1 //===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the auto-upgrade helper functions
12 //===----------------------------------------------------------------------===//
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Module.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/IRBuilder.h"
28 static bool UpgradeIntrinsicFunction1(Function
*F
, Function
*&NewFn
) {
29 assert(F
&& "Illegal to upgrade a non-existent Function.");
31 // Get the Function's name.
32 const std::string
& Name
= F
->getName();
35 const FunctionType
*FTy
= F
->getFunctionType();
37 // Quickly eliminate it, if it's not a candidate.
38 if (Name
.length() <= 8 || Name
[0] != 'l' || Name
[1] != 'l' ||
39 Name
[2] != 'v' || Name
[3] != 'm' || Name
[4] != '.')
42 Module
*M
= F
->getParent();
46 // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss,
47 // and atomics with default address spaces to their new names to their new
48 // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32)
49 if (Name
.compare(5,7,"atomic.",7) == 0) {
50 if (Name
.compare(12,3,"lcs",3) == 0) {
51 std::string::size_type delim
= Name
.find('.',12);
52 F
->setName("llvm.atomic.cmp.swap" + Name
.substr(delim
) +
53 ".p0" + Name
.substr(delim
+1));
57 else if (Name
.compare(12,3,"las",3) == 0) {
58 std::string::size_type delim
= Name
.find('.',12);
59 F
->setName("llvm.atomic.load.add"+Name
.substr(delim
)
60 + ".p0" + Name
.substr(delim
+1));
64 else if (Name
.compare(12,3,"lss",3) == 0) {
65 std::string::size_type delim
= Name
.find('.',12);
66 F
->setName("llvm.atomic.load.sub"+Name
.substr(delim
)
67 + ".p0" + Name
.substr(delim
+1));
71 else if (Name
.rfind(".p") == std::string::npos
) {
72 // We don't have an address space qualifier so this has be upgraded
73 // to the new name. Copy the type name at the end of the intrinsic
75 std::string::size_type delim
= Name
.find_last_of('.');
76 assert(delim
!= std::string::npos
&& "can not find type");
77 F
->setName(Name
+ ".p0" + Name
.substr(delim
+1));
81 } else if (Name
.compare(5, 9, "arm.neon.", 9) == 0) {
82 if (((Name
.compare(14, 5, "vmovl", 5) == 0 ||
83 Name
.compare(14, 5, "vaddl", 5) == 0 ||
84 Name
.compare(14, 5, "vsubl", 5) == 0 ||
85 Name
.compare(14, 5, "vaddw", 5) == 0 ||
86 Name
.compare(14, 5, "vsubw", 5) == 0 ||
87 Name
.compare(14, 5, "vmlal", 5) == 0 ||
88 Name
.compare(14, 5, "vmlsl", 5) == 0 ||
89 Name
.compare(14, 5, "vabdl", 5) == 0 ||
90 Name
.compare(14, 5, "vabal", 5) == 0) &&
91 (Name
.compare(19, 2, "s.", 2) == 0 ||
92 Name
.compare(19, 2, "u.", 2) == 0)) ||
94 (Name
.compare(14, 4, "vaba", 4) == 0 &&
95 (Name
.compare(18, 2, "s.", 2) == 0 ||
96 Name
.compare(18, 2, "u.", 2) == 0)) ||
98 (Name
.compare(14, 6, "vmovn.", 6) == 0)) {
100 // Calls to these are transformed into IR without intrinsics.
104 // Old versions of NEON ld/st intrinsics are missing alignment arguments.
105 bool isVLd
= (Name
.compare(14, 3, "vld", 3) == 0);
106 bool isVSt
= (Name
.compare(14, 3, "vst", 3) == 0);
107 if (isVLd
|| isVSt
) {
108 unsigned NumVecs
= Name
.at(17) - '0';
109 if (NumVecs
== 0 || NumVecs
> 4)
111 bool isLaneOp
= (Name
.compare(18, 5, "lane.", 5) == 0);
112 if (!isLaneOp
&& Name
.at(18) != '.')
114 unsigned ExpectedArgs
= 2; // for the address and alignment
115 if (isVSt
|| isLaneOp
)
116 ExpectedArgs
+= NumVecs
;
118 ExpectedArgs
+= 1; // for the lane number
119 unsigned NumP
= FTy
->getNumParams();
120 if (NumP
!= ExpectedArgs
- 1)
123 // Change the name of the old (bad) intrinsic, because
124 // its type is incorrect, but we cannot overload that name.
127 // One argument is missing: add the alignment argument.
128 std::vector
<const Type
*> NewParams
;
129 for (unsigned p
= 0; p
< NumP
; ++p
)
130 NewParams
.push_back(FTy
->getParamType(p
));
131 NewParams
.push_back(Type::getInt32Ty(F
->getContext()));
132 FunctionType
*NewFTy
= FunctionType::get(FTy
->getReturnType(),
134 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
, NewFTy
));
140 // This upgrades the name of the llvm.bswap intrinsic function to only use
141 // a single type name for overloading. We only care about the old format
142 // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being
143 // a '.' after 'bswap.'
144 if (Name
.compare(5,6,"bswap.",6) == 0) {
145 std::string::size_type delim
= Name
.find('.',11);
147 if (delim
!= std::string::npos
) {
148 // Construct the new name as 'llvm.bswap' + '.i*'
149 F
->setName(Name
.substr(0,10)+Name
.substr(delim
));
157 // We only want to fix the 'llvm.ct*' intrinsics which do not have the
158 // correct return type, so we check for the name, and then check if the
159 // return type does not match the parameter type.
160 if ( (Name
.compare(5,5,"ctpop",5) == 0 ||
161 Name
.compare(5,4,"ctlz",4) == 0 ||
162 Name
.compare(5,4,"cttz",4) == 0) &&
163 FTy
->getReturnType() != FTy
->getParamType(0)) {
164 // We first need to change the name of the old (bad) intrinsic, because
165 // its type is incorrect, but we cannot overload that name. We
166 // arbitrarily unique it here allowing us to construct a correctly named
167 // and typed function below.
170 // Now construct the new intrinsic with the correct name and type. We
171 // leave the old function around in order to query its type, whatever it
172 // may be, and correctly convert up to the new type.
173 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
174 FTy
->getParamType(0),
175 FTy
->getParamType(0),
182 // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector.
183 if (Name
.compare("llvm.eh.selector.i32") == 0) {
184 F
->setName("llvm.eh.selector");
188 // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for.
189 if (Name
.compare("llvm.eh.typeid.for.i32") == 0) {
190 F
->setName("llvm.eh.typeid.for");
194 // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector.
