Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / VMCore / Instructions.cpp
blob61da9b6b8e0c2b9f6d2698ae1f1f73deaeb7b4e7
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
28 //===----------------------------------------------------------------------===//
29 // CallSite Class
30 //===----------------------------------------------------------------------===//
32 User::op_iterator CallSite::getCallee() const {
33 Instruction *II(getInstruction());
34 return isCall()
35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
39 //===----------------------------------------------------------------------===//
40 // TerminatorInst Class
41 //===----------------------------------------------------------------------===//
43 // Out of line virtual method, so the vtable, etc has a home.
44 TerminatorInst::~TerminatorInst() {
47 //===----------------------------------------------------------------------===//
48 // UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
51 // Out of line virtual method, so the vtable, etc has a home.
52 UnaryInstruction::~UnaryInstruction() {
55 //===----------------------------------------------------------------------===//
56 // SelectInst Class
57 //===----------------------------------------------------------------------===//
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62 if (Op1->getType() != Op2->getType())
63 return "both values to select must have same type";
65 if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66 // Vector select.
67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68 return "vector select condition element type must be i1";
69 const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70 if (ET == 0)
71 return "selected values for vector select must be vectors";
72 if (ET->getNumElements() != VT->getNumElements())
73 return "vector select requires selected vectors to have "
74 "the same vector length as select condition";
75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76 return "select condition must be i1 or <n x i1>";
78 return 0;
82 //===----------------------------------------------------------------------===//
83 // PHINode Class
84 //===----------------------------------------------------------------------===//
86 PHINode::PHINode(const PHINode &PN)
87 : Instruction(PN.getType(), Instruction::PHI,
88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89 ReservedSpace(PN.getNumOperands()) {
90 Use *OL = OperandList;
91 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
92 OL[i] = PN.getOperand(i);
93 OL[i+1] = PN.getOperand(i+1);
95 SubclassOptionalData = PN.SubclassOptionalData;
98 PHINode::~PHINode() {
99 dropHungoffUses();
102 // removeIncomingValue - Remove an incoming value. This is useful if a
103 // predecessor basic block is deleted.
104 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
105 unsigned NumOps = getNumOperands();
106 Use *OL = OperandList;
107 assert(Idx*2 < NumOps && "BB not in PHI node!");
108 Value *Removed = OL[Idx*2];
110 // Move everything after this operand down.
112 // FIXME: we could just swap with the end of the list, then erase. However,
113 // client might not expect this to happen. The code as it is thrashes the
114 // use/def lists, which is kinda lame.
115 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
116 OL[i-2] = OL[i];
117 OL[i-2+1] = OL[i+1];
120 // Nuke the last value.
121 OL[NumOps-2].set(0);
122 OL[NumOps-2+1].set(0);
123 NumOperands = NumOps-2;
125 // If the PHI node is dead, because it has zero entries, nuke it now.
126 if (NumOps == 2 && DeletePHIIfEmpty) {
127 // If anyone is using this PHI, make them use a dummy value instead...
128 replaceAllUsesWith(UndefValue::get(getType()));
129 eraseFromParent();
131 return Removed;
134 /// growOperands - grow operands - This grows the operand list in response
135 /// to a push_back style of operation. This grows the number of ops by 1.5
136 /// times.
138 void PHINode::growOperands() {
139 unsigned e = getNumOperands();
140 // Multiply by 1.5 and round down so the result is still even.
141 unsigned NumOps = e + e / 4 * 2;
142 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
144 ReservedSpace = NumOps;
145 Use *OldOps = OperandList;
146 Use *NewOps = allocHungoffUses(NumOps);
147 std::copy(OldOps, OldOps + e, NewOps);
148 OperandList = NewOps;
149 Use::zap(OldOps, OldOps + e, true);
152 /// hasConstantValue - If the specified PHI node always merges together the same
153 /// value, return the value, otherwise return null.
154 Value *PHINode::hasConstantValue() const {
155 // Exploit the fact that phi nodes always have at least one entry.
156 Value *ConstantValue = getIncomingValue(0);
157 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
158 if (getIncomingValue(i) != ConstantValue)
159 return 0; // Incoming values not all the same.
160 return ConstantValue;
164 //===----------------------------------------------------------------------===//
165 // CallInst Implementation
166 //===----------------------------------------------------------------------===//
168 CallInst::~CallInst() {
171 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
172 assert(NumOperands == NumParams+1 && "NumOperands not set up?");
173 Op<-1>() = Func;
175 const FunctionType *FTy =
176 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
177 (void)FTy; // silence warning.
179 assert((NumParams == FTy->getNumParams() ||
180 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
181 "Calling a function with bad signature!");
182 for (unsigned i = 0; i != NumParams; ++i) {
183 assert((i >= FTy->getNumParams() ||
184 FTy->getParamType(i) == Params[i]->getType()) &&
185 "Calling a function with a bad signature!");
186 OperandList[i] = Params[i];
190 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
191 assert(NumOperands == 3 && "NumOperands not set up?");
192 Op<-1>() = Func;
193 Op<0>() = Actual1;
194 Op<1>() = Actual2;
196 const FunctionType *FTy =
197 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
198 (void)FTy; // silence warning.
200 assert((FTy->getNumParams() == 2 ||
201 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
202 "Calling a function with bad signature");
203 assert((0 >= FTy->getNumParams() ||
204 FTy->getParamType(0) == Actual1->getType()) &&
205 "Calling a function with a bad signature!");
206 assert((1 >= FTy->getNumParams() ||
207 FTy->getParamType(1) == Actual2->getType()) &&
208 "Calling a function with a bad signature!");
211 void CallInst::init(Value *Func, Value *Actual) {
212 assert(NumOperands == 2 && "NumOperands not set up?");
213 Op<-1>() = Func;
214 Op<0>() = Actual;
216 const FunctionType *FTy =
217 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
218 (void)FTy; // silence warning.
220 assert((FTy->getNumParams() == 1 ||
221 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
222 "Calling a function with bad signature");
223 assert((0 == FTy->getNumParams() ||
224 FTy->getParamType(0) == Actual->getType()) &&
225 "Calling a function with a bad signature!");
228 void CallInst::init(Value *Func) {
229 assert(NumOperands == 1 && "NumOperands not set up?");
230 Op<-1>() = Func;
232 const FunctionType *FTy =
233 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
234 (void)FTy; // silence warning.
236 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
239 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
240 Instruction *InsertBefore)
241 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
242 ->getElementType())->getReturnType(),
243 Instruction::Call,
244 OperandTraits<CallInst>::op_end(this) - 2,
245 2, InsertBefore) {
246 init(Func, Actual);
247 setName(Name);
250 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
251 BasicBlock *InsertAtEnd)
252 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
253 ->getElementType())->getReturnType(),
254 Instruction::Call,
255 OperandTraits<CallInst>::op_end(this) - 2,
256 2, InsertAtEnd) {
257 init(Func, Actual);
258 setName(Name);
260 CallInst::CallInst(Value *Func, const Twine &Name,
261 Instruction *InsertBefore)
262 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
263 ->getElementType())->getReturnType(),
264 Instruction::Call,
265 OperandTraits<CallInst>::op_end(this) - 1,
266 1, InsertBefore) {
267 init(Func);
268 setName(Name);
271 CallInst::CallInst(Value *Func, const Twine &Name,
272 BasicBlock *InsertAtEnd)
273 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
274 ->getElementType())->getReturnType(),
275 Instruction::Call,
276 OperandTraits<CallInst>::op_end(this) - 1,
277 1, InsertAtEnd) {
278 init(Func);
279 setName(Name);
282 CallInst::CallInst(const CallInst &CI)
283 : Instruction(CI.getType(), Instruction::Call,
284 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
285 CI.getNumOperands()) {
286 setAttributes(CI.getAttributes());
287 setTailCall(CI.isTailCall());
288 setCallingConv(CI.getCallingConv());
290 Use *OL = OperandList;
291 Use *InOL = CI.OperandList;
292 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
293 OL[i] = InOL[i];
294 SubclassOptionalData = CI.SubclassOptionalData;
297 void CallInst::addAttribute(unsigned i, Attributes attr) {
298 AttrListPtr PAL = getAttributes();
299 PAL = PAL.addAttr(i, attr);
300 setAttributes(PAL);
303 void CallInst::removeAttribute(unsigned i, Attributes attr) {
304 AttrListPtr PAL = getAttributes();
305 PAL = PAL.removeAttr(i, attr);
306 setAttributes(PAL);
309 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
310 if (AttributeList.paramHasAttr(i, attr))
311 return true;
312 if (const Function *F = getCalledFunction())
313 return F->paramHasAttr(i, attr);
314 return false;
317 /// IsConstantOne - Return true only if val is constant int 1
318 static bool IsConstantOne(Value *val) {
319 assert(val && "IsConstantOne does not work with NULL val");
320 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
323 static Instruction *createMalloc(Instruction *InsertBefore,
324 BasicBlock *InsertAtEnd, const Type *IntPtrTy,
325 const Type *AllocTy, Value *AllocSize,
326 Value *ArraySize, Function *MallocF,
327 const Twine &Name) {
328 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
329 "createMalloc needs either InsertBefore or InsertAtEnd");
331 // malloc(type) becomes:
332 // bitcast (i8* malloc(typeSize)) to type*
333 // malloc(type, arraySize) becomes:
334 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
335 if (!ArraySize)
336 ArraySize = ConstantInt::get(IntPtrTy, 1);
337 else if (ArraySize->getType() != IntPtrTy) {
338 if (InsertBefore)
339 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
340 "", InsertBefore);
341 else
342 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
343 "", InsertAtEnd);
346 if (!IsConstantOne(ArraySize)) {
347 if (IsConstantOne(AllocSize)) {
348 AllocSize = ArraySize; // Operand * 1 = Operand
349 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
350 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
351 false /*ZExt*/);
352 // Malloc arg is constant product of type size and array size
353 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
354 } else {
355 // Multiply type size by the array size...
356 if (InsertBefore)
357 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
358 "mallocsize", InsertBefore);
359 else
360 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
361 "mallocsize", InsertAtEnd);
365 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
366 // Create the call to Malloc.
367 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
368 Module* M = BB->getParent()->getParent();
369 const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
370 Value *MallocFunc = MallocF;
371 if (!MallocFunc)
372 // prototype malloc as "void *malloc(size_t)"
373 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
374 const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
375 CallInst *MCall = NULL;
376 Instruction *Result = NULL;
377 if (InsertBefore) {
378 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
379 Result = MCall;
380 if (Result->getType() != AllocPtrType)
381 // Create a cast instruction to convert to the right type...
382 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
383 } else {
384 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
385 Result = MCall;
386 if (Result->getType() != AllocPtrType) {
387 InsertAtEnd->getInstList().push_back(MCall);
388 // Create a cast instruction to convert to the right type...
389 Result = new BitCastInst(MCall, AllocPtrType, Name);
392 MCall->setTailCall();
393 if (Function *F = dyn_cast<Function>(MallocFunc)) {
394 MCall->setCallingConv(F->getCallingConv());
395 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
397 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
399 return Result;
402 /// CreateMalloc - Generate the IR for a call to malloc:
403 /// 1. Compute the malloc call's argument as the specified type's size,
404 /// possibly multiplied by the array size if the array size is not
405 /// constant 1.
406 /// 2. Call malloc with that argument.
407 /// 3. Bitcast the result of the malloc call to the specified type.
408 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
409 const Type *IntPtrTy, const Type *AllocTy,
410 Value *AllocSize, Value *ArraySize,
411 Function * MallocF,
412 const Twine &Name) {
413 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
414 ArraySize, MallocF, Name);
417 /// CreateMalloc - Generate the IR for a call to malloc:
418 /// 1. Compute the malloc call's argument as the specified type's size,
419 /// possibly multiplied by the array size if the array size is not
420 /// constant 1.
