
&operator<<(raw_ostream
&OS
, const VirtRegMap
&VRM
) {
521 } // End llvm namespace