Land the long talked about "type system rewrite" patch. This
[llvm/stm8.git] / docs / ProgrammersManual.html
blobc1edd2a60a6fd299cb2a2dc5f15096cafbef7320
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
6 <title>LLVM Programmer's Manual</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
11 <h1>
12 LLVM Programmer's Manual
13 </h1>
15 <ol>
16 <li><a href="#introduction">Introduction</a></li>
17 <li><a href="#general">General Information</a>
18 <ul>
19 <li><a href="#stl">The C++ Standard Template Library</a></li>
20 <!--
21 <li>The <tt>-time-passes</tt> option</li>
22 <li>How to use the LLVM Makefile system</li>
23 <li>How to write a regression test</li>
25 -->
26 </ul>
27 </li>
28 <li><a href="#apis">Important and useful LLVM APIs</a>
29 <ul>
30 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
32 <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
33 and <tt>Twine</tt> classes)</a>
34 <ul>
35 <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36 <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37 </ul>
38 </li>
39 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40 option</a>
41 <ul>
42 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43 and the <tt>-debug-only</tt> option</a> </li>
44 </ul>
45 </li>
46 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47 option</a></li>
48 <!--
49 <li>The <tt>InstVisitor</tt> template
50 <li>The general graph API
51 -->
52 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53 </ul>
54 </li>
55 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56 <ul>
57 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58 <ul>
59 <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
60 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
61 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
62 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
63 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
64 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
65 <li><a href="#dss_list">&lt;list&gt;</a></li>
66 <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
67 <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
68 <li><a href="#dss_other">Other Sequential Container Options</a></li>
69 </ul></li>
70 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
71 <ul>
72 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
73 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
74 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
75 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
76 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
77 <li><a href="#dss_set">&lt;set&gt;</a></li>
78 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
79 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
80 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
81 </ul></li>
82 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
83 <ul>
84 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
85 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
86 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
87 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
88 <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
89 <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
90 <li><a href="#dss_map">&lt;map&gt;</a></li>
91 <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
92 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
93 </ul></li>
94 <li><a href="#ds_string">String-like containers</a>
95 <!--<ul>
96 todo
97 </ul>--></li>
98 <li><a href="#ds_bit">BitVector-like containers</a>
99 <ul>
100 <li><a href="#dss_bitvector">A dense bitvector</a></li>
101 <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
102 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
103 </ul></li>
104 </ul>
105 </li>
106 <li><a href="#common">Helpful Hints for Common Operations</a>
107 <ul>
108 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
109 <ul>
110 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
111 in a <tt>Function</tt></a> </li>
112 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
113 in a <tt>BasicBlock</tt></a> </li>
114 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
115 in a <tt>Function</tt></a> </li>
116 <li><a href="#iterate_convert">Turning an iterator into a
117 class pointer</a> </li>
118 <li><a href="#iterate_complex">Finding call sites: a more
119 complex example</a> </li>
120 <li><a href="#calls_and_invokes">Treating calls and invokes
121 the same way</a> </li>
122 <li><a href="#iterate_chains">Iterating over def-use &amp;
123 use-def chains</a> </li>
124 <li><a href="#iterate_preds">Iterating over predecessors &amp;
125 successors of blocks</a></li>
126 </ul>
127 </li>
128 <li><a href="#simplechanges">Making simple changes</a>
129 <ul>
130 <li><a href="#schanges_creating">Creating and inserting new
131 <tt>Instruction</tt>s</a> </li>
132 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
133 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
134 with another <tt>Value</tt></a> </li>
135 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
136 </ul>
137 </li>
138 <li><a href="#create_types">How to Create Types</a></li>
139 <!--
140 <li>Working with the Control Flow Graph
141 <ul>
142 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
143 <li>
144 <li>
145 </ul>
146 -->
147 </ul>
148 </li>
150 <li><a href="#threading">Threads and LLVM</a>
151 <ul>
152 <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
153 </a></li>
154 <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
155 <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
156 <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
157 <li><a href="#jitthreading">Threads and the JIT</a></li>
158 </ul>
159 </li>
161 <li><a href="#advanced">Advanced Topics</a>
162 <ul>
164 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
165 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
166 </ul></li>
168 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
169 <ul>
170 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
171 <li><a href="#Module">The <tt>Module</tt> class</a></li>
172 <li><a href="#Value">The <tt>Value</tt> class</a>
173 <ul>
174 <li><a href="#User">The <tt>User</tt> class</a>
175 <ul>
176 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
177 <li><a href="#Constant">The <tt>Constant</tt> class</a>
178 <ul>
179 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
180 <ul>
181 <li><a href="#Function">The <tt>Function</tt> class</a></li>
182 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
183 </ul>
184 </li>
185 </ul>
186 </li>
187 </ul>
188 </li>
189 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
190 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
191 </ul>
192 </li>
193 </ul>
194 </li>
195 </ol>
197 <div class="doc_author">
198 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
199 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
200 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
201 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
202 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
203 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
204 </div>
206 <!-- *********************************************************************** -->
207 <h2>
208 <a name="introduction">Introduction </a>
209 </h2>
210 <!-- *********************************************************************** -->
212 <div>
214 <p>This document is meant to highlight some of the important classes and
215 interfaces available in the LLVM source-base. This manual is not
216 intended to explain what LLVM is, how it works, and what LLVM code looks
217 like. It assumes that you know the basics of LLVM and are interested
218 in writing transformations or otherwise analyzing or manipulating the
219 code.</p>
221 <p>This document should get you oriented so that you can find your
222 way in the continuously growing source code that makes up the LLVM
223 infrastructure. Note that this manual is not intended to serve as a
224 replacement for reading the source code, so if you think there should be
225 a method in one of these classes to do something, but it's not listed,
226 check the source. Links to the <a href="/doxygen/">doxygen</a> sources
227 are provided to make this as easy as possible.</p>
229 <p>The first section of this document describes general information that is
230 useful to know when working in the LLVM infrastructure, and the second describes
231 the Core LLVM classes. In the future this manual will be extended with
232 information describing how to use extension libraries, such as dominator
233 information, CFG traversal routines, and useful utilities like the <tt><a
234 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
236 </div>
238 <!-- *********************************************************************** -->
239 <h2>
240 <a name="general">General Information</a>
241 </h2>
242 <!-- *********************************************************************** -->
244 <div>
246 <p>This section contains general information that is useful if you are working
247 in the LLVM source-base, but that isn't specific to any particular API.</p>
249 <!-- ======================================================================= -->
250 <h3>
251 <a name="stl">The C++ Standard Template Library</a>
252 </h3>
254 <div>
256 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
257 perhaps much more than you are used to, or have seen before. Because of
258 this, you might want to do a little background reading in the
259 techniques used and capabilities of the library. There are many good
260 pages that discuss the STL, and several books on the subject that you
261 can get, so it will not be discussed in this document.</p>
263 <p>Here are some useful links:</p>
265 <ol>
267 <li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
268 C++ Library reference</a> - an excellent reference for the STL and other parts
269 of the standard C++ library.</li>
271 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
272 O'Reilly book in the making. It has a decent Standard Library
273 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
274 book has been published.</li>
276 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
277 Questions</a></li>
279 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
280 Contains a useful <a
281 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
282 STL</a>.</li>
284 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
285 Page</a></li>
287 <li><a href="http://64.78.49.204/">
288 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
289 the book).</a></li>
291 </ol>
293 <p>You are also encouraged to take a look at the <a
294 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
295 to write maintainable code more than where to put your curly braces.</p>
297 </div>
299 <!-- ======================================================================= -->
300 <h3>
301 <a name="stl">Other useful references</a>
302 </h3>
304 <div>
306 <ol>
307 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
308 static and shared libraries across platforms</a></li>
309 </ol>
311 </div>
313 </div>
315 <!-- *********************************************************************** -->
316 <h2>
317 <a name="apis">Important and useful LLVM APIs</a>
318 </h2>
319 <!-- *********************************************************************** -->
321 <div>
323 <p>Here we highlight some LLVM APIs that are generally useful and good to
324 know about when writing transformations.</p>
326 <!-- ======================================================================= -->
327 <h3>
328 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
329 <tt>dyn_cast&lt;&gt;</tt> templates</a>
330 </h3>
332 <div>
334 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
335 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
336 operator, but they don't have some drawbacks (primarily stemming from
337 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
338 have a v-table). Because they are used so often, you must know what they
339 do and how they work. All of these templates are defined in the <a
340 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
341 file (note that you very rarely have to include this file directly).</p>
343 <dl>
344 <dt><tt>isa&lt;&gt;</tt>: </dt>
346 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
347 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
348 a reference or pointer points to an instance of the specified class. This can
349 be very useful for constraint checking of various sorts (example below).</p>
350 </dd>
352 <dt><tt>cast&lt;&gt;</tt>: </dt>
354 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
355 converts a pointer or reference from a base class to a derived class, causing
356 an assertion failure if it is not really an instance of the right type. This
357 should be used in cases where you have some information that makes you believe
358 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
359 and <tt>cast&lt;&gt;</tt> template is:</p>
361 <div class="doc_code">
362 <pre>
363 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
364 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
365 return true;
367 // <i>Otherwise, it must be an instruction...</i>
368 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
370 </pre>
371 </div>
373 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
374 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
375 operator.</p>
377 </dd>
379 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
381 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
382 It checks to see if the operand is of the specified type, and if so, returns a
383 pointer to it (this operator does not work with references). If the operand is
384 not of the correct type, a null pointer is returned. Thus, this works very
385 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
386 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
387 operator is used in an <tt>if</tt> statement or some other flow control
388 statement like this:</p>
390 <div class="doc_code">
391 <pre>
392 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
393 // <i>...</i>
395 </pre>
396 </div>
398 <p>This form of the <tt>if</tt> statement effectively combines together a call
399 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
400 statement, which is very convenient.</p>
402 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
403 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
404 abused. In particular, you should not use big chained <tt>if/then/else</tt>
405 blocks to check for lots of different variants of classes. If you find
406 yourself wanting to do this, it is much cleaner and more efficient to use the
407 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
409 </dd>
411 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
413 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
414 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
415 argument (which it then propagates). This can sometimes be useful, allowing
416 you to combine several null checks into one.</p></dd>
418 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
420 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
421 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
422 as an argument (which it then propagates). This can sometimes be useful,
423 allowing you to combine several null checks into one.</p></dd>
425 </dl>
427 <p>These five templates can be used with any classes, whether they have a
428 v-table or not. To add support for these templates, you simply need to add
429 <tt>classof</tt> static methods to the class you are interested casting
430 to. Describing this is currently outside the scope of this document, but there
431 are lots of examples in the LLVM source base.</p>
433 </div>
436 <!-- ======================================================================= -->
437 <h3>
438 <a name="string_apis">Passing strings (the <tt>StringRef</tt>
439 and <tt>Twine</tt> classes)</a>
440 </h3>
442 <div>
444 <p>Although LLVM generally does not do much string manipulation, we do have
445 several important APIs which take strings. Two important examples are the
446 Value class -- which has names for instructions, functions, etc. -- and the
447 StringMap class which is used extensively in LLVM and Clang.</p>
449 <p>These are generic classes, and they need to be able to accept strings which
450 may have embedded null characters. Therefore, they cannot simply take
451 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
452 clients to perform a heap allocation which is usually unnecessary. Instead,
453 many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
454 passing strings efficiently.</p>
456 <!-- _______________________________________________________________________ -->
457 <h4>
458 <a name="StringRef">The <tt>StringRef</tt> class</a>
459 </h4>
461 <div>
463 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
464 (a character array and a length) and supports the common operations available
465 on <tt>std:string</tt>, but does not require heap allocation.</p>
467 <p>It can be implicitly constructed using a C style null-terminated string,
468 an <tt>std::string</tt>, or explicitly with a character pointer and length.