421 /// 2. Call malloc with that argument.
422 /// 3. Bitcast the result of the malloc call to the specified type.
423 /// Note: This function does not add the bitcast to the basic block, that is the
424 /// responsibility of the caller.
425 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
426 const Type *IntPtrTy, const Type *AllocTy,
427 Value *AllocSize, Value *ArraySize,
428 Function *MallocF, const Twine &Name) {
429 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
430 ArraySize, MallocF, Name);
433 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
434 BasicBlock *InsertAtEnd) {
435 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
436 "createFree needs either InsertBefore or InsertAtEnd");
437 assert(Source->getType()->isPointerTy() &&
438 "Can not free something of nonpointer type!");
440 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
441 Module* M = BB->getParent()->getParent();
443 const Type *VoidTy = Type::getVoidTy(M->getContext());
444 const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
445 // prototype free as "void free(void*)"
446 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
447 CallInst* Result = NULL;
448 Value *PtrCast = Source;
449 if (InsertBefore) {
450 if (Source->getType() != IntPtrTy)
451 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
452 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
453 } else {
454 if (Source->getType() != IntPtrTy)
455 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
456 Result = CallInst::Create(FreeFunc, PtrCast, "");
458 Result->setTailCall();
459 if (Function *F = dyn_cast<Function>(FreeFunc))
460 Result->setCallingConv(F->getCallingConv());
462 return Result;
465 /// CreateFree - Generate the IR for a call to the builtin free function.
466 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
467 return createFree(Source, InsertBefore, NULL);
470 /// CreateFree - Generate the IR for a call to the builtin free function.
471 /// Note: This function does not add the call to the basic block, that is the
472 /// responsibility of the caller.
473 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
474 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
475 assert(FreeCall && "CreateFree did not create a CallInst");
476 return FreeCall;
479 //===----------------------------------------------------------------------===//
480 // InvokeInst Implementation
481 //===----------------------------------------------------------------------===//
483 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
484 Value* const *Args, unsigned NumArgs) {
485 assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
486 Op<-3>() = Fn;
487 Op<-2>() = IfNormal;
488 Op<-1>() = IfException;
489 const FunctionType *FTy =
490 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
491 (void)FTy; // silence warning.
493 assert(((NumArgs == FTy->getNumParams()) ||
494 (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
495 "Invoking a function with bad signature");
497 Use *OL = OperandList;
498 for (unsigned i = 0, e = NumArgs; i != e; i++) {
499 assert((i >= FTy->getNumParams() ||
500 FTy->getParamType(i) == Args[i]->getType()) &&
501 "Invoking a function with a bad signature!");
503 OL[i] = Args[i];
507 InvokeInst::InvokeInst(const InvokeInst &II)
508 : TerminatorInst(II.getType(), Instruction::Invoke,
509 OperandTraits<InvokeInst>::op_end(this)
510 - II.getNumOperands(),
511 II.getNumOperands()) {
512 setAttributes(II.getAttributes());
513 setCallingConv(II.getCallingConv());
514 Use *OL = OperandList, *InOL = II.OperandList;
515 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
516 OL[i] = InOL[i];
517 SubclassOptionalData = II.SubclassOptionalData;
520 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
521 return getSuccessor(idx);
523 unsigned InvokeInst::getNumSuccessorsV() const {
524 return getNumSuccessors();
526 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
527 return setSuccessor(idx, B);
530 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
531 if (AttributeList.paramHasAttr(i, attr))
532 return true;
533 if (const Function *F = getCalledFunction())
534 return F->paramHasAttr(i, attr);
535 return false;
538 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
539 AttrListPtr PAL = getAttributes();
540 PAL = PAL.addAttr(i, attr);
541 setAttributes(PAL);
544 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
545 AttrListPtr PAL = getAttributes();
546 PAL = PAL.removeAttr(i, attr);
547 setAttributes(PAL);
551 //===----------------------------------------------------------------------===//
552 // ReturnInst Implementation
553 //===----------------------------------------------------------------------===//
555 ReturnInst::ReturnInst(const ReturnInst &RI)
556 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
557 OperandTraits<ReturnInst>::op_end(this) -
558 RI.getNumOperands(),
559 RI.getNumOperands()) {
560 if (RI.getNumOperands())
561 Op<0>() = RI.Op<0>();
562 SubclassOptionalData = RI.SubclassOptionalData;
565 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
566 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
567 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
568 InsertBefore) {
569 if (retVal)
570 Op<0>() = retVal;
572 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
573 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
574 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
575 InsertAtEnd) {
576 if (retVal)
577 Op<0>() = retVal;
579 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
580 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
581 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
584 unsigned ReturnInst::getNumSuccessorsV() const {
585 return getNumSuccessors();
588 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
589 /// emit the vtable for the class in this translation unit.
590 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
591 llvm_unreachable("ReturnInst has no successors!");
594 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
595 llvm_unreachable("ReturnInst has no successors!");
596 return 0;
599 ReturnInst::~ReturnInst() {
602 //===----------------------------------------------------------------------===//
603 // UnwindInst Implementation
604 //===----------------------------------------------------------------------===//
606 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
607 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
608 0, 0, InsertBefore) {
610 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
611 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
612 0, 0, InsertAtEnd) {
616 unsigned UnwindInst::getNumSuccessorsV() const {
617 return getNumSuccessors();
620 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
621 llvm_unreachable("UnwindInst has no successors!");
624 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
625 llvm_unreachable("UnwindInst has no successors!");
626 return 0;
629 //===----------------------------------------------------------------------===//
630 // UnreachableInst Implementation
631 //===----------------------------------------------------------------------===//
633 UnreachableInst::UnreachableInst(LLVMContext &Context,
634 Instruction *InsertBefore)
635 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
636 0, 0, InsertBefore) {
638 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
639 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
640 0, 0, InsertAtEnd) {
643 unsigned UnreachableInst::getNumSuccessorsV() const {
644 return getNumSuccessors();
647 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
648 llvm_unreachable("UnwindInst has no successors!");
651 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
652 llvm_unreachable("UnwindInst has no successors!");
653 return 0;
656 //===----------------------------------------------------------------------===//
657 // BranchInst Implementation
658 //===----------------------------------------------------------------------===//
660 void BranchInst::AssertOK() {
661 if (isConditional())
662 assert(getCondition()->getType()->isIntegerTy(1) &&
663 "May only branch on boolean predicates!");
666 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
667 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
668 OperandTraits<BranchInst>::op_end(this) - 1,
669 1, InsertBefore) {
670 assert(IfTrue != 0 && "Branch destination may not be null!");
671 Op<-1>() = IfTrue;
673 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
674 Instruction *InsertBefore)
675 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
676 OperandTraits<BranchInst>::op_end(this) - 3,
677 3, InsertBefore) {
678 Op<-1>() = IfTrue;
679 Op<-2>() = IfFalse;
680 Op<-3>() = Cond;
681 #ifndef NDEBUG
682 AssertOK();
683 #endif
686 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
687 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
688 OperandTraits<BranchInst>::op_end(this) - 1,
689 1, InsertAtEnd) {
690 assert(IfTrue != 0 && "Branch destination may not be null!");
691 Op<-1>() = IfTrue;
694 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
695 BasicBlock *InsertAtEnd)
696 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
697 OperandTraits<BranchInst>::op_end(this) - 3,
698 3, InsertAtEnd) {
699 Op<-1>() = IfTrue;
700 Op<-2>() = IfFalse;
701 Op<-3>() = Cond;
702 #ifndef NDEBUG
703 AssertOK();
704 #endif
708 BranchInst::BranchInst(const BranchInst &BI) :
709 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
710 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
711 BI.getNumOperands()) {
712 Op<-1>() = BI.Op<-1>();
713 if (BI.getNumOperands() != 1) {
714 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
715 Op<-3>() = BI.Op<-3>();
716 Op<-2>() = BI.Op<-2>();
718 SubclassOptionalData = BI.SubclassOptionalData;
721 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
722 return getSuccessor(idx);
724 unsigned BranchInst::getNumSuccessorsV() const {
725 return getNumSuccessors();
727 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
728 setSuccessor(idx, B);
732 //===----------------------------------------------------------------------===//
733 // AllocaInst Implementation
734 //===----------------------------------------------------------------------===//
736 static Value *getAISize(LLVMContext &Context, Value *Amt) {
737 if (!Amt)
738 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
739 else {
740 assert(!isa<BasicBlock>(Amt) &&
741 "Passed basic block into allocation size parameter! Use other ctor");
742 assert(Amt->getType()->isIntegerTy() &&
743 "Allocation array size is not an integer!");
745 return Amt;
748 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
749 const Twine &Name, Instruction *InsertBefore)
750 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
751 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
752 setAlignment(0);
753 assert(!Ty->isVoidTy() && "Cannot allocate void!");
754 setName(Name);
757 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
758 const Twine &Name, BasicBlock *InsertAtEnd)
759 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
760 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
761 setAlignment(0);
762 assert(!Ty->isVoidTy() && "Cannot allocate void!");
763 setName(Name);
766 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
767 Instruction *InsertBefore)
768 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
769 getAISize(Ty->getContext(), 0), InsertBefore) {
770 setAlignment(0);
771 assert(!Ty->isVoidTy() && "Cannot allocate void!");
772 setName(Name);
775 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
776 BasicBlock *InsertAtEnd)
777 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
778 getAISize(Ty->getContext(), 0), InsertAtEnd) {
779 setAlignment(0);
780 assert(!Ty->isVoidTy() && "Cannot allocate void!");
781 setName(Name);
784 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
785 const Twine &Name, Instruction *InsertBefore)
786 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
787 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
788 setAlignment(Align);
789 assert(!Ty->isVoidTy() && "Cannot allocate void!");
790 setName(Name);
793 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
794 const Twine &Name, BasicBlock *InsertAtEnd)
795 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
796 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
797 setAlignment(Align);
798 assert(!Ty->isVoidTy() && "Cannot allocate void!");
799 setName(Name);
802 // Out of line virtual method, so the vtable, etc has a home.
803 AllocaInst::~AllocaInst() {
806 void AllocaInst::setAlignment(unsigned Align) {
807 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
808 assert(Align <= MaximumAlignment &&
809 "Alignment is greater than MaximumAlignment!");
810 setInstructionSubclassData(Log2_32(Align) + 1);
811 assert(getAlignment() == Align && "Alignment representation error!");
814 bool AllocaInst::isArrayAllocation() const {
815 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
816 return !CI->isOne();
817 return true;
820 const Type *AllocaInst::getAllocatedType() const {
821 return getType()->getElementType();
824 /// isStaticAlloca - Return true if this alloca is in the entry block of the
825 /// function and is a constant size. If so, the code generator will fold it
826 /// into the prolog/epilog code, so it is basically free.
827 bool AllocaInst::isStaticAlloca() const {
828 // Must be constant size.
829 if (!isa<ConstantInt>(getArraySize())) return false;
831 // Must be in the entry block.