195 if (Name
.compare("llvm.eh.selector.i64") == 0) {
196 NewFn
= Intrinsic::getDeclaration(M
, Intrinsic::eh_selector
);
199 // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for.
200 if (Name
.compare("llvm.eh.typeid.for.i64") == 0) {
201 NewFn
= Intrinsic::getDeclaration(M
, Intrinsic::eh_typeid_for
);
207 // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the
208 // new format that allows overloading the pointer for different address
209 // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16)
210 const char* NewFnName
= NULL
;
211 if (Name
.compare(5,8,"memcpy.i",8) == 0) {
213 NewFnName
= "llvm.memcpy.p0i8.p0i8.i8";
214 else if (Name
.compare(13,2,"16") == 0)
215 NewFnName
= "llvm.memcpy.p0i8.p0i8.i16";
216 else if (Name
.compare(13,2,"32") == 0)
217 NewFnName
= "llvm.memcpy.p0i8.p0i8.i32";
218 else if (Name
.compare(13,2,"64") == 0)
219 NewFnName
= "llvm.memcpy.p0i8.p0i8.i64";
220 } else if (Name
.compare(5,9,"memmove.i",9) == 0) {
222 NewFnName
= "llvm.memmove.p0i8.p0i8.i8";
223 else if (Name
.compare(14,2,"16") == 0)
224 NewFnName
= "llvm.memmove.p0i8.p0i8.i16";
225 else if (Name
.compare(14,2,"32") == 0)
226 NewFnName
= "llvm.memmove.p0i8.p0i8.i32";
227 else if (Name
.compare(14,2,"64") == 0)
228 NewFnName
= "llvm.memmove.p0i8.p0i8.i64";
230 else if (Name
.compare(5,8,"memset.i",8) == 0) {
232 NewFnName
= "llvm.memset.p0i8.i8";
233 else if (Name
.compare(13,2,"16") == 0)
234 NewFnName
= "llvm.memset.p0i8.i16";
235 else if (Name
.compare(13,2,"32") == 0)
236 NewFnName
= "llvm.memset.p0i8.i32";
237 else if (Name
.compare(13,2,"64") == 0)
238 NewFnName
= "llvm.memset.p0i8.i64";
241 NewFn
= cast
<Function
>(M
->getOrInsertFunction(NewFnName
,
242 FTy
->getReturnType(),
243 FTy
->getParamType(0),
244 FTy
->getParamType(1),
245 FTy
->getParamType(2),
246 FTy
->getParamType(3),
247 Type::getInt1Ty(F
->getContext()),
254 // This upgrades the llvm.part.select overloaded intrinsic names to only
255 // use one type specifier in the name. We only care about the old format
256 // 'llvm.part.select.i*.i*', and solve as above with bswap.
257 if (Name
.compare(5,12,"part.select.",12) == 0) {
258 std::string::size_type delim
= Name
.find('.',17);
260 if (delim
!= std::string::npos
) {
261 // Construct a new name as 'llvm.part.select' + '.i*'
262 F
->setName(Name
.substr(0,16)+Name
.substr(delim
));
269 // This upgrades the llvm.part.set intrinsics similarly as above, however
270 // we care about 'llvm.part.set.i*.i*.i*', but only the first two types
271 // must match. There is an additional type specifier after these two
272 // matching types that we must retain when upgrading. Thus, we require
273 // finding 2 periods, not just one, after the intrinsic name.
274 if (Name
.compare(5,9,"part.set.",9) == 0) {
275 std::string::size_type delim
= Name
.find('.',14);
277 if (delim
!= std::string::npos
&&
278 Name
.find('.',delim
+1) != std::string::npos
) {
279 // Construct a new name as 'llvm.part.select' + '.i*.i*'
280 F
->setName(Name
.substr(0,13)+Name
.substr(delim
));
289 // This fixes all MMX shift intrinsic instructions to take a
290 // x86_mmx instead of a v1i64, v2i32, v4i16, or v8i8.
291 if (Name
.compare(5, 8, "x86.mmx.", 8) == 0) {
292 const Type
*X86_MMXTy
= VectorType::getX86_MMXTy(FTy
->getContext());
294 if (Name
.compare(13, 4, "padd", 4) == 0 ||
295 Name
.compare(13, 4, "psub", 4) == 0 ||
296 Name
.compare(13, 4, "pmul", 4) == 0 ||
297 Name
.compare(13, 5, "pmadd", 5) == 0 ||
298 Name
.compare(13, 4, "pand", 4) == 0 ||
299 Name
.compare(13, 3, "por", 3) == 0 ||
300 Name
.compare(13, 4, "pxor", 4) == 0 ||
301 Name
.compare(13, 4, "pavg", 4) == 0 ||
302 Name
.compare(13, 4, "pmax", 4) == 0 ||
303 Name
.compare(13, 4, "pmin", 4) == 0 ||
304 Name
.compare(13, 4, "psad", 4) == 0 ||
305 Name
.compare(13, 4, "psll", 4) == 0 ||
306 Name
.compare(13, 4, "psrl", 4) == 0 ||
307 Name
.compare(13, 4, "psra", 4) == 0 ||
308 Name
.compare(13, 4, "pack", 4) == 0 ||
309 Name
.compare(13, 6, "punpck", 6) == 0 ||
310 Name
.compare(13, 4, "pcmp", 4) == 0) {
311 assert(FTy
->getNumParams() == 2 && "MMX intrinsic takes 2 args!");
312 const Type
*SecondParamTy
= X86_MMXTy
;
314 if (Name
.compare(13, 5, "pslli", 5) == 0 ||
315 Name
.compare(13, 5, "psrli", 5) == 0 ||
316 Name
.compare(13, 5, "psrai", 5) == 0)
317 SecondParamTy
= FTy
->getParamType(1);
319 // Don't do anything if it has the correct types.
320 if (FTy
->getReturnType() == X86_MMXTy
&&
321 FTy
->getParamType(0) == X86_MMXTy
&&
322 FTy
->getParamType(1) == SecondParamTy
)
325 // We first need to change the name of the old (bad) intrinsic, because
326 // its type is incorrect, but we cannot overload that name. We
327 // arbitrarily unique it here allowing us to construct a correctly named
328 // and typed function below.
331 // Now construct the new intrinsic with the correct name and type. We
332 // leave the old function around in order to query its type, whatever it
333 // may be, and correctly convert up to the new type.
334 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
335 X86_MMXTy
, X86_MMXTy
,
336 SecondParamTy
, (Type
*)0));
340 if (Name
.compare(13, 8, "maskmovq", 8) == 0) {
341 // Don't do anything if it has the correct types.