469 For example, the <tt>StringRef</tt> find function is declared as:</p>
471 <pre class="doc_code">
472 iterator find(StringRef Key);
473 </pre>
475 <p>and clients can call it using any one of:</p>
477 <pre class="doc_code">
478 Map.find("foo"); <i>// Lookup "foo"</i>
479 Map.find(std::string("bar")); <i>// Lookup "bar"</i>
480 Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
481 </pre>
483 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
484 instance, which can be used directly or converted to an <tt>std::string</tt>
485 using the <tt>str</tt> member function. See
486 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
487 for more information.</p>
489 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
490 pointers to external memory it is not generally safe to store an instance of the
491 class (unless you know that the external storage will not be freed). StringRef is
492 small and pervasive enough in LLVM that it should always be passed by value.</p>
494 </div>
496 <!-- _______________________________________________________________________ -->
497 <h4>
498 <a name="Twine">The <tt>Twine</tt> class</a>
499 </h4>
501 <div>
503 <p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
504 strings. For example, a common LLVM paradigm is to name one instruction based on
505 the name of another instruction with a suffix, for example:</p>
507 <div class="doc_code">
508 <pre>
509 New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
510 </pre>
511 </div>
513 <p>The <tt>Twine</tt> class is effectively a
514 lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
515 which points to temporary (stack allocated) objects. Twines can be implicitly
516 constructed as the result of the plus operator applied to strings (i.e., a C
517 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>). The twine delays the
518 actual concatenation of strings until it is actually required, at which point
519 it can be efficiently rendered directly into a character array. This avoids
520 unnecessary heap allocation involved in constructing the temporary results of
521 string concatenation. See
522 "<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
523 for more information.</p>
525 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
526 and should almost never be stored or mentioned directly. They are intended
527 solely for use when defining a function which should be able to efficiently
528 accept concatenated strings.</p>
530 </div>
532 </div>
534 <!-- ======================================================================= -->
535 <h3>
536 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
537 </h3>
539 <div>
541 <p>Often when working on your pass you will put a bunch of debugging printouts
542 and other code into your pass. After you get it working, you want to remove
543 it, but you may need it again in the future (to work out new bugs that you run
544 across).</p>
546 <p> Naturally, because of this, you don't want to delete the debug printouts,
547 but you don't want them to always be noisy. A standard compromise is to comment
548 them out, allowing you to enable them if you need them in the future.</p>
550 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
551 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
552 this problem. Basically, you can put arbitrary code into the argument of the
553 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
554 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
556 <div class="doc_code">
557 <pre>
558 DEBUG(errs() &lt;&lt; "I am here!\n");
559 </pre>
560 </div>
562 <p>Then you can run your pass like this:</p>
564 <div class="doc_code">
565 <pre>
566 $ opt &lt; a.bc &gt; /dev/null -mypass
567 <i>&lt;no output&gt;</i>
568 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
569 I am here!
570 </pre>
571 </div>
573 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
574 to not have to create "yet another" command line option for the debug output for
575 your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
576 so they do not cause a performance impact at all (for the same reason, they
577 should also not contain side-effects!).</p>
579 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
580 enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
581 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
582 program hasn't been started yet, you can always just run it with
583 <tt>-debug</tt>.</p>
585 <!-- _______________________________________________________________________ -->
586 <h4>
587 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
588 the <tt>-debug-only</tt> option</a>
589 </h4>
591 <div>
593 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
594 just turns on <b>too much</b> information (such as when working on the code
595 generator). If you want to enable debug information with more fine-grained
596 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
597 option as follows:</p>
599 <div class="doc_code">
600 <pre>
601 #undef DEBUG_TYPE
602 DEBUG(errs() &lt;&lt; "No debug type\n");
603 #define DEBUG_TYPE "foo"
604 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
605 #undef DEBUG_TYPE
606 #define DEBUG_TYPE "bar"
607 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
608 #undef DEBUG_TYPE
609 #define DEBUG_TYPE ""
610 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
611 </pre>
612 </div>
614 <p>Then you can run your pass like this:</p>
616 <div class="doc_code">
617 <pre>
618 $ opt &lt; a.bc &gt; /dev/null -mypass
619 <i>&lt;no output&gt;</i>
620 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
621 No debug type
622 'foo' debug type
623 'bar' debug type
624 No debug type (2)
625 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
626 'foo' debug type
627 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
628 'bar' debug type
629 </pre>
630 </div>
632 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
633 a file, to specify the debug type for the entire module (if you do this before
634 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
635 <tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
636 "bar", because there is no system in place to ensure that names do not
637 conflict. If two different modules use the same string, they will all be turned
638 on when the name is specified. This allows, for example, all debug information
639 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
640 even if the source lives in multiple files.</p>
642 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
643 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
644 statement. It takes an additional first parameter, which is the type to use. For
645 example, the preceding example could be written as:</p>
648 <div class="doc_code">
649 <pre>
650 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
651 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
652 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
653 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
654 </pre>
655 </div>
657 </div>
659 </div>
661 <!-- ======================================================================= -->
662 <h3>
663 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
664 option</a>
665 </h3>
667 <div>
669 <p>The "<tt><a
670 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
671 provides a class named <tt>Statistic</tt> that is used as a unified way to
672 keep track of what the LLVM compiler is doing and how effective various
673 optimizations are. It is useful to see what optimizations are contributing to
674 making a particular program run faster.</p>
676 <p>Often you may run your pass on some big program, and you're interested to see
677 how many times it makes a certain transformation. Although you can do this with
678 hand inspection, or some ad-hoc method, this is a real pain and not very useful
679 for big programs. Using the <tt>Statistic</tt> class makes it very easy to
680 keep track of this information, and the calculated information is presented in a
681 uniform manner with the rest of the passes being executed.</p>
683 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
684 it are as follows:</p>
686 <ol>
687 <li><p>Define your statistic like this:</p>
689 <div class="doc_code">
690 <pre>
691 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
692 STATISTIC(NumXForms, "The # of times I did stuff");
693 </pre>
694 </div>
696 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
697 specified by the first argument. The pass name is taken from the DEBUG_TYPE
698 macro, and the description is taken from the second argument. The variable
699 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
701 <li><p>Whenever you make a transformation, bump the counter:</p>
703 <div class="doc_code">
704 <pre>
705 ++NumXForms; // <i>I did stuff!</i>
706 </pre>
707 </div>
709 </li>
710 </ol>
712 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
713 statistics gathered, use the '<tt>-stats</tt>' option:</p>
715 <div class="doc_code">
716 <pre>
717 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
718 <i>... statistics output ...</i>
719 </pre>
720 </div>
722 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
723 suite, it gives a report that looks like this:</p>
725 <div class="doc_code">
726 <pre>
727 7646 bitcodewriter - Number of normal instructions
728 725 bitcodewriter - Number of oversized instructions
729 129996 bitcodewriter - Number of bitcode bytes written
730 2817 raise - Number of insts DCEd or constprop'd
731 3213 raise - Number of cast-of-self removed
732 5046 raise - Number of expression trees converted
733 75 raise - Number of other getelementptr's formed
734 138 raise - Number of load/store peepholes
735 42 deadtypeelim - Number of unused typenames removed from symtab
736 392 funcresolve - Number of varargs functions resolved
737 27 globaldce - Number of global variables removed
738 2 adce - Number of basic blocks removed
739 134 cee - Number of branches revectored
740 49 cee - Number of setcc instruction eliminated
741 532 gcse - Number of loads removed
742 2919 gcse - Number of instructions removed
743 86 indvars - Number of canonical indvars added
744 87 indvars - Number of aux indvars removed
745 25 instcombine - Number of dead inst eliminate
746 434 instcombine - Number of insts combined
747 248 licm - Number of load insts hoisted
748 1298 licm - Number of insts hoisted to a loop pre-header
749 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
750 75 mem2reg - Number of alloca's promoted
751 1444 cfgsimplify - Number of blocks simplified
752 </pre>
753 </div>
755 <p>Obviously, with so many optimizations, having a unified framework for this
756 stuff is very nice. Making your pass fit well into the framework makes it more
757 maintainable and useful.</p>
759 </div>
761 <!-- ======================================================================= -->
762 <h3>
763 <a name="ViewGraph">Viewing graphs while debugging code</a>
764 </h3>
766 <div>
768 <p>Several of the important data structures in LLVM are graphs: for example
769 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
770 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
771 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
772 DAGs</a>. In many cases, while debugging various parts of the compiler, it is
773 nice to instantly visualize these graphs.</p>
775 <p>LLVM provides several callbacks that are available in a debug build to do
776 exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
777 the current LLVM tool will pop up a window containing the CFG for the function
778 where each basic block is a node in the graph, and each node contains the
779 instructions in the block. Similarly, there also exists
780 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
781 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
782 and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
783 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
784 up a window. Alternatively, you can sprinkle calls to these functions in your
785 code in places you want to debug.</p>
787 <p>Getting this to work requires a small amount of configuration. On Unix
788 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
789 toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
790 Mac OS/X, download and install the Mac OS/X <a
791 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
792 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
793 it) to your path. Once in your system and path are set up, rerun the LLVM
794 configure script and rebuild LLVM to enable this functionality.</p>
796 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
797 <i>interesting</i> nodes in large complex graphs. From gdb, if you
798 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
799 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
800 specified color (choices of colors can be found at <a
801 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
802 complex node attributes can be provided with <tt>call
803 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
804 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
805 Attributes</a>.) If you want to restart and clear all the current graph
806 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
808 <p>Note that graph visualization features are compiled out of Release builds
809 to reduce file size. This means that you need a Debug+Asserts or
810 Release+Asserts build to use these features.</p>
812 </div>
814 </div>
816 <!-- *********************************************************************** -->
817 <h2>
818 <a name="datastructure">Picking the Right Data Structure for a Task</a>
819 </h2>
820 <!-- *********************************************************************** -->
822 <div>
824 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
825 and we commonly use STL data structures. This section describes the trade-offs
826 you should consider when you pick one.</p>
829 The first step is a choose your own adventure: do you want a sequential
830 container, a set-like container, or a map-like container? The most important
831 thing when choosing a container is the algorithmic properties of how you plan to
832 access the container. Based on that, you should use:</p>
834 <ul>
835 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
836 of an value based on another value. Map-like containers also support
837 efficient queries for containment (whether a key is in the map). Map-like
838 containers generally do not support efficient reverse mapping (values to
839 keys). If you need that, use two maps. Some map-like containers also
840 support efficient iteration through the keys in sorted order. Map-like
841 containers are the most expensive sort, only use them if you need one of
842 these capabilities.</li>
844 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
845 stuff into a container that automatically eliminates duplicates. Some
846 set-like containers support efficient iteration through the elements in
847 sorted order. Set-like containers are more expensive than sequential
848 containers.
849 </li>
851 <li>a <a href="#ds_sequential">sequential</a> container provides
852 the most efficient way to add elements and keeps track of the order they are
853 added to the collection. They permit duplicates and support efficient
854 iteration, but do not support efficient look-up based on a key.
855 </li>
857 <li>a <a href="#ds_string">string</a> container is a specialized sequential
858 container or reference structure that is used for character or byte
859 arrays.</li>
861 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
862 perform set operations on sets of numeric id's, while automatically
863 eliminating duplicates. Bit containers require a maximum of 1 bit for each
864 identifier you want to store.
865 </li>
866 </ul>
869 Once the proper category of container is determined, you can fine tune the
870 memory use, constant factors, and cache behaviors of access by intelligently
871 picking a member of the category. Note that constant factors and cache behavior
872 can be a big deal. If you have a vector that usually only contains a few
873 elements (but could contain many), for example, it's much better to use
874 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
875 . Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
876 cost of adding the elements to the container. </p>
878 <!-- ======================================================================= -->
879 <h3>
880 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
881 </h3>
883 <div>
884 There are a variety of sequential containers available for you, based on your
885 needs. Pick the first in this section that will do what you want.
887 <!-- _______________________________________________________________________ -->
888 <h4>
889 <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
890 </h4>
892 <div>
893 <p>The llvm::ArrayRef class is the preferred class to use in an interface that
894 accepts a sequential list of elements in memory and just reads from them. By
895 taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
896 an llvm::SmallVector and anything else that is contiguous in memory.
897 </p>
898 </div>
902 <!-- _______________________________________________________________________ -->
903 <h4>
904 <a name="dss_fixedarrays">Fixed Size Arrays</a>
905 </h4>
907 <div>
908 <p>Fixed size arrays are very simple and very fast. They are good if you know
909 exactly how many elements you have, or you have a (low) upper bound on how many
910 you have.</p>
911 </div>
913 <!-- _______________________________________________________________________ -->
914 <h4>
915 <a name="dss_heaparrays">Heap Allocated Arrays</a>
916 </h4>
918 <div>
919 <p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
920 the number of elements is variable, if you know how many elements you will need
921 before the array is allocated, and if the array is usually large (if not,
922 consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
923 allocated array is the cost of the new/delete (aka malloc/free). Also note that
924 if you are allocating an array of a type with a constructor, the constructor and
925 destructors will be run for every element in the array (re-sizable vectors only
926 construct those elements actually used).</p>
927 </div>
929 <!-- _______________________________________________________________________ -->
930 <h4>
931 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
932 </h4>
934 <div>
935 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
936 just like <tt>vector&lt;Type&gt;</tt>:
937 it supports efficient iteration, lays out elements in memory order (so you can
938 do pointer arithmetic between elements), supports efficient push_back/pop_back
939 operations, supports efficient random access to its elements, etc.</p>
941 <p>The advantage of SmallVector is that it allocates space for
942 some number of elements (N) <b>in the object itself</b>. Because of this, if
943 the SmallVector is dynamically smaller than N, no malloc is performed. This can
944 be a big win in cases where the malloc/free call is far more expensive than the
945 code that fiddles around with the elements.</p>
947 <p>This is good for vectors that are "usually small" (e.g. the number of
948 predecessors/successors of a block is usually less than 8). On the other hand,
949 this makes the size of the SmallVector itself large, so you don't want to
950 allocate lots of them (doing so will waste a lot of space). As such,
951 SmallVectors are most useful when on the stack.</p>
953 <p>SmallVector also provides a nice portable and efficient replacement for
954 <tt>alloca</tt>.</p>
956 </div>
958 <!-- _______________________________________________________________________ -->
959 <h4>
960 <a name="dss_vector">&lt;vector&gt;</a>
961 </h4>
963 <div>
965 std::vector is well loved and respected. It is useful when SmallVector isn't:
966 when the size of the vector is often large (thus the small optimization will
967 rarely be a benefit) or if you will be allocating many instances of the vector
968 itself (which would waste space for elements that aren't in the container).
969 vector is also useful when interfacing with code that expects vectors :).