832 const BasicBlock *Parent = getParent();
833 return Parent == &Parent->getParent()->front();
836 //===----------------------------------------------------------------------===//
837 // LoadInst Implementation
838 //===----------------------------------------------------------------------===//
840 void LoadInst::AssertOK() {
841 assert(getOperand(0)->getType()->isPointerTy() &&
842 "Ptr must have pointer type.");
845 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
846 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
847 Load, Ptr, InsertBef) {
848 setVolatile(false);
849 setAlignment(0);
850 AssertOK();
851 setName(Name);
854 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
855 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
856 Load, Ptr, InsertAE) {
857 setVolatile(false);
858 setAlignment(0);
859 AssertOK();
860 setName(Name);
863 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
864 Instruction *InsertBef)
865 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
866 Load, Ptr, InsertBef) {
867 setVolatile(isVolatile);
868 setAlignment(0);
869 AssertOK();
870 setName(Name);
873 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
874 unsigned Align, Instruction *InsertBef)
875 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
876 Load, Ptr, InsertBef) {
877 setVolatile(isVolatile);
878 setAlignment(Align);
879 AssertOK();
880 setName(Name);
883 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
884 unsigned Align, BasicBlock *InsertAE)
885 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
886 Load, Ptr, InsertAE) {
887 setVolatile(isVolatile);
888 setAlignment(Align);
889 AssertOK();
890 setName(Name);
893 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
894 BasicBlock *InsertAE)
895 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
896 Load, Ptr, InsertAE) {
897 setVolatile(isVolatile);
898 setAlignment(0);
899 AssertOK();
900 setName(Name);
905 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
906 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
907 Load, Ptr, InsertBef) {
908 setVolatile(false);
909 setAlignment(0);
910 AssertOK();
911 if (Name && Name[0]) setName(Name);
914 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
915 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
916 Load, Ptr, InsertAE) {
917 setVolatile(false);
918 setAlignment(0);
919 AssertOK();
920 if (Name && Name[0]) setName(Name);
923 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
924 Instruction *InsertBef)
925 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
926 Load, Ptr, InsertBef) {
927 setVolatile(isVolatile);
928 setAlignment(0);
929 AssertOK();
930 if (Name && Name[0]) setName(Name);
933 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
934 BasicBlock *InsertAE)
935 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
936 Load, Ptr, InsertAE) {
937 setVolatile(isVolatile);
938 setAlignment(0);
939 AssertOK();
940 if (Name && Name[0]) setName(Name);
943 void LoadInst::setAlignment(unsigned Align) {
944 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
945 assert(Align <= MaximumAlignment &&
946 "Alignment is greater than MaximumAlignment!");
947 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
948 ((Log2_32(Align)+1)<<1));
949 assert(getAlignment() == Align && "Alignment representation error!");
952 //===----------------------------------------------------------------------===//
953 // StoreInst Implementation
954 //===----------------------------------------------------------------------===//
956 void StoreInst::AssertOK() {
957 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
958 assert(getOperand(1)->getType()->isPointerTy() &&
959 "Ptr must have pointer type!");
960 assert(getOperand(0)->getType() ==
961 cast<PointerType>(getOperand(1)->getType())->getElementType()
962 && "Ptr must be a pointer to Val type!");
966 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
967 : Instruction(Type::getVoidTy(val->getContext()), Store,
968 OperandTraits<StoreInst>::op_begin(this),
969 OperandTraits<StoreInst>::operands(this),
970 InsertBefore) {
971 Op<0>() = val;
972 Op<1>() = addr;
973 setVolatile(false);
974 setAlignment(0);
975 AssertOK();
978 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
979 : Instruction(Type::getVoidTy(val->getContext()), Store,
980 OperandTraits<StoreInst>::op_begin(this),
981 OperandTraits<StoreInst>::operands(this),
982 InsertAtEnd) {
983 Op<0>() = val;
984 Op<1>() = addr;
985 setVolatile(false);
986 setAlignment(0);
987 AssertOK();
990 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
991 Instruction *InsertBefore)
992 : Instruction(Type::getVoidTy(val->getContext()), Store,
993 OperandTraits<StoreInst>::op_begin(this),
994 OperandTraits<StoreInst>::operands(this),
995 InsertBefore) {
996 Op<0>() = val;
997 Op<1>() = addr;
998 setVolatile(isVolatile);
999 setAlignment(0);
1000 AssertOK();
1003 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1004 unsigned Align, Instruction *InsertBefore)
1005 : Instruction(Type::getVoidTy(val->getContext()), Store,
1006 OperandTraits<StoreInst>::op_begin(this),
1007 OperandTraits<StoreInst>::operands(this),
1008 InsertBefore) {
1009 Op<0>() = val;
1010 Op<1>() = addr;
1011 setVolatile(isVolatile);
1012 setAlignment(Align);
1013 AssertOK();
1016 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1017 unsigned Align, BasicBlock *InsertAtEnd)
1018 : Instruction(Type::getVoidTy(val->getContext()), Store,
1019 OperandTraits<StoreInst>::op_begin(this),
1020 OperandTraits<StoreInst>::operands(this),
1021 InsertAtEnd) {
1022 Op<0>() = val;
1023 Op<1>() = addr;
1024 setVolatile(isVolatile);
1025 setAlignment(Align);
1026 AssertOK();
1029 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1030 BasicBlock *InsertAtEnd)
1031 : Instruction(Type::getVoidTy(val->getContext()), Store,
1032 OperandTraits<StoreInst>::op_begin(this),
1033 OperandTraits<StoreInst>::operands(this),
1034 InsertAtEnd) {
1035 Op<0>() = val;
1036 Op<1>() = addr;
1037 setVolatile(isVolatile);
1038 setAlignment(0);
1039 AssertOK();
1042 void StoreInst::setAlignment(unsigned Align) {
1043 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1044 assert(Align <= MaximumAlignment &&
1045 "Alignment is greater than MaximumAlignment!");
1046 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1047 ((Log2_32(Align)+1) << 1));
1048 assert(getAlignment() == Align && "Alignment representation error!");
1051 //===----------------------------------------------------------------------===//
1052 // GetElementPtrInst Implementation
1053 //===----------------------------------------------------------------------===//
1055 static unsigned retrieveAddrSpace(const Value *Val) {
1056 return cast<PointerType>(Val->getType())->getAddressSpace();
1059 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1060 const Twine &Name) {
1061 assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1062 Use *OL = OperandList;
1063 OL[0] = Ptr;
1065 for (unsigned i = 0; i != NumIdx; ++i)
1066 OL[i+1] = Idx[i];
1068 setName(Name);
1071 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1072 assert(NumOperands == 2 && "NumOperands not initialized?");
1073 Use *OL = OperandList;
1074 OL[0] = Ptr;
1075 OL[1] = Idx;
1077 setName(Name);
1080 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1081 : Instruction(GEPI.getType(), GetElementPtr,
1082 OperandTraits<GetElementPtrInst>::op_end(this)
1083 - GEPI.getNumOperands(),
1084 GEPI.getNumOperands()) {
1085 Use *OL = OperandList;
1086 Use *GEPIOL = GEPI.OperandList;
1087 for (unsigned i = 0, E = NumOperands; i != E; ++i)
1088 OL[i] = GEPIOL[i];
1089 SubclassOptionalData = GEPI.SubclassOptionalData;
1092 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1093 const Twine &Name, Instruction *InBe)
1094 : Instruction(PointerType::get(
1095 checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1096 GetElementPtr,
1097 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1098 2, InBe) {
1099 init(Ptr, Idx, Name);
1102 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1103 const Twine &Name, BasicBlock *IAE)
1104 : Instruction(PointerType::get(
1105 checkType(getIndexedType(Ptr->getType(),Idx)),
1106 retrieveAddrSpace(Ptr)),
1107 GetElementPtr,
1108 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1109 2, IAE) {
1110 init(Ptr, Idx, Name);
1113 /// getIndexedType - Returns the type of the element that would be accessed with
1114 /// a gep instruction with the specified parameters.
1116 /// The Idxs pointer should point to a continuous piece of memory containing the
1117 /// indices, either as Value* or uint64_t.
1119 /// A null type is returned if the indices are invalid for the specified
1120 /// pointer type.
1122 template <typename IndexTy>
1123 static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1124 unsigned NumIdx) {
1125 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1126 if (!PTy) return 0; // Type isn't a pointer type!
1127 const Type *Agg = PTy->getElementType();
1129 // Handle the special case of the empty set index set, which is always valid.
1130 if (NumIdx == 0)
1131 return Agg;
1133 // If there is at least one index, the top level type must be sized, otherwise
1134 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1135 // that contain opaque types) under the assumption that it will be resolved to
1136 // a sane type later.
1137 if (!Agg->isSized() && !Agg->isAbstract())
1138 return 0;
1140 unsigned CurIdx = 1;
1141 for (; CurIdx != NumIdx; ++CurIdx) {
1142 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1143 if (!CT || CT->isPointerTy()) return 0;
1144 IndexTy Index = Idxs[CurIdx];
1145 if (!CT->indexValid(Index)) return 0;
1146 Agg = CT->getTypeAtIndex(Index);
1148 // If the new type forwards to another type, then it is in the middle
1149 // of being refined to another type (and hence, may have dropped all
1150 // references to what it was using before). So, use the new forwarded
1151 // type.
1152 if (const Type *Ty = Agg->getForwardedType())
1153 Agg = Ty;
1155 return CurIdx == NumIdx ? Agg : 0;
1158 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1159 Value* const *Idxs,
1160 unsigned NumIdx) {
1161 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1164 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1165 Constant* const *Idxs,
1166 unsigned NumIdx) {
1167 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1170 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1171 uint64_t const *Idxs,
1172 unsigned NumIdx) {
1173 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1176 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1177 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1178 if (!PTy) return 0; // Type isn't a pointer type!
1180 // Check the pointer index.
1181 if (!PTy->indexValid(Idx)) return 0;
1183 return PTy->getElementType();
1187 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1188 /// zeros. If so, the result pointer and the first operand have the same
1189 /// value, just potentially different types.
1190 bool GetElementPtrInst::hasAllZeroIndices() const {
1191 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1192 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1193 if (!CI->isZero()) return false;
1194 } else {
1195 return false;
1198 return true;
1201 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1202 /// constant integers. If so, the result pointer and the first operand have
1203 /// a constant offset between them.
1204 bool GetElementPtrInst::hasAllConstantIndices() const {
1205 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1206 if (!isa<ConstantInt>(getOperand(i)))
1207 return false;
1209 return true;
1212 void GetElementPtrInst::setIsInBounds(bool B) {
1213 cast<GEPOperator>(this)->setIsInBounds(B);
1216 bool GetElementPtrInst::isInBounds() const {
1217 return cast<GEPOperator>(this)->isInBounds();
1220 //===----------------------------------------------------------------------===//
1221 // ExtractElementInst Implementation
1222 //===----------------------------------------------------------------------===//
1224 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1225 const Twine &Name,
1226 Instruction *InsertBef)
1227 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1228 ExtractElement,
1229 OperandTraits<ExtractElementInst>::op_begin(this),
1230 2, InsertBef) {
1231 assert(isValidOperands(Val, Index) &&
1232 "Invalid extractelement instruction operands!");
1233 Op<0>() = Val;
1234 Op<1>() = Index;
1235 setName(Name);
1238 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1239 const Twine &Name,
1240 BasicBlock *InsertAE)
1241 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1242 ExtractElement,
1243 OperandTraits<ExtractElementInst>::op_begin(this),
1244 2, InsertAE) {
1245 assert(isValidOperands(Val, Index) &&
1246 "Invalid extractelement instruction operands!");
1248 Op<0>() = Val;
1249 Op<1>() = Index;
1250 setName(Name);
1254 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1255 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1256 return false;
1257 return true;
1261 //===----------------------------------------------------------------------===//
1262 // InsertElementInst Implementation
1263 //===----------------------------------------------------------------------===//
1265 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1266 const Twine &Name,
1267 Instruction *InsertBef)
1268 : Instruction(Vec->getType(), InsertElement,
1269 OperandTraits<InsertElementInst>::op_begin(this),
1270 3, InsertBef) {
1271 assert(isValidOperands(Vec, Elt, Index) &&
1272 "Invalid insertelement instruction operands!");
1273 Op<0>() = Vec;
1274 Op<1>() = Elt;
1275 Op<2>() = Index;
1276 setName(Name);
1279 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1280 const Twine &Name,
1281 BasicBlock *InsertAE)
1282 : Instruction(Vec->getType(), InsertElement,
1283 OperandTraits<InsertElementInst>::op_begin(this),
1284 3, InsertAE) {
1285 assert(isValidOperands(Vec, Elt, Index) &&
1286 "Invalid insertelement instruction operands!");
1288 Op<0>() = Vec;
1289 Op<1>() = Elt;
1290 Op<2>() = Index;
1291 setName(Name);
1294 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1295 const Value *Index) {
1296 if (!Vec->getType()->isVectorTy())
1297 return false; // First operand of insertelement must be vector type.