342 if (FTy
->getParamType(0) == X86_MMXTy
&&
343 FTy
->getParamType(1) == X86_MMXTy
)
347 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
348 FTy
->getReturnType(),
351 FTy
->getParamType(2),
356 if (Name
.compare(13, 8, "pmovmskb", 8) == 0) {
357 if (FTy
->getParamType(0) == X86_MMXTy
)
361 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
362 FTy
->getReturnType(),
368 if (Name
.compare(13, 5, "movnt", 5) == 0) {
369 if (FTy
->getParamType(1) == X86_MMXTy
)
373 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
374 FTy
->getReturnType(),
375 FTy
->getParamType(0),
381 if (Name
.compare(13, 7, "palignr", 7) == 0) {
382 if (FTy
->getReturnType() == X86_MMXTy
&&
383 FTy
->getParamType(0) == X86_MMXTy
&&
384 FTy
->getParamType(1) == X86_MMXTy
)
388 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
392 FTy
->getParamType(2),
397 if (Name
.compare(13, 5, "pextr", 5) == 0) {
398 if (FTy
->getParamType(0) == X86_MMXTy
)
402 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
403 FTy
->getReturnType(),
405 FTy
->getParamType(1),
410 if (Name
.compare(13, 5, "pinsr", 5) == 0) {
411 if (FTy
->getReturnType() == X86_MMXTy
&&
412 FTy
->getParamType(0) == X86_MMXTy
)
416 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
419 FTy
->getParamType(1),
420 FTy
->getParamType(2),
425 if (Name
.compare(13, 12, "cvtsi32.si64", 12) == 0) {
426 if (FTy
->getReturnType() == X86_MMXTy
)
430 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
432 FTy
->getParamType(0),
437 if (Name
.compare(13, 12, "cvtsi64.si32", 12) == 0) {
438 if (FTy
->getParamType(0) == X86_MMXTy
)
442 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
443 FTy
->getReturnType(),
449 if (Name
.compare(13, 8, "vec.init", 8) == 0) {
450 if (FTy
->getReturnType() == X86_MMXTy
)
455 if (Name
.compare(21, 2, ".b", 2) == 0)
456 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
458 FTy
->getParamType(0),
459 FTy
->getParamType(1),
460 FTy
->getParamType(2),
461 FTy
->getParamType(3),
462 FTy
->getParamType(4),
463 FTy
->getParamType(5),
464 FTy
->getParamType(6),
465 FTy
->getParamType(7),
467 else if (Name
.compare(21, 2, ".w", 2) == 0)
468 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
470 FTy
->getParamType(0),
471 FTy
->getParamType(1),
472 FTy
->getParamType(2),
473 FTy
->getParamType(3),
475 else if (Name
.compare(21, 2, ".d", 2) == 0)
476 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
478 FTy
->getParamType(0),
479 FTy
->getParamType(1),
485 if (Name
.compare(13, 9, "vec.ext.d", 9) == 0) {
486 if (FTy
->getReturnType() == X86_MMXTy
&&
487 FTy
->getParamType(0) == X86_MMXTy
)
491 NewFn
= cast
<Function
>(M
->getOrInsertFunction(Name
,
494 FTy
->getParamType(1),
499 if (Name
.compare(13, 9, "emms", 4) == 0 ||
500 Name
.compare(13, 9, "femms", 5) == 0) {
505 // We really shouldn't get here ever.
506 assert(0 && "Invalid MMX intrinsic!");
508 } else if (Name
.compare(5,17,"x86.sse2.loadh.pd",17) == 0 ||
509 Name
.compare(5,17,"x86.sse2.loadl.pd",17) == 0 ||
510 Name
.compare(5,16,"x86.sse2.movl.dq",16) == 0 ||
511 Name
.compare(5,15,"x86.sse2.movs.d",15) == 0 ||
512 Name
.compare(5,16,"x86.sse2.shuf.pd",16) == 0 ||
513 Name
.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 ||
514 Name
.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 ||
515 Name
.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 ||
516 Name
.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) {
517 // Calls to these intrinsics are transformed into ShuffleVector's.
520 } else if (Name
.compare(5, 16, "x86.sse41.pmulld", 16) == 0) {
521 // Calls to these intrinsics are transformed into vector multiplies.
524 } else if (Name
.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 ||
525 Name
.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) {
526 // Calls to these intrinsics are transformed into vector shuffles, shifts,
530 } else if (Name
.compare(5, 16, "x86.sse.loadu.ps", 16) == 0 ||
531 Name
.compare(5, 17, "x86.sse2.loadu.dq", 17) == 0 ||
532 Name
.compare(5, 17, "x86.sse2.loadu.pd", 17) == 0) {
533 // Calls to these instructions are transformed into unaligned loads.
536 } else if (Name
.compare(5, 17, "x86.ssse3.pshuf.w", 17) == 0) {
537 // This is an SSE/MMX instruction.
538 const Type
*X86_MMXTy
= VectorType::getX86_MMXTy(FTy
->getContext());
540 cast
<Function
>(M
->getOrInsertFunction("llvm.x86.sse.pshuf.w",
543 Type::getInt8Ty(F
->getContext()),
551 // This may not belong here. This function is effectively being overloaded
552 // to both detect an intrinsic which needs upgrading, and to provide the
553 // upgraded form of the intrinsic. We should perhaps have two separate
554 // functions for this.
558 bool llvm::UpgradeIntrinsicFunction(Function
*F
, Function
*&NewFn
) {
560 bool Upgraded
= UpgradeIntrinsicFunction1(F
, NewFn
);
562 // Upgrade intrinsic attributes. This does not change the function.
565 if (unsigned id
= F
->getIntrinsicID())
566 F
->setAttributes(Intrinsic::getAttributes((Intrinsic::ID
)id
));
570 bool llvm::UpgradeGlobalVariable(GlobalVariable
*GV
) {
571 StringRef
Name(GV
->getName());
573 // We are only upgrading one symbol here.
574 if (Name
== ".llvm.eh.catch.all.value") {
575 GV
->setName("llvm.eh.catch.all.value");
582 /// ExtendNEONArgs - For NEON "long" and "wide" operations, where the results
583 /// have vector elements twice as big as one or both source operands, do the
584 /// sign- or zero-extension that used to be handled by intrinsics. The
585 /// extended values are returned via V0 and V1.
586 static void ExtendNEONArgs(CallInst
*CI
, Value
*Arg0
, Value
*Arg1
,
587 Value
*&V0
, Value
*&V1
) {
588 Function
*F
= CI
->getCalledFunction();
589 const std::string
& Name
= F
->getName();
590 bool isLong
= (Name
.at(18) == 'l');
591 bool isSigned
= (Name
.at(19) == 's');
595 V0
= new SExtInst(Arg0
, CI
->getType(), "", CI
);
598 V1
= new SExtInst(Arg1
, CI
->getType(), "", CI
);
601 V0
= new ZExtInst(Arg0
, CI
->getType(), "", CI
);
604 V1
= new ZExtInst(Arg1
, CI
->getType(), "", CI
);
608 /// CallVABD - As part of expanding a call to one of the old NEON vabdl, vaba,
609 /// or vabal intrinsics, construct a call to a vabd intrinsic. Examine the
610 /// name of the old intrinsic to determine whether to use a signed or unsigned
611 /// vabd intrinsic. Get the type from the old call instruction, adjusted for
612 /// half-size vector elements if the old intrinsic was vabdl or vabal.
613 static Instruction
*CallVABD(CallInst
*CI
, Value
*Arg0
, Value
*Arg1
) {
614 Function
*F
= CI
->getCalledFunction();
615 const std::string
& Name
= F
->getName();
616 bool isLong
= (Name
.at(18) == 'l');
617 bool isSigned
= (Name
.at(isLong
? 19 : 18) == 's');
621 intID
= Intrinsic::arm_neon_vabds
;
623 intID
= Intrinsic::arm_neon_vabdu
;
625 const Type
*Ty
= CI
->getType();
627 Ty
= VectorType::getTruncatedElementVectorType(cast
<const VectorType
>(Ty
));
629 Function
*VABD
= Intrinsic::getDeclaration(F
->getParent(), intID
, &Ty
, 1);
633 return CallInst::Create(VABD
, Operands
, Operands
+2,
634 "upgraded."+CI
->getName(), CI
);
637 /// ConstructNewCallInst - Construct a new CallInst with the signature of NewFn.
638 static void ConstructNewCallInst(Function
*NewFn
, CallInst
*OldCI
,
639 Value
**Operands
, unsigned NumOps
,
640 bool AssignName
= true) {
641 // Construct a new CallInst.
643 CallInst::Create(NewFn
, Operands
, Operands
+ NumOps
,
644 AssignName
? "upgraded." + OldCI
->getName() : "", OldCI
);
646 NewCI
->setTailCall(OldCI
->isTailCall());
647 NewCI
->setCallingConv(OldCI
->getCallingConv());
649 // Handle any uses of the old CallInst. If the type has changed, add a cast.
650 if (!OldCI
->use_empty()) {
651 if (OldCI
->getType() != NewCI
->getType()) {
652 Function
*OldFn
= OldCI
->getCalledFunction();
654 CastInst::Create(CastInst::getCastOpcode(NewCI
, true,
655 OldFn
->getReturnType(), true),
656 NewCI
, OldFn
->getReturnType(), NewCI
->getName(),OldCI
);
658 // Replace all uses of the old call with the new cast which has the
660 OldCI
->replaceAllUsesWith(RetCast
);
662 OldCI
->replaceAllUsesWith(NewCI
);
666 // Clean up the old call now that it has been completely upgraded.
667 OldCI
->eraseFromParent();
670 // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
671 // upgraded intrinsic. All argument and return casting must be provided in
672 // order to seamlessly integrate with existing context.
673 void llvm::UpgradeIntrinsicCall(CallInst
*CI
, Function
*NewFn
) {
674 Function
*F
= CI
->getCalledFunction();
675 LLVMContext
&C
= CI
->getContext();
676 ImmutableCallSite
CS(CI
);
678 assert(F
&& "CallInst has no function associated with it.");
681 // Get the Function's name.
682 const std::string
& Name
= F
->getName();
684 // Upgrade ARM NEON intrinsics.
685 if (Name
.compare(5, 9, "arm.neon.", 9) == 0) {
688 if (Name
.compare(14, 7, "vmovls.", 7) == 0) {
689 NewI
= new SExtInst(CI
->getArgOperand(0), CI
->getType(),
690 "upgraded." + CI
->getName(), CI
);
691 } else if (Name
.compare(14, 7, "vmovlu.", 7) == 0) {
692 NewI
= new ZExtInst(CI
->getArgOperand(0), CI
->getType(),
693 "upgraded." + CI
->getName(), CI
);
694 } else if (Name
.compare(14, 4, "vadd", 4) == 0) {
695 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
696 NewI
= BinaryOperator::CreateAdd(V0
, V1
, "upgraded."+CI
->getName(), CI
);
697 } else if (Name
.compare(14, 4, "vsub", 4) == 0) {
698 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
699 NewI
= BinaryOperator::CreateSub(V0
, V1
,"upgraded."+CI
->getName(),CI
);
700 } else if (Name
.compare(14, 4, "vmul", 4) == 0) {
701 ExtendNEONArgs(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1), V0
, V1
);
702 NewI
= BinaryOperator::CreateMul(V0
, V1
,"upgraded."+CI
->getName(),CI
);
703 } else if (Name
.compare(14, 4, "vmla", 4) == 0) {
704 ExtendNEONArgs(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2), V0
, V1
);
705 Instruction
*MulI
= BinaryOperator::CreateMul(V0
, V1
, "", CI
);
706 NewI
= BinaryOperator::CreateAdd(CI
->getArgOperand(0), MulI
,
707 "upgraded."+CI
->getName(), CI
);
708 } else if (Name
.compare(14, 4, "vmls", 4) == 0) {
709 ExtendNEONArgs(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2), V0
, V1
);
710 Instruction
*MulI
= BinaryOperator::CreateMul(V0
, V1
, "", CI
);
711 NewI
= BinaryOperator::CreateSub(CI
->getArgOperand(0), MulI
,
712 "upgraded."+CI
->getName(), CI
);
713 } else if (Name
.compare(14, 4, "vabd", 4) == 0) {
714 NewI
= CallVABD(CI
, CI
->getArgOperand(0), CI
->getArgOperand(1));
715 NewI
= new ZExtInst(NewI
, CI
->getType(), "upgraded."+CI
->getName(), CI
);
716 } else if (Name
.compare(14, 4, "vaba", 4) == 0) {
717 NewI
= CallVABD(CI
, CI
->getArgOperand(1), CI
->getArgOperand(2));
718 if (Name
.at(18) == 'l')
719 NewI
= new ZExtInst(NewI
, CI
->getType(), "", CI
);
720 NewI
= BinaryOperator::CreateAdd(CI
->getArgOperand(0), NewI
,
721 "upgraded."+CI
->getName(), CI
);
722 } else if (Name
.compare(14, 6, "vmovn.", 6) == 0) {
723 NewI
= new TruncInst(CI
->getArgOperand(0), CI
->getType(),
724 "upgraded." + CI
->getName(), CI
);
726 llvm_unreachable("Unknown arm.neon function for CallInst upgrade.");
728 // Replace any uses of the old CallInst.
729 if (!CI
->use_empty())
730 CI
->replaceAllUsesWith(NewI
);
731 CI
->eraseFromParent();
735 bool isLoadH
= false, isLoadL
= false, isMovL
= false;
736 bool isMovSD
= false, isShufPD
= false;
737 bool isUnpckhPD
= false, isUnpcklPD
= false;
738 bool isPunpckhQPD
= false, isPunpcklQPD
= false;
739 if (F
->getName() == "llvm.x86.sse2.loadh.pd")
741 else if (F
->getName() == "llvm.x86.sse2.loadl.pd")
743 else if (F
->getName() == "llvm.x86.sse2.movl.dq")
745 else if (F
->getName() == "llvm.x86.sse2.movs.d")
747 else if (F
->getName() == "llvm.x86.sse2.shuf.pd")
749 else if (F
->getName() == "llvm.x86.sse2.unpckh.pd")
751 else if (F
->getName() == "llvm.x86.sse2.unpckl.pd")
753 else if (F
->getName() == "llvm.x86.sse2.punpckh.qdq")
755 else if (F
->getName() == "llvm.x86.sse2.punpckl.qdq")
758 if (isLoadH
|| isLoadL
|| isMovL
|| isMovSD
|| isShufPD
||
759 isUnpckhPD
|| isUnpcklPD
|| isPunpckhQPD
|| isPunpcklQPD
) {
760 std::vector
<Constant
*> Idxs
;
761 Value
*Op0
= CI
->getArgOperand(0);
762 ShuffleVectorInst
*SI
= NULL
;
763 if (isLoadH
|| isLoadL
) {
764 Value
*Op1
= UndefValue::get(Op0
->getType());
765 Value
*Addr
= new BitCastInst(CI
->getArgOperand(1),
766 Type::getDoublePtrTy(C
),
768 Value
*Load
= new LoadInst(Addr
, "upgraded.", false, 8, CI
);
769 Value
*Idx
= ConstantInt::get(Type::getInt32Ty(C
), 0);
770 Op1
= InsertElementInst::Create(Op1
, Load
, Idx
, "upgraded.", CI
);
773 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 0));
774 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
776 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
777 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
779 Value
*Mask
= ConstantVector::get(Idxs
);
780 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
782 Constant
*Zero
= ConstantInt::get(Type::getInt32Ty(C
), 0);
783 Idxs
.push_back(Zero
);
784 Idxs
.push_back(Zero
);
785 Idxs
.push_back(Zero
);
786 Idxs
.push_back(Zero
);
787 Value
*ZeroV
= ConstantVector::get(Idxs
);
790 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 4));
791 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 5));
792 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
793 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 3));
794 Value
*Mask
= ConstantVector::get(Idxs
);
795 SI
= new ShuffleVectorInst(ZeroV
, Op0
, Mask
, "upgraded.", CI
);
796 } else if (isMovSD
||
797 isUnpckhPD
|| isUnpcklPD
|| isPunpckhQPD
|| isPunpcklQPD
) {
798 Value
*Op1
= CI
->getArgOperand(1);
800 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
801 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
802 } else if (isUnpckhPD
|| isPunpckhQPD
) {
803 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
804 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 3));
806 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 0));
807 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 2));
809 Value
*Mask
= ConstantVector::get(Idxs
);
810 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
811 } else if (isShufPD
) {
812 Value
*Op1
= CI
->getArgOperand(1);
814 cast
<ConstantInt
>(CI
->getArgOperand(2))->getZExtValue();
815 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
), MaskVal
& 1));
816 Idxs
.push_back(ConstantInt::get(Type::getInt32Ty(C
),
817 ((MaskVal
>> 1) & 1)+2));
818 Value
*Mask
= ConstantVector::get(Idxs
);
819 SI
= new ShuffleVectorInst(Op0
, Op1
, Mask
, "upgraded.", CI
);
822 assert(SI
&& "Unexpected!");
824 // Handle any uses of the old CallInst.
825 if (!CI
->use_empty())
826 // Replace all uses of the old call with the new cast which has the
828 CI
->replaceAllUsesWith(SI
);
830 // Clean up the old call now that it has been completely upgraded.
831 CI
->eraseFromParent();
832 } else if (F
->getName() == "llvm.x86.sse41.pmulld") {
833 // Upgrade this set of intrinsics into vector multiplies.
834 Instruction
*Mul
= BinaryOperator::CreateMul(CI
->getArgOperand(0),
835 CI
->getArgOperand(1),
838 // Fix up all the uses with our new multiply.
839 if (!CI
->use_empty())
840 CI
->replaceAllUsesWith(Mul
);
842 // Remove upgraded multiply.
843 CI
->eraseFromParent();
844 } else if (F
->getName() == "llvm.x86.ssse3.palign.r") {
845 Value
*Op1
= CI
->getArgOperand(0);
846 Value
*Op2
= CI
->getArgOperand(1);
847 Value
*Op3
= CI
->getArgOperand(2);
848 unsigned shiftVal
= cast
<ConstantInt
>(Op3
)->getZExtValue();
850 IRBuilder
<> Builder(C
);
851 Builder
.SetInsertPoint(CI
->getParent(), CI
);
853 // If palignr is shifting the pair of input vectors less than 9 bytes,
854 // emit a shuffle instruction.
856 const Type
*IntTy
= Type::getInt32Ty(C
);
857 const Type
*EltTy
= Type::getInt8Ty(C
);
858 const Type
*VecTy
= VectorType::get(EltTy
, 8);
860 Op2
= Builder
.CreateBitCast(Op2
, VecTy
);
861 Op1
= Builder
.CreateBitCast(Op1
, VecTy
);
863 llvm::SmallVector
<llvm::Constant
*, 8> Indices
;
864 for (unsigned i
= 0; i
!= 8; ++i
)
865 Indices
.push_back(ConstantInt::get(IntTy
, shiftVal
+ i
));
867 Value
*SV
= ConstantVector::get(Indices
);
868 Rep
= Builder
.CreateShuffleVector(Op2
, Op1
, SV
, "palignr");
869 Rep
= Builder
.CreateBitCast(Rep
, F
->getReturnType());
872 // If palignr is shifting the pair of input vectors more than 8 but less
873 // than 16 bytes, emit a logical right shift of the destination.
874 else if (shiftVal
< 16) {
875 // MMX has these as 1 x i64 vectors for some odd optimization reasons.
876 const Type
*EltTy
= Type::getInt64Ty(C
);
877 const Type
*VecTy
= VectorType::get(EltTy
, 1);
879 Op1
= Builder
.CreateBitCast(Op1
, VecTy
, "cast");
880 Op2
= ConstantInt::get(VecTy
, (shiftVal
-8) * 8);
882 // create i32 constant
884 Intrinsic::getDeclaration(F
->getParent(), Intrinsic::x86_mmx_psrl_q
);
885 Rep
= Builder
.CreateCall2(I
, Op1
, Op2
, "palignr");
888 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
890 Rep
= Constant::getNullValue(F
->getReturnType());
893 // Replace any uses with our new instruction.
894 if (!CI
->use_empty())
895 CI
->replaceAllUsesWith(Rep
);
897 // Remove upgraded instruction.
898 CI
->eraseFromParent();
900 } else if (F
->getName() == "llvm.x86.ssse3.palign.r.128") {
901 Value
*Op1
= CI
->getArgOperand(0);
902 Value
*Op2
= CI
->getArgOperand(1);
903 Value
*Op3
= CI
->getArgOperand(2);
904 unsigned shiftVal
= cast
<ConstantInt
>(Op3
)->getZExtValue();
906 IRBuilder
<> Builder(C
);
907 Builder
.SetInsertPoint(CI
->getParent(), CI
);
909 // If palignr is shifting the pair of input vectors less than 17 bytes,
910 // emit a shuffle instruction.
911 if (shiftVal
<= 16) {
912 const Type
*IntTy
= Type::getInt32Ty(C
);
913 const Type
*EltTy
= Type::getInt8Ty(C
);
914 const Type
*VecTy
= VectorType::get(EltTy
, 16);
916 Op2
= Builder
.CreateBitCast(Op2
, VecTy
);
917 Op1
= Builder
.CreateBitCast(Op1
, VecTy
);
919 llvm::SmallVector
<llvm::Constant
*, 16> Indices
;
920 for (unsigned i
= 0; i
!= 16; ++i
)
921 Indices
.push_back(ConstantInt::get(IntTy
, shiftVal
+ i
));
923 Value
*SV
= ConstantVector::get(Indices
);
924 Rep
= Builder
.CreateShuffleVector(Op2
, Op1
, SV
, "palignr");
925 Rep
= Builder
.CreateBitCast(Rep
, F
->getReturnType());
928 // If palignr is shifting the pair of input vectors more than 16 but less
929 // than 32 bytes, emit a logical right shift of the destination.
930 else if (shiftVal
< 32) {
931 const Type
*EltTy
= Type::getInt64Ty(C
);
932 const Type
*VecTy
= VectorType::get(EltTy
, 2);
933 const Type
*IntTy
= Type::getInt32Ty(C
);
935 Op1
= Builder
.CreateBitCast(Op1
, VecTy
, "cast");
936 Op2
= ConstantInt::get(IntTy
, (shiftVal
-16) * 8);
938 // create i32 constant
940 Intrinsic::getDeclaration(F
->getParent(), Intrinsic::x86_sse2_psrl_dq
);
941 Rep
= Builder
.CreateCall2(I
, Op1
, Op2
, "palignr");
944 // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
946 Rep
= Constant::getNullValue(F
->getReturnType());
949 // Replace any uses with our new instruction.
950 if (!CI
->use_empty())
951 CI
->replaceAllUsesWith(Rep
);
953 // Remove upgraded instruction.
954 CI
->eraseFromParent();
956 } else if (F
->getName() == "llvm.x86.sse.loadu.ps" ||
957 F
->getName() == "llvm.x86.sse2.loadu.dq" ||
958 F
->getName() == "llvm.x86.sse2.loadu.pd") {
959 // Convert to a native, unaligned load.
960 const Type
*VecTy
= CI
->getType();
961 const Type
*IntTy
= IntegerType::get(C
, 128);
962 IRBuilder
<> Builder(C
);
963 Builder
.SetInsertPoint(CI
->getParent(), CI
);
965 Value
*BC
= Builder
.CreateBitCast(CI
->getArgOperand(0),
966 PointerType::getUnqual(IntTy
),
968 LoadInst
*LI
= Builder
.CreateLoad(BC
, CI
->getName());
969 LI
->setAlignment(1); // Unaligned load.
970 BC
= Builder
.CreateBitCast(LI
, VecTy
, "new.cast");
972 // Fix up all the uses with our new load.
973 if (!CI
->use_empty())
974 CI
->replaceAllUsesWith(BC
);
977 CI
->eraseFromParent();
979 llvm_unreachable("Unknown function for CallInst upgrade.");
984 switch (NewFn
->getIntrinsicID()) {
985 default: llvm_unreachable("Unknown function for CallInst upgrade.");
986 case Intrinsic::arm_neon_vld1
:
987 case Intrinsic::arm_neon_vld2
:
988 case Intrinsic::arm_neon_vld3
:
989 case Intrinsic::arm_neon_vld4
:
990 case Intrinsic::arm_neon_vst1
:
991 case Intrinsic::arm_neon_vst2
:
992 case Intrinsic::arm_neon_vst3
:
993 case Intrinsic::arm_neon_vst4
:
994 case Intrinsic::arm_neon_vld2lane
:
995 case Intrinsic::arm_neon_vld3lane
:
996 case Intrinsic::arm_neon_vld4lane
:
997 case Intrinsic::arm_neon_vst2lane
:
998 case Intrinsic::arm_neon_vst3lane
:
999 case Intrinsic::arm_neon_vst4lane
: {
1000 // Add a default alignment argument of 1.
1001 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
1002 Operands
.push_back(ConstantInt::get(Type::getInt32Ty(C
), 1));
1003 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
1005 NewCI
->setTailCall(CI
->isTailCall());
1006 NewCI
->setCallingConv(CI
->getCallingConv());
1008 // Handle any uses of the old CallInst.
1009 if (!CI
->use_empty())
1010 // Replace all uses of the old call with the new cast which has the
1012 CI
->replaceAllUsesWith(NewCI
);
1014 // Clean up the old call now that it has been completely upgraded.
1015 CI
->eraseFromParent();
1019 case Intrinsic::x86_mmx_padd_b
:
1020 case Intrinsic::x86_mmx_padd_w
:
1021 case Intrinsic::x86_mmx_padd_d
:
1022 case Intrinsic::x86_mmx_padd_q
:
1023 case Intrinsic::x86_mmx_padds_b
:
1024 case Intrinsic::x86_mmx_padds_w
:
1025 case Intrinsic::x86_mmx_paddus_b
:
1026 case Intrinsic::x86_mmx_paddus_w
:
1027 case Intrinsic::x86_mmx_psub_b
:
1028 case Intrinsic::x86_mmx_psub_w
:
1029 case Intrinsic::x86_mmx_psub_d
:
1030 case Intrinsic::x86_mmx_psub_q
:
1031 case Intrinsic::x86_mmx_psubs_b
:
1032 case Intrinsic::x86_mmx_psubs_w
:
1033 case Intrinsic::x86_mmx_psubus_b
:
1034 case Intrinsic::x86_mmx_psubus_w
:
1035 case Intrinsic::x86_mmx_pmulh_w
:
1036 case Intrinsic::x86_mmx_pmull_w
:
1037 case Intrinsic::x86_mmx_pmulhu_w
:
1038 case Intrinsic::x86_mmx_pmulu_dq
:
1039 case Intrinsic::x86_mmx_pmadd_wd
:
1040 case Intrinsic::x86_mmx_pand
:
1041 case Intrinsic::x86_mmx_pandn
:
1042 case Intrinsic::x86_mmx_por
:
1043 case Intrinsic::x86_mmx_pxor
:
1044 case Intrinsic::x86_mmx_pavg_b
:
1045 case Intrinsic::x86_mmx_pavg_w
:
1046 case Intrinsic::x86_mmx_pmaxu_b
:
1047 case Intrinsic::x86_mmx_pmaxs_w
:
1048 case Intrinsic::x86_mmx_pminu_b
:
1049 case Intrinsic::x86_mmx_pmins_w
:
1050 case Intrinsic::x86_mmx_psad_bw
:
1051 case Intrinsic::x86_mmx_psll_w
:
1052 case Intrinsic::x86_mmx_psll_d
:
1053 case Intrinsic::x86_mmx_psll_q
:
1054 case Intrinsic::x86_mmx_pslli_w
:
1055 case Intrinsic::x86_mmx_pslli_d
:
1056 case Intrinsic::x86_mmx_pslli_q
:
1057 case Intrinsic::x86_mmx_psrl_w
:
1058 case Intrinsic::x86_mmx_psrl_d
:
1059 case Intrinsic::x86_mmx_psrl_q
:
1060 case Intrinsic::x86_mmx_psrli_w
:
1061 case Intrinsic::x86_mmx_psrli_d
:
1062 case Intrinsic::x86_mmx_psrli_q
:
1063 case Intrinsic::x86_mmx_psra_w
:
1064 case Intrinsic::x86_mmx_psra_d
:
1065 case Intrinsic::x86_mmx_psrai_w
:
1066 case Intrinsic::x86_mmx_psrai_d
:
1067 case Intrinsic::x86_mmx_packsswb
:
1068 case Intrinsic::x86_mmx_packssdw
:
1069 case Intrinsic::x86_mmx_packuswb
:
1070 case Intrinsic::x86_mmx_punpckhbw
:
1071 case Intrinsic::x86_mmx_punpckhwd
:
1072 case Intrinsic::x86_mmx_punpckhdq
:
1073 case Intrinsic::x86_mmx_punpcklbw
:
1074 case Intrinsic::x86_mmx_punpcklwd
:
1075 case Intrinsic::x86_mmx_punpckldq
:
1076 case Intrinsic::x86_mmx_pcmpeq_b
:
1077 case Intrinsic::x86_mmx_pcmpeq_w
:
1078 case Intrinsic::x86_mmx_pcmpeq_d
:
1079 case Intrinsic::x86_mmx_pcmpgt_b
:
1080 case Intrinsic::x86_mmx_pcmpgt_w
:
1081 case Intrinsic::x86_mmx_pcmpgt_d
: {
1084 // Cast the operand to the X86 MMX type.
1085 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1086 NewFn
->getFunctionType()->getParamType(0),
1089 switch (NewFn
->getIntrinsicID()) {
1091 // Cast to the X86 MMX type.
1092 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1093 NewFn
->getFunctionType()->getParamType(1),
1096 case Intrinsic::x86_mmx_pslli_w
:
1097 case Intrinsic::x86_mmx_pslli_d
:
1098 case Intrinsic::x86_mmx_pslli_q
:
1099 case Intrinsic::x86_mmx_psrli_w
:
1100 case Intrinsic::x86_mmx_psrli_d
:
1101 case Intrinsic::x86_mmx_psrli_q
:
1102 case Intrinsic::x86_mmx_psrai_w
:
1103 case Intrinsic::x86_mmx_psrai_d
:
1104 // These take an i32 as their second parameter.
1105 Operands
[1] = CI
->getArgOperand(1);
1109 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1112 case Intrinsic::x86_mmx_maskmovq
: {
1115 // Cast the operands to the X86 MMX type.
1116 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1117 NewFn
->getFunctionType()->getParamType(0),
1119 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1120 NewFn
->getFunctionType()->getParamType(1),
1122 Operands
[2] = CI
->getArgOperand(2);
1124 ConstructNewCallInst(NewFn
, CI
, Operands
, 3, false);
1127 case Intrinsic::x86_mmx_pmovmskb
: {
1130 // Cast the operand to the X86 MMX type.
1131 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1132 NewFn
->getFunctionType()->getParamType(0),
1135 ConstructNewCallInst(NewFn
, CI
, Operands
, 1);
1138 case Intrinsic::x86_mmx_movnt_dq
: {
1141 Operands
[0] = CI
->getArgOperand(0);
1143 // Cast the operand to the X86 MMX type.
1144 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1145 NewFn
->getFunctionType()->getParamType(1),
1148 ConstructNewCallInst(NewFn
, CI
, Operands
, 2, false);
1151 case Intrinsic::x86_mmx_palignr_b
: {
1154 // Cast the operands to the X86 MMX type.
1155 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1156 NewFn
->getFunctionType()->getParamType(0),
1158 Operands
[1] = new BitCastInst(CI
->getArgOperand(1),
1159 NewFn
->getFunctionType()->getParamType(1),
1161 Operands
[2] = CI
->getArgOperand(2);
1163 ConstructNewCallInst(NewFn
, CI
, Operands
, 3);
1166 case Intrinsic::x86_mmx_pextr_w
: {
1169 // Cast the operands to the X86 MMX type.
1170 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1171 NewFn
->getFunctionType()->getParamType(0),
1173 Operands
[1] = CI
->getArgOperand(1);
1175 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1178 case Intrinsic::x86_mmx_pinsr_w
: {
1181 // Cast the operands to the X86 MMX type.
1182 Operands
[0] = new BitCastInst(CI
->getArgOperand(0),
1183 NewFn
->getFunctionType()->getParamType(0),
1185 Operands
[1] = CI
->getArgOperand(1);
1186 Operands
[2] = CI
->getArgOperand(2);
1188 ConstructNewCallInst(NewFn
, CI
, Operands
, 3);
1191 case Intrinsic::x86_sse_pshuf_w
: {
1192 IRBuilder
<> Builder(C
);
1193 Builder
.SetInsertPoint(CI
->getParent(), CI
);
1195 // Cast the operand to the X86 MMX type.
