When promoting an alloca to registers discard any lifetime intrinsics.
[llvm/stm8.git] / lib / Analysis / BasicAliasAnalysis.cpp
blob8330ea7c7036cfd57c3c0563bd7d9a8fe41cc368
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include <algorithm>
38 using namespace llvm;
40 //===----------------------------------------------------------------------===//
41 // Useful predicates
42 //===----------------------------------------------------------------------===//
44 /// isKnownNonNull - Return true if we know that the specified value is never
45 /// null.
46 static bool isKnownNonNull(const Value *V) {
47 // Alloca never returns null, malloc might.
48 if (isa<AllocaInst>(V)) return true;
50 // A byval argument is never null.
51 if (const Argument *A = dyn_cast<Argument>(V))
52 return A->hasByValAttr();
54 // Global values are not null unless extern weak.
55 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
56 return !GV->hasExternalWeakLinkage();
57 return false;
60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61 /// object that never escapes from the function.
62 static bool isNonEscapingLocalObject(const Value *V) {
63 // If this is a local allocation, check to see if it escapes.
64 if (isa<AllocaInst>(V) || isNoAliasCall(V))
65 // Set StoreCaptures to True so that we can assume in our callers that the
66 // pointer is not the result of a load instruction. Currently
67 // PointerMayBeCaptured doesn't have any special analysis for the
68 // StoreCaptures=false case; if it did, our callers could be refined to be
69 // more precise.
70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
72 // If this is an argument that corresponds to a byval or noalias argument,
73 // then it has not escaped before entering the function. Check if it escapes
74 // inside the function.
75 if (const Argument *A = dyn_cast<Argument>(V))
76 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
77 // Don't bother analyzing arguments already known not to escape.
78 if (A->hasNoCaptureAttr())
79 return true;
80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
82 return false;
85 /// isEscapeSource - Return true if the pointer is one which would have
86 /// been considered an escape by isNonEscapingLocalObject.
87 static bool isEscapeSource(const Value *V) {
88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89 return true;
91 // The load case works because isNonEscapingLocalObject considers all
92 // stores to be escapes (it passes true for the StoreCaptures argument
93 // to PointerMayBeCaptured).
94 if (isa<LoadInst>(V))
95 return true;
97 return false;
100 /// getObjectSize - Return the size of the object specified by V, or
101 /// UnknownSize if unknown.
102 static uint64_t getObjectSize(const Value *V, const TargetData &TD) {
103 const Type *AccessTy;
104 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
105 if (!GV->hasDefinitiveInitializer())
106 return AliasAnalysis::UnknownSize;
107 AccessTy = GV->getType()->getElementType();
108 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
109 if (!AI->isArrayAllocation())
110 AccessTy = AI->getType()->getElementType();
111 else
112 return AliasAnalysis::UnknownSize;
113 } else if (const CallInst* CI = extractMallocCall(V)) {
114 if (!isArrayMalloc(V, &TD))
115 // The size is the argument to the malloc call.
116 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
117 return C->getZExtValue();
118 return AliasAnalysis::UnknownSize;
119 } else if (const Argument *A = dyn_cast<Argument>(V)) {
120 if (A->hasByValAttr())
121 AccessTy = cast<PointerType>(A->getType())->getElementType();
122 else
123 return AliasAnalysis::UnknownSize;
124 } else {
125 return AliasAnalysis::UnknownSize;
128 if (AccessTy->isSized())
129 return TD.getTypeAllocSize(AccessTy);
130 return AliasAnalysis::UnknownSize;
133 /// isObjectSmallerThan - Return true if we can prove that the object specified
134 /// by V is smaller than Size.
135 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
136 const TargetData &TD) {
137 uint64_t ObjectSize = getObjectSize(V, TD);
138 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
141 /// isObjectSize - Return true if we can prove that the object specified
142 /// by V has size Size.
143 static bool isObjectSize(const Value *V, uint64_t Size,
144 const TargetData &TD) {
145 uint64_t ObjectSize = getObjectSize(V, TD);
146 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
149 //===----------------------------------------------------------------------===//
150 // GetElementPtr Instruction Decomposition and Analysis
151 //===----------------------------------------------------------------------===//
153 namespace {
154 enum ExtensionKind {
155 EK_NotExtended,
156 EK_SignExt,
157 EK_ZeroExt
160 struct VariableGEPIndex {
161 const Value *V;
162 ExtensionKind Extension;
163 int64_t Scale;
168 /// GetLinearExpression - Analyze the specified value as a linear expression:
169 /// "A*V + B", where A and B are constant integers. Return the scale and offset
170 /// values as APInts and return V as a Value*, and return whether we looked
171 /// through any sign or zero extends. The incoming Value is known to have
172 /// IntegerType and it may already be sign or zero extended.