1299 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1300 return false;// Second operand of insertelement must be vector element type.
1302 if (!Index->getType()->isIntegerTy(32))
1303 return false; // Third operand of insertelement must be i32.
1304 return true;
1308 //===----------------------------------------------------------------------===//
1309 // ShuffleVectorInst Implementation
1310 //===----------------------------------------------------------------------===//
1312 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1313 const Twine &Name,
1314 Instruction *InsertBefore)
1315 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1316 cast<VectorType>(Mask->getType())->getNumElements()),
1317 ShuffleVector,
1318 OperandTraits<ShuffleVectorInst>::op_begin(this),
1319 OperandTraits<ShuffleVectorInst>::operands(this),
1320 InsertBefore) {
1321 assert(isValidOperands(V1, V2, Mask) &&
1322 "Invalid shuffle vector instruction operands!");
1323 Op<0>() = V1;
1324 Op<1>() = V2;
1325 Op<2>() = Mask;
1326 setName(Name);
1329 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1330 const Twine &Name,
1331 BasicBlock *InsertAtEnd)
1332 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1333 cast<VectorType>(Mask->getType())->getNumElements()),
1334 ShuffleVector,
1335 OperandTraits<ShuffleVectorInst>::op_begin(this),
1336 OperandTraits<ShuffleVectorInst>::operands(this),
1337 InsertAtEnd) {
1338 assert(isValidOperands(V1, V2, Mask) &&
1339 "Invalid shuffle vector instruction operands!");
1341 Op<0>() = V1;
1342 Op<1>() = V2;
1343 Op<2>() = Mask;
1344 setName(Name);
1347 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1348 const Value *Mask) {
1349 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1350 return false;
1352 const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1353 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1354 return false;
1356 // Check to see if Mask is valid.
1357 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1358 const VectorType *VTy = cast<VectorType>(V1->getType());
1359 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1360 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1361 if (CI->uge(VTy->getNumElements()*2))
1362 return false;
1363 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1364 return false;
1368 else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1369 return false;
1371 return true;
1374 /// getMaskValue - Return the index from the shuffle mask for the specified
1375 /// output result. This is either -1 if the element is undef or a number less
1376 /// than 2*numelements.
1377 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1378 const Constant *Mask = cast<Constant>(getOperand(2));
1379 if (isa<UndefValue>(Mask)) return -1;
1380 if (isa<ConstantAggregateZero>(Mask)) return 0;
1381 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1382 assert(i < MaskCV->getNumOperands() && "Index out of range");
1384 if (isa<UndefValue>(MaskCV->getOperand(i)))
1385 return -1;
1386 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1389 //===----------------------------------------------------------------------===//
1390 // InsertValueInst Class
1391 //===----------------------------------------------------------------------===//
1393 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1394 unsigned NumIdx, const Twine &Name) {
1395 assert(NumOperands == 2 && "NumOperands not initialized?");
1396 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx, Idx + NumIdx) ==
1397 Val->getType() && "Inserted value must match indexed type!");
1398 Op<0>() = Agg;
1399 Op<1>() = Val;
1401 Indices.append(Idx, Idx + NumIdx);
1402 setName(Name);
1405 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1406 const Twine &Name) {
1407 assert(NumOperands == 2 && "NumOperands not initialized?");
1408 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx) == Val->getType()
1409 && "Inserted value must match indexed type!");
1410 Op<0>() = Agg;
1411 Op<1>() = Val;
1413 Indices.push_back(Idx);
1414 setName(Name);
1417 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1418 : Instruction(IVI.getType(), InsertValue,
1419 OperandTraits<InsertValueInst>::op_begin(this), 2),
1420 Indices(IVI.Indices) {
1421 Op<0>() = IVI.getOperand(0);
1422 Op<1>() = IVI.getOperand(1);
1423 SubclassOptionalData = IVI.SubclassOptionalData;
1426 InsertValueInst::InsertValueInst(Value *Agg,
1427 Value *Val,
1428 unsigned Idx,
1429 const Twine &Name,
1430 Instruction *InsertBefore)
1431 : Instruction(Agg->getType(), InsertValue,
1432 OperandTraits<InsertValueInst>::op_begin(this),
1433 2, InsertBefore) {
1434 init(Agg, Val, Idx, Name);
1437 InsertValueInst::InsertValueInst(Value *Agg,
1438 Value *Val,
1439 unsigned Idx,
1440 const Twine &Name,
1441 BasicBlock *InsertAtEnd)
1442 : Instruction(Agg->getType(), InsertValue,
1443 OperandTraits<InsertValueInst>::op_begin(this),
1444 2, InsertAtEnd) {
1445 init(Agg, Val, Idx, Name);
1448 //===----------------------------------------------------------------------===//
1449 // ExtractValueInst Class
1450 //===----------------------------------------------------------------------===//
1452 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1453 const Twine &Name) {
1454 assert(NumOperands == 1 && "NumOperands not initialized?");
1456 Indices.append(Idx, Idx + NumIdx);
1457 setName(Name);
1460 void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1461 assert(NumOperands == 1 && "NumOperands not initialized?");
1463 Indices.push_back(Idx);
1464 setName(Name);
1467 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1468 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1469 Indices(EVI.Indices) {
1470 SubclassOptionalData = EVI.SubclassOptionalData;
1473 // getIndexedType - Returns the type of the element that would be extracted
1474 // with an extractvalue instruction with the specified parameters.
1476 // A null type is returned if the indices are invalid for the specified
1477 // pointer type.
1479 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1480 const unsigned *Idxs,
1481 unsigned NumIdx) {
1482 for (unsigned CurIdx = 0; CurIdx != NumIdx; ++CurIdx) {
1483 unsigned Index = Idxs[CurIdx];
1484 // We can't use CompositeType::indexValid(Index) here.
1485 // indexValid() always returns true for arrays because getelementptr allows
1486 // out-of-bounds indices. Since we don't allow those for extractvalue and
1487 // insertvalue we need to check array indexing manually.
1488 // Since the only other types we can index into are struct types it's just
1489 // as easy to check those manually as well.
1490 if (const ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1491 if (Index >= AT->getNumElements())
1492 return 0;
1493 } else if (const StructType *ST = dyn_cast<StructType>(Agg)) {
1494 if (Index >= ST->getNumElements())
1495 return 0;
1496 } else {
1497 // Not a valid type to index into.
1498 return 0;
1501 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1503 // If the new type forwards to another type, then it is in the middle
1504 // of being refined to another type (and hence, may have dropped all
1505 // references to what it was using before). So, use the new forwarded
1506 // type.
1507 if (const Type *Ty = Agg->getForwardedType())
1508 Agg = Ty;
1510 return Agg;
1513 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1514 unsigned Idx) {
1515 return getIndexedType(Agg, &Idx, 1);
1518 //===----------------------------------------------------------------------===//
1519 // BinaryOperator Class
1520 //===----------------------------------------------------------------------===//
1522 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1523 const Type *Ty, const Twine &Name,
1524 Instruction *InsertBefore)
1525 : Instruction(Ty, iType,
1526 OperandTraits<BinaryOperator>::op_begin(this),
1527 OperandTraits<BinaryOperator>::operands(this),
1528 InsertBefore) {
1529 Op<0>() = S1;
1530 Op<1>() = S2;
1531 init(iType);
1532 setName(Name);
1535 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1536 const Type *Ty, const Twine &Name,
1537 BasicBlock *InsertAtEnd)
1538 : Instruction(Ty, iType,
1539 OperandTraits<BinaryOperator>::op_begin(this),
1540 OperandTraits<BinaryOperator>::operands(this),
1541 InsertAtEnd) {
1542 Op<0>() = S1;
1543 Op<1>() = S2;
1544 init(iType);
1545 setName(Name);
1549 void BinaryOperator::init(BinaryOps iType) {
1550 Value *LHS = getOperand(0), *RHS = getOperand(1);
1551 (void)LHS; (void)RHS; // Silence warnings.
1552 assert(LHS->getType() == RHS->getType() &&
1553 "Binary operator operand types must match!");
1554 #ifndef NDEBUG
1555 switch (iType) {
1556 case Add: case Sub:
1557 case Mul:
1558 assert(getType() == LHS->getType() &&
1559 "Arithmetic operation should return same type as operands!");
1560 assert(getType()->isIntOrIntVectorTy() &&
1561 "Tried to create an integer operation on a non-integer type!");
1562 break;
1563 case FAdd: case FSub:
1564 case FMul:
1565 assert(getType() == LHS->getType() &&
1566 "Arithmetic operation should return same type as operands!");
1567 assert(getType()->isFPOrFPVectorTy() &&
1568 "Tried to create a floating-point operation on a "
1569 "non-floating-point type!");
1570 break;
1571 case UDiv:
1572 case SDiv:
1573 assert(getType() == LHS->getType() &&
1574 "Arithmetic operation should return same type as operands!");
1575 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1576 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1577 "Incorrect operand type (not integer) for S/UDIV");
1578 break;
1579 case FDiv:
1580 assert(getType() == LHS->getType() &&
1581 "Arithmetic operation should return same type as operands!");
1582 assert(getType()->isFPOrFPVectorTy() &&
1583 "Incorrect operand type (not floating point) for FDIV");
1584 break;
1585 case URem:
1586 case SRem:
1587 assert(getType() == LHS->getType() &&
1588 "Arithmetic operation should return same type as operands!");
1589 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1590 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1591 "Incorrect operand type (not integer) for S/UREM");
1592 break;
1593 case FRem:
1594 assert(getType() == LHS->getType() &&
1595 "Arithmetic operation should return same type as operands!");
1596 assert(getType()->isFPOrFPVectorTy() &&
1597 "Incorrect operand type (not floating point) for FREM");
1598 break;
1599 case Shl:
1600 case LShr:
1601 case AShr:
1602 assert(getType() == LHS->getType() &&
1603 "Shift operation should return same type as operands!");
1604 assert((getType()->isIntegerTy() ||
1605 (getType()->isVectorTy() &&
1606 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1607 "Tried to create a shift operation on a non-integral type!");
1608 break;
1609 case And: case Or:
1610 case Xor:
1611 assert(getType() == LHS->getType() &&
1612 "Logical operation should return same type as operands!");
1613 assert((getType()->isIntegerTy() ||
1614 (getType()->isVectorTy() &&
1615 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1616 "Tried to create a logical operation on a non-integral type!");
1617 break;
1618 default:
1619 break;
1621 #endif
1624 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1625 const Twine &Name,
1626 Instruction *InsertBefore) {
1627 assert(S1->getType() == S2->getType() &&
1628 "Cannot create binary operator with two operands of differing type!");
1629 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1632 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1633 const Twine &Name,
1634 BasicBlock *InsertAtEnd) {
1635 BinaryOperator *Res = Create(Op, S1, S2, Name);
1636 InsertAtEnd->getInstList().push_back(Res);
1637 return Res;
1640 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1641 Instruction *InsertBefore) {
1642 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1643 return new BinaryOperator(Instruction::Sub,
1644 zero, Op,
1645 Op->getType(), Name, InsertBefore);
1648 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1649 BasicBlock *InsertAtEnd) {
1650 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1651 return new BinaryOperator(Instruction::Sub,
1652 zero, Op,
1653 Op->getType(), Name, InsertAtEnd);
1656 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1657 Instruction *InsertBefore) {
1658 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1659 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1662 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1663 BasicBlock *InsertAtEnd) {
1664 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1665 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1668 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1669 Instruction *InsertBefore) {
1670 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1671 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1674 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1675 BasicBlock *InsertAtEnd) {
1676 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1677 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1680 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1681 Instruction *InsertBefore) {
1682 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1683 return new BinaryOperator(Instruction::FSub,
1684 zero, Op,
1685 Op->getType(), Name, InsertBefore);
1688 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1689 BasicBlock *InsertAtEnd) {
1690 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1691 return new BinaryOperator(Instruction::FSub,
1692 zero, Op,
1693 Op->getType(), Name, InsertAtEnd);
1696 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1697 Instruction *InsertBefore) {
1698 Constant *C;
1699 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1700 C = Constant::getAllOnesValue(PTy->getElementType());
1701 C = ConstantVector::get(
1702 std::vector<Constant*>(PTy->getNumElements(), C));
1703 } else {
1704 C = Constant::getAllOnesValue(Op->getType());
1707 return new BinaryOperator(Instruction::Xor, Op, C,
1708 Op->getType(), Name, InsertBefore);
1711 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1712 BasicBlock *InsertAtEnd) {
1713 Constant *AllOnes;
1714 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1715 // Create a vector of all ones values.