970 </p>
972 <p>One worthwhile note about std::vector: avoid code like this:</p>
974 <div class="doc_code">
975 <pre>
976 for ( ... ) {
977 std::vector&lt;foo&gt; V;
978 use V;
980 </pre>
981 </div>
983 <p>Instead, write this as:</p>
985 <div class="doc_code">
986 <pre>
987 std::vector&lt;foo&gt; V;
988 for ( ... ) {
989 use V;
990 V.clear();
992 </pre>
993 </div>
995 <p>Doing so will save (at least) one heap allocation and free per iteration of
996 the loop.</p>
998 </div>
1000 <!-- _______________________________________________________________________ -->
1001 <h4>
1002 <a name="dss_deque">&lt;deque&gt;</a>
1003 </h4>
1005 <div>
1006 <p>std::deque is, in some senses, a generalized version of std::vector. Like
1007 std::vector, it provides constant time random access and other similar
1008 properties, but it also provides efficient access to the front of the list. It
1009 does not guarantee continuity of elements within memory.</p>
1011 <p>In exchange for this extra flexibility, std::deque has significantly higher
1012 constant factor costs than std::vector. If possible, use std::vector or
1013 something cheaper.</p>
1014 </div>
1016 <!-- _______________________________________________________________________ -->
1017 <h4>
1018 <a name="dss_list">&lt;list&gt;</a>
1019 </h4>
1021 <div>
1022 <p>std::list is an extremely inefficient class that is rarely useful.
1023 It performs a heap allocation for every element inserted into it, thus having an
1024 extremely high constant factor, particularly for small data types. std::list
1025 also only supports bidirectional iteration, not random access iteration.</p>
1027 <p>In exchange for this high cost, std::list supports efficient access to both
1028 ends of the list (like std::deque, but unlike std::vector or SmallVector). In
1029 addition, the iterator invalidation characteristics of std::list are stronger
1030 than that of a vector class: inserting or removing an element into the list does
1031 not invalidate iterator or pointers to other elements in the list.</p>
1032 </div>
1034 <!-- _______________________________________________________________________ -->
1035 <h4>
1036 <a name="dss_ilist">llvm/ADT/ilist.h</a>
1037 </h4>
1039 <div>
1040 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
1041 intrusive, because it requires the element to store and provide access to the
1042 prev/next pointers for the list.</p>
1044 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1045 requires an <tt>ilist_traits</tt> implementation for the element type, but it
1046 provides some novel characteristics. In particular, it can efficiently store
1047 polymorphic objects, the traits class is informed when an element is inserted or
1048 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1049 constant-time splice operation.</p>
1051 <p>These properties are exactly what we want for things like
1052 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1053 <tt>ilist</tt>s.</p>
1055 Related classes of interest are explained in the following subsections:
1056 <ul>
1057 <li><a href="#dss_ilist_traits">ilist_traits</a></li>
1058 <li><a href="#dss_iplist">iplist</a></li>
1059 <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
1060 <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
1061 </ul>
1062 </div>
1064 <!-- _______________________________________________________________________ -->
1065 <h4>
1066 <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
1067 </h4>
1069 <div>
1071 Useful for storing a vector of values using only a few number of bits for each
1072 value. Apart from the standard operations of a vector-like container, it can
1073 also perform an 'or' set operation.
1074 </p>
1076 <p>For example:</p>
1078 <div class="doc_code">
1079 <pre>
1080 enum State {
1081 None = 0x0,
1082 FirstCondition = 0x1,
1083 SecondCondition = 0x2,
1084 Both = 0x3
1087 State get() {
1088 PackedVector&lt;State, 2&gt; Vec1;
1089 Vec1.push_back(FirstCondition);
1091 PackedVector&lt;State, 2&gt; Vec2;
1092 Vec2.push_back(SecondCondition);
1094 Vec1 |= Vec2;
1095 return Vec1[0]; // returns 'Both'.
1097 </pre>
1098 </div>
1100 </div>
1102 <!-- _______________________________________________________________________ -->
1103 <h4>
1104 <a name="dss_ilist_traits">ilist_traits</a>
1105 </h4>
1107 <div>
1108 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1109 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1110 publicly derive from this traits class.</p>
1111 </div>
1113 <!-- _______________________________________________________________________ -->
1114 <h4>
1115 <a name="dss_iplist">iplist</a>
1116 </h4>
1118 <div>
1119 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
1120 supports a slightly narrower interface. Notably, inserters from
1121 <tt>T&amp;</tt> are absent.</p>
1123 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1124 used for a wide variety of customizations.</p>
1125 </div>
1127 <!-- _______________________________________________________________________ -->
1128 <h4>
1129 <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1130 </h4>
1132 <div>
1133 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1134 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1135 in the default manner.</p>
1137 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
1138 <tt>T</tt>, usually <tt>T</tt> publicly derives from
1139 <tt>ilist_node&lt;T&gt;</tt>.</p>
1140 </div>
1142 <!-- _______________________________________________________________________ -->
1143 <h4>
1144 <a name="dss_ilist_sentinel">Sentinels</a>
1145 </h4>
1147 <div>
1148 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
1149 citizen in the C++ ecosystem, it needs to support the standard container
1150 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1151 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1152 case of non-empty <tt>ilist</tt>s.</p>
1154 <p>The only sensible solution to this problem is to allocate a so-called
1155 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1156 iterator, providing the back-link to the last element. However conforming to the
1157 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1158 also must not be dereferenced.</p>
1160 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1161 how to allocate and store the sentinel. The corresponding policy is dictated
1162 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1163 whenever the need for a sentinel arises.</p>
1165 <p>While the default policy is sufficient in most cases, it may break down when
1166 <tt>T</tt> does not provide a default constructor. Also, in the case of many
1167 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1168 is wasted. To alleviate the situation with numerous and voluminous
1169 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1170 sentinels</i>.</p>
1172 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1173 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1174 arithmetic is used to obtain the sentinel, which is relative to the
1175 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1176 extra pointer, which serves as the back-link of the sentinel. This is the only
1177 field in the ghostly sentinel which can be legally accessed.</p>
1178 </div>
1180 <!-- _______________________________________________________________________ -->
1181 <h4>
1182 <a name="dss_other">Other Sequential Container options</a>
1183 </h4>
1185 <div>
1186 <p>Other STL containers are available, such as std::string.</p>
1188 <p>There are also various STL adapter classes such as std::queue,
1189 std::priority_queue, std::stack, etc. These provide simplified access to an
1190 underlying container but don't affect the cost of the container itself.</p>
1192 </div>
1194 </div>
1196 <!-- ======================================================================= -->
1197 <h3>
1198 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1199 </h3>
1201 <div>
1203 <p>Set-like containers are useful when you need to canonicalize multiple values
1204 into a single representation. There are several different choices for how to do
1205 this, providing various trade-offs.</p>
1207 <!-- _______________________________________________________________________ -->
1208 <h4>
1209 <a name="dss_sortedvectorset">A sorted 'vector'</a>
1210 </h4>
1212 <div>
1214 <p>If you intend to insert a lot of elements, then do a lot of queries, a
1215 great approach is to use a vector (or other sequential container) with
1216 std::sort+std::unique to remove duplicates. This approach works really well if
1217 your usage pattern has these two distinct phases (insert then query), and can be
1218 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1219 </p>
1222 This combination provides the several nice properties: the result data is
1223 contiguous in memory (good for cache locality), has few allocations, is easy to
1224 address (iterators in the final vector are just indices or pointers), and can be
1225 efficiently queried with a standard binary or radix search.</p>
1227 </div>
1229 <!-- _______________________________________________________________________ -->
1230 <h4>
1231 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1232 </h4>
1234 <div>
1236 <p>If you have a set-like data structure that is usually small and whose elements
1237 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
1238 has space for N elements in place (thus, if the set is dynamically smaller than
1239 N, no malloc traffic is required) and accesses them with a simple linear search.
1240 When the set grows beyond 'N' elements, it allocates a more expensive representation that
1241 guarantees efficient access (for most types, it falls back to std::set, but for
1242 pointers it uses something far better, <a
1243 href="#dss_smallptrset">SmallPtrSet</a>).</p>
1245 <p>The magic of this class is that it handles small sets extremely efficiently,
1246 but gracefully handles extremely large sets without loss of efficiency. The
1247 drawback is that the interface is quite small: it supports insertion, queries
1248 and erasing, but does not support iteration.</p>
1250 </div>
1252 <!-- _______________________________________________________________________ -->
1253 <h4>
1254 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1255 </h4>
1257 <div>
1259 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is
1260 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators. If
1261 more than 'N' insertions are performed, a single quadratically
1262 probed hash table is allocated and grows as needed, providing extremely
1263 efficient access (constant time insertion/deleting/queries with low constant
1264 factors) and is very stingy with malloc traffic.</p>
1266 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
1267 whenever an insertion occurs. Also, the values visited by the iterators are not
1268 visited in sorted order.</p>
1270 </div>
1272 <!-- _______________________________________________________________________ -->
1273 <h4>
1274 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1275 </h4>
1277 <div>
1280 DenseSet is a simple quadratically probed hash table. It excels at supporting
1281 small values: it uses a single allocation to hold all of the pairs that
1282 are currently inserted in the set. DenseSet is a great way to unique small
1283 values that are not simple pointers (use <a
1284 href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1285 the same requirements for the value type that <a
1286 href="#dss_densemap">DenseMap</a> has.
1287 </p>
1289 </div>
1291 <!-- _______________________________________________________________________ -->
1292 <h4>
1293 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1294 </h4>
1296 <div>
1299 FoldingSet is an aggregate class that is really good at uniquing
1300 expensive-to-create or polymorphic objects. It is a combination of a chained
1301 hash table with intrusive links (uniqued objects are required to inherit from
1302 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1303 its ID process.</p>
1305 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
1306 a complex object (for example, a node in the code generator). The client has a
1307 description of *what* it wants to generate (it knows the opcode and all the
1308 operands), but we don't want to 'new' a node, then try inserting it into a set
1309 only to find out it already exists, at which point we would have to delete it
1310 and return the node that already exists.
1311 </p>
1313 <p>To support this style of client, FoldingSet perform a query with a
1314 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1315 element that we want to query for. The query either returns the element
1316 matching the ID or it returns an opaque ID that indicates where insertion should
1317 take place. Construction of the ID usually does not require heap traffic.</p>
1319 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1320 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1321 Because the elements are individually allocated, pointers to the elements are
1322 stable: inserting or removing elements does not invalidate any pointers to other
1323 elements.
1324 </p>
1326 </div>
1328 <!-- _______________________________________________________________________ -->
1329 <h4>
1330 <a name="dss_set">&lt;set&gt;</a>
1331 </h4>
1333 <div>
1335 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1336 many things but great at nothing. std::set allocates memory for each element
1337 inserted (thus it is very malloc intensive) and typically stores three pointers
1338 per element in the set (thus adding a large amount of per-element space
1339 overhead). It offers guaranteed log(n) performance, which is not particularly
1340 fast from a complexity standpoint (particularly if the elements of the set are
1341 expensive to compare, like strings), and has extremely high constant factors for
1342 lookup, insertion and removal.</p>
1344 <p>The advantages of std::set are that its iterators are stable (deleting or
1345 inserting an element from the set does not affect iterators or pointers to other
1346 elements) and that iteration over the set is guaranteed to be in sorted order.
1347 If the elements in the set are large, then the relative overhead of the pointers
1348 and malloc traffic is not a big deal, but if the elements of the set are small,
1349 std::set is almost never a good choice.</p>
1351 </div>
1353 <!-- _______________________________________________________________________ -->
1354 <h4>
1355 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1356 </h4>
1358 <div>
1359 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1360 a set-like container along with a <a href="#ds_sequential">Sequential
1361 Container</a>. The important property
1362 that this provides is efficient insertion with uniquing (duplicate elements are
1363 ignored) with iteration support. It implements this by inserting elements into
1364 both a set-like container and the sequential container, using the set-like
1365 container for uniquing and the sequential container for iteration.
1366 </p>
1368 <p>The difference between SetVector and other sets is that the order of
1369 iteration is guaranteed to match the order of insertion into the SetVector.
1370 This property is really important for things like sets of pointers. Because
1371 pointer values are non-deterministic (e.g. vary across runs of the program on
1372 different machines), iterating over the pointers in the set will
1373 not be in a well-defined order.</p>
1376 The drawback of SetVector is that it requires twice as much space as a normal
1377 set and has the sum of constant factors from the set-like container and the
1378 sequential container that it uses. Use it *only* if you need to iterate over
1379 the elements in a deterministic order. SetVector is also expensive to delete
1380 elements out of (linear time), unless you use it's "pop_back" method, which is
1381 faster.
1382 </p>
1384 <p>SetVector is an adapter class that defaults to using std::vector and std::set
1385 for the underlying containers, so it is quite expensive. However,
1386 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1387 defaults to using a SmallVector and SmallSet of a specified size. If you use
1388 this, and if your sets are dynamically smaller than N, you will save a lot of
1389 heap traffic.</p>
1391 </div>
1393 <!-- _______________________________________________________________________ -->
1394 <h4>
1395 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1396 </h4>
1398 <div>
1401 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1402 retains a unique ID for each element inserted into the set. It internally
1403 contains a map and a vector, and it assigns a unique ID for each value inserted
1404 into the set.</p>
1406 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1407 maintaining both the map and vector, it has high complexity, high constant
1408 factors, and produces a lot of malloc traffic. It should be avoided.</p>
1410 </div>
1413 <!-- _______________________________________________________________________ -->
1414 <h4>
1415 <a name="dss_otherset">Other Set-Like Container Options</a>
1416 </h4>
1418 <div>
1421 The STL provides several other options, such as std::multiset and the various
1422 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1423 never use hash_set and unordered_set because they are generally very expensive
1424 (each insertion requires a malloc) and very non-portable.