174 /// Note that this looks through extends, so the high bits may not be
175 /// represented in the result.
176 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
177 ExtensionKind &Extension,
178 const TargetData &TD, unsigned Depth) {
179 assert(V->getType()->isIntegerTy() && "Not an integer value");
181 // Limit our recursion depth.
182 if (Depth == 6) {
183 Scale = 1;
184 Offset = 0;
185 return V;
188 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
189 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
190 switch (BOp->getOpcode()) {
191 default: break;
192 case Instruction::Or:
193 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
194 // analyze it.
195 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
196 break;
197 // FALL THROUGH.
198 case Instruction::Add:
199 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
200 TD, Depth+1);
201 Offset += RHSC->getValue();
202 return V;
203 case Instruction::Mul:
204 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
205 TD, Depth+1);
206 Offset *= RHSC->getValue();
207 Scale *= RHSC->getValue();
208 return V;
209 case Instruction::Shl:
210 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
211 TD, Depth+1);
212 Offset <<= RHSC->getValue().getLimitedValue();
213 Scale <<= RHSC->getValue().getLimitedValue();
214 return V;
219 // Since GEP indices are sign extended anyway, we don't care about the high
220 // bits of a sign or zero extended value - just scales and offsets. The
221 // extensions have to be consistent though.
222 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
223 (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
224 Value *CastOp = cast<CastInst>(V)->getOperand(0);
225 unsigned OldWidth = Scale.getBitWidth();
226 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
227 Scale = Scale.trunc(SmallWidth);
228 Offset = Offset.trunc(SmallWidth);
229 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
231 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
232 TD, Depth+1);
233 Scale = Scale.zext(OldWidth);
234 Offset = Offset.zext(OldWidth);
236 return Result;
239 Scale = 1;
240 Offset = 0;
241 return V;
244 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
245 /// into a base pointer with a constant offset and a number of scaled symbolic
246 /// offsets.
248 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
249 /// the VarIndices vector) are Value*'s that are known to be scaled by the
250 /// specified amount, but which may have other unrepresented high bits. As such,
251 /// the gep cannot necessarily be reconstructed from its decomposed form.
253 /// When TargetData is around, this function is capable of analyzing everything
254 /// that GetUnderlyingObject can look through. When not, it just looks
255 /// through pointer casts.
257 static const Value *
258 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
259 SmallVectorImpl<VariableGEPIndex> &VarIndices,
260 const TargetData *TD) {
261 // Limit recursion depth to limit compile time in crazy cases.
262 unsigned MaxLookup = 6;
264 BaseOffs = 0;
265 do {
266 // See if this is a bitcast or GEP.
267 const Operator *Op = dyn_cast<Operator>(V);
268 if (Op == 0) {
269 // The only non-operator case we can handle are GlobalAliases.
270 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
271 if (!GA->mayBeOverridden()) {
272 V = GA->getAliasee();
273 continue;
276 return V;
279 if (Op->getOpcode() == Instruction::BitCast) {
280 V = Op->getOperand(0);
281 continue;
284 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
285 if (GEPOp == 0) {
286 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
287 // can come up with something. This matches what GetUnderlyingObject does.
288 if (const Instruction *I = dyn_cast<Instruction>(V))
289 // TODO: Get a DominatorTree and use it here.
290 if (const Value *Simplified =
291 SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
292 V = Simplified;
293 continue;
296 return V;
299 // Don't attempt to analyze GEPs over unsized objects.
300 if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
301 ->getElementType()->isSized())
302 return V;
304 // If we are lacking TargetData information, we can't compute the offets of
305 // elements computed by GEPs. However, we can handle bitcast equivalent
306 // GEPs.
307 if (TD == 0) {
308 if (!GEPOp->hasAllZeroIndices())
309 return V;
310 V = GEPOp->getOperand(0);
311 continue;
314 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
315 gep_type_iterator GTI = gep_type_begin(GEPOp);
316 for (User::const_op_iterator I = GEPOp->op_begin()+1,
317 E = GEPOp->op_end(); I != E; ++I) {
318 Value *Index = *I;
319 // Compute the (potentially symbolic) offset in bytes for this index.
320 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
321 // For a struct, add the member offset.
322 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
323 if (FieldNo == 0) continue;
325 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
326 continue;
329 // For an array/pointer, add the element offset, explicitly scaled.
330 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
331 if (CIdx->isZero()) continue;
332 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
333 continue;
336 uint64_t Scale = TD->getTypeAllocSize(*GTI);
337 ExtensionKind Extension = EK_NotExtended;
339 // If the integer type is smaller than the pointer size, it is implicitly
340 // sign extended to pointer size.
341 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
342 if (TD->getPointerSizeInBits() > Width)
343 Extension = EK_SignExt;
345 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
346 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
347 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
348 *TD, 0);
350 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
351 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
352 BaseOffs += IndexOffset.getSExtValue()*Scale;
353 Scale *= IndexScale.getSExtValue();
356 // If we already had an occurrence of this index variable, merge this
357 // scale into it. For example, we want to handle:
358 // A[x][x] -> x*16 + x*4 -> x*20
359 // This also ensures that 'x' only appears in the index list once.
360 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
361 if (VarIndices[i].V == Index &&
362 VarIndices[i].Extension == Extension) {
363 Scale += VarIndices[i].Scale;
364 VarIndices.erase(VarIndices.begin()+i);
365 break;
369 // Make sure that we have a scale that makes sense for this target's
370 // pointer size.
371 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
372 Scale <<= ShiftBits;
373 Scale = (int64_t)Scale >> ShiftBits;
376 if (Scale) {
377 VariableGEPIndex Entry = {Index, Extension, Scale};
378 VarIndices.push_back(Entry);
382 // Analyze the base pointer next.
383 V = GEPOp->getOperand(0);
384 } while (--MaxLookup);
386 // If the chain of expressions is too deep, just return early.
387 return V;
390 /// GetIndexDifference - Dest and Src are the variable indices from two
391 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
392 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
393 /// difference between the two pointers.
394 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
395 const SmallVectorImpl<VariableGEPIndex> &Src) {
396 if (Src.empty()) return;
398 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
399 const Value *V = Src[i].V;
400 ExtensionKind Extension = Src[i].Extension;
401 int64_t Scale = Src[i].Scale;
403 // Find V in Dest. This is N^2, but pointer indices almost never have more
404 // than a few variable indexes.
405 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
406 if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
408 // If we found it, subtract off Scale V's from the entry in Dest. If it
409 // goes to zero, remove the entry.
410 if (Dest[j].Scale != Scale)
411 Dest[j].Scale -= Scale;
412 else
413 Dest.erase(Dest.begin()+j);
414 Scale = 0;
415 break;
418 // If we didn't consume this entry, add it to the end of the Dest list.
419 if (Scale) {
420 VariableGEPIndex Entry = { V, Extension, -Scale };
421 Dest.push_back(Entry);
426 //===----------------------------------------------------------------------===//
427 // BasicAliasAnalysis Pass
428 //===----------------------------------------------------------------------===//
430 #ifndef NDEBUG
431 static const Function *getParent(const Value *V) {
432 if (const Instruction *inst = dyn_cast<Instruction>(V))
433 return inst->getParent()->getParent();
435 if (const Argument *arg = dyn_cast<Argument>(V))
436 return arg->getParent();
438 return NULL;
441 static bool notDifferentParent(const Value *O1, const Value *O2) {
443 const Function *F1 = getParent(O1);
444 const Function *F2 = getParent(O2);
446 return !F1 || !F2 || F1 == F2;
448 #endif
450 namespace {
451 /// BasicAliasAnalysis - This is the primary alias analysis implementation.
452 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
453 static char ID; // Class identification, replacement for typeinfo
454 BasicAliasAnalysis() : ImmutablePass(ID),
455 // AliasCache rarely has more than 1 or 2 elements,
456 // so start it off fairly small so that clear()
457 // doesn't have to tromp through 64 (the default)
458 // elements on each alias query. This really wants
459 // something like a SmallDenseMap.
460 AliasCache(8) {
461 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
464 virtual void initializePass() {
465 InitializeAliasAnalysis(this);
468 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
469 AU.addRequired<AliasAnalysis>();
472 virtual AliasResult alias(const Location &LocA,
473 const Location &LocB) {
474 assert(AliasCache.empty() && "AliasCache must be cleared after use!");
475 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
476 "BasicAliasAnalysis doesn't support interprocedural queries.");
477 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
478 LocB.Ptr, LocB.Size, LocB.TBAATag);
479 AliasCache.clear();
480 return Alias;
483 virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
484 const Location &Loc);
486 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
487 ImmutableCallSite CS2) {
488 // The AliasAnalysis base class has some smarts, lets use them.