1716 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1717 AllOnes = ConstantVector::get(
1718 std::vector<Constant*>(PTy->getNumElements(), Elt));
1719 } else {
1720 AllOnes = Constant::getAllOnesValue(Op->getType());
1723 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1724 Op->getType(), Name, InsertAtEnd);
1728 // isConstantAllOnes - Helper function for several functions below
1729 static inline bool isConstantAllOnes(const Value *V) {
1730 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1731 return CI->isAllOnesValue();
1732 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1733 return CV->isAllOnesValue();
1734 return false;
1737 bool BinaryOperator::isNeg(const Value *V) {
1738 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1739 if (Bop->getOpcode() == Instruction::Sub)
1740 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1741 return C->isNegativeZeroValue();
1742 return false;
1745 bool BinaryOperator::isFNeg(const Value *V) {
1746 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1747 if (Bop->getOpcode() == Instruction::FSub)
1748 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1749 return C->isNegativeZeroValue();
1750 return false;
1753 bool BinaryOperator::isNot(const Value *V) {
1754 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1755 return (Bop->getOpcode() == Instruction::Xor &&
1756 (isConstantAllOnes(Bop->getOperand(1)) ||
1757 isConstantAllOnes(Bop->getOperand(0))));
1758 return false;
1761 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1762 return cast<BinaryOperator>(BinOp)->getOperand(1);
1765 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1766 return getNegArgument(const_cast<Value*>(BinOp));
1769 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1770 return cast<BinaryOperator>(BinOp)->getOperand(1);
1773 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1774 return getFNegArgument(const_cast<Value*>(BinOp));
1777 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1778 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1779 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1780 Value *Op0 = BO->getOperand(0);
1781 Value *Op1 = BO->getOperand(1);
1782 if (isConstantAllOnes(Op0)) return Op1;
1784 assert(isConstantAllOnes(Op1));
1785 return Op0;
1788 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1789 return getNotArgument(const_cast<Value*>(BinOp));
1793 // swapOperands - Exchange the two operands to this instruction. This
1794 // instruction is safe to use on any binary instruction and does not
1795 // modify the semantics of the instruction. If the instruction is
1796 // order dependent (SetLT f.e.) the opcode is changed.
1798 bool BinaryOperator::swapOperands() {
1799 if (!isCommutative())
1800 return true; // Can't commute operands
1801 Op<0>().swap(Op<1>());
1802 return false;
1805 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1806 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1809 void BinaryOperator::setHasNoSignedWrap(bool b) {
1810 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1813 void BinaryOperator::setIsExact(bool b) {
1814 cast<PossiblyExactOperator>(this)->setIsExact(b);
1817 bool BinaryOperator::hasNoUnsignedWrap() const {
1818 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1821 bool BinaryOperator::hasNoSignedWrap() const {
1822 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1825 bool BinaryOperator::isExact() const {
1826 return cast<PossiblyExactOperator>(this)->isExact();
1829 //===----------------------------------------------------------------------===//
1830 // CastInst Class
1831 //===----------------------------------------------------------------------===//
1833 // Just determine if this cast only deals with integral->integral conversion.
1834 bool CastInst::isIntegerCast() const {
1835 switch (getOpcode()) {
1836 default: return false;
1837 case Instruction::ZExt:
1838 case Instruction::SExt:
1839 case Instruction::Trunc:
1840 return true;
1841 case Instruction::BitCast:
1842 return getOperand(0)->getType()->isIntegerTy() &&
1843 getType()->isIntegerTy();
1847 bool CastInst::isLosslessCast() const {
1848 // Only BitCast can be lossless, exit fast if we're not BitCast
1849 if (getOpcode() != Instruction::BitCast)
1850 return false;
1852 // Identity cast is always lossless
1853 const Type* SrcTy = getOperand(0)->getType();
1854 const Type* DstTy = getType();
1855 if (SrcTy == DstTy)
1856 return true;
1858 // Pointer to pointer is always lossless.
1859 if (SrcTy->isPointerTy())
1860 return DstTy->isPointerTy();
1861 return false; // Other types have no identity values
1864 /// This function determines if the CastInst does not require any bits to be
1865 /// changed in order to effect the cast. Essentially, it identifies cases where
1866 /// no code gen is necessary for the cast, hence the name no-op cast. For
1867 /// example, the following are all no-op casts:
1868 /// # bitcast i32* %x to i8*
1869 /// # bitcast <2 x i32> %x to <4 x i16>
1870 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1871 /// @brief Determine if the described cast is a no-op.
1872 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
1873 const Type *SrcTy,
1874 const Type *DestTy,
1875 const Type *IntPtrTy) {
1876 switch (Opcode) {
1877 default:
1878 assert(!"Invalid CastOp");
1879 case Instruction::Trunc:
1880 case Instruction::ZExt:
1881 case Instruction::SExt:
1882 case Instruction::FPTrunc:
1883 case Instruction::FPExt:
1884 case Instruction::UIToFP:
1885 case Instruction::SIToFP:
1886 case Instruction::FPToUI:
1887 case Instruction::FPToSI:
1888 return false; // These always modify bits
1889 case Instruction::BitCast:
1890 return true; // BitCast never modifies bits.
1891 case Instruction::PtrToInt:
1892 return IntPtrTy->getScalarSizeInBits() ==
1893 DestTy->getScalarSizeInBits();
1894 case Instruction::IntToPtr:
1895 return IntPtrTy->getScalarSizeInBits() ==
1896 SrcTy->getScalarSizeInBits();
1900 /// @brief Determine if a cast is a no-op.
1901 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1902 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
1905 /// This function determines if a pair of casts can be eliminated and what
1906 /// opcode should be used in the elimination. This assumes that there are two
1907 /// instructions like this:
1908 /// * %F = firstOpcode SrcTy %x to MidTy
1909 /// * %S = secondOpcode MidTy %F to DstTy
1910 /// The function returns a resultOpcode so these two casts can be replaced with:
1911 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1912 /// If no such cast is permited, the function returns 0.
1913 unsigned CastInst::isEliminableCastPair(
1914 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1915 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1917 // Define the 144 possibilities for these two cast instructions. The values
1918 // in this matrix determine what to do in a given situation and select the
1919 // case in the switch below. The rows correspond to firstOp, the columns
1920 // correspond to secondOp. In looking at the table below, keep in mind
1921 // the following cast properties:
1923 // Size Compare Source Destination
1924 // Operator Src ? Size Type Sign Type Sign
1925 // -------- ------------ ------------------- ---------------------
1926 // TRUNC > Integer Any Integral Any
1927 // ZEXT < Integral Unsigned Integer Any
1928 // SEXT < Integral Signed Integer Any
1929 // FPTOUI n/a FloatPt n/a Integral Unsigned
1930 // FPTOSI n/a FloatPt n/a Integral Signed
1931 // UITOFP n/a Integral Unsigned FloatPt n/a
1932 // SITOFP n/a Integral Signed FloatPt n/a
1933 // FPTRUNC > FloatPt n/a FloatPt n/a
1934 // FPEXT < FloatPt n/a FloatPt n/a
1935 // PTRTOINT n/a Pointer n/a Integral Unsigned
1936 // INTTOPTR n/a Integral Unsigned Pointer n/a
1937 // BITCAST = FirstClass n/a FirstClass n/a
1939 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1940 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1941 // into "fptoui double to i64", but this loses information about the range
1942 // of the produced value (we no longer know the top-part is all zeros).
1943 // Further this conversion is often much more expensive for typical hardware,
1944 // and causes issues when building libgcc. We disallow fptosi+sext for the
1945 // same reason.
1946 const unsigned numCastOps =
1947 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1948 static const uint8_t CastResults[numCastOps][numCastOps] = {
1949 // T F F U S F F P I B -+
1950 // R Z S P P I I T P 2 N T |
1951 // U E E 2 2 2 2 R E I T C +- secondOp
1952 // N X X U S F F N X N 2 V |
1953 // C T T I I P P C T T P T -+
1954 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1955 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1956 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1957 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1958 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1959 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1960 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1961 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1962 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1963 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1964 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1965 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1968 // If either of the casts are a bitcast from scalar to vector, disallow the
1969 // merging.
1970 if ((firstOp == Instruction::BitCast &&
1971 isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
1972 (secondOp == Instruction::BitCast &&
1973 isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
1974 return 0; // Disallowed
1976 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1977 [secondOp-Instruction::CastOpsBegin];
1978 switch (ElimCase) {
1979 case 0:
1980 // categorically disallowed
1981 return 0;
1982 case 1:
1983 // allowed, use first cast's opcode
1984 return firstOp;
1985 case 2:
1986 // allowed, use second cast's opcode
1987 return secondOp;
1988 case 3:
1989 // no-op cast in second op implies firstOp as long as the DestTy
1990 // is integer and we are not converting between a vector and a
1991 // non vector type.
1992 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
1993 return firstOp;
1994 return 0;
1995 case 4:
1996 // no-op cast in second op implies firstOp as long as the DestTy
1997 // is floating point.
1998 if (DstTy->isFloatingPointTy())
1999 return firstOp;
2000 return 0;
2001 case 5:
2002 // no-op cast in first op implies secondOp as long as the SrcTy
2003 // is an integer.
2004 if (SrcTy->isIntegerTy())
2005 return secondOp;
2006 return 0;
2007 case 6:
2008 // no-op cast in first op implies secondOp as long as the SrcTy
2009 // is a floating point.
2010 if (SrcTy->isFloatingPointTy())
2011 return secondOp;
2012 return 0;
2013 case 7: {
2014 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2015 if (!IntPtrTy)
2016 return 0;
2017 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2018 unsigned MidSize = MidTy->getScalarSizeInBits();
2019 if (MidSize >= PtrSize)
2020 return Instruction::BitCast;
2021 return 0;
2023 case 8: {
2024 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2025 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2026 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2027 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2028 unsigned DstSize = DstTy->getScalarSizeInBits();
2029 if (SrcSize == DstSize)
2030 return Instruction::BitCast;
2031 else if (SrcSize < DstSize)
2032 return firstOp;
2033 return secondOp;
2035 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2036 return Instruction::ZExt;
2037 case 10:
2038 // fpext followed by ftrunc is allowed if the bit size returned to is
2039 // the same as the original, in which case its just a bitcast
2040 if (SrcTy == DstTy)
2041 return Instruction::BitCast;
2042 return 0; // If the types are not the same we can't eliminate it.