1425 </p>
1427 <p>std::multiset is useful if you're not interested in elimination of
1428 duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1429 don't delete duplicate entries) or some other approach is almost always
1430 better.</p>
1432 </div>
1434 </div>
1436 <!-- ======================================================================= -->
1437 <h3>
1438 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1439 </h3>
1441 <div>
1442 Map-like containers are useful when you want to associate data to a key. As
1443 usual, there are a lot of different ways to do this. :)
1445 <!-- _______________________________________________________________________ -->
1446 <h4>
1447 <a name="dss_sortedvectormap">A sorted 'vector'</a>
1448 </h4>
1450 <div>
1453 If your usage pattern follows a strict insert-then-query approach, you can
1454 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1455 for set-like containers</a>. The only difference is that your query function
1456 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1457 the key, not both the key and value. This yields the same advantages as sorted
1458 vectors for sets.
1459 </p>
1460 </div>
1462 <!-- _______________________________________________________________________ -->
1463 <h4>
1464 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1465 </h4>
1467 <div>
1470 Strings are commonly used as keys in maps, and they are difficult to support
1471 efficiently: they are variable length, inefficient to hash and compare when
1472 long, expensive to copy, etc. StringMap is a specialized container designed to
1473 cope with these issues. It supports mapping an arbitrary range of bytes to an
1474 arbitrary other object.</p>
1476 <p>The StringMap implementation uses a quadratically-probed hash table, where
1477 the buckets store a pointer to the heap allocated entries (and some other
1478 stuff). The entries in the map must be heap allocated because the strings are
1479 variable length. The string data (key) and the element object (value) are
1480 stored in the same allocation with the string data immediately after the element
1481 object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1482 to the key string for a value.</p>
1484 <p>The StringMap is very fast for several reasons: quadratic probing is very
1485 cache efficient for lookups, the hash value of strings in buckets is not
1486 recomputed when looking up an element, StringMap rarely has to touch the
1487 memory for unrelated objects when looking up a value (even when hash collisions
1488 happen), hash table growth does not recompute the hash values for strings
1489 already in the table, and each pair in the map is store in a single allocation
1490 (the string data is stored in the same allocation as the Value of a pair).</p>
1492 <p>StringMap also provides query methods that take byte ranges, so it only ever
1493 copies a string if a value is inserted into the table.</p>
1494 </div>
1496 <!-- _______________________________________________________________________ -->
1497 <h4>
1498 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1499 </h4>
1501 <div>
1503 IndexedMap is a specialized container for mapping small dense integers (or
1504 values that can be mapped to small dense integers) to some other type. It is
1505 internally implemented as a vector with a mapping function that maps the keys to
1506 the dense integer range.
1507 </p>
1510 This is useful for cases like virtual registers in the LLVM code generator: they
1511 have a dense mapping that is offset by a compile-time constant (the first
1512 virtual register ID).</p>
1514 </div>
1516 <!-- _______________________________________________________________________ -->
1517 <h4>
1518 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1519 </h4>
1521 <div>
1524 DenseMap is a simple quadratically probed hash table. It excels at supporting
1525 small keys and values: it uses a single allocation to hold all of the pairs that
1526 are currently inserted in the map. DenseMap is a great way to map pointers to
1527 pointers, or map other small types to each other.
1528 </p>
1531 There are several aspects of DenseMap that you should be aware of, however. The
1532 iterators in a densemap are invalidated whenever an insertion occurs, unlike
1533 map. Also, because DenseMap allocates space for a large number of key/value
1534 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1535 or values are large. Finally, you must implement a partial specialization of
1536 DenseMapInfo for the key that you want, if it isn't already supported. This
1537 is required to tell DenseMap about two special marker values (which can never be
1538 inserted into the map) that it needs internally.</p>
1540 </div>
1542 <!-- _______________________________________________________________________ -->
1543 <h4>
1544 <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1545 </h4>
1547 <div>
1550 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1551 Value*s (or subclasses) to another type. When a Value is deleted or RAUW'ed,
1552 ValueMap will update itself so the new version of the key is mapped to the same
1553 value, just as if the key were a WeakVH. You can configure exactly how this
1554 happens, and what else happens on these two events, by passing
1555 a <code>Config</code> parameter to the ValueMap template.</p>
1557 </div>
1559 <!-- _______________________________________________________________________ -->
1560 <h4>
1561 <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
1562 </h4>
1564 <div>
1566 <p> IntervalMap is a compact map for small keys and values. It maps key
1567 intervals instead of single keys, and it will automatically coalesce adjacent
1568 intervals. When then map only contains a few intervals, they are stored in the
1569 map object itself to avoid allocations.</p>
1571 <p> The IntervalMap iterators are quite big, so they should not be passed around
1572 as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
1574 </div>
1576 <!-- _______________________________________________________________________ -->
1577 <h4>
1578 <a name="dss_map">&lt;map&gt;</a>
1579 </h4>
1581 <div>
1584 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1585 a single allocation per pair inserted into the map, it offers log(n) lookup with
1586 an extremely large constant factor, imposes a space penalty of 3 pointers per
1587 pair in the map, etc.</p>
1589 <p>std::map is most useful when your keys or values are very large, if you need
1590 to iterate over the collection in sorted order, or if you need stable iterators
1591 into the map (i.e. they don't get invalidated if an insertion or deletion of
1592 another element takes place).</p>
1594 </div>
1596 <!-- _______________________________________________________________________ -->
1597 <h4>
1598 <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
1599 </h4>
1601 <div>
1603 <p>IntEqClasses provides a compact representation of equivalence classes of
1604 small integers. Initially, each integer in the range 0..n-1 has its own
1605 equivalence class. Classes can be joined by passing two class representatives to
1606 the join(a, b) method. Two integers are in the same class when findLeader()
1607 returns the same representative.</p>
1609 <p>Once all equivalence classes are formed, the map can be compressed so each
1610 integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
1611 is the total number of equivalence classes. The map must be uncompressed before
1612 it can be edited again.</p>
1614 </div>
1616 <!-- _______________________________________________________________________ -->
1617 <h4>
1618 <a name="dss_othermap">Other Map-Like Container Options</a>
1619 </h4>
1621 <div>
1624 The STL provides several other options, such as std::multimap and the various
1625 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1626 never use hash_set and unordered_set because they are generally very expensive
1627 (each insertion requires a malloc) and very non-portable.</p>
1629 <p>std::multimap is useful if you want to map a key to multiple values, but has
1630 all the drawbacks of std::map. A sorted vector or some other approach is almost
1631 always better.</p>
1633 </div>
1635 </div>
1637 <!-- ======================================================================= -->
1638 <h3>
1639 <a name="ds_string">String-like containers</a>
1640 </h3>
1642 <div>
1645 TODO: const char* vs stringref vs smallstring vs std::string. Describe twine,
1646 xref to #string_apis.
1647 </p>
1649 </div>
1651 <!-- ======================================================================= -->
1652 <h3>
1653 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1654 </h3>
1656 <div>
1657 <p>Unlike the other containers, there are only two bit storage containers, and
1658 choosing when to use each is relatively straightforward.</p>
1660 <p>One additional option is
1661 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1662 implementation in many common compilers (e.g. commonly available versions of
1663 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1664 deprecate this container and/or change it significantly somehow. In any case,
1665 please don't use it.</p>
1667 <!-- _______________________________________________________________________ -->
1668 <h4>
1669 <a name="dss_bitvector">BitVector</a>
1670 </h4>
1672 <div>
1673 <p> The BitVector container provides a dynamic size set of bits for manipulation.
1674 It supports individual bit setting/testing, as well as set operations. The set
1675 operations take time O(size of bitvector), but operations are performed one word
1676 at a time, instead of one bit at a time. This makes the BitVector very fast for
1677 set operations compared to other containers. Use the BitVector when you expect
1678 the number of set bits to be high (IE a dense set).
1679 </p>
1680 </div>
1682 <!-- _______________________________________________________________________ -->
1683 <h4>
1684 <a name="dss_smallbitvector">SmallBitVector</a>
1685 </h4>
1687 <div>
1688 <p> The SmallBitVector container provides the same interface as BitVector, but
1689 it is optimized for the case where only a small number of bits, less than
1690 25 or so, are needed. It also transparently supports larger bit counts, but
1691 slightly less efficiently than a plain BitVector, so SmallBitVector should
1692 only be used when larger counts are rare.
1693 </p>
1696 At this time, SmallBitVector does not support set operations (and, or, xor),
1697 and its operator[] does not provide an assignable lvalue.
1698 </p>
1699 </div>
1701 <!-- _______________________________________________________________________ -->
1702 <h4>
1703 <a name="dss_sparsebitvector">SparseBitVector</a>
1704 </h4>
1706 <div>
1707 <p> The SparseBitVector container is much like BitVector, with one major
1708 difference: Only the bits that are set, are stored. This makes the
1709 SparseBitVector much more space efficient than BitVector when the set is sparse,
1710 as well as making set operations O(number of set bits) instead of O(size of
1711 universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1712 (either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1713 </p>
1714 </div>
1716 </div>
1718 </div>
1720 <!-- *********************************************************************** -->
1721 <h2>
1722 <a name="common">Helpful Hints for Common Operations</a>
1723 </h2>
1724 <!-- *********************************************************************** -->
1726 <div>
1728 <p>This section describes how to perform some very simple transformations of
1729 LLVM code. This is meant to give examples of common idioms used, showing the
1730 practical side of LLVM transformations. <p> Because this is a "how-to" section,
1731 you should also read about the main classes that you will be working with. The
1732 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1733 and descriptions of the main classes that you should know about.</p>
1735 <!-- NOTE: this section should be heavy on example code -->
1736 <!-- ======================================================================= -->
1737 <h3>
1738 <a name="inspection">Basic Inspection and Traversal Routines</a>
1739 </h3>
1741 <div>
1743 <p>The LLVM compiler infrastructure have many different data structures that may
1744 be traversed. Following the example of the C++ standard template library, the
1745 techniques used to traverse these various data structures are all basically the
1746 same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1747 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1748 function returns an iterator pointing to one past the last valid element of the
1749 sequence, and there is some <tt>XXXiterator</tt> data type that is common
1750 between the two operations.</p>
1752 <p>Because the pattern for iteration is common across many different aspects of
1753 the program representation, the standard template library algorithms may be used
1754 on them, and it is easier to remember how to iterate. First we show a few common
1755 examples of the data structures that need to be traversed. Other data
1756 structures are traversed in very similar ways.</p>
1758 <!-- _______________________________________________________________________ -->
1759 <h4>
1760 <a name="iterate_function">Iterating over the </a><a
1761 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1762 href="#Function"><tt>Function</tt></a>
1763 </h4>
1765 <div>
1767 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1768 transform in some way; in particular, you'd like to manipulate its
1769 <tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1770 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1771 an example that prints the name of a <tt>BasicBlock</tt> and the number of
1772 <tt>Instruction</tt>s it contains:</p>
1774 <div class="doc_code">
1775 <pre>
1776 // <i>func is a pointer to a Function instance</i>
1777 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1778 // <i>Print out the name of the basic block if it has one, and then the</i>
1779 // <i>number of instructions that it contains</i>
1780 errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1781 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1782 </pre>
1783 </div>
1785 <p>Note that i can be used as if it were a pointer for the purposes of
1786 invoking member functions of the <tt>Instruction</tt> class. This is
1787 because the indirection operator is overloaded for the iterator
1788 classes. In the above code, the expression <tt>i-&gt;size()</tt> is
1789 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1791 </div>
1793 <!-- _______________________________________________________________________ -->
1794 <h4>
1795 <a name="iterate_basicblock">Iterating over the </a><a
1796 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1797 href="#BasicBlock"><tt>BasicBlock</tt></a>
1798 </h4>
1800 <div>
1802 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1803 easy to iterate over the individual instructions that make up
1804 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1805 a <tt>BasicBlock</tt>:</p>
1807 <div class="doc_code">
1808 <pre>
1809 // <i>blk is a pointer to a BasicBlock instance</i>
1810 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1811 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1812 // <i>is overloaded for Instruction&amp;</i>
1813 errs() &lt;&lt; *i &lt;&lt; "\n";
1814 </pre>
1815 </div>
1817 <p>However, this isn't really the best way to print out the contents of a
1818 <tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
1819 anything you'll care about, you could have just invoked the print routine on the
1820 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1822 </div>
1824 <!-- _______________________________________________________________________ -->
1825 <h4>
1826 <a name="iterate_institer">Iterating over the </a><a
1827 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1828 href="#Function"><tt>Function</tt></a>
1829 </h4>
1831 <div>
1833 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1834 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1835 <tt>InstIterator</tt> should be used instead. You'll need to include <a
1836 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1837 and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
1838 small example that shows how to dump all instructions in a function to the standard error stream:<p>
1840 <div class="doc_code">
1841 <pre>
1842 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1844 // <i>F is a pointer to a Function instance</i>
1845 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1846 errs() &lt;&lt; *I &lt;&lt; "\n";
1847 </pre>
1848 </div>
1850 <p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
1851 work list with its initial contents. For example, if you wanted to
1852 initialize a work list to contain all instructions in a <tt>Function</tt>
1853 F, all you would need to do is something like:</p>
1855 <div class="doc_code">
1856 <pre>
1857 std::set&lt;Instruction*&gt; worklist;
1858 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1860 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1861 worklist.insert(&amp;*I);
1862 </pre>
1863 </div>
1865 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
1866 <tt>Function</tt> pointed to by F.</p>
1868 </div>
1870 <!-- _______________________________________________________________________ -->
1871 <h4>
1872 <a name="iterate_convert">Turning an iterator into a class pointer (and
1873 vice-versa)</a>
1874 </h4>
1876 <div>
1878 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1879 instance when all you've got at hand is an iterator. Well, extracting
1880 a reference or a pointer from an iterator is very straight-forward.