1198 Builder
.CreateBitCast(CI
->getArgOperand(0),
1199 NewFn
->getFunctionType()->getParamType(0),
1202 Builder
.CreateTrunc(CI
->getArgOperand(1),
1206 ConstructNewCallInst(NewFn
, CI
, Operands
, 2);
1210 case Intrinsic::ctlz
:
1211 case Intrinsic::ctpop
:
1212 case Intrinsic::cttz
: {
1213 // Build a small vector of the original arguments.
1214 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
1216 // Construct a new CallInst
1217 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
1218 "upgraded."+CI
->getName(), CI
);
1219 NewCI
->setTailCall(CI
->isTailCall());
1220 NewCI
->setCallingConv(CI
->getCallingConv());
1222 // Handle any uses of the old CallInst.
1223 if (!CI
->use_empty()) {
1224 // Check for sign extend parameter attributes on the return values.
1225 bool SrcSExt
= NewFn
->getAttributes().paramHasAttr(0, Attribute::SExt
);
1226 bool DestSExt
= F
->getAttributes().paramHasAttr(0, Attribute::SExt
);
1228 // Construct an appropriate cast from the new return type to the old.
1229 CastInst
*RetCast
= CastInst::Create(
1230 CastInst::getCastOpcode(NewCI
, SrcSExt
,
1233 NewCI
, F
->getReturnType(),
1234 NewCI
->getName(), CI
);
1235 NewCI
->moveBefore(RetCast
);
1237 // Replace all uses of the old call with the new cast which has the
1239 CI
->replaceAllUsesWith(RetCast
);
1242 // Clean up the old call now that it has been completely upgraded.
1243 CI
->eraseFromParent();
1246 case Intrinsic::eh_selector
:
1247 case Intrinsic::eh_typeid_for
: {
1248 // Only the return type changed.
1249 SmallVector
<Value
*, 8> Operands(CS
.arg_begin(), CS
.arg_end());
1250 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
.begin(), Operands
.end(),
1251 "upgraded." + CI
->getName(), CI
);
1252 NewCI
->setTailCall(CI
->isTailCall());
1253 NewCI
->setCallingConv(CI
->getCallingConv());
1255 // Handle any uses of the old CallInst.
1256 if (!CI
->use_empty()) {
1257 // Construct an appropriate cast from the new return type to the old.
1259 CastInst::Create(CastInst::getCastOpcode(NewCI
, true,
1260 F
->getReturnType(), true),
1261 NewCI
, F
->getReturnType(), NewCI
->getName(), CI
);
1262 CI
->replaceAllUsesWith(RetCast
);
1264 CI
->eraseFromParent();
1267 case Intrinsic::memcpy
:
1268 case Intrinsic::memmove
:
1269 case Intrinsic::memset
: {
1271 const llvm::Type
*I1Ty
= llvm::Type::getInt1Ty(CI
->getContext());
1272 Value
*Operands
[5] = { CI
->getArgOperand(0), CI
->getArgOperand(1),
1273 CI
->getArgOperand(2), CI
->getArgOperand(3),
1274 llvm::ConstantInt::get(I1Ty
, 0) };
1275 CallInst
*NewCI
= CallInst::Create(NewFn
, Operands
, Operands
+5,
1277 NewCI
->setTailCall(CI
->isTailCall());
1278 NewCI
->setCallingConv(CI
->getCallingConv());
1279 // Handle any uses of the old CallInst.
1280 if (!CI
->use_empty())
1281 // Replace all uses of the old call with the new cast which has the
1283 CI
->replaceAllUsesWith(NewCI
);
1285 // Clean up the old call now that it has been completely upgraded.
1286 CI
->eraseFromParent();
1292 // This tests each Function to determine if it needs upgrading. When we find
1293 // one we are interested in, we then upgrade all calls to reflect the new
1295 void llvm::UpgradeCallsToIntrinsic(Function
* F
) {
1296 assert(F
&& "Illegal attempt to upgrade a non-existent intrinsic.");
1298 // Upgrade the function and check if it is a totaly new function.
1300 if (UpgradeIntrinsicFunction(F
, NewFn
)) {
1302 // Replace all uses to the old function with the new one if necessary.
1303 for (Value::use_iterator UI
= F
->use_begin(), UE
= F
->use_end();
1305 if (CallInst
* CI
= dyn_cast
<CallInst
>(*UI
++))
1306 UpgradeIntrinsicCall(CI
, NewFn
);
1308 // Remove old function, no longer used, from the module.
1309 F
->eraseFromParent();
1314 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
1315 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
1316 /// strips that use.
1317 void llvm::CheckDebugInfoIntrinsics(Module
*M
) {
1320 if (Function
*FuncStart
= M
->getFunction("llvm.dbg.func.start")) {
1321 while (!FuncStart
->use_empty()) {
1322 CallInst
*CI
= cast
<CallInst
>(FuncStart
->use_back());
1323 CI
->eraseFromParent();
1325 FuncStart
->eraseFromParent();
1328 if (Function
*StopPoint
= M
->getFunction("llvm.dbg.stoppoint")) {
1329 while (!StopPoint
->use_empty()) {
1330 CallInst
*CI
= cast
<CallInst
>(StopPoint
->use_back());
1331 CI
->eraseFromParent();
1333 StopPoint
->eraseFromParent();
1336 if (Function
*RegionStart
= M
->getFunction("llvm.dbg.region.start")) {
1337 while (!RegionStart
->use_empty()) {
1338 CallInst
*CI
= cast
<CallInst
>(RegionStart
->use_back());
1339 CI
->eraseFromParent();
1341 RegionStart
->eraseFromParent();
1344 if (Function
*RegionEnd
= M
->getFunction("llvm.dbg.region.end")) {
1345 while (!RegionEnd
->use_empty()) {
1346 CallInst
*CI
= cast
<CallInst
>(RegionEnd
->use_back());
1347 CI
->eraseFromParent();
1349 RegionEnd
->eraseFromParent();
1352 if (Function
*Declare
= M
->getFunction("llvm.dbg.declare")) {
1353 if (!Declare
->use_empty()) {
1354 DbgDeclareInst
*DDI
= cast
<DbgDeclareInst
>(Declare
->use_back());
1355 if (!isa
<MDNode
>(DDI
->getArgOperand(0)) ||
1356 !isa
<MDNode
>(DDI
->getArgOperand(1))) {
1357 while (!Declare
->use_empty()) {
1358 CallInst
*CI
= cast
<CallInst
>(Declare
->use_back());
1359 CI
->eraseFromParent();
1361 Declare
->eraseFromParent();