2043 case 11:
2044 // bitcast followed by ptrtoint is allowed as long as the bitcast
2045 // is a pointer to pointer cast.
2046 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2047 return secondOp;
2048 return 0;
2049 case 12:
2050 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2051 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2052 return firstOp;
2053 return 0;
2054 case 13: {
2055 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2056 if (!IntPtrTy)
2057 return 0;
2058 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2059 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2060 unsigned DstSize = DstTy->getScalarSizeInBits();
2061 if (SrcSize <= PtrSize && SrcSize == DstSize)
2062 return Instruction::BitCast;
2063 return 0;
2065 case 99:
2066 // cast combination can't happen (error in input). This is for all cases
2067 // where the MidTy is not the same for the two cast instructions.
2068 assert(!"Invalid Cast Combination");
2069 return 0;
2070 default:
2071 assert(!"Error in CastResults table!!!");
2072 return 0;
2074 return 0;
2077 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2078 const Twine &Name, Instruction *InsertBefore) {
2079 // Construct and return the appropriate CastInst subclass
2080 switch (op) {
2081 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2082 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2083 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2084 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2085 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2086 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2087 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2088 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2089 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2090 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2091 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2092 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2093 default:
2094 assert(!"Invalid opcode provided");
2096 return 0;
2099 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2100 const Twine &Name, BasicBlock *InsertAtEnd) {
2101 // Construct and return the appropriate CastInst subclass
2102 switch (op) {
2103 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2104 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2105 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2106 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2107 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2108 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2109 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2110 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2111 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2112 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2113 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2114 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2115 default:
2116 assert(!"Invalid opcode provided");
2118 return 0;
2121 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2122 const Twine &Name,
2123 Instruction *InsertBefore) {
2124 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2125 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2126 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2129 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2130 const Twine &Name,
2131 BasicBlock *InsertAtEnd) {
2132 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2133 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2134 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2137 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2138 const Twine &Name,
2139 Instruction *InsertBefore) {
2140 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2141 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2142 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2145 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2146 const Twine &Name,
2147 BasicBlock *InsertAtEnd) {
2148 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2149 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2150 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2153 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2154 const Twine &Name,
2155 Instruction *InsertBefore) {
2156 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2157 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2158 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2161 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2162 const Twine &Name,
2163 BasicBlock *InsertAtEnd) {
2164 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2165 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2166 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2169 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2170 const Twine &Name,
2171 BasicBlock *InsertAtEnd) {
2172 assert(S->getType()->isPointerTy() && "Invalid cast");
2173 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2174 "Invalid cast");
2176 if (Ty->isIntegerTy())
2177 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2178 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2181 /// @brief Create a BitCast or a PtrToInt cast instruction
2182 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2183 const Twine &Name,
2184 Instruction *InsertBefore) {
2185 assert(S->getType()->isPointerTy() && "Invalid cast");
2186 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2187 "Invalid cast");
2189 if (Ty->isIntegerTy())
2190 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2191 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2194 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2195 bool isSigned, const Twine &Name,
2196 Instruction *InsertBefore) {
2197 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2198 "Invalid integer cast");
2199 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2200 unsigned DstBits = Ty->getScalarSizeInBits();
2201 Instruction::CastOps opcode =
2202 (SrcBits == DstBits ? Instruction::BitCast :
2203 (SrcBits > DstBits ? Instruction::Trunc :
2204 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2205 return Create(opcode, C, Ty, Name, InsertBefore);
2208 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2209 bool isSigned, const Twine &Name,
2210 BasicBlock *InsertAtEnd) {
2211 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2212 "Invalid cast");
2213 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2214 unsigned DstBits = Ty->getScalarSizeInBits();
2215 Instruction::CastOps opcode =
2216 (SrcBits == DstBits ? Instruction::BitCast :
2217 (SrcBits > DstBits ? Instruction::Trunc :
2218 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2219 return Create(opcode, C, Ty, Name, InsertAtEnd);
2222 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2223 const Twine &Name,
2224 Instruction *InsertBefore) {
2225 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2226 "Invalid cast");
2227 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2228 unsigned DstBits = Ty->getScalarSizeInBits();
2229 Instruction::CastOps opcode =
2230 (SrcBits == DstBits ? Instruction::BitCast :
2231 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2232 return Create(opcode, C, Ty, Name, InsertBefore);
2235 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2236 const Twine &Name,
2237 BasicBlock *InsertAtEnd) {
2238 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2239 "Invalid cast");
2240 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2241 unsigned DstBits = Ty->getScalarSizeInBits();
2242 Instruction::CastOps opcode =
2243 (SrcBits == DstBits ? Instruction::BitCast :
2244 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2245 return Create(opcode, C, Ty, Name, InsertAtEnd);
2248 // Check whether it is valid to call getCastOpcode for these types.
2249 // This routine must be kept in sync with getCastOpcode.
2250 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2251 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2252 return false;
2254 if (SrcTy == DestTy)
2255 return true;
2257 // Get the bit sizes, we'll need these
2258 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2259 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2261 // Run through the possibilities ...
2262 if (DestTy->isIntegerTy()) { // Casting to integral
2263 if (SrcTy->isIntegerTy()) { // Casting from integral
2264 return true;
2265 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2266 return true;
2267 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2268 // Casting from vector
2269 return DestBits == PTy->getBitWidth();
2270 } else { // Casting from something else
2271 return SrcTy->isPointerTy();
2273 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2274 if (SrcTy->isIntegerTy()) { // Casting from integral
2275 return true;
2276 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2277 return true;
2278 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2279 // Casting from vector
2280 return DestBits == PTy->getBitWidth();
2281 } else { // Casting from something else
2282 return false;
2284 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2285 // Casting to vector
2286 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2287 // Casting from vector
2288 return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2289 } else if (DestPTy->getBitWidth() == SrcBits) {
2290 return true; // float/int -> vector
2291 } else if (SrcTy->isX86_MMXTy()) {
2292 return DestPTy->getBitWidth() == 64; // MMX to 64-bit vector
2293 } else {
2294 return false;
2296 } else if (DestTy->isPointerTy()) { // Casting to pointer
2297 if (SrcTy->isPointerTy()) { // Casting from pointer
2298 return true;
2299 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2300 return true;
2301 } else { // Casting from something else
2302 return false;
2304 } else if (DestTy->isX86_MMXTy()) {
2305 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2306 return SrcPTy->getBitWidth() == 64; // 64-bit vector to MMX
2307 } else {
2308 return false;
2310 } else { // Casting to something else
2311 return false;
2315 // Provide a way to get a "cast" where the cast opcode is inferred from the
2316 // types and size of the operand. This, basically, is a parallel of the
2317 // logic in the castIsValid function below. This axiom should hold:
2318 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2319 // should not assert in castIsValid. In other words, this produces a "correct"
2320 // casting opcode for the arguments passed to it.
2321 // This routine must be kept in sync with isCastable.
2322 Instruction::CastOps
2323 CastInst::getCastOpcode(
2324 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2325 // Get the bit sizes, we'll need these
2326 const Type *SrcTy = Src->getType();
2327 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2328 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2330 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2331 "Only first class types are castable!");
2333 // Run through the possibilities ...
2334 if (DestTy->isIntegerTy()) { // Casting to integral
2335 if (SrcTy->isIntegerTy()) { // Casting from integral
2336 if (DestBits < SrcBits)
2337 return Trunc; // int -> smaller int
2338 else if (DestBits > SrcBits) { // its an extension
2339 if (SrcIsSigned)
2340 return SExt; // signed -> SEXT
2341 else
2342 return ZExt; // unsigned -> ZEXT
2343 } else {
2344 return BitCast; // Same size, No-op cast
2346 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2347 if (DestIsSigned)
2348 return FPToSI; // FP -> sint
2349 else
2350 return FPToUI; // FP -> uint
2351 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2352 assert(DestBits == PTy->getBitWidth() &&
2353 "Casting vector to integer of different width");
2354 PTy = NULL;
2355 return BitCast; // Same size, no-op cast
2356 } else {
2357 assert(SrcTy->isPointerTy() &&
2358 "Casting from a value that is not first-class type");
2359 return PtrToInt; // ptr -> int
2361 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2362 if (SrcTy->isIntegerTy()) { // Casting from integral
2363 if (SrcIsSigned)
2364 return SIToFP; // sint -> FP
2365 else
2366 return UIToFP; // uint -> FP
2367 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2368 if (DestBits < SrcBits) {
2369 return FPTrunc; // FP -> smaller FP
2370 } else if (DestBits > SrcBits) {
2371 return FPExt; // FP -> larger FP
2372 } else {
2373 return BitCast; // same size, no-op cast
2375 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2376 assert(DestBits == PTy->getBitWidth() &&
2377 "Casting vector to floating point of different width");
2378 PTy = NULL;
2379 return BitCast; // same size, no-op cast
2380 } else {
2381 llvm_unreachable("Casting pointer or non-first class to float");
2383 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2384 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2385 assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2386 "Casting vector to vector of different widths");
2387 SrcPTy = NULL;
2388 return BitCast; // vector -> vector
2389 } else if (DestPTy->getBitWidth() == SrcBits) {
2390 return BitCast; // float/int -> vector
2391 } else if (SrcTy->isX86_MMXTy()) {
2392 assert(DestPTy->getBitWidth()==64 &&
2393 "Casting X86_MMX to vector of wrong width");
2394 return BitCast; // MMX to 64-bit vector
2395 } else {
2396 assert(!"Illegal cast to vector (wrong type or size)");
2398 } else if (DestTy->isPointerTy()) {
2399 if (SrcTy->isPointerTy()) {
2400 return BitCast; // ptr -> ptr
2401 } else if (SrcTy->isIntegerTy()) {
2402 return IntToPtr; // int -> ptr
2403 } else {
2404 assert(!"Casting pointer to other than pointer or int");
2406 } else if (DestTy->isX86_MMXTy()) {
2407 if (isa<VectorType>(SrcTy)) {
2408 assert(cast<VectorType>(SrcTy)->getBitWidth() == 64 &&
2409 "Casting vector of wrong width to X86_MMX");
2410 return BitCast; // 64-bit vector to MMX
2411 } else {
2412 assert(!"Illegal cast to X86_MMX");
2414 } else {
2415 assert(!"Casting to type that is not first-class");
2418 // If we fall through to here we probably hit an assertion cast above
2419 // and assertions are not turned on. Anything we return is an error, so
2420 // BitCast is as good a choice as any.
2421 return BitCast;
2424 //===----------------------------------------------------------------------===//
2425 // CastInst SubClass Constructors
2426 //===----------------------------------------------------------------------===//
2428 /// Check that the construction parameters for a CastInst are correct. This
2429 /// could be broken out into the separate constructors but it is useful to have
2430 /// it in one place and to eliminate the redundant code for getting the sizes
2431 /// of the types involved.
2432 bool
2433 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2435 // Check for type sanity on the arguments
2436 const Type *SrcTy = S->getType();
2437 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2438 SrcTy->isAggregateType() || DstTy->isAggregateType())
2439 return false;
2441 // Get the size of the types in bits, we'll need this later
2442 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2443 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2445 // Switch on the opcode provided
2446 switch (op) {
2447 default: return false; // This is an input error
2448 case Instruction::Trunc:
2449 return SrcTy->isIntOrIntVectorTy() &&
2450 DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize;
2451 case Instruction::ZExt:
2452 return SrcTy->isIntOrIntVectorTy() &&
2453 DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2454 case Instruction::SExt:
2455 return SrcTy->isIntOrIntVectorTy() &&
2456 DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2457 case Instruction::FPTrunc:
2458 return SrcTy->isFPOrFPVectorTy() &&
2459 DstTy->isFPOrFPVectorTy() &&
2460 SrcBitSize > DstBitSize;
2461 case Instruction::FPExt:
2462 return SrcTy->isFPOrFPVectorTy() &&
2463 DstTy->isFPOrFPVectorTy() &&
2464 SrcBitSize < DstBitSize;
2465 case Instruction::UIToFP:
2466 case Instruction::SIToFP:
2467 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2468 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2469 return SVTy->getElementType()->isIntOrIntVectorTy() &&
2470 DVTy->getElementType()->isFPOrFPVectorTy() &&
2471 SVTy->getNumElements() == DVTy->getNumElements();
2474 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy();
2475 case Instruction::FPToUI:
2476 case Instruction::FPToSI:
2477 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2478 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2479 return SVTy->getElementType()->isFPOrFPVectorTy() &&
2480 DVTy->getElementType()->isIntOrIntVectorTy() &&
2481 SVTy->getNumElements() == DVTy->getNumElements();
2484 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy();
2485 case Instruction::PtrToInt:
2486 return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2487 case Instruction::IntToPtr:
2488 return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2489 case Instruction::BitCast:
2490 // BitCast implies a no-op cast of type only. No bits change.
2491 // However, you can't cast pointers to anything but pointers.
2492 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2493 return false;
2495 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2496 // these cases, the cast is okay if the source and destination bit widths
2497 // are identical.
2498 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2502 TruncInst::TruncInst(
2503 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2504 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2505 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2508 TruncInst::TruncInst(
2509 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2510 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2511 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2514 ZExtInst::ZExtInst(
2515 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2516 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2517 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2520 ZExtInst::ZExtInst(
2521 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2522 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2523 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2525 SExtInst::SExtInst(
2526 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2527 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2528 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2531 SExtInst::SExtInst(
2532 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2533 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2534 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2537 FPTruncInst::FPTruncInst(
2538 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2539 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2540 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2543 FPTruncInst::FPTruncInst(
2544 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2545 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2546 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2549 FPExtInst::FPExtInst(
2550 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2551 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2552 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2555 FPExtInst::FPExtInst(
2556 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2557 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2558 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2561 UIToFPInst::UIToFPInst(
2562 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2563 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2564 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2567 UIToFPInst::UIToFPInst(
2568 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2569 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2570 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2573 SIToFPInst::SIToFPInst(
2574 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2575 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2576 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2579 SIToFPInst::SIToFPInst(
2580 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2581 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2582 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2585 FPToUIInst::FPToUIInst(
2586 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2587 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2588 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2591 FPToUIInst::FPToUIInst(
2592 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2593 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2594 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2597 FPToSIInst::FPToSIInst(
2598 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2599 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2600 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2603 FPToSIInst::FPToSIInst(
2604 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2605 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2606 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2609 PtrToIntInst::PtrToIntInst(
2610 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2611 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2612 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2615 PtrToIntInst::PtrToIntInst(
2616 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2617 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2618 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2621 IntToPtrInst::IntToPtrInst(
2622 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2623 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2624 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2627 IntToPtrInst::IntToPtrInst(
2628 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2629 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2630 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2633 BitCastInst::BitCastInst(
2634 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2635 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2636 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2639 BitCastInst::BitCastInst(
2640 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2641 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2642 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2645 //===----------------------------------------------------------------------===//
2646 // CmpInst Classes
2647 //===----------------------------------------------------------------------===//
2649 void CmpInst::Anchor() const {}
2651 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2652 Value *LHS, Value *RHS, const Twine &Name,
2653 Instruction *InsertBefore)
2654 : Instruction(ty, op,
2655 OperandTraits<CmpInst>::op_begin(this),
2656 OperandTraits<CmpInst>::operands(this),
2657 InsertBefore) {
2658 Op<0>() = LHS;
2659 Op<1>() = RHS;
2660 setPredicate((Predicate)predicate);
2661 setName(Name);
2664 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2665 Value *LHS, Value *RHS, const Twine &Name,
2666 BasicBlock *InsertAtEnd)
2667 : Instruction(ty, op,
2668 OperandTraits<CmpInst>::op_begin(this),
2669 OperandTraits<CmpInst>::operands(this),
2670 InsertAtEnd) {
2671 Op<0>() = LHS;
2672 Op<1>() = RHS;
2673 setPredicate((Predicate)predicate);
2674 setName(Name);
2677 CmpInst *
2678 CmpInst::Create(OtherOps Op, unsigned short predicate,
2679 Value *S1, Value *S2,
2680 const Twine &Name, Instruction *InsertBefore) {
2681 if (Op == Instruction::ICmp) {
2682 if (InsertBefore)
2683 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2684 S1, S2, Name);
2685 else
2686 return new ICmpInst(CmpInst::Predicate(predicate),
2687 S1, S2, Name);
2690 if (InsertBefore)
2691 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2692 S1, S2, Name);
2693 else
2694 return new FCmpInst(CmpInst::Predicate(predicate),
2695 S1, S2, Name);
2698 CmpInst *
2699 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2700 const Twine &Name, BasicBlock *InsertAtEnd) {
2701 if (Op == Instruction::ICmp) {
2702 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2703 S1, S2, Name);
2705 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2706 S1, S2, Name);
2709 void CmpInst::swapOperands() {
2710 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2711 IC->swapOperands();
2712 else
2713 cast<FCmpInst>(this)->swapOperands();
2716 bool CmpInst::isCommutative() const {
2717 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2718 return IC->isCommutative();
2719 return cast<FCmpInst>(this)->isCommutative();
2722 bool CmpInst::isEquality() const {
2723 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2724 return IC->isEquality();
2725 return cast<FCmpInst>(this)->isEquality();
2729 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2730 switch (pred) {
2731 default: assert(!"Unknown cmp predicate!");
2732 case ICMP_EQ: return ICMP_NE;
2733 case ICMP_NE: return ICMP_EQ;
2734 case ICMP_UGT: return ICMP_ULE;
2735 case ICMP_ULT: return ICMP_UGE;
2736 case ICMP_UGE: return ICMP_ULT;
2737 case ICMP_ULE: return ICMP_UGT;
2738 case ICMP_SGT: return ICMP_SLE;
2739 case ICMP_SLT: return ICMP_SGE;
2740 case ICMP_SGE: return ICMP_SLT;
2741 case ICMP_SLE: return ICMP_SGT;
2743 case FCMP_OEQ: return FCMP_UNE;
2744 case FCMP_ONE: return FCMP_UEQ;
2745 case FCMP_OGT: return FCMP_ULE;
2746 case FCMP_OLT: return FCMP_UGE;
2747 case FCMP_OGE: return FCMP_ULT;
2748 case FCMP_OLE: return FCMP_UGT;
2749 case FCMP_UEQ: return FCMP_ONE;
2750 case FCMP_UNE: return FCMP_OEQ;
2751 case FCMP_UGT: return FCMP_OLE;
2752 case FCMP_ULT: return FCMP_OGE;
2753 case FCMP_UGE: return FCMP_OLT;
2754 case FCMP_ULE: return FCMP_OGT;
2755 case FCMP_ORD: return FCMP_UNO;
2756 case FCMP_UNO: return FCMP_ORD;
2757 case FCMP_TRUE: return FCMP_FALSE;
2758 case FCMP_FALSE: return FCMP_TRUE;
2762 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2763 switch (pred) {
2764 default: assert(! "Unknown icmp predicate!");
2765 case ICMP_EQ: case ICMP_NE:
2766 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2767 return pred;
2768 case ICMP_UGT: return ICMP_SGT;
2769 case ICMP_ULT: return ICMP_SLT;
2770 case ICMP_UGE: return ICMP_SGE;
2771 case ICMP_ULE: return ICMP_SLE;
2775 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2776 switch (pred) {
2777 default: assert(! "Unknown icmp predicate!");
2778 case ICMP_EQ: case ICMP_NE:
2779 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2780 return pred;
2781 case ICMP_SGT: return ICMP_UGT;
2782 case ICMP_SLT: return ICMP_ULT;
2783 case ICMP_SGE: return ICMP_UGE;
2784 case ICMP_SLE: return ICMP_ULE;
2788 /// Initialize a set of values that all satisfy the condition with C.
2790 ConstantRange
2791 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2792 APInt Lower(C);
2793 APInt Upper(C);
2794 uint32_t BitWidth = C.getBitWidth();
2795 switch (pred) {
2796 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2797 case ICmpInst::ICMP_EQ: Upper++; break;
2798 case ICmpInst::ICMP_NE: Lower++; break;
2799 case ICmpInst::ICMP_ULT:
2800 Lower = APInt::getMinValue(BitWidth);
2801 // Check for an empty-set condition.
2802 if (Lower == Upper)
2803 return ConstantRange(BitWidth, /*isFullSet=*/false);
2804 break;
2805 case ICmpInst::ICMP_SLT:
2806 Lower = APInt::getSignedMinValue(BitWidth);
2807 // Check for an empty-set condition.
2808 if (Lower == Upper)
2809 return ConstantRange(BitWidth, /*isFullSet=*/false);
2810 break;
2811 case ICmpInst::ICMP_UGT:
2812 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2813 // Check for an empty-set condition.
2814 if (Lower == Upper)
2815 return ConstantRange(BitWidth, /*isFullSet=*/false);
2816 break;
2817 case ICmpInst::ICMP_SGT:
2818 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2819 // Check for an empty-set condition.
2820 if (Lower == Upper)
2821 return ConstantRange(BitWidth, /*isFullSet=*/false);
2822 break;
2823 case ICmpInst::ICMP_ULE:
2824 Lower = APInt::getMinValue(BitWidth); Upper++;
2825 // Check for a full-set condition.
2826 if (Lower == Upper)
2827 return ConstantRange(BitWidth, /*isFullSet=*/true);
2828 break;
2829 case ICmpInst::ICMP_SLE:
2830 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2831 // Check for a full-set condition.
2832 if (Lower == Upper)
2833 return ConstantRange(BitWidth, /*isFullSet=*/true);
2834 break;
2835 case ICmpInst::ICMP_UGE:
2836 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2837 // Check for a full-set condition.
2838 if (Lower == Upper)
2839 return ConstantRange(BitWidth, /*isFullSet=*/true);
2840 break;
2841 case ICmpInst::ICMP_SGE:
2842 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2843 // Check for a full-set condition.
2844 if (Lower == Upper)
2845 return ConstantRange(BitWidth, /*isFullSet=*/true);
2846 break;
2848 return ConstantRange(Lower, Upper);
2851 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2852 switch (pred) {
2853 default: assert(!"Unknown cmp predicate!");
2854 case ICMP_EQ: case ICMP_NE:
2855 return pred;
2856 case ICMP_SGT: return ICMP_SLT;
2857 case ICMP_SLT: return ICMP_SGT;
2858 case ICMP_SGE: return ICMP_SLE;
2859 case ICMP_SLE: return ICMP_SGE;
2860 case ICMP_UGT: return ICMP_ULT;
2861 case ICMP_ULT: return ICMP_UGT;
2862 case ICMP_UGE: return ICMP_ULE;
2863 case ICMP_ULE: return ICMP_UGE;
2865 case FCMP_FALSE: case FCMP_TRUE:
2866 case FCMP_OEQ: case FCMP_ONE:
2867 case FCMP_UEQ: case FCMP_UNE:
2868 case FCMP_ORD: case FCMP_UNO:
2869 return pred;
2870 case FCMP_OGT: return FCMP_OLT;
2871 case FCMP_OLT: return FCMP_OGT;
2872 case FCMP_OGE: return FCMP_OLE;
2873 case FCMP_OLE: return FCMP_OGE;
2874 case FCMP_UGT: return FCMP_ULT;
2875 case FCMP_ULT: return FCMP_UGT;
2876 case FCMP_UGE: return FCMP_ULE;
2877 case FCMP_ULE: return FCMP_UGE;
2881 bool CmpInst::isUnsigned(unsigned short predicate) {
2882 switch (predicate) {
2883 default: return false;
2884 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2885 case ICmpInst::ICMP_UGE: return true;
2889 bool CmpInst::isSigned(unsigned short predicate) {
2890 switch (predicate) {
2891 default: return false;
2892 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2893 case ICmpInst::ICMP_SGE: return true;
2897 bool CmpInst::isOrdered(unsigned short predicate) {
2898 switch (predicate) {
2899 default: return false;
2900 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2901 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2902 case FCmpInst::FCMP_ORD: return true;
2906 bool CmpInst::isUnordered(unsigned short predicate) {
2907 switch (predicate) {
2908 default: return false;
2909 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2910 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2911 case FCmpInst::FCMP_UNO: return true;
2915 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2916 switch(predicate) {
2917 default: return false;
2918 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2919 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2923 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2924 switch(predicate) {
2925 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2926 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2927 default: return false;
2932 //===----------------------------------------------------------------------===//
2933 // SwitchInst Implementation
2934 //===----------------------------------------------------------------------===//
2936 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
2937 assert(Value && Default && NumReserved);
2938 ReservedSpace = NumReserved;
2939 NumOperands = 2;
2940 OperandList = allocHungoffUses(ReservedSpace);
2942 OperandList[0] = Value;
2943 OperandList[1] = Default;
2946 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2947 /// switch on and a default destination. The number of additional cases can
2948 /// be specified here to make memory allocation more efficient. This
2949 /// constructor can also autoinsert before another instruction.