1881 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1882 is a <tt>BasicBlock::const_iterator</tt>:</p>
1884 <div class="doc_code">
1885 <pre>
1886 Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
1887 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1888 const Instruction&amp; inst = *j;
1889 </pre>
1890 </div>
1892 <p>However, the iterators you'll be working with in the LLVM framework are
1893 special: they will automatically convert to a ptr-to-instance type whenever they
1894 need to. Instead of dereferencing the iterator and then taking the address of
1895 the result, you can simply assign the iterator to the proper pointer type and
1896 you get the dereference and address-of operation as a result of the assignment
1897 (behind the scenes, this is a result of overloading casting mechanisms). Thus
1898 the last line of the last example,</p>
1900 <div class="doc_code">
1901 <pre>
1902 Instruction *pinst = &amp;*i;
1903 </pre>
1904 </div>
1906 <p>is semantically equivalent to</p>
1908 <div class="doc_code">
1909 <pre>
1910 Instruction *pinst = i;
1911 </pre>
1912 </div>
1914 <p>It's also possible to turn a class pointer into the corresponding iterator,
1915 and this is a constant time operation (very efficient). The following code
1916 snippet illustrates use of the conversion constructors provided by LLVM
1917 iterators. By using these, you can explicitly grab the iterator of something
1918 without actually obtaining it via iteration over some structure:</p>
1920 <div class="doc_code">
1921 <pre>
1922 void printNextInstruction(Instruction* inst) {
1923 BasicBlock::iterator it(inst);
1924 ++it; // <i>After this line, it refers to the instruction after *inst</i>
1925 if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
1927 </pre>
1928 </div>
1930 <p>Unfortunately, these implicit conversions come at a cost; they prevent
1931 these iterators from conforming to standard iterator conventions, and thus
1932 from being usable with standard algorithms and containers. For example, they
1933 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
1934 from compiling:</p>
1936 <div class="doc_code">
1937 <pre>
1938 llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
1939 </pre>
1940 </div>
1942 <p>Because of this, these implicit conversions may be removed some day,
1943 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
1945 </div>
1947 <!--_______________________________________________________________________-->
1948 <h4>
1949 <a name="iterate_complex">Finding call sites: a slightly more complex
1950 example</a>
1951 </h4>
1953 <div>
1955 <p>Say that you're writing a FunctionPass and would like to count all the
1956 locations in the entire module (that is, across every <tt>Function</tt>) where a
1957 certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
1958 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1959 much more straight-forward manner, but this example will allow us to explore how
1960 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1961 is what we want to do:</p>
1963 <div class="doc_code">
1964 <pre>
1965 initialize callCounter to zero
1966 for each Function f in the Module
1967 for each BasicBlock b in f
1968 for each Instruction i in b
1969 if (i is a CallInst and calls the given function)
1970 increment callCounter
1971 </pre>
1972 </div>
1974 <p>And the actual code is (remember, because we're writing a
1975 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1976 override the <tt>runOnFunction</tt> method):</p>
1978 <div class="doc_code">
1979 <pre>
1980 Function* targetFunc = ...;
1982 class OurFunctionPass : public FunctionPass {
1983 public:
1984 OurFunctionPass(): callCounter(0) { }
1986 virtual runOnFunction(Function&amp; F) {
1987 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1988 for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
1989 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1990 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1991 // <i>We know we've encountered a call instruction, so we</i>
1992 // <i>need to determine if it's a call to the</i>
1993 // <i>function pointed to by m_func or not.</i>
1994 if (callInst-&gt;getCalledFunction() == targetFunc)
1995 ++callCounter;
2001 private:
2002 unsigned callCounter;
2004 </pre>
2005 </div>
2007 </div>
2009 <!--_______________________________________________________________________-->
2010 <h4>
2011 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
2012 </h4>
2014 <div>
2016 <p>You may have noticed that the previous example was a bit oversimplified in
2017 that it did not deal with call sites generated by 'invoke' instructions. In
2018 this, and in other situations, you may find that you want to treat
2019 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
2020 most-specific common base class is <tt>Instruction</tt>, which includes lots of
2021 less closely-related things. For these cases, LLVM provides a handy wrapper
2022 class called <a
2023 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
2024 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
2025 methods that provide functionality common to <tt>CallInst</tt>s and
2026 <tt>InvokeInst</tt>s.</p>
2028 <p>This class has "value semantics": it should be passed by value, not by
2029 reference and it should not be dynamically allocated or deallocated using
2030 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
2031 assignable and constructable, with costs equivalents to that of a bare pointer.
2032 If you look at its definition, it has only a single pointer member.</p>
2034 </div>
2036 <!--_______________________________________________________________________-->
2037 <h4>
2038 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
2039 </h4>
2041 <div>
2043 <p>Frequently, we might have an instance of the <a
2044 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
2045 determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
2046 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
2047 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
2048 particular function <tt>foo</tt>. Finding all of the instructions that
2049 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
2050 of <tt>F</tt>:</p>
2052 <div class="doc_code">
2053 <pre>
2054 Function *F = ...;
2056 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
2057 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
2058 errs() &lt;&lt; "F is used in instruction:\n";
2059 errs() &lt;&lt; *Inst &lt;&lt; "\n";
2061 </pre>
2062 </div>
2064 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
2065 operation. Instead of performing <tt>*i</tt> above several times, consider
2066 doing it only once in the loop body and reusing its result.</p>
2068 <p>Alternatively, it's common to have an instance of the <a
2069 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
2070 <tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
2071 <tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
2072 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
2073 all of the values that a particular instruction uses (that is, the operands of
2074 the particular <tt>Instruction</tt>):</p>
2076 <div class="doc_code">
2077 <pre>
2078 Instruction *pi = ...;
2080 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
2081 Value *v = *i;
2082 // <i>...</i>
2084 </pre>
2085 </div>
2087 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2088 mutation free algorithms (such as analyses, etc.). For this purpose above
2089 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2090 and <tt>Value::const_op_iterator</tt>. They automatically arise when
2091 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2092 <tt>const User*</tt>s respectively. Upon dereferencing, they return
2093 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2095 </div>
2097 <!--_______________________________________________________________________-->
2098 <h4>
2099 <a name="iterate_preds">Iterating over predecessors &amp;
2100 successors of blocks</a>
2101 </h4>
2103 <div>
2105 <p>Iterating over the predecessors and successors of a block is quite easy
2106 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
2107 this to iterate over all predecessors of BB:</p>
2109 <div class="doc_code">
2110 <pre>
2111 #include "llvm/Support/CFG.h"
2112 BasicBlock *BB = ...;
2114 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2115 BasicBlock *Pred = *PI;
2116 // <i>...</i>
2118 </pre>
2119 </div>
2121 <p>Similarly, to iterate over successors use
2122 succ_iterator/succ_begin/succ_end.</p>
2124 </div>
2126 </div>
2128 <!-- ======================================================================= -->
2129 <h3>
2130 <a name="simplechanges">Making simple changes</a>
2131 </h3>
2133 <div>
2135 <p>There are some primitive transformation operations present in the LLVM
2136 infrastructure that are worth knowing about. When performing
2137 transformations, it's fairly common to manipulate the contents of basic
2138 blocks. This section describes some of the common methods for doing so
2139 and gives example code.</p>
2141 <!--_______________________________________________________________________-->
2142 <h4>
2143 <a name="schanges_creating">Creating and inserting new
2144 <tt>Instruction</tt>s</a>
2145 </h4>
2147 <div>
2149 <p><i>Instantiating Instructions</i></p>
2151 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2152 constructor for the kind of instruction to instantiate and provide the necessary
2153 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2154 (const-ptr-to) <tt>Type</tt>. Thus:</p>
2156 <div class="doc_code">
2157 <pre>
2158 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
2159 </pre>
2160 </div>
2162 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2163 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2164 subclass is likely to have varying default parameters which change the semantics
2165 of the instruction, so refer to the <a
2166 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2167 Instruction</a> that you're interested in instantiating.</p>
2169 <p><i>Naming values</i></p>
2171 <p>It is very useful to name the values of instructions when you're able to, as
2172 this facilitates the debugging of your transformations. If you end up looking
2173 at generated LLVM machine code, you definitely want to have logical names
2174 associated with the results of instructions! By supplying a value for the
2175 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2176 associate a logical name with the result of the instruction's execution at
2177 run time. For example, say that I'm writing a transformation that dynamically
2178 allocates space for an integer on the stack, and that integer is going to be
2179 used as some kind of index by some other code. To accomplish this, I place an
2180 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2181 <tt>Function</tt>, and I'm intending to use it within the same
2182 <tt>Function</tt>. I might do:</p>
2184 <div class="doc_code">
2185 <pre>
2186 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
2187 </pre>
2188 </div>
2190 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2191 execution value, which is a pointer to an integer on the run time stack.</p>
2193 <p><i>Inserting instructions</i></p>
2195 <p>There are essentially two ways to insert an <tt>Instruction</tt>
2196 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2198 <ul>
2199 <li>Insertion into an explicit instruction list
2201 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2202 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2203 before <tt>*pi</tt>, we do the following: </p>
2205 <div class="doc_code">
2206 <pre>
2207 BasicBlock *pb = ...;
2208 Instruction *pi = ...;
2209 Instruction *newInst = new Instruction(...);
2211 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2212 </pre>
2213 </div>
2215 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2216 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2217 classes provide constructors which take a pointer to a
2218 <tt>BasicBlock</tt> to be appended to. For example code that
2219 looked like: </p>
2221 <div class="doc_code">
2222 <pre>
2223 BasicBlock *pb = ...;
2224 Instruction *newInst = new Instruction(...);
2226 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2227 </pre>
2228 </div>
2230 <p>becomes: </p>
2232 <div class="doc_code">
2233 <pre>
2234 BasicBlock *pb = ...;
2235 Instruction *newInst = new Instruction(..., pb);
2236 </pre>
2237 </div>
2239 <p>which is much cleaner, especially if you are creating
2240 long instruction streams.</p></li>
2242 <li>Insertion into an implicit instruction list
2244 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2245 are implicitly associated with an existing instruction list: the instruction
2246 list of the enclosing basic block. Thus, we could have accomplished the same
2247 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2248 </p>
2250 <div class="doc_code">
2251 <pre>
2252 Instruction *pi = ...;
2253 Instruction *newInst = new Instruction(...);
2255 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2256 </pre>
2257 </div>
2259 <p>In fact, this sequence of steps occurs so frequently that the
2260 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2261 constructors which take (as a default parameter) a pointer to an
2262 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2263 precede. That is, <tt>Instruction</tt> constructors are capable of
2264 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2265 provided instruction, immediately before that instruction. Using an
2266 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2267 parameter, the above code becomes:</p>
2269 <div class="doc_code">
2270 <pre>
2271 Instruction* pi = ...;
2272 Instruction* newInst = new Instruction(..., pi);
2273 </pre>
2274 </div>
2276 <p>which is much cleaner, especially if you're creating a lot of
2277 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2278 </ul>
2280 </div>
2282 <!--_______________________________________________________________________-->
2283 <h4>
2284 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2285 </h4>
2287 <div>
2289 <p>Deleting an instruction from an existing sequence of instructions that form a
2290 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
2291 call the instruction's eraseFromParent() method. For example:</p>
2293 <div class="doc_code">
2294 <pre>
2295 <a href="#Instruction">Instruction</a> *I = .. ;
2296 I-&gt;eraseFromParent();
2297 </pre>
2298 </div>
2300 <p>This unlinks the instruction from its containing basic block and deletes
2301 it. If you'd just like to unlink the instruction from its containing basic
2302 block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
2304 </div>
2306 <!--_______________________________________________________________________-->
2307 <h4>
2308 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2309 <tt>Value</tt></a>
2310 </h4>
2312 <div>
2314 <p><i>Replacing individual instructions</i></p>
2316 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2317 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2318 and <tt>ReplaceInstWithInst</tt>.</p>
2320 <h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
2322 <ul>
2323 <li><tt>ReplaceInstWithValue</tt>
2325 <p>This function replaces all uses of a given instruction with a value,
2326 and then removes the original instruction. The following example
2327 illustrates the replacement of the result of a particular
2328 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2329 pointer to an integer.</p>
2331 <div class="doc_code">
2332 <pre>
2333 AllocaInst* instToReplace = ...;
2334 BasicBlock::iterator ii(instToReplace);
2336 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2337 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2338 </pre></div></li>
2340 <li><tt>ReplaceInstWithInst</tt>
2342 <p>This function replaces a particular instruction with another
2343 instruction, inserting the new instruction into the basic block at the
2344 location where the old instruction was, and replacing any uses of the old
2345 instruction with the new instruction. The following example illustrates
2346 the replacement of one <tt>AllocaInst</tt> with another.</p>
2348 <div class="doc_code">
2349 <pre>
2350 AllocaInst* instToReplace = ...;
2351 BasicBlock::iterator ii(instToReplace);
2353 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2354 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2355 </pre></div></li>
2356 </ul>
2358 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2360 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
2361 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
2362 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2363 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2364 information.</p>
2366 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2367 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2368 ReplaceInstWithValue, ReplaceInstWithInst -->
2370 </div>
2372 <!--_______________________________________________________________________-->
2373 <h4>
2374 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2375 </h4>
2377 <div>
2379 <p>Deleting a global variable from a module is just as easy as deleting an
2380 Instruction. First, you must have a pointer to the global variable that you wish
2381 to delete. You use this pointer to erase it from its parent, the module.
2382 For example:</p>
2384 <div class="doc_code">
2385 <pre>
2386 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2388 GV-&gt;eraseFromParent();
2389 </pre>
2390 </div>
2392 </div>
2394 </div>
2396 <!-- ======================================================================= -->
2397 <h3>
2398 <a name="create_types">How to Create Types</a>
2399 </h3>
2401 <div>
2403 <p>In generating IR, you may need some complex types. If you know these types
2404 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
2405 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them. <tt>TypeBuilder</tt>
2406 has two forms depending on whether you're building types for cross-compilation
2407 or native library use. <tt>TypeBuilder&lt;T, true&gt;</tt> requires
2408 that <tt>T</tt> be independent of the host environment, meaning that it's built
2409 out of types from
2410 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2411 namespace and pointers, functions, arrays, etc. built of
2412 those. <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
2413 whose size may depend on the host compiler. For example,</p>
2415 <div class="doc_code">
2416 <pre>
2417 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
2418 </pre>
2419 </div>
2421 <p>is easier to read and write than the equivalent</p>
2423 <div class="doc_code">
2424 <pre>
2425 std::vector&lt;const Type*&gt; params;
2426 params.push_back(PointerType::getUnqual(Type::Int32Ty));
2427 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2428 </pre>
2429 </div>
2431 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2432 comment</a> for more details.</p>
2434 </div>
2436 </div>
2438 <!-- *********************************************************************** -->
2439 <h2>
2440 <a name="threading">Threads and LLVM</a>
2441 </h2>
2442 <!-- *********************************************************************** -->
2444 <div>
2446 This section describes the interaction of the LLVM APIs with multithreading,
2447 both on the part of client applications, and in the JIT, in the hosted
2448 application.
2449 </p>
2452 Note that LLVM's support for multithreading is still relatively young. Up
2453 through version 2.5, the execution of threaded hosted applications was
2454 supported, but not threaded client access to the APIs. While this use case is
2455 now supported, clients <em>must</em> adhere to the guidelines specified below to
2456 ensure proper operation in multithreaded mode.
2457 </p>
2460 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2461 intrinsics in order to support threaded operation. If you need a
2462 multhreading-capable LLVM on a platform without a suitably modern system
2463 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
2464 using the resultant compiler to build a copy of LLVM with multithreading
2465 support.
2466 </p>
2468 <!-- ======================================================================= -->
2469 <h3>
2470 <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
2471 </h3>
2473 <div>
2476 In order to properly protect its internal data structures while avoiding
2477 excessive locking overhead in the single-threaded case, the LLVM must intialize
2478 certain data structures necessary to provide guards around its internals. To do
2479 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2480 making any concurrent LLVM API calls. To subsequently tear down these
2481 structures, use the <tt>llvm_stop_multithreaded()</tt> call. You can also use
2482 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2483 mode.
2484 </p>
2487 Note that both of these calls must be made <em>in isolation</em>. That is to
2488 say that no other LLVM API calls may be executing at any time during the
2489 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2490 </tt>. It's is the client's responsibility to enforce this isolation.
2491 </p>
2494 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2495 failure of the initialization. Failure typically indicates that your copy of
2496 LLVM was built without multithreading support, typically because GCC atomic
2497 intrinsics were not found in your system compiler. In this case, the LLVM API
2498 will not be safe for concurrent calls. However, it <em>will</em> be safe for
2499 hosting threaded applications in the JIT, though <a href="#jitthreading">care
2500 must be taken</a> to ensure that side exits and the like do not accidentally
2501 result in concurrent LLVM API calls.
2502 </p>
2503 </div>
2505 <!-- ======================================================================= -->
2506 <h3>
2507 <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2508 </h3>
2510 <div>
2512 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
2513 to deallocate memory used for internal structures. This will also invoke
2514 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2515 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2516 <tt>llvm_stop_multithreaded()</tt>.
2517 </p>
2520 Note that, if you use scope-based shutdown, you can use the
2521 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2522 destructor.
2523 </div>
2525 <!-- ======================================================================= -->
2526 <h3>
2527 <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2528 </h3>
2530 <div>
2532 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2533 initialization of static resources, such as the global type tables. Before the
2534 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy
2535 initialization scheme. Once <tt>llvm_start_multithreaded()</tt> returns,
2536 however, it uses double-checked locking to implement thread-safe lazy
2537 initialization.
2538 </p>
2541 Note that, because no other threads are allowed to issue LLVM API calls before
2542 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have
2543 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2544 </p>
2547 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt>
2548 APIs provide access to the global lock used to implement the double-checked
2549 locking for lazy initialization. These should only be used internally to LLVM,
2550 and only if you know what you're doing!
2551 </p>
2552 </div>
2554 <!-- ======================================================================= -->
2555 <h3>
2556 <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2557 </h3>
2559 <div>
2561 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2562 to operate multiple, isolated instances of LLVM concurrently within the same
2563 address space. For instance, in a hypothetical compile-server, the compilation
2564 of an individual translation unit is conceptually independent from all the
2565 others, and it would be desirable to be able to compile incoming translation
2566 units concurrently on independent server threads. Fortunately,
2567 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
2568 </p>
2571 Conceptually, <tt>LLVMContext</tt> provides isolation. Every LLVM entity
2572 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
2573 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>. Entities in
2574 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2575 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2576 to <tt>Module</tt>s in different contexts, etc. What this means is that is is
2577 safe to compile on multiple threads simultaneously, as long as no two threads
2578 operate on entities within the same context.
2579 </p>
2582 In practice, very few places in the API require the explicit specification of a
2583 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2584 Because every <tt>Type</tt> carries a reference to its owning context, most
2585 other entities can determine what context they belong to by looking at their
2586 own <tt>Type</tt>. If you are adding new entities to LLVM IR, please try to
2587 maintain this interface design.
2588 </p>
2591 For clients that do <em>not</em> require the benefits of isolation, LLVM
2592 provides a convenience API <tt>getGlobalContext()</tt>. This returns a global,
2593 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2594 isolation is not a concern.
2595 </p>
2596 </div>
2598 <!-- ======================================================================= -->
2599 <h3>
2600 <a name="jitthreading">Threads and the JIT</a>
2601 </h3>
2603 <div>
2605 LLVM's "eager" JIT compiler is safe to use in threaded programs. Multiple
2606 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2607 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2608 run code output by the JIT concurrently. The user must still ensure that only
2609 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2610 might be modifying it. One way to do that is to always hold the JIT lock while
2611 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2612 <tt>CallbackVH</tt>s). Another way is to only
2613 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2614 </p>
2616 <p>When the JIT is configured to compile lazily (using
2617 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2618 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2619 updating call sites after a function is lazily-jitted. It's still possible to
2620 use the lazy JIT in a threaded program if you ensure that only one thread at a
2621 time can call any particular lazy stub and that the JIT lock guards any IR
2622 access, but we suggest using only the eager JIT in threaded programs.
2623 </p>
2624 </div>
2626 </div>
2628 <!-- *********************************************************************** -->
2629 <h2>
2630 <a name="advanced">Advanced Topics</a>
2631 </h2>
2632 <!-- *********************************************************************** -->
2634 <div>
2636 This section describes some of the advanced or obscure API's that most clients
2637 do not need to be aware of. These API's tend manage the inner workings of the
2638 LLVM system, and only need to be accessed in unusual circumstances.
2639 </p>
2642 <!-- ======================================================================= -->
2643 <h3>
2644 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
2645 </h3>
2647 <div>
2648 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2649 ValueSymbolTable</a></tt> class provides a symbol table that the <a
2650 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2651 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
2652 can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2653 </p>
2655 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2656 by most clients. It should only be used when iteration over the symbol table
2657 names themselves are required, which is very special purpose. Note that not
2658 all LLVM
2659 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2660 an empty name) do not exist in the symbol table.
2661 </p>
2663 <p>Symbol tables support iteration over the values in the symbol
2664 table with <tt>begin/end/iterator</tt> and supports querying to see if a
2665 specific name is in the symbol table (with <tt>lookup</tt>). The
2666 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2667 simply call <tt>setName</tt> on a value, which will autoinsert it into the
2668 appropriate symbol table.</p>
2670 </div>
2674 <!-- ======================================================================= -->
2675 <h3>
2676 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2677 </h3>
2679 <div>
2680 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2681 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2682 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2683 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2684 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2685 addition and removal.</p>
2687 <!-- ______________________________________________________________________ -->
2688 <h4>
2689 <a name="Use2User">
2690 Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
2691 </a>
2692 </h4>
2694 <div>
2696 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2697 or refer to them out-of-line by means of a pointer. A mixed variant
2698 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2699 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2700 </p>
2703 We have 2 different layouts in the <tt>User</tt> (sub)classes:
2704 <ul>
2705 <li><p>Layout a)
2706 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2707 object and there are a fixed number of them.</p>
2709 <li><p>Layout b)
2710 The <tt>Use</tt> object(s) are referenced by a pointer to an
2711 array from the <tt>User</tt> object and there may be a variable
2712 number of them.</p>
2713 </ul>
2715 As of v2.4 each layout still possesses a direct pointer to the
2716 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2717 we stick to this redundancy for the sake of simplicity.
2718 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2719 has. (Theoretically this information can also be calculated
2720 given the scheme presented below.)</p>
2722 Special forms of allocation operators (<tt>operator new</tt>)
2723 enforce the following memory layouts:</p>
2725 <ul>
2726 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2728 <pre>
2729 ...---.---.---.---.-------...
2730 | P | P | P | P | User
2731 '''---'---'---'---'-------'''
2732 </pre>
2734 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2735 <pre>
2736 .-------...
2737 | User
2738 '-------'''
2741 .---.---.---.---...
2742 | P | P | P | P |
2743 '---'---'---'---'''
2744 </pre>
2745 </ul>
2746 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2747 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
2749 </div>
2751 <!-- ______________________________________________________________________ -->
2752 <h4>
2753 <a name="Waymarking">The waymarking algorithm</a>
2754 </h4>
2756 <div>
2758 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
2759 their <tt>User</tt> objects, there must be a fast and exact method to
2760 recover it. This is accomplished by the following scheme:</p>
2762 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
2763 start of the <tt>User</tt> object:
2764 <ul>
2765 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2766 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2767 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2768 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2769 </ul>
2771 Given a <tt>Use*</tt>, all we have to do is to walk till we get
2772 a stop and we either have a <tt>User</tt> immediately behind or
2773 we have to walk to the next stop picking up digits
2774 and calculating the offset:</p>
2775 <pre>
2776 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2777 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2778 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2779 |+15 |+10 |+6 |+3 |+1
2780 | | | | |__>
2781 | | | |__________>
2782 | | |______________________>
2783 | |______________________________________>
2784 |__________________________________________________________>
2785 </pre>
2787 Only the significant number of bits need to be stored between the
2788 stops, so that the <i>worst case is 20 memory accesses</i> when there are
2789 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
2791 </div>
2793 <!-- ______________________________________________________________________ -->
2794 <h4>
2795 <a name="ReferenceImpl">Reference implementation</a>
2796 </h4>
2798 <div>
2800 The following literate Haskell fragment demonstrates the concept:</p>
2802 <div class="doc_code">
2803 <pre>
2804 > import Test.QuickCheck
2806 > digits :: Int -> [Char] -> [Char]
2807 > digits 0 acc = '0' : acc
2808 > digits 1 acc = '1' : acc
2809 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2811 > dist :: Int -> [Char] -> [Char]
2812 > dist 0 [] = ['S']
2813 > dist 0 acc = acc
2814 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2815 > dist n acc = dist (n - 1) $ dist 1 acc
2817 > takeLast n ss = reverse $ take n $ reverse ss
2819 > test = takeLast 40 $ dist 20 []
2821 </pre>
2822 </div>
2824 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2826 The reverse algorithm computes the length of the string just by examining
2827 a certain prefix:</p>
2829 <div class="doc_code">
2830 <pre>
2831 > pref :: [Char] -> Int
2832 > pref "S" = 1
2833 > pref ('s':'1':rest) = decode 2 1 rest
2834 > pref (_:rest) = 1 + pref rest
2836 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2837 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2838 > decode walk acc _ = walk + acc
2840 </pre>
2841 </div>
2843 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2845 We can <i>quickCheck</i> this with following property:</p>
2847 <div class="doc_code">
2848 <pre>
2849 > testcase = dist 2000 []
2850 > testcaseLength = length testcase
2852 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2853 > where arr = takeLast n testcase
2855 </pre>
2856 </div>
2858 As expected &lt;quickCheck identityProp&gt; gives:</p>
2860 <pre>
2861 *Main> quickCheck identityProp
2862 OK, passed 100 tests.
2863 </pre>
2865 Let's be a bit more exhaustive:</p>
2867 <div class="doc_code">
2868 <pre>
2870 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2872 </pre>
2873 </div>
2875 And here is the result of &lt;deepCheck identityProp&gt;:</p>
2877 <pre>
2878 *Main> deepCheck identityProp
2879 OK, passed 500 tests.
2880 </pre>
2882 </div>
2884 <!-- ______________________________________________________________________ -->
2885 <h4>
2886 <a name="Tagging">Tagging considerations</a>
2887 </h4>
2889 <div>
2892 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2893 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2894 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2895 tag bits.</p>
2897 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2898 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2899 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
2900 the LSBit set. (Portability is relying on the fact that all known compilers place the
2901 <tt>vptr</tt> in the first word of the instances.)</p>
2903 </div>
2905 </div>
2907 </div>
2909 <!-- *********************************************************************** -->
2910 <h2>
2911 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2912 </h2>
2913 <!-- *********************************************************************** -->
2915 <div>
2916 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2917 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2919 <p>The Core LLVM classes are the primary means of representing the program
2920 being inspected or transformed. The core LLVM classes are defined in
2921 header files in the <tt>include/llvm/</tt> directory, and implemented in
2922 the <tt>lib/VMCore</tt> directory.</p>
2924 <!-- ======================================================================= -->
2925 <h3>
2926 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2927 </h3>
2929 <div>
2931 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2932 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2933 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2934 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
2935 subclasses. They are hidden because they offer no useful functionality beyond
2936 what the <tt>Type</tt> class offers except to distinguish themselves from
2937 other subclasses of <tt>Type</tt>.</p>
2938 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
2939 named, but this is not a requirement. There exists exactly
2940 one instance of a given shape at any one time. This allows type equality to
2941 be performed with address equality of the Type Instance. That is, given two
2942 <tt>Type*</tt> values, the types are identical if the pointers are identical.