489 return AliasAnalysis::getModRefInfo(CS1, CS2);
492 /// pointsToConstantMemory - Chase pointers until we find a (constant
493 /// global) or not.
494 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
496 /// getModRefBehavior - Return the behavior when calling the given
497 /// call site.
498 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
500 /// getModRefBehavior - Return the behavior when calling the given function.
501 /// For use when the call site is not known.
502 virtual ModRefBehavior getModRefBehavior(const Function *F);
504 /// getAdjustedAnalysisPointer - This method is used when a pass implements
505 /// an analysis interface through multiple inheritance. If needed, it
506 /// should override this to adjust the this pointer as needed for the
507 /// specified pass info.
508 virtual void *getAdjustedAnalysisPointer(const void *ID) {
509 if (ID == &AliasAnalysis::ID)
510 return (AliasAnalysis*)this;
511 return this;
514 private:
515 // AliasCache - Track alias queries to guard against recursion.
516 typedef std::pair<Location, Location> LocPair;
517 typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
518 AliasCacheTy AliasCache;
520 // Visited - Track instructions visited by pointsToConstantMemory.
521 SmallPtrSet<const Value*, 16> Visited;
523 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
524 // instruction against another.
525 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
526 const Value *V2, uint64_t V2Size,
527 const MDNode *V2TBAAInfo,
528 const Value *UnderlyingV1, const Value *UnderlyingV2);
530 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
531 // instruction against another.
532 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
533 const MDNode *PNTBAAInfo,
534 const Value *V2, uint64_t V2Size,
535 const MDNode *V2TBAAInfo);
537 /// aliasSelect - Disambiguate a Select instruction against another value.
538 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
539 const MDNode *SITBAAInfo,
540 const Value *V2, uint64_t V2Size,
541 const MDNode *V2TBAAInfo);
543 AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
544 const MDNode *V1TBAATag,
545 const Value *V2, uint64_t V2Size,
546 const MDNode *V2TBAATag);
548 } // End of anonymous namespace
550 // Register this pass...
551 char BasicAliasAnalysis::ID = 0;
552 INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
553 "Basic Alias Analysis (stateless AA impl)",
554 false, true, false)
556 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
557 return new BasicAliasAnalysis();
560 /// pointsToConstantMemory - Returns whether the given pointer value
561 /// points to memory that is local to the function, with global constants being
562 /// considered local to all functions.
563 bool
564 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
565 assert(Visited.empty() && "Visited must be cleared after use!");
567 unsigned MaxLookup = 8;
568 SmallVector<const Value *, 16> Worklist;
569 Worklist.push_back(Loc.Ptr);
570 do {
571 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
572 if (!Visited.insert(V)) {
573 Visited.clear();
574 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
577 // An alloca instruction defines local memory.
578 if (OrLocal && isa<AllocaInst>(V))
579 continue;
581 // A global constant counts as local memory for our purposes.
582 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
583 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
584 // global to be marked constant in some modules and non-constant in
585 // others. GV may even be a declaration, not a definition.
586 if (!GV->isConstant()) {
587 Visited.clear();
588 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
590 continue;
593 // If both select values point to local memory, then so does the select.
594 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
595 Worklist.push_back(SI->getTrueValue());
596 Worklist.push_back(SI->getFalseValue());
597 continue;
600 // If all values incoming to a phi node point to local memory, then so does
601 // the phi.
602 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
603 // Don't bother inspecting phi nodes with many operands.
604 if (PN->getNumIncomingValues() > MaxLookup) {
605 Visited.clear();
606 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
608 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
609 Worklist.push_back(PN->getIncomingValue(i));
610 continue;
613 // Otherwise be conservative.
614 Visited.clear();
615 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
617 } while (!Worklist.empty() && --MaxLookup);
619 Visited.clear();
620 return Worklist.empty();
623 /// getModRefBehavior - Return the behavior when calling the given call site.
624 AliasAnalysis::ModRefBehavior
625 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
626 if (CS.doesNotAccessMemory())
627 // Can't do better than this.
628 return DoesNotAccessMemory;
630 ModRefBehavior Min = UnknownModRefBehavior;
632 // If the callsite knows it only reads memory, don't return worse
633 // than that.
634 if (CS.onlyReadsMemory())
635 Min = OnlyReadsMemory;
637 // The AliasAnalysis base class has some smarts, lets use them.
638 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
641 /// getModRefBehavior - Return the behavior when calling the given function.
642 /// For use when the call site is not known.
643 AliasAnalysis::ModRefBehavior
644 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
645 // If the function declares it doesn't access memory, we can't do better.
