1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/GlobalAlias.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/InstructionSimplify.h"
73 #include "llvm/Analysis/LoopInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/Assembly/Writer.h"
76 #include "llvm/Target/TargetData.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/ConstantRange.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/GetElementPtrTypeIