1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Analysis/Passes.h"
9 #include "llvm/Target/TargetData.h"
10 #include "llvm/Target/TargetSelect.h"
11 #include "llvm/Transforms/Scalar.h"
12 #include "llvm/Support/IRBuilder.h"
19 //===----------------------------------------------------------------------===//
21 //===----------------------------------------------------------------------===//
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
29 tok_def
= -2, tok_extern
= -3,
32 tok_identifier
= -4, tok_number
= -5,
35 tok_if
= -6, tok_then
= -7, tok_else
= -8,
36 tok_for
= -9, tok_in
= -10,
39 tok_binary
= -11, tok_unary
= -12,
45 static std::string IdentifierStr
; // Filled in if tok_identifier
46 static double NumVal
; // Filled in if tok_number
48 /// gettok - Return the next token from standard input.
50 static int LastChar
= ' ';
52 // Skip any whitespace.
53 while (isspace(LastChar
))
56 if (isalpha(LastChar
)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
57 IdentifierStr
= LastChar
;
58 while (isalnum((LastChar
= getchar())))
59 IdentifierStr
+= LastChar
;
61 if (IdentifierStr
== "def") return tok_def
;
62 if (IdentifierStr
== "extern") return tok_extern
;
63 if (IdentifierStr
== "if") return tok_if
;
64 if (IdentifierStr
== "then") return tok_then
;
65 if (IdentifierStr
== "else") return tok_else
;
66 if (IdentifierStr
== "for") return tok_for
;
67 if (IdentifierStr
== "in") return tok_in
;
68 if (IdentifierStr
== "binary") return tok_binary
;
69 if (IdentifierStr
== "unary") return tok_unary
;
70 if (IdentifierStr
== "var") return tok_var
;
71 return tok_identifier
;
74 if (isdigit(LastChar
) || LastChar
== '.') { // Number: [0-9.]+
79 } while (isdigit(LastChar
) || LastChar
== '.');
81 NumVal
= strtod(NumStr
.c_str(), 0);
85 if (LastChar
== '#') {
86 // Comment until end of line.
87 do LastChar
= getchar();
88 while (LastChar
!= EOF
&& LastChar
!= '\n' && LastChar
!= '\r');
94 // Check for end of file. Don't eat the EOF.
98 // Otherwise, just return the character as its ascii value.
99 int ThisChar
= LastChar
;
100 LastChar
= getchar();
104 //===----------------------------------------------------------------------===//
105 // Abstract Syntax Tree (aka Parse Tree)
106 //===----------------------------------------------------------------------===//
108 /// ExprAST - Base class for all expression nodes.
111 virtual ~ExprAST() {}
112 virtual Value
*Codegen() = 0;
115 /// NumberExprAST - Expression class for numeric literals like "1.0".
116 class NumberExprAST
: public ExprAST
{
119 NumberExprAST(double val
) : Val(val
) {}
120 virtual Value
*Codegen();
123 /// VariableExprAST - Expression class for referencing a variable, like "a".
124 class VariableExprAST
: public ExprAST
{
127 VariableExprAST(const std::string
&name
) : Name(name
) {}
128 const std::string
&getName() const { return Name
; }
129 virtual Value
*Codegen();
132 /// UnaryExprAST - Expression class for a unary operator.
133 class UnaryExprAST
: public ExprAST
{
137 UnaryExprAST(char opcode
, ExprAST
*operand
)
138 : Opcode(opcode
), Operand(operand
) {}
139 virtual Value
*Codegen();
142 /// BinaryExprAST - Expression class for a binary operator.
143 class BinaryExprAST
: public ExprAST
{
147 BinaryExprAST(char op
, ExprAST
*lhs
, ExprAST
*rhs
)
148 : Op(op
), LHS(lhs
), RHS(rhs
) {}
149 virtual Value
*Codegen();
152 /// CallExprAST - Expression class for function calls.
153 class CallExprAST
: public ExprAST
{
155 std::vector
<ExprAST
*> Args
;
157 CallExprAST(const std::string
&callee
, std::vector
<ExprAST
*> &args
)
158 : Callee(callee
), Args(args
) {}
159 virtual Value
*Codegen();
162 /// IfExprAST - Expression class for if/then/else.
163 class IfExprAST
: public ExprAST
{
164 ExprAST
*Cond
, *Then
, *Else
;
166 IfExprAST(ExprAST
*cond
, ExprAST
*then
, ExprAST
*_else
)
167 : Cond(cond
), Then(then
), Else(_else
) {}
168 virtual Value
*Codegen();
171 /// ForExprAST - Expression class for for/in.
172 class ForExprAST
: public ExprAST
{
174 ExprAST
*Start
, *End
, *Step
, *Body
;
176 ForExprAST(const std::string
&varname
, ExprAST
*start
, ExprAST
*end
,
177 ExprAST
*step
, ExprAST
*body
)
178 : VarName(varname
), Start(start
), End(end
), Step(step
), Body(body
) {}
179 virtual Value
*Codegen();
182 /// VarExprAST - Expression class for var/in
183 class VarExprAST
: public ExprAST
{
184 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
187 VarExprAST(const std::vector
<std::pair
<std::string
, ExprAST
*> > &varnames
,
189 : VarNames(varnames
), Body(body
) {}
191 virtual Value
*Codegen();
194 /// PrototypeAST - This class represents the "prototype" for a function,
195 /// which captures its argument names as well as if it is an operator.
198 std::vector
<std::string
> Args
;
200 unsigned Precedence
; // Precedence if a binary op.
202 PrototypeAST(const std::string
&name
, const std::vector
<std::string
> &args
,
203 bool isoperator
= false, unsigned prec
= 0)
204 : Name(name
), Args(args
), isOperator(isoperator
), Precedence(prec
) {}
206 bool isUnaryOp() const { return isOperator
&& Args
.size() == 1; }
207 bool isBinaryOp() const { return isOperator
&& Args
.size() == 2; }
209 char getOperatorName() const {
210 assert(isUnaryOp() || isBinaryOp());
211 return Name
[Name
.size()-1];
214 unsigned getBinaryPrecedence() const { return Precedence
; }
218 void CreateArgumentAllocas(Function
*F
);
221 /// FunctionAST - This class represents a function definition itself.
226 FunctionAST(PrototypeAST
*proto
, ExprAST
*body
)
227 : Proto(proto
), Body(body
) {}
232 //===----------------------------------------------------------------------===//
234 //===----------------------------------------------------------------------===//
236 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
237 /// token the parser is looking at. getNextToken reads another token from the
238 /// lexer and updates CurTok with its results.
240 static int getNextToken() {
241 return CurTok
= gettok();
244 /// BinopPrecedence - This holds the precedence for each binary operator that is
246 static std::map
<char, int> BinopPrecedence
;
248 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
249 static int GetTokPrecedence() {
250 if (!isascii(CurTok
))
253 // Make sure it's a declared binop.
254 int TokPrec
= BinopPrecedence
[CurTok
];
255 if (TokPrec
<= 0) return -1;
259 /// Error* - These are little helper functions for error handling.
260 ExprAST
*Error(const char *Str
) { fprintf(stderr
, "Error: %s\n", Str
);return 0;}
261 PrototypeAST
*ErrorP(const char *Str
) { Error(Str
); return 0; }
262 FunctionAST
*ErrorF(const char *Str
) { Error(Str
); return 0; }
264 static ExprAST
*ParseExpression();
268 /// ::= identifier '(' expression* ')'
269 static ExprAST
*ParseIdentifierExpr() {
270 std::string IdName
= IdentifierStr
;
272 getNextToken(); // eat identifier.
274 if (CurTok
!= '(') // Simple variable ref.
275 return new VariableExprAST(IdName
);
278 getNextToken(); // eat (
279 std::vector
<ExprAST
*> Args
;
282 ExprAST
*Arg
= ParseExpression();
286 if (CurTok
== ')') break;
289 return Error("Expected ')' or ',' in argument list");
297 return new CallExprAST(IdName
, Args
);
300 /// numberexpr ::= number
301 static ExprAST
*ParseNumberExpr() {
302 ExprAST
*Result
= new NumberExprAST(NumVal
);
303 getNextToken(); // consume the number
307 /// parenexpr ::= '(' expression ')'
308 static ExprAST
*ParseParenExpr() {
309 getNextToken(); // eat (.
310 ExprAST
*V
= ParseExpression();
314 return Error("expected ')'");
315 getNextToken(); // eat ).
319 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
320 static ExprAST
*ParseIfExpr() {
321 getNextToken(); // eat the if.
324 ExprAST
*Cond
= ParseExpression();
327 if (CurTok
!= tok_then
)
328 return Error("expected then");
329 getNextToken(); // eat the then
331 ExprAST
*Then
= ParseExpression();
332 if (Then
== 0) return 0;
334 if (CurTok
!= tok_else
)
335 return Error("expected else");
339 ExprAST
*Else
= ParseExpression();
342 return new IfExprAST(Cond
, Then
, Else
);
345 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
346 static ExprAST
*ParseForExpr() {
347 getNextToken(); // eat the for.
349 if (CurTok
!= tok_identifier
)
350 return Error("expected identifier after for");
352 std::string IdName
= IdentifierStr
;
353 getNextToken(); // eat identifier.
356 return Error("expected '=' after for");
357 getNextToken(); // eat '='.
360 ExprAST
*Start
= ParseExpression();
361 if (Start
== 0) return 0;
363 return Error("expected ',' after for start value");
366 ExprAST
*End
= ParseExpression();
367 if (End
== 0) return 0;
369 // The step value is optional.
373 Step
= ParseExpression();
374 if (Step
== 0) return 0;
377 if (CurTok
!= tok_in
)
378 return Error("expected 'in' after for");
379 getNextToken(); // eat 'in'.
381 ExprAST
*Body
= ParseExpression();
382 if (Body
== 0) return 0;
384 return new ForExprAST(IdName
, Start
, End
, Step
, Body
);
387 /// varexpr ::= 'var' identifier ('=' expression)?
388 // (',' identifier ('=' expression)?)* 'in' expression
389 static ExprAST
*ParseVarExpr() {
390 getNextToken(); // eat the var.
392 std::vector
<std::pair
<std::string
, ExprAST
*> > VarNames
;
394 // At least one variable name is required.
395 if (CurTok
!= tok_identifier
)
396 return Error("expected identifier after var");
399 std::string Name
= IdentifierStr
;
400 getNextToken(); // eat identifier.
402 // Read the optional initializer.
405 getNextToken(); // eat the '='.
407 Init
= ParseExpression();
408 if (Init
== 0) return 0;
411 VarNames
.push_back(std::make_pair(Name
, Init
));
413 // End of var list, exit loop.
414 if (CurTok
!= ',') break;
415 getNextToken(); // eat the ','.
417 if (CurTok
!= tok_identifier
)
418 return Error("expected identifier list after var");
421 // At this point, we have to have 'in'.
422 if (CurTok
!= tok_in
)
423 return Error("expected 'in' keyword after 'var'");
424 getNextToken(); // eat 'in'.
426 ExprAST
*Body
= ParseExpression();
427 if (Body
== 0) return 0;
429 return new VarExprAST(VarNames
, Body
);
433 /// ::= identifierexpr
439 static ExprAST
*ParsePrimary() {
441 default: return Error("unknown token when expecting an expression");
442 case tok_identifier
: return ParseIdentifierExpr();
443 case tok_number
: return ParseNumberExpr();
444 case '(': return ParseParenExpr();
445 case tok_if
: return ParseIfExpr();
446 case tok_for
: return ParseForExpr();
447 case tok_var
: return ParseVarExpr();
454 static ExprAST
*ParseUnary() {
455 // If the current token is not an operator, it must be a primary expr.
456 if (!isascii(CurTok
) || CurTok
== '(' || CurTok
== ',')
457 return ParsePrimary();
459 // If this is a unary operator, read it.
462 if (ExprAST
*Operand
= ParseUnary())
463 return new UnaryExprAST(Opc
, Operand
);
469 static ExprAST
*ParseBinOpRHS(int ExprPrec
, ExprAST
*LHS
) {
470 // If this is a binop, find its precedence.
472 int TokPrec
= GetTokPrecedence();
474 // If this is a binop that binds at least as tightly as the current binop,
475 // consume it, otherwise we are done.
476 if (TokPrec
< ExprPrec
)
479 // Okay, we know this is a binop.
481 getNextToken(); // eat binop
483 // Parse the unary expression after the binary operator.
484 ExprAST
*RHS
= ParseUnary();
487 // If BinOp binds less tightly with RHS than the operator after RHS, let
488 // the pending operator take RHS as its LHS.
489 int NextPrec
= GetTokPrecedence();
490 if (TokPrec
< NextPrec
) {
491 RHS
= ParseBinOpRHS(TokPrec
+1, RHS
);
492 if (RHS
== 0) return 0;
496 LHS
= new BinaryExprAST(BinOp
, LHS
, RHS
);
501 /// ::= unary binoprhs
503 static ExprAST
*ParseExpression() {
504 ExprAST
*LHS
= ParseUnary();
507 return ParseBinOpRHS(0, LHS
);
511 /// ::= id '(' id* ')'
512 /// ::= binary LETTER number? (id, id)
513 /// ::= unary LETTER (id)
514 static PrototypeAST
*ParsePrototype() {
517 unsigned Kind
= 0; // 0 = identifier, 1 = unary, 2 = binary.
518 unsigned BinaryPrecedence
= 30;
522 return ErrorP("Expected function name in prototype");
524 FnName
= IdentifierStr
;
530 if (!isascii(CurTok
))
531 return ErrorP("Expected unary operator");
533 FnName
+= (char)CurTok
;
539 if (!isascii(CurTok
))
540 return ErrorP("Expected binary operator");
542 FnName
+= (char)CurTok
;
546 // Read the precedence if present.
547 if (CurTok
== tok_number
) {
548 if (NumVal
< 1 || NumVal
> 100)
549 return ErrorP("Invalid precedecnce: must be 1..100");
550 BinaryPrecedence
= (unsigned)NumVal
;
557 return ErrorP("Expected '(' in prototype");
559 std::vector
<std::string
> ArgNames
;
560 while (getNextToken() == tok_identifier
)
561 ArgNames
.push_back(IdentifierStr
);
563 return ErrorP("Expected ')' in prototype");
566 getNextToken(); // eat ')'.
568 // Verify right number of names for operator.
569 if (Kind
&& ArgNames
.size() != Kind
)
570 return ErrorP("Invalid number of operands for operator");
572 return new PrototypeAST(FnName
, ArgNames
, Kind
!= 0, BinaryPrecedence
);
575 /// definition ::= 'def' prototype expression
576 static FunctionAST
*ParseDefinition() {
577 getNextToken(); // eat def.
578 PrototypeAST
*Proto
= ParsePrototype();
579 if (Proto
== 0) return 0;
581 if (ExprAST
*E
= ParseExpression())
582 return new FunctionAST(Proto
, E
);
586 /// toplevelexpr ::= expression
587 static FunctionAST
*ParseTopLevelExpr() {
588 if (ExprAST
*E
= ParseExpression()) {
589 // Make an anonymous proto.
590 PrototypeAST
*Proto
= new PrototypeAST("", std::vector
<std::string
>());
591 return new FunctionAST(Proto
, E
);
596 /// external ::= 'extern' prototype
597 static PrototypeAST
*ParseExtern() {
598 getNextToken(); // eat extern.
599 return ParsePrototype();
602 //===----------------------------------------------------------------------===//
604 //===----------------------------------------------------------------------===//
606 static Module
*TheModule
;
607 static IRBuilder
<> Builder(getGlobalContext());
608 static std::map
<std::string
, AllocaInst
*> NamedValues
;
609 static FunctionPassManager
*TheFPM
;
611 Value
*ErrorV(const char *Str
) { Error(Str
); return 0; }
613 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
614 /// the function. This is used for mutable variables etc.
615 static AllocaInst
*CreateEntryBlockAlloca(Function
*TheFunction
,
616 const std::string
&VarName
) {
617 IRBuilder
<> TmpB(&TheFunction
->getEntryBlock(),
618 TheFunction
->getEntryBlock().begin());
619 return TmpB
.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
623 Value
*NumberExprAST::Codegen() {
624 return ConstantFP::get(getGlobalContext(), APFloat(Val
));
627 Value
*VariableExprAST::Codegen() {
628 // Look this variable up in the function.
629 Value
*V
= NamedValues
[Name
];
630 if (V
== 0) return ErrorV("Unknown variable name");
633 return Builder
.CreateLoad(V
, Name
.c_str());
636 Value
*UnaryExprAST::Codegen() {
637 Value
*OperandV
= Operand
->Codegen();
638 if (OperandV
== 0) return 0;
640 Function
*F
= TheModule
->getFunction(std::string("unary")+Opcode
);
642 return ErrorV("Unknown unary operator");
644 return Builder
.CreateCall(F
, OperandV
, "unop");
647 Value
*BinaryExprAST::Codegen() {
648 // Special case '=' because we don't want to emit the LHS as an expression.
650 // Assignment requires the LHS to be an identifier.
651 VariableExprAST
*LHSE
= dynamic_cast<VariableExprAST
*>(LHS
);
653 return ErrorV("destination of '=' must be a variable");
655 Value
*Val
= RHS
->Codegen();
656 if (Val
== 0) return 0;
659 Value
*Variable
= NamedValues
[LHSE
->getName()];
660 if (Variable
== 0) return ErrorV("Unknown variable name");
662 Builder
.CreateStore(Val
, Variable
);
666 Value
*L
= LHS
->Codegen();
667 Value
*R
= RHS
->Codegen();
668 if (L
== 0 || R
== 0) return 0;
671 case '+': return Builder
.CreateFAdd(L
, R
, "addtmp");
672 case '-': return Builder
.CreateFSub(L
, R
, "subtmp");
673 case '*': return Builder
.CreateFMul(L
, R
, "multmp");
675 L
= Builder
.CreateFCmpULT(L
, R
, "cmptmp");
676 // Convert bool 0/1 to double 0.0 or 1.0
677 return Builder
.CreateUIToFP(L
, Type::getDoubleTy(getGlobalContext()),
682 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
684 Function
*F
= TheModule
->getFunction(std::string("binary")+Op
);
685 assert(F
&& "binary operator not found!");
687 Value
*Ops
[] = { L
, R
};
688 return Builder
.CreateCall(F
, Ops
, Ops
+2, "binop");
691 Value
*CallExprAST::Codegen() {
692 // Look up the name in the global module table.
693 Function
*CalleeF
= TheModule
->getFunction(Callee
);
695 return ErrorV("Unknown function referenced");
697 // If argument mismatch error.
698 if (CalleeF
->arg_size() != Args
.size())
699 return ErrorV("Incorrect # arguments passed");
701 std::vector
<Value
*> ArgsV
;
702 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
703 ArgsV
.push_back(Args
[i
]->Codegen());
704 if (ArgsV
.back() == 0) return 0;
707 return Builder
.CreateCall(CalleeF
, ArgsV
.begin(), ArgsV
.end(), "calltmp");
710 Value
*IfExprAST::Codegen() {
711 Value
*CondV
= Cond
->Codegen();
712 if (CondV
== 0) return 0;
714 // Convert condition to a bool by comparing equal to 0.0.
715 CondV
= Builder
.CreateFCmpONE(CondV
,
716 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
719 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
721 // Create blocks for the then and else cases. Insert the 'then' block at the
722 // end of the function.
723 BasicBlock
*ThenBB
= BasicBlock::Create(getGlobalContext(), "then", TheFunction
);
724 BasicBlock
*ElseBB
= BasicBlock::Create(getGlobalContext(), "else");
725 BasicBlock
*MergeBB
= BasicBlock::Create(getGlobalContext(), "ifcont");
727 Builder
.CreateCondBr(CondV
, ThenBB
, ElseBB
);
730 Builder
.SetInsertPoint(ThenBB
);
732 Value
*ThenV
= Then
->Codegen();
733 if (ThenV
== 0) return 0;
735 Builder
.CreateBr(MergeBB
);
736 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
737 ThenBB
= Builder
.GetInsertBlock();
740 TheFunction
->getBasicBlockList().push_back(ElseBB
);
741 Builder
.SetInsertPoint(ElseBB
);
743 Value
*ElseV
= Else
->Codegen();
744 if (ElseV
== 0) return 0;
746 Builder
.CreateBr(MergeBB
);
747 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
748 ElseBB
= Builder
.GetInsertBlock();
751 TheFunction
->getBasicBlockList().push_back(MergeBB
);
752 Builder
.SetInsertPoint(MergeBB
);
753 PHINode
*PN
= Builder
.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
756 PN
->addIncoming(ThenV
, ThenBB
);
757 PN
->addIncoming(ElseV
, ElseBB
);
761 Value
*ForExprAST::Codegen() {
763 // var = alloca double
766 // store start -> var
777 // nextvar = curvar + step
778 // store nextvar -> var
779 // br endcond, loop, endloop
782 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
784 // Create an alloca for the variable in the entry block.
785 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
787 // Emit the start code first, without 'variable' in scope.
788 Value
*StartVal
= Start
->Codegen();
789 if (StartVal
== 0) return 0;
791 // Store the value into the alloca.
792 Builder
.CreateStore(StartVal
, Alloca
);
794 // Make the new basic block for the loop header, inserting after current
796 BasicBlock
*LoopBB
= BasicBlock::Create(getGlobalContext(), "loop", TheFunction
);
798 // Insert an explicit fall through from the current block to the LoopBB.
799 Builder
.CreateBr(LoopBB
);
801 // Start insertion in LoopBB.
802 Builder
.SetInsertPoint(LoopBB
);
804 // Within the loop, the variable is defined equal to the PHI node. If it
805 // shadows an existing variable, we have to restore it, so save it now.
806 AllocaInst
*OldVal
= NamedValues
[VarName
];
807 NamedValues
[VarName
] = Alloca
;
809 // Emit the body of the loop. This, like any other expr, can change the
810 // current BB. Note that we ignore the value computed by the body, but don't
812 if (Body
->Codegen() == 0)
815 // Emit the step value.
818 StepVal
= Step
->Codegen();
819 if (StepVal
== 0) return 0;
821 // If not specified, use 1.0.
822 StepVal
= ConstantFP::get(getGlobalContext(), APFloat(1.0));
825 // Compute the end condition.
826 Value
*EndCond
= End
->Codegen();
827 if (EndCond
== 0) return EndCond
;
829 // Reload, increment, and restore the alloca. This handles the case where
830 // the body of the loop mutates the variable.
831 Value
*CurVar
= Builder
.CreateLoad(Alloca
, VarName
.c_str());
832 Value
*NextVar
= Builder
.CreateFAdd(CurVar
, StepVal
, "nextvar");
833 Builder
.CreateStore(NextVar
, Alloca
);
835 // Convert condition to a bool by comparing equal to 0.0.
836 EndCond
= Builder
.CreateFCmpONE(EndCond
,
837 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
840 // Create the "after loop" block and insert it.
841 BasicBlock
*AfterBB
= BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction
);
843 // Insert the conditional branch into the end of LoopEndBB.
844 Builder
.CreateCondBr(EndCond
, LoopBB
, AfterBB
);
846 // Any new code will be inserted in AfterBB.
847 Builder
.SetInsertPoint(AfterBB
);
849 // Restore the unshadowed variable.
851 NamedValues
[VarName
] = OldVal
;
853 NamedValues
.erase(VarName
);
856 // for expr always returns 0.0.
857 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
860 Value
*VarExprAST::Codegen() {
861 std::vector
<AllocaInst
*> OldBindings
;
863 Function
*TheFunction
= Builder
.GetInsertBlock()->getParent();
865 // Register all variables and emit their initializer.
866 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
) {
867 const std::string
&VarName
= VarNames
[i
].first
;
868 ExprAST
*Init
= VarNames
[i
].second
;
870 // Emit the initializer before adding the variable to scope, this prevents
871 // the initializer from referencing the variable itself, and permits stuff
874 // var a = a in ... # refers to outer 'a'.
877 InitVal
= Init
->Codegen();
878 if (InitVal
== 0) return 0;
879 } else { // If not specified, use 0.0.
880 InitVal
= ConstantFP::get(getGlobalContext(), APFloat(0.0));
883 AllocaInst
*Alloca
= CreateEntryBlockAlloca(TheFunction
, VarName
);
884 Builder
.CreateStore(InitVal
, Alloca
);
886 // Remember the old variable binding so that we can restore the binding when
888 OldBindings
.push_back(NamedValues
[VarName
]);
890 // Remember this binding.
891 NamedValues
[VarName
] = Alloca
;
894 // Codegen the body, now that all vars are in scope.
895 Value
*BodyVal
= Body
->Codegen();
896 if (BodyVal
== 0) return 0;
898 // Pop all our variables from scope.
899 for (unsigned i
= 0, e
= VarNames
.size(); i
!= e
; ++i
)
900 NamedValues
[VarNames
[i
].first
] = OldBindings
[i
];
902 // Return the body computation.
906 Function
*PrototypeAST::Codegen() {
907 // Make the function type: double(double,double) etc.
908 std::vector
<const Type
*> Doubles(Args
.size(),
909 Type::getDoubleTy(getGlobalContext()));
910 FunctionType
*FT
= FunctionType::get(Type::getDoubleTy(getGlobalContext()),
913 Function
*F
= Function::Create(FT
, Function::ExternalLinkage
, Name
, TheModule
);
915 // If F conflicted, there was already something named 'Name'. If it has a
916 // body, don't allow redefinition or reextern.
917 if (F
->getName() != Name
) {
918 // Delete the one we just made and get the existing one.
919 F
->eraseFromParent();
920 F
= TheModule
->getFunction(Name
);
922 // If F already has a body, reject this.
924 ErrorF("redefinition of function");
928 // If F took a different number of args, reject.
929 if (F
->arg_size() != Args
.size()) {
930 ErrorF("redefinition of function with different # args");
935 // Set names for all arguments.
937 for (Function::arg_iterator AI
= F
->arg_begin(); Idx
!= Args
.size();
939 AI
->setName(Args
[Idx
]);
944 /// CreateArgumentAllocas - Create an alloca for each argument and register the
945 /// argument in the symbol table so that references to it will succeed.
946 void PrototypeAST::CreateArgumentAllocas(Function
*F
) {
947 Function::arg_iterator AI
= F
->arg_begin();
948 for (unsigned Idx
= 0, e
= Args
.size(); Idx
!= e
; ++Idx
, ++AI
) {
949 // Create an alloca for this variable.
950 AllocaInst
*Alloca
= CreateEntryBlockAlloca(F
, Args
[Idx
]);
952 // Store the initial value into the alloca.
953 Builder
.CreateStore(AI
, Alloca
);
955 // Add arguments to variable symbol table.
956 NamedValues
[Args
[Idx
]] = Alloca
;
960 Function
*FunctionAST::Codegen() {
963 Function
*TheFunction
= Proto
->Codegen();
964 if (TheFunction
== 0)
967 // If this is an operator, install it.
968 if (Proto
->isBinaryOp())
969 BinopPrecedence
[Proto
->getOperatorName()] = Proto
->getBinaryPrecedence();
971 // Create a new basic block to start insertion into.
972 BasicBlock
*BB
= BasicBlock::Create(getGlobalContext(), "entry", TheFunction
);
973 Builder
.SetInsertPoint(BB
);
975 // Add all arguments to the symbol table and create their allocas.
976 Proto
->CreateArgumentAllocas(TheFunction
);
978 if (Value
*RetVal
= Body
->Codegen()) {
979 // Finish off the function.
980 Builder
.CreateRet(RetVal
);
982 // Validate the generated code, checking for consistency.
983 verifyFunction(*TheFunction
);
985 // Optimize the function.
986 TheFPM
->run(*TheFunction
);
991 // Error reading body, remove function.
992 TheFunction
->eraseFromParent();
994 if (Proto
->isBinaryOp())
995 BinopPrecedence
.erase(Proto
->getOperatorName());
999 //===----------------------------------------------------------------------===//
1000 // Top-Level parsing and JIT Driver
1001 //===----------------------------------------------------------------------===//
1003 static ExecutionEngine
*TheExecutionEngine
;
1005 static void HandleDefinition() {
1006 if (FunctionAST
*F
= ParseDefinition()) {
1007 if (Function
*LF
= F
->Codegen()) {
1008 fprintf(stderr
, "Read function definition:");
1012 // Skip token for error recovery.
1017 static void HandleExtern() {
1018 if (PrototypeAST
*P
= ParseExtern()) {
1019 if (Function
*F
= P
->Codegen()) {
1020 fprintf(stderr
, "Read extern: ");
1024 // Skip token for error recovery.
1029 static void HandleTopLevelExpression() {
1030 // Evaluate a top-level expression into an anonymous function.
1031 if (FunctionAST
*F
= ParseTopLevelExpr()) {
1032 if (Function
*LF
= F
->Codegen()) {
1033 // JIT the function, returning a function pointer.
1034 void *FPtr
= TheExecutionEngine
->getPointerToFunction(LF
);
1036 // Cast it to the right type (takes no arguments, returns a double) so we
1037 // can call it as a native function.
1038 double (*FP
)() = (double (*)())(intptr_t)FPtr
;
1039 fprintf(stderr
, "Evaluated to %f\n", FP());
1042 // Skip token for error recovery.
1047 /// top ::= definition | external | expression | ';'
1048 static void MainLoop() {
1050 fprintf(stderr
, "ready> ");
1052 case tok_eof
: return;
1053 case ';': getNextToken(); break; // ignore top-level semicolons.
1054 case tok_def
: HandleDefinition(); break;
1055 case tok_extern
: HandleExtern(); break;
1056 default: HandleTopLevelExpression(); break;
1061 //===----------------------------------------------------------------------===//
1062 // "Library" functions that can be "extern'd" from user code.
1063 //===----------------------------------------------------------------------===//
1065 /// putchard - putchar that takes a double and returns 0.
1067 double putchard(double X
) {
1072 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1074 double printd(double X
) {
1079 //===----------------------------------------------------------------------===//
1080 // Main driver code.
1081 //===----------------------------------------------------------------------===//
1084 InitializeNativeTarget();
1085 LLVMContext
&Context
= getGlobalContext();
1087 // Install standard binary operators.
1088 // 1 is lowest precedence.
1089 BinopPrecedence
['='] = 2;
1090 BinopPrecedence
['<'] = 10;
1091 BinopPrecedence
['+'] = 20;
1092 BinopPrecedence
['-'] = 20;
1093 BinopPrecedence
['*'] = 40; // highest.
1095 // Prime the first token.
1096 fprintf(stderr
, "ready> ");
1099 // Make the module, which holds all the code.
1100 TheModule
= new Module("my cool jit", Context
);
1102 // Create the JIT. This takes ownership of the module.
1104 TheExecutionEngine
= EngineBuilder(TheModule
).setErrorStr(&ErrStr
).create();
1105 if (!TheExecutionEngine
) {
1106 fprintf(stderr
, "Could not create ExecutionEngine: %s\n", ErrStr
.c_str());
1110 FunctionPassManager
OurFPM(TheModule
);
1112 // Set up the optimizer pipeline. Start with registering info about how the
1113 // target lays out data structures.
1114 OurFPM
.add(new TargetData(*TheExecutionEngine
->getTargetData()));
1115 // Provide basic AliasAnalysis support for GVN.
1116 OurFPM
.add(createBasicAliasAnalysisPass());
1117 // Promote allocas to registers.
1118 OurFPM
.add(createPromoteMemoryToRegisterPass());
1119 // Do simple "peephole" optimizations and bit-twiddling optzns.
1120 OurFPM
.add(createInstructionCombiningPass());
1121 // Reassociate expressions.
1122 OurFPM
.add(createReassociatePass());
1123 // Eliminate Common SubExpressions.
1124 OurFPM
.add(createGVNPass());
1125 // Simplify the control flow graph (deleting unreachable blocks, etc).
1126 OurFPM
.add(createCFGSimplificationPass());
1128 OurFPM
.doInitialization();
1130 // Set the global so the code gen can use this.
1133 // Run the main "interpreter loop" now.
1138 // Print out all of the generated code.