646 if (F->doesNotAccessMemory())
647 return DoesNotAccessMemory;
649 // For intrinsics, we can check the table.
650 if (unsigned iid = F->getIntrinsicID()) {
651 #define GET_INTRINSIC_MODREF_BEHAVIOR
652 #include "llvm/Intrinsics.gen"
653 #undef GET_INTRINSIC_MODREF_BEHAVIOR
656 ModRefBehavior Min = UnknownModRefBehavior;
658 // If the function declares it only reads memory, go with that.
659 if (F->onlyReadsMemory())
660 Min = OnlyReadsMemory;
662 // Otherwise be conservative.
663 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
666 /// getModRefInfo - Check to see if the specified callsite can clobber the
667 /// specified memory object. Since we only look at local properties of this
668 /// function, we really can't say much about this query. We do, however, use
669 /// simple "address taken" analysis on local objects.
670 AliasAnalysis::ModRefResult
671 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
672 const Location &Loc) {
673 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
674 "AliasAnalysis query involving multiple functions!");
676 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
678 // If this is a tail call and Loc.Ptr points to a stack location, we know that
679 // the tail call cannot access or modify the local stack.
680 // We cannot exclude byval arguments here; these belong to the caller of
681 // the current function not to the current function, and a tail callee
682 // may reference them.
683 if (isa<AllocaInst>(Object))
684 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
685 if (CI->isTailCall())
686 return NoModRef;
688 // If the pointer is to a locally allocated object that does not escape,
689 // then the call can not mod/ref the pointer unless the call takes the pointer
690 // as an argument, and itself doesn't capture it.
691 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
692 isNonEscapingLocalObject(Object)) {
693 bool PassedAsArg = false;
694 unsigned ArgNo = 0;
695 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
696 CI != CE; ++CI, ++ArgNo) {
697 // Only look at the no-capture or byval pointer arguments. If this
698 // pointer were passed to arguments that were neither of these, then it
699 // couldn't be no-capture.
700 if (!(*CI)->getType()->isPointerTy() ||
701 (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) &&
702 !CS.paramHasAttr(ArgNo+1, Attribute::ByVal)))
703 continue;
705 // If this is a no-capture pointer argument, see if we can tell that it
706 // is impossible to alias the pointer we're checking. If not, we have to
707 // assume that the call could touch the pointer, even though it doesn't
708 // escape.
709 if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
710 PassedAsArg = true;
711 break;
715 if (!PassedAsArg)
716 return NoModRef;
719 ModRefResult Min = ModRef;
721 // Finally, handle specific knowledge of intrinsics.
722 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
723 if (II != 0)
724 switch (II->getIntrinsicID()) {
725 default: break;
726 case Intrinsic::memcpy:
727 case Intrinsic::memmove: {
728 uint64_t Len = UnknownSize;
729 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
730 Len = LenCI->getZExtValue();
731 Value *Dest = II->getArgOperand(0);
732 Value *Src = II->getArgOperand(1);
733 // If it can't overlap the source dest, then it doesn't modref the loc.
734 if (isNoAlias(Location(Dest, Len), Loc)) {
735 if (isNoAlias(Location(Src, Len), Loc))
736 return NoModRef;
737 // If it can't overlap the dest, then worst case it reads the loc.
738 Min = Ref;
739 } else if (isNoAlias(Location(Src, Len), Loc)) {
740 // If it can't overlap the source, then worst case it mutates the loc.
741 Min = Mod;
743 break;
745 case Intrinsic::memset:
746 // Since memset is 'accesses arguments' only, the AliasAnalysis base class
747 // will handle it for the variable length case.
748 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
749 uint64_t Len = LenCI->getZExtValue();
750 Value *Dest = II->getArgOperand(0);
751 if (isNoAlias(Location(Dest, Len), Loc))
752 return NoModRef;
754 // We know that memset doesn't load anything.
755 Min = Mod;
756 break;
757 case Intrinsic::atomic_cmp_swap:
758 case Intrinsic::atomic_swap:
759 case Intrinsic::atomic_load_add:
760 case Intrinsic::atomic_load_sub:
761 case Intrinsic::atomic_load_and:
762 case Intrinsic::atomic_load_nand:
763 case Intrinsic::atomic_load_or:
764 case Intrinsic::atomic_load_xor:
765 case Intrinsic::atomic_load_max:
766 case Intrinsic::atomic_load_min:
767 case Intrinsic::atomic_load_umax:
768 case Intrinsic::atomic_load_umin:
769 if (TD) {
770 Value *Op1 = II->getArgOperand(0);
771 uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
772 MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
773 if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
774 return NoModRef;
776 break;
777 case Intrinsic::lifetime_start:
778 case Intrinsic::lifetime_end:
779 case Intrinsic::invariant_start: {
780 uint64_t PtrSize =
781 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
782 if (isNoAlias(Location(II->getArgOperand(1),
783 PtrSize,
784 II->getMetadata(LLVMContext::MD_tbaa)),
785 Loc))
786 return NoModRef;
787 break;
789 case Intrinsic::invariant_end: {
790 uint64_t PtrSize =
791 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
792 if (isNoAlias(Location(II->getArgOperand(2),
793 PtrSize,
794 II->getMetadata(LLVMContext::MD_tbaa)),
795 Loc))
796 return NoModRef;
797 break;
799 case Intrinsic::arm_neon_vld1: {
800 // LLVM's vld1 and vst1 intrinsics currently only support a single
801 // vector register.
802 uint64_t Size =
803 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
804 if (isNoAlias(Location(II->getArgOperand(0), Size,
805 II->getMetadata(LLVMContext::MD_tbaa)),
806 Loc))
807 return NoModRef;
808 break;
810 case Intrinsic::arm_neon_vst1: {
811 uint64_t Size =
812 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
813 if (isNoAlias(Location(II->getArgOperand(0), Size,
814 II->getMetadata(LLVMContext::MD_tbaa)),
815 Loc))
816 return NoModRef;
817 break;
821 // The AliasAnalysis base class has some smarts, lets use them.
822 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
825 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
826 /// against another pointer. We know that V1 is a GEP, but we don't know
827 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
828 /// UnderlyingV2 is the same for V2.
830 AliasAnalysis::AliasResult
831 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
832 const Value *V2, uint64_t V2Size,
833 const MDNode *V2TBAAInfo,
834 const Value *UnderlyingV1,
835 const Value *UnderlyingV2) {
836 int64_t GEP1BaseOffset;
837 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
839 // If we have two gep instructions with must-alias'ing base pointers, figure
840 // out if the indexes to the GEP tell us anything about the derived pointer.
841 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
842 // Do the base pointers alias?
843 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
844 UnderlyingV2, UnknownSize, 0);
846 // If we get a No or May, then return it immediately, no amount of analysis
847 // will improve this situation.
848 if (BaseAlias != MustAlias) return BaseAlias;
850 // Otherwise, we have a MustAlias. Since the base pointers alias each other
851 // exactly, see if the computed offset from the common pointer tells us
852 // about the relation of the resulting pointer.
853 const Value *GEP1BasePtr =
854 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
856 int64_t GEP2BaseOffset;
857 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
858 const Value *GEP2BasePtr =
859 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
861 // If DecomposeGEPExpression isn't able to look all the way through the
862 // addressing operation, we must not have TD and this is too complex for us
863 // to handle without it.
864 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
865 assert(TD == 0 &&
866 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
867 return MayAlias;
870 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
871 // symbolic difference.
872 GEP1BaseOffset -= GEP2BaseOffset;
873 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
875 } else {
876 // Check to see if these two pointers are related by the getelementptr
877 // instruction. If one pointer is a GEP with a non-zero index of the other
878 // pointer, we know they cannot alias.
880 // If both accesses are unknown size, we can't do anything useful here.
881 if (V1Size == UnknownSize && V2Size == UnknownSize)
882 return MayAlias;
884 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
885 V2, V2Size, V2TBAAInfo);
886 if (R != MustAlias)
887 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
888 // If V2 is known not to alias GEP base pointer, then the two values
889 // cannot alias per GEP semantics: "A pointer value formed from a
890 // getelementptr instruction is associated with the addresses associated
891 // with the first operand of the getelementptr".
892 return R;
894 const Value *GEP1BasePtr =
895 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
897 // If DecomposeGEPExpression isn't able to look all the way through the
898 // addressing operation, we must not have TD and this is too complex for us
899 // to handle without it.
900 if (GEP1BasePtr != UnderlyingV1) {
901 assert(TD == 0 &&
902 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
903 return MayAlias;
907 // In the two GEP Case, if there is no difference in the offsets of the
908 // computed pointers, the resultant pointers are a must alias. This
909 // hapens when we have two lexically identical GEP's (for example).
911 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
912 // must aliases the GEP, the end result is a must alias also.
913 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
914 return MustAlias;
916 // If there is a difference between the pointers, but the difference is
917 // less than the size of the associated memory object, then we know
918 // that the objects are partially overlapping.
919 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
920 if (GEP1BaseOffset >= 0 ?
921 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) :
922 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size &&
923 GEP1BaseOffset != INT64_MIN))
924 return PartialAlias;
927 // If we have a known constant offset, see if this offset is larger than the
928 // access size being queried. If so, and if no variable indices can remove
929 // pieces of this constant, then we know we have a no-alias. For example,
930 // &A[100] != &A.
932 // In order to handle cases like &A[100][i] where i is an out of range
933 // subscript, we have to ignore all constant offset pieces that are a multiple
934 // of a scaled index. Do this by removing constant offsets that are a
935 // multiple of any of our variable indices. This allows us to transform
936 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
937 // provides an offset of 4 bytes (assuming a <= 4 byte access).
938 for (unsigned i = 0, e = GEP1VariableIndices.size();
939 i != e && GEP1BaseOffset;++i)
940 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
941 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
943 // If our known offset is bigger than the access size, we know we don't have
944 // an alias.
945 if (GEP1BaseOffset) {
946 if (GEP1BaseOffset >= 0 ?
947 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
948 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
949 GEP1BaseOffset != INT64_MIN))
950 return NoAlias;
953 // Statically, we can see that the base objects are the same, but the
954 // pointers have dynamic offsets which we can't resolve. And none of our
955 // little tricks above worked.
957 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
958 // practical effect of this is protecting TBAA in the case of dynamic
959 // indices into arrays of unions. An alternative way to solve this would
960 // be to have clang emit extra metadata for unions and/or union accesses.
961 // A union-specific solution wouldn't handle the problem for malloc'd
962 // memory however.
963 return PartialAlias;
966 static AliasAnalysis::AliasResult
967 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
968 // If the results agree, take it.
969 if (A == B)
970 return A;
971 // A mix of PartialAlias and MustAlias is PartialAlias.
972 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
973 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
974 return AliasAnalysis::PartialAlias;
975 // Otherwise, we don't know anything.
976 return AliasAnalysis::MayAlias;
979 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
980 /// instruction against another.
981 AliasAnalysis::AliasResult
982 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
983 const MDNode *SITBAAInfo,
984 const Value *V2, uint64_t V2Size,
985 const MDNode *V2TBAAInfo) {
986 // If the values are Selects with the same condition, we can do a more precise
987 // check: just check for aliases between the values on corresponding arms.
988 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
989 if (SI->getCondition() == SI2->getCondition()) {
990 AliasResult Alias =
991 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
992 SI2->getTrueValue(), V2Size, V2TBAAInfo);
993 if (Alias == MayAlias)
994 return MayAlias;
995 AliasResult ThisAlias =
996 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
997 SI2->getFalseValue(), V2Size, V2TBAAInfo);
998 return MergeAliasResults(ThisAlias, Alias);
1001 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1002 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1003 AliasResult Alias =
1004 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1005 if (Alias == MayAlias)
1006 return MayAlias;
1008 AliasResult ThisAlias =
1009 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1010 return MergeAliasResults(ThisAlias, Alias);
1013 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1014 // against another.
1015 AliasAnalysis::AliasResult
1016 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1017 const MDNode *PNTBAAInfo,
1018 const Value *V2, uint64_t V2Size,
1019 const MDNode *V2TBAAInfo) {
1020 // If the values are PHIs in the same block, we can do a more precise
1021 // as well as efficient check: just check for aliases between the values
1022 // on corresponding edges.
1023 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1024 if (PN2->getParent() == PN->getParent()) {
1025 AliasResult Alias =
1026 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1027 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1028 V2Size, V2TBAAInfo);
1029 if (Alias == MayAlias)
1030 return MayAlias;
1031 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1032 AliasResult ThisAlias =
1033 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1034 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1035 V2Size, V2TBAAInfo);
1036 Alias = MergeAliasResults(ThisAlias, Alias);
1037 if (Alias == MayAlias)
1038 break;
1040 return Alias;
1043 SmallPtrSet<Value*, 4> UniqueSrc;
1044 SmallVector<Value*, 4> V1Srcs;
1045 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1046 Value *PV1 = PN->getIncomingValue(i);
1047 if (isa<PHINode>(PV1))
1048 // If any of the source itself is a PHI, return MayAlias conservatively
1049 // to avoid compile time explosion. The worst possible case is if both
1050 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1051 // and 'n' are the number of PHI sources.
1052 return MayAlias;
1053 if (UniqueSrc.insert(PV1))
1054 V1Srcs.push_back(PV1);
1057 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1058 V1Srcs[0], PNSize, PNTBAAInfo);
1059 // Early exit if the check of the first PHI source against V2 is MayAlias.
1060 // Other results are not possible.
1061 if (Alias == MayAlias)
1062 return MayAlias;
1064 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1065 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1066 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1067 Value *V = V1Srcs[i];
1069 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1070 V, PNSize, PNTBAAInfo);
1071 Alias = MergeAliasResults(ThisAlias, Alias);
1072 if (Alias == MayAlias)
1073 break;
1076 return Alias;
1079 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1080 // such as array references.
1082 AliasAnalysis::AliasResult
1083 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1084 const MDNode *V1TBAAInfo,
1085 const Value *V2, uint64_t V2Size,
1086 const MDNode *V2TBAAInfo) {
1087 // If either of the memory references is empty, it doesn't matter what the
1088 // pointer values are.
1089 if (V1Size == 0 || V2Size == 0)
1090 return NoAlias;
1092 // Strip off any casts if they exist.
1093 V1 = V1->stripPointerCasts();
1094 V2 = V2->stripPointerCasts();
1096 // Are we checking for alias of the same value?
1097 if (V1 == V2) return MustAlias;
1099 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1100 return NoAlias; // Scalars cannot alias each other
1102 // Figure out what objects these things are pointing to if we can.
1103 const Value *O1 = GetUnderlyingObject(V1, TD);
1104 const Value *O2 = GetUnderlyingObject(V2, TD);
1106 // Null values in the default address space don't point to any object, so they
1107 // don't alias any other pointer.
1108 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1109 if (CPN->getType()->getAddressSpace() == 0)
1110 return NoAlias;
1111 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1112 if (CPN->getType()->getAddressSpace() == 0)
1113 return NoAlias;
1115 if (O1 != O2) {
1116 // If V1/V2 point to two different objects we know that we have no alias.
1117 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1118 return NoAlias;
1120 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1121 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1122 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1123 return NoAlias;
1125 // Arguments can't alias with local allocations or noalias calls
1126 // in the same function.
1127 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1128 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1129 return NoAlias;
1131 // Most objects can't alias null.
1132 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1133 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1134 return NoAlias;
1136 // If one pointer is the result of a call/invoke or load and the other is a
1137 // non-escaping local object within the same function, then we know the
1138 // object couldn't escape to a point where the call could return it.
1140 // Note that if the pointers are in different functions, there are a
1141 // variety of complications. A call with a nocapture argument may still
1142 // temporary store the nocapture argument's value in a temporary memory
1143 // location if that memory location doesn't escape. Or it may pass a
1144 // nocapture value to other functions as long as they don't capture it.
1145 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1146 return NoAlias;
1147 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1148 return NoAlias;
1151 // If the size of one access is larger than the entire object on the other
1152 // side, then we know such behavior is undefined and can assume no alias.
1153 if (TD)
1154 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1155 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1156 return NoAlias;
1158 // Check the cache before climbing up use-def chains. This also terminates
1159 // otherwise infinitely recursive queries.
1160 LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1161 Location(V2, V2Size, V2TBAAInfo));
1162 if (V1 > V2)
1163 std::swap(Locs.first, Locs.second);
1164 std::pair<AliasCacheTy::iterator, bool> Pair =
1165 AliasCache.insert(std::make_pair(Locs, MayAlias));
1166 if (!Pair.second)
1167 return Pair.first->second;
1169 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1170 // GEP can't simplify, we don't even look at the PHI cases.
1171 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1172 std::swap(V1, V2);
1173 std::swap(V1Size, V2Size);
1174 std::swap(O1, O2);
1176 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1177 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1178 if (Result != MayAlias) return AliasCache[Locs] = Result;
1181 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1182 std::swap(V1, V2);
1183 std::swap(V1Size, V2Size);
1185 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1186 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1187 V2, V2Size, V2TBAAInfo);
1188 if (Result != MayAlias) return AliasCache[Locs] = Result;
1191 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1192 std::swap(V1, V2);
1193 std::swap(V1Size, V2Size);
1195 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1196 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1197 V2, V2Size, V2TBAAInfo);
1198 if (Result != MayAlias) return AliasCache[Locs] = Result;
1201 // If both pointers are pointing into the same object and one of them
1202 // accesses is accessing the entire object, then the accesses must
1203 // overlap in some way.
1204 if (TD && O1 == O2)
1205 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1206 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1207 return AliasCache[Locs] = PartialAlias;
1209 AliasResult Result =
1210 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1211 Location(V2, V2Size, V2TBAAInfo));
1212 return AliasCache[Locs] = Result;