2943 </p>
2945 <!-- _______________________________________________________________________ -->
2946 <h4>
2947 <a name="m_Type">Important Public Methods</a>
2948 </h4>
2950 <div>
2952 <ul>
2953 <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
2955 <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
2956 floating point types.</li>
2958 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2959 that don't have a size are abstract types, labels and void.</li>
2961 </ul>
2962 </div>
2964 <!-- _______________________________________________________________________ -->
2965 <h4>
2966 <a name="derivedtypes">Important Derived Types</a>
2967 </h4>
2968 <div>
2969 <dl>
2970 <dt><tt>IntegerType</tt></dt>
2971 <dd>Subclass of DerivedType that represents integer types of any bit width.
2972 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
2973 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2974 <ul>
2975 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2976 type of a specific bit width.</li>
2977 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2978 type.</li>
2979 </ul>
2980 </dd>
2981 <dt><tt>SequentialType</tt></dt>
2982 <dd>This is subclassed by ArrayType and PointerType
2983 <ul>
2984 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2985 of the elements in the sequential type. </li>
2986 </ul>
2987 </dd>
2988 <dt><tt>ArrayType</tt></dt>
2989 <dd>This is a subclass of SequentialType and defines the interface for array
2990 types.
2991 <ul>
2992 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2993 elements in the array. </li>
2994 </ul>
2995 </dd>
2996 <dt><tt>PointerType</tt></dt>
2997 <dd>Subclass of SequentialType for pointer types.</dd>
2998 <dt><tt>VectorType</tt></dt>
2999 <dd>Subclass of SequentialType for vector types. A
3000 vector type is similar to an ArrayType but is distinguished because it is
3001 a first class type whereas ArrayType is not. Vector types are used for
3002 vector operations and are usually small vectors of of an integer or floating
3003 point type.</dd>
3004 <dt><tt>StructType</tt></dt>
3005 <dd>Subclass of DerivedTypes for struct types.</dd>
3006 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3007 <dd>Subclass of DerivedTypes for function types.
3008 <ul>
3009 <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
3010 function</li>
3011 <li><tt> const Type * getReturnType() const</tt>: Returns the
3012 return type of the function.</li>
3013 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3014 the type of the ith parameter.</li>
3015 <li><tt> const unsigned getNumParams() const</tt>: Returns the
3016 number of formal parameters.</li>
3017 </ul>
3018 </dd>
3019 </dl>
3020 </div>
3022 </div>
3024 <!-- ======================================================================= -->
3025 <h3>
3026 <a name="Module">The <tt>Module</tt> class</a>
3027 </h3>
3029 <div>
3031 <p><tt>#include "<a
3032 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3033 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3035 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
3036 programs. An LLVM module is effectively either a translation unit of the
3037 original program or a combination of several translation units merged by the
3038 linker. The <tt>Module</tt> class keeps track of a list of <a
3039 href="#Function"><tt>Function</tt></a>s, a list of <a
3040 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3041 href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
3042 helpful member functions that try to make common operations easy.</p>
3044 <!-- _______________________________________________________________________ -->
3045 <h4>
3046 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3047 </h4>
3049 <div>
3051 <ul>
3052 <li><tt>Module::Module(std::string name = "")</tt></li>
3053 </ul>
3055 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3056 provide a name for it (probably based on the name of the translation unit).</p>
3058 <ul>
3059 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3060 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3062 <tt>begin()</tt>, <tt>end()</tt>
3063 <tt>size()</tt>, <tt>empty()</tt>
3065 <p>These are forwarding methods that make it easy to access the contents of
3066 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3067 list.</p></li>
3069 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3071 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
3072 necessary to use when you need to update the list or perform a complex
3073 action that doesn't have a forwarding method.</p>
3075 <p><!-- Global Variable --></p></li>
3076 </ul>
3078 <hr>
3080 <ul>
3081 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3083 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3085 <tt>global_begin()</tt>, <tt>global_end()</tt>
3086 <tt>global_size()</tt>, <tt>global_empty()</tt>
3088 <p> These are forwarding methods that make it easy to access the contents of
3089 a <tt>Module</tt> object's <a
3090 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3092 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3094 <p>Returns the list of <a
3095 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
3096 use when you need to update the list or perform a complex action that
3097 doesn't have a forwarding method.</p>
3099 <p><!-- Symbol table stuff --> </p></li>
3100 </ul>
3102 <hr>
3104 <ul>
3105 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3107 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3108 for this <tt>Module</tt>.</p>
3110 <p><!-- Convenience methods --></p></li>
3111 </ul>
3113 <hr>
3115 <ul>
3116 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3117 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3119 <p>Look up the specified function in the <tt>Module</tt> <a
3120 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3121 <tt>null</tt>.</p></li>
3123 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3124 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3126 <p>Look up the specified function in the <tt>Module</tt> <a
3127 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3128 external declaration for the function and return it.</p></li>
3130 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3132 <p>If there is at least one entry in the <a
3133 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3134 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
3135 string.</p></li>
3137 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3138 href="#Type">Type</a> *Ty)</tt>
3140 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3141 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3142 name, true is returned and the <a
3143 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3144 </ul>
3146 </div>
3148 </div>
3150 <!-- ======================================================================= -->
3151 <h3>
3152 <a name="Value">The <tt>Value</tt> class</a>
3153 </h3>
3155 <div>
3157 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3158 <br>
3159 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3161 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
3162 base. It represents a typed value that may be used (among other things) as an
3163 operand to an instruction. There are many different types of <tt>Value</tt>s,
3164 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3165 href="#Argument"><tt>Argument</tt></a>s. Even <a
3166 href="#Instruction"><tt>Instruction</tt></a>s and <a
3167 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3169 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3170 for a program. For example, an incoming argument to a function (represented
3171 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3172 every instruction in the function that references the argument. To keep track
3173 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3174 href="#User"><tt>User</tt></a>s that is using it (the <a
3175 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3176 graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
3177 def-use information in the program, and is accessible through the <tt>use_</tt>*
3178 methods, shown below.</p>
3180 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3181 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3182 method. In addition, all LLVM values can be named. The "name" of the
3183 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3185 <div class="doc_code">
3186 <pre>
3187 %<b>foo</b> = add i32 1, 2
3188 </pre>
3189 </div>
3191 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3192 that the name of any value may be missing (an empty string), so names should
3193 <b>ONLY</b> be used for debugging (making the source code easier to read,
3194 debugging printouts), they should not be used to keep track of values or map
3195 between them. For this purpose, use a <tt>std::map</tt> of pointers to the
3196 <tt>Value</tt> itself instead.</p>
3198 <p>One important aspect of LLVM is that there is no distinction between an SSA
3199 variable and the operation that produces it. Because of this, any reference to
3200 the value produced by an instruction (or the value available as an incoming
3201 argument, for example) is represented as a direct pointer to the instance of
3202 the class that
3203 represents this value. Although this may take some getting used to, it
3204 simplifies the representation and makes it easier to manipulate.</p>
3206 <!-- _______________________________________________________________________ -->
3207 <h4>
3208 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3209 </h4>
3211 <div>
3213 <ul>
3214 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3215 use-list<br>
3216 <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
3217 the use-list<br>
3218 <tt>unsigned use_size()</tt> - Returns the number of users of the
3219 value.<br>
3220 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3221 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3222 the use-list.<br>
3223 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3224 use-list.<br>
3225 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3226 element in the list.
3227 <p> These methods are the interface to access the def-use
3228 information in LLVM. As with all other iterators in LLVM, the naming
3229 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3230 </li>
3231 <li><tt><a href="#Type">Type</a> *getType() const</tt>
3232 <p>This method returns the Type of the Value.</p>
3233 </li>
3234 <li><tt>bool hasName() const</tt><br>
3235 <tt>std::string getName() const</tt><br>
3236 <tt>void setName(const std::string &amp;Name)</tt>
3237 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3238 be aware of the <a href="#nameWarning">precaution above</a>.</p>
3239 </li>
3240 <li><tt>void replaceAllUsesWith(Value *V)</tt>
3242 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3243 href="#User"><tt>User</tt>s</a> of the current value to refer to
3244 "<tt>V</tt>" instead. For example, if you detect that an instruction always
3245 produces a constant value (for example through constant folding), you can
3246 replace all uses of the instruction with the constant like this:</p>
3248 <div class="doc_code">
3249 <pre>
3250 Inst-&gt;replaceAllUsesWith(ConstVal);
3251 </pre>
3252 </div>
3254 </ul>
3256 </div>
3258 </div>
3260 <!-- ======================================================================= -->
3261 <h3>
3262 <a name="User">The <tt>User</tt> class</a>
3263 </h3>
3265 <div>
3268 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3269 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3270 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3272 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3273 refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
3274 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3275 referring to. The <tt>User</tt> class itself is a subclass of
3276 <tt>Value</tt>.</p>
3278 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
3279 href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
3280 Single Assignment (SSA) form, there can only be one definition referred to,
3281 allowing this direct connection. This connection provides the use-def
3282 information in LLVM.</p>
3284 <!-- _______________________________________________________________________ -->
3285 <h4>
3286 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3287 </h4>
3289 <div>
3291 <p>The <tt>User</tt> class exposes the operand list in two ways: through
3292 an index access interface and through an iterator based interface.</p>
3294 <ul>
3295 <li><tt>Value *getOperand(unsigned i)</tt><br>
3296 <tt>unsigned getNumOperands()</tt>
3297 <p> These two methods expose the operands of the <tt>User</tt> in a
3298 convenient form for direct access.</p></li>
3300 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3301 list<br>
3302 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
3303 the operand list.<br>
3304 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3305 operand list.
3306 <p> Together, these methods make up the iterator based interface to
3307 the operands of a <tt>User</tt>.</p></li>
3308 </ul>
3310 </div>
3312 </div>
3314 <!-- ======================================================================= -->
3315 <h3>
3316 <a name="Instruction">The <tt>Instruction</tt> class</a>
3317 </h3>
3319 <div>
3321 <p><tt>#include "</tt><tt><a
3322 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3323 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3324 Superclasses: <a href="#User"><tt>User</tt></a>, <a
3325 href="#Value"><tt>Value</tt></a></p>
3327 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
3328 instructions. It provides only a few methods, but is a very commonly used
3329 class. The primary data tracked by the <tt>Instruction</tt> class itself is the
3330 opcode (instruction type) and the parent <a
3331 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3332 into. To represent a specific type of instruction, one of many subclasses of
3333 <tt>Instruction</tt> are used.</p>
3335 <p> Because the <tt>Instruction</tt> class subclasses the <a
3336 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3337 way as for other <a href="#User"><tt>User</tt></a>s (with the
3338 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3339 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3340 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3341 file contains some meta-data about the various different types of instructions
3342 in LLVM. It describes the enum values that are used as opcodes (for example
3343 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3344 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3345 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3346 href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
3347 this file confuses doxygen, so these enum values don't show up correctly in the
3348 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3350 <!-- _______________________________________________________________________ -->
3351 <h4>
3352 <a name="s_Instruction">
3353 Important Subclasses of the <tt>Instruction</tt> class
3354 </a>
3355 </h4>
3356 <div>
3357 <ul>
3358 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3359 <p>This subclasses represents all two operand instructions whose operands
3360 must be the same type, except for the comparison instructions.</p></li>
3361 <li><tt><a name="CastInst">CastInst</a></tt>
3362 <p>This subclass is the parent of the 12 casting instructions. It provides
3363 common operations on cast instructions.</p>
3364 <li><tt><a name="CmpInst">CmpInst</a></tt>
3365 <p>This subclass respresents the two comparison instructions,
3366 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3367 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3368 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3369 <p>This subclass is the parent of all terminator instructions (those which
3370 can terminate a block).</p>
3371 </ul>
3372 </div>
3374 <!-- _______________________________________________________________________ -->
3375 <h4>
3376 <a name="m_Instruction">
3377 Important Public Members of the <tt>Instruction</tt> class
3378 </a>
3379 </h4>
3381 <div>
3383 <ul>
3384 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3385 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3386 this <tt>Instruction</tt> is embedded into.</p></li>
3387 <li><tt>bool mayWriteToMemory()</tt>
3388 <p>Returns true if the instruction writes to memory, i.e. it is a
3389 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3390 <li><tt>unsigned getOpcode()</tt>
3391 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3392 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3393 <p>Returns another instance of the specified instruction, identical
3394 in all ways to the original except that the instruction has no parent
3395 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3396 and it has no name</p></li>
3397 </ul>
3399 </div>
3401 </div>
3403 <!-- ======================================================================= -->
3404 <h3>
3405 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3406 </h3>
3408 <div>
3410 <p>Constant represents a base class for different types of constants. It
3411 is subclassed by ConstantInt, ConstantArray, etc. for representing
3412 the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
3413 a subclass, which represents the address of a global variable or function.