2950 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2951 Instruction *InsertBefore)
2952 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2953 0, 0, InsertBefore) {
2954 init(Value, Default, 2+NumCases*2);
2957 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2958 /// switch on and a default destination. The number of additional cases can
2959 /// be specified here to make memory allocation more efficient. This
2960 /// constructor also autoinserts at the end of the specified BasicBlock.
2961 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2962 BasicBlock *InsertAtEnd)
2963 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2964 0, 0, InsertAtEnd) {
2965 init(Value, Default, 2+NumCases*2);
2968 SwitchInst::SwitchInst(const SwitchInst &SI)
2969 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
2970 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
2971 NumOperands = SI.getNumOperands();
2972 Use *OL = OperandList, *InOL = SI.OperandList;
2973 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
2974 OL[i] = InOL[i];
2975 OL[i+1] = InOL[i+1];
2977 SubclassOptionalData = SI.SubclassOptionalData;
2980 SwitchInst::~SwitchInst() {
2981 dropHungoffUses();
2985 /// addCase - Add an entry to the switch instruction...
2987 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2988 unsigned OpNo = NumOperands;
2989 if (OpNo+2 > ReservedSpace)
2990 growOperands(); // Get more space!
2991 // Initialize some new operands.
2992 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2993 NumOperands = OpNo+2;
2994 OperandList[OpNo] = OnVal;
2995 OperandList[OpNo+1] = Dest;
2998 /// removeCase - This method removes the specified successor from the switch
2999 /// instruction. Note that this cannot be used to remove the default
3000 /// destination (successor #0).
3002 void SwitchInst::removeCase(unsigned idx) {
3003 assert(idx != 0 && "Cannot remove the default case!");
3004 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3006 unsigned NumOps = getNumOperands();
3007 Use *OL = OperandList;
3009 // Overwrite this case with the end of the list.
3010 if ((idx + 1) * 2 != NumOps) {
3011 OL[idx * 2] = OL[NumOps - 2];
3012 OL[idx * 2 + 1] = OL[NumOps - 1];
3015 // Nuke the last value.
3016 OL[NumOps-2].set(0);
3017 OL[NumOps-2+1].set(0);
3018 NumOperands = NumOps-2;
3021 /// growOperands - grow operands - This grows the operand list in response
3022 /// to a push_back style of operation. This grows the number of ops by 3 times.
3024 void SwitchInst::growOperands() {
3025 unsigned e = getNumOperands();
3026 unsigned NumOps = e*3;
3028 ReservedSpace = NumOps;
3029 Use *NewOps = allocHungoffUses(NumOps);
3030 Use *OldOps = OperandList;
3031 for (unsigned i = 0; i != e; ++i) {
3032 NewOps[i] = OldOps[i];
3034 OperandList = NewOps;
3035 Use::zap(OldOps, OldOps + e, true);
3039 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3040 return getSuccessor(idx);
3042 unsigned SwitchInst::getNumSuccessorsV() const {
3043 return getNumSuccessors();
3045 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3046 setSuccessor(idx, B);
3049 //===----------------------------------------------------------------------===//
3050 // IndirectBrInst Implementation
3051 //===----------------------------------------------------------------------===//
3053 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3054 assert(Address && Address->getType()->isPointerTy() &&
3055 "Address of indirectbr must be a pointer");
3056 ReservedSpace = 1+NumDests;
3057 NumOperands = 1;
3058 OperandList = allocHungoffUses(ReservedSpace);
3060 OperandList[0] = Address;
3064 /// growOperands - grow operands - This grows the operand list in response
3065 /// to a push_back style of operation. This grows the number of ops by 2 times.
3067 void IndirectBrInst::growOperands() {
3068 unsigned e = getNumOperands();
3069 unsigned NumOps = e*2;
3071 ReservedSpace = NumOps;
3072 Use *NewOps = allocHungoffUses(NumOps);
3073 Use *OldOps = OperandList;
3074 for (unsigned i = 0; i != e; ++i)
3075 NewOps[i] = OldOps[i];
3076 OperandList = NewOps;
3077 Use::zap(OldOps, OldOps + e, true);
3080 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3081 Instruction *InsertBefore)
3082 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3083 0, 0, InsertBefore) {
3084 init(Address, NumCases);
3087 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3088 BasicBlock *InsertAtEnd)
3089 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3090 0, 0, InsertAtEnd) {
3091 init(Address, NumCases);
3094 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3095 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3096 allocHungoffUses(IBI.getNumOperands()),
3097 IBI.getNumOperands()) {
3098 Use *OL = OperandList, *InOL = IBI.OperandList;
3099 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3100 OL[i] = InOL[i];
3101 SubclassOptionalData = IBI.SubclassOptionalData;
3104 IndirectBrInst::~IndirectBrInst() {
3105 dropHungoffUses();
3108 /// addDestination - Add a destination.
3110 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3111 unsigned OpNo = NumOperands;
3112 if (OpNo+1 > ReservedSpace)
3113 growOperands(); // Get more space!
3114 // Initialize some new operands.
3115 assert(OpNo < ReservedSpace && "Growing didn't work!");
3116 NumOperands = OpNo+1;
3117 OperandList[OpNo] = DestBB;
3120 /// removeDestination - This method removes the specified successor from the
3121 /// indirectbr instruction.
3122 void IndirectBrInst::removeDestination(unsigned idx) {
3123 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3125 unsigned NumOps = getNumOperands();
3126 Use *OL = OperandList;
3128 // Replace this value with the last one.
3129 OL[idx+1] = OL[NumOps-1];
3131 // Nuke the last value.
3132 OL[NumOps-1].set(0);
3133 NumOperands = NumOps-1;
3136 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3137 return getSuccessor(idx);
3139 unsigned IndirectBrInst::getNumSuccessorsV() const {
3140 return getNumSuccessors();
3142 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3143 setSuccessor(idx, B);
3146 //===----------------------------------------------------------------------===//
3147 // clone_impl() implementations
3148 //===----------------------------------------------------------------------===//
3150 // Define these methods here so vtables don't get emitted into every translation
3151 // unit that uses these classes.
3153 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3154 return new (getNumOperands()) GetElementPtrInst(*this);
3157 BinaryOperator *BinaryOperator::clone_impl() const {
3158 return Create(getOpcode(), Op<0>(), Op<1>());
3161 FCmpInst* FCmpInst::clone_impl() const {
3162 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3165 ICmpInst* ICmpInst::clone_impl() const {
3166 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3169 ExtractValueInst *ExtractValueInst::clone_impl() const {
3170 return new ExtractValueInst(*this);
3173 InsertValueInst *InsertValueInst::clone_impl() const {
3174 return new InsertValueInst(*this);
3177 AllocaInst *AllocaInst::clone_impl() const {
3178 return new AllocaInst(getAllocatedType(),
3179 (Value*)getOperand(0),
3180 getAlignment());
3183 LoadInst *LoadInst::clone_impl() const {
3184 return new LoadInst(getOperand(0),
3185 Twine(), isVolatile(),
3186 getAlignment());
3189 StoreInst *StoreInst::clone_impl() const {
3190 return new StoreInst(getOperand(0), getOperand(1),
3191 isVolatile(), getAlignment());
3194 TruncInst *TruncInst::clone_impl() const {
3195 return new TruncInst(getOperand(0), getType());
3198 ZExtInst *ZExtInst::clone_impl() const {
3199 return new ZExtInst(getOperand(0), getType());
3202 SExtInst *SExtInst::clone_impl() const {
3203 return new SExtInst(getOperand(0), getType());
3206 FPTruncInst *FPTruncInst::clone_impl() const {
3207 return new FPTruncInst(getOperand(0), getType());
3210 FPExtInst *FPExtInst::clone_impl() const {
3211 return new FPExtInst(getOperand(0), getType());
3214 UIToFPInst *UIToFPInst::clone_impl() const {
3215 return new UIToFPInst(getOperand(0), getType());
3218 SIToFPInst *SIToFPInst::clone_impl() const {
3219 return new SIToFPInst(getOperand(0), getType());
3222 FPToUIInst *FPToUIInst::clone_impl() const {
3223 return new FPToUIInst(getOperand(0), getType());
3226 FPToSIInst *FPToSIInst::clone_impl() const {
3227 return new FPToSIInst(getOperand(0), getType());
3230 PtrToIntInst *PtrToIntInst::clone_impl() const {
3231 return new PtrToIntInst(getOperand(0), getType());
3234 IntToPtrInst *IntToPtrInst::clone_impl() const {
3235 return new IntToPtrInst(getOperand(0), getType());
3238 BitCastInst *BitCastInst::clone_impl() const {
3239 return new BitCastInst(getOperand(0), getType());
3242 CallInst *CallInst::clone_impl() const {
3243 return new(getNumOperands()) CallInst(*this);
3246 SelectInst *SelectInst::clone_impl() const {
3247 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3250 VAArgInst *VAArgInst::clone_impl() const {
3251 return new VAArgInst(getOperand(0), getType());
3254 ExtractElementInst *ExtractElementInst::clone_impl() const {
3255 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3258 InsertElementInst *InsertElementInst::clone_impl() const {
3259 return InsertElementInst::Create(getOperand(0),
3260 getOperand(1),
3261 getOperand(2));
3264 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3265 return new ShuffleVectorInst(getOperand(0),
3266 getOperand(1),
3267 getOperand(2));
3270 PHINode *PHINode::clone_impl() const {
3271 return new PHINode(*this);
3274 ReturnInst *ReturnInst::clone_impl() const {
3275 return new(getNumOperands()) ReturnInst(*this);
3278 BranchInst *BranchInst::clone_impl() const {
3279 return new(getNumOperands()) BranchInst(*this);
3282 SwitchInst *SwitchInst::clone_impl() const {
3283 return new SwitchInst(*this);
3286 IndirectBrInst *IndirectBrInst::clone_impl() const {
3287 return new IndirectBrInst(*this);
3291 InvokeInst *InvokeInst::clone_impl() const {
3292 return new(getNumOperands()) InvokeInst(*this);
3295 UnwindInst *UnwindInst::clone_impl() const {
3296 LLVMContext &Context = getContext();
3297 return new UnwindInst(Context);
3300 UnreachableInst *UnreachableInst::clone_impl() const {
3301 LLVMContext &Context = getContext();
3302 return new UnreachableInst(Context);