3414 </p>
3416 <!-- _______________________________________________________________________ -->
3417 <h4>Important Subclasses of Constant</h4>
3418 <div>
3419 <ul>
3420 <li>ConstantInt : This subclass of Constant represents an integer constant of
3421 any width.
3422 <ul>
3423 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3424 value of this constant, an APInt value.</li>
3425 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3426 value to an int64_t via sign extension. If the value (not the bit width)
3427 of the APInt is too large to fit in an int64_t, an assertion will result.
3428 For this reason, use of this method is discouraged.</li>
3429 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3430 value to a uint64_t via zero extension. IF the value (not the bit width)
3431 of the APInt is too large to fit in a uint64_t, an assertion will result.
3432 For this reason, use of this method is discouraged.</li>
3433 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3434 ConstantInt object that represents the value provided by <tt>Val</tt>.
3435 The type is implied as the IntegerType that corresponds to the bit width
3436 of <tt>Val</tt>.</li>
3437 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3438 Returns the ConstantInt object that represents the value provided by
3439 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3440 </ul>
3441 </li>
3442 <li>ConstantFP : This class represents a floating point constant.
3443 <ul>
3444 <li><tt>double getValue() const</tt>: Returns the underlying value of
3445 this constant. </li>
3446 </ul>
3447 </li>
3448 <li>ConstantArray : This represents a constant array.
3449 <ul>
3450 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3451 a vector of component constants that makeup this array. </li>
3452 </ul>
3453 </li>
3454 <li>ConstantStruct : This represents a constant struct.
3455 <ul>
3456 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3457 a vector of component constants that makeup this array. </li>
3458 </ul>
3459 </li>
3460 <li>GlobalValue : This represents either a global variable or a function. In
3461 either case, the value is a constant fixed address (after linking).
3462 </li>
3463 </ul>
3464 </div>
3466 </div>
3468 <!-- ======================================================================= -->
3469 <h3>
3470 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3471 </h3>
3473 <div>
3475 <p><tt>#include "<a
3476 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3477 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3478 Class</a><br>
3479 Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3480 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3482 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3483 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3484 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3485 Because they are visible at global scope, they are also subject to linking with
3486 other globals defined in different translation units. To control the linking
3487 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3488 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3489 defined by the <tt>LinkageTypes</tt> enumeration.</p>
3491 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3492 <tt>static</tt> in C), it is not visible to code outside the current translation
3493 unit, and does not participate in linking. If it has external linkage, it is
3494 visible to external code, and does participate in linking. In addition to
3495 linkage information, <tt>GlobalValue</tt>s keep track of which <a
3496 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3498 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3499 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3500 global is always a pointer to its contents. It is important to remember this
3501 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3502 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3503 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3504 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3505 the address of the first element of this array and the value of the
3506 <tt>GlobalVariable</tt> are the same, they have different types. The
3507 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3508 is <tt>i32.</tt> Because of this, accessing a global value requires you to
3509 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3510 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3511 Language Reference Manual</a>.</p>
3513 <!-- _______________________________________________________________________ -->
3514 <h4>
3515 <a name="m_GlobalValue">
3516 Important Public Members of the <tt>GlobalValue</tt> class
3517 </a>
3518 </h4>
3520 <div>
3522 <ul>
3523 <li><tt>bool hasInternalLinkage() const</tt><br>
3524 <tt>bool hasExternalLinkage() const</tt><br>
3525 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3526 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3527 <p> </p>
3528 </li>
3529 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3530 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3531 GlobalValue is currently embedded into.</p></li>
3532 </ul>
3534 </div>
3536 </div>
3538 <!-- ======================================================================= -->
3539 <h3>
3540 <a name="Function">The <tt>Function</tt> class</a>
3541 </h3>
3543 <div>
3545 <p><tt>#include "<a
3546 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3547 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3548 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3549 <a href="#Constant"><tt>Constant</tt></a>,
3550 <a href="#User"><tt>User</tt></a>,
3551 <a href="#Value"><tt>Value</tt></a></p>
3553 <p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
3554 actually one of the more complex classes in the LLVM hierarchy because it must
3555 keep track of a large amount of data. The <tt>Function</tt> class keeps track
3556 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3557 <a href="#Argument"><tt>Argument</tt></a>s, and a
3558 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3560 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3561 commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3562 ordering of the blocks in the function, which indicate how the code will be
3563 laid out by the backend. Additionally, the first <a
3564 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3565 <tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3566 block. There are no implicit exit nodes, and in fact there may be multiple exit
3567 nodes from a single <tt>Function</tt>. If the <a
3568 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3569 the <tt>Function</tt> is actually a function declaration: the actual body of the
3570 function hasn't been linked in yet.</p>
3572 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3573 <tt>Function</tt> class also keeps track of the list of formal <a
3574 href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3575 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3576 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3577 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3579 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3580 LLVM feature that is only used when you have to look up a value by name. Aside
3581 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3582 internally to make sure that there are not conflicts between the names of <a
3583 href="#Instruction"><tt>Instruction</tt></a>s, <a
3584 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3585 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3587 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3588 and therefore also a <a href="#Constant">Constant</a>. The value of the function
3589 is its address (after linking) which is guaranteed to be constant.</p>
3591 <!-- _______________________________________________________________________ -->
3592 <h4>
3593 <a name="m_Function">
3594 Important Public Members of the <tt>Function</tt> class
3595 </a>
3596 </h4>
3598 <div>
3600 <ul>
3601 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3602 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3604 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3605 the the program. The constructor must specify the type of the function to
3606 create and what type of linkage the function should have. The <a
3607 href="#FunctionType"><tt>FunctionType</tt></a> argument
3608 specifies the formal arguments and return value for the function. The same
3609 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3610 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3611 in which the function is defined. If this argument is provided, the function
3612 will automatically be inserted into that module's list of
3613 functions.</p></li>
3615 <li><tt>bool isDeclaration()</tt>
3617 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3618 function is "external", it does not have a body, and thus must be resolved
3619 by linking with a function defined in a different translation unit.</p></li>
3621 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3622 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3624 <tt>begin()</tt>, <tt>end()</tt>
3625 <tt>size()</tt>, <tt>empty()</tt>
3627 <p>These are forwarding methods that make it easy to access the contents of
3628 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3629 list.</p></li>
3631 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3633 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3634 is necessary to use when you need to update the list or perform a complex
3635 action that doesn't have a forwarding method.</p></li>
3637 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3638 iterator<br>
3639 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3641 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3642 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3644 <p>These are forwarding methods that make it easy to access the contents of
3645 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3646 list.</p></li>
3648 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3650 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3651 necessary to use when you need to update the list or perform a complex
3652 action that doesn't have a forwarding method.</p></li>
3654 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3656 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3657 function. Because the entry block for the function is always the first
3658 block, this returns the first block of the <tt>Function</tt>.</p></li>
3660 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3661 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3663 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3664 <tt>Function</tt> and returns the return type of the function, or the <a
3665 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3666 function.</p></li>
3668 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3670 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3671 for this <tt>Function</tt>.</p></li>
3672 </ul>
3674 </div>
3676 </div>
3678 <!-- ======================================================================= -->
3679 <h3>
3680 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3681 </h3>
3683 <div>
3685 <p><tt>#include "<a
3686 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3687 <br>
3688 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3689 Class</a><br>
3690 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3691 <a href="#Constant"><tt>Constant</tt></a>,
3692 <a href="#User"><tt>User</tt></a>,
3693 <a href="#Value"><tt>Value</tt></a></p>
3695 <p>Global variables are represented with the (surprise surprise)
3696 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3697 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3698 always referenced by their address (global values must live in memory, so their
3699 "name" refers to their constant address). See
3700 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3701 variables may have an initial value (which must be a
3702 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3703 they may be marked as "constant" themselves (indicating that their contents
3704 never change at runtime).</p>
3706 <!-- _______________________________________________________________________ -->
3707 <h4>
3708 <a name="m_GlobalVariable">
3709 Important Public Members of the <tt>GlobalVariable</tt> class
3710 </a>
3711 </h4>
3713 <div>
3715 <ul>
3716 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3717 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3718 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3720 <p>Create a new global variable of the specified type. If
3721 <tt>isConstant</tt> is true then the global variable will be marked as
3722 unchanging for the program. The Linkage parameter specifies the type of
3723 linkage (internal, external, weak, linkonce, appending) for the variable.
3724 If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3725 LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3726 global variable will have internal linkage. AppendingLinkage concatenates
3727 together all instances (in different translation units) of the variable
3728 into a single variable but is only applicable to arrays. &nbsp;See
3729 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3730 further details on linkage types. Optionally an initializer, a name, and the
3731 module to put the variable into may be specified for the global variable as
3732 well.</p></li>
3734 <li><tt>bool isConstant() const</tt>
3736 <p>Returns true if this is a global variable that is known not to
3737 be modified at runtime.</p></li>
3739 <li><tt>bool hasInitializer()</tt>
3741 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3743 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3745 <p>Returns the initial value for a <tt>GlobalVariable</tt>. It is not legal
3746 to call this method if there is no initializer.</p></li>
3747 </ul>
3749 </div>
3751 </div>
3753 <!-- ======================================================================= -->
3754 <h3>
3755 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3756 </h3>
3758 <div>
3760 <p><tt>#include "<a
3761 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3762 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
3763 Class</a><br>
3764 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3766 <p>This class represents a single entry single exit section of the code,
3767 commonly known as a basic block by the compiler community. The
3768 <tt>BasicBlock</tt> class maintains a list of <a
3769 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3770 Matching the language definition, the last element of this list of instructions
3771 is always a terminator instruction (a subclass of the <a
3772 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3774 <p>In addition to tracking the list of instructions that make up the block, the
3775 <tt>BasicBlock</tt> class also keeps track of the <a
3776 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3778 <p>Note that <tt>BasicBlock</tt>s themselves are <a
3779 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3780 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3781 <tt>label</tt>.</p>
3783 <!-- _______________________________________________________________________ -->
3784 <h4>
3785 <a name="m_BasicBlock">
3786 Important Public Members of the <tt>BasicBlock</tt> class
3787 </a>
3788 </h4>
3790 <div>
3791 <ul>
3793 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3794 href="#Function">Function</a> *Parent = 0)</tt>
3796 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3797 insertion into a function. The constructor optionally takes a name for the new
3798 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3799 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3800 automatically inserted at the end of the specified <a
3801 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3802 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3804 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3805 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3806 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3807 <tt>size()</tt>, <tt>empty()</tt>
3808 STL-style functions for accessing the instruction list.
3810 <p>These methods and typedefs are forwarding functions that have the same
3811 semantics as the standard library methods of the same names. These methods
3812 expose the underlying instruction list of a basic block in a way that is easy to
3813 manipulate. To get the full complement of container operations (including
3814 operations to update the list), you must use the <tt>getInstList()</tt>
3815 method.</p></li>
3817 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3819 <p>This method is used to get access to the underlying container that actually
3820 holds the Instructions. This method must be used when there isn't a forwarding
3821 function in the <tt>BasicBlock</tt> class for the operation that you would like
3822 to perform. Because there are no forwarding functions for "updating"
3823 operations, you need to use this if you want to update the contents of a
3824 <tt>BasicBlock</tt>.</p></li>
3826 <li><tt><a href="#Function">Function</a> *getParent()</tt>
3828 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3829 embedded into, or a null pointer if it is homeless.</p></li>
3831 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3833 <p> Returns a pointer to the terminator instruction that appears at the end of
3834 the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
3835 instruction in the block is not a terminator, then a null pointer is
3836 returned.</p></li>
3838 </ul>
3840 </div>
3842 </div>
3844 <!-- ======================================================================= -->
3845 <h3>
3846 <a name="Argument">The <tt>Argument</tt> class</a>
3847 </h3>
3849 <div>
3851 <p>This subclass of Value defines the interface for incoming formal
3852 arguments to a function. A Function maintains a list of its formal
3853 arguments. An argument has a pointer to the parent Function.</p>
3855 </div>
3857 </div>
3859 <!-- *********************************************************************** -->
3860 <hr>
3861 <address>
3862 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3863 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
3864 <a href="http://validator.w3.org/check/referer"><img
3865 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
3867 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3868 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3869 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
3870 Last modified: $Date$
3871 </address>
3873 </body>
3874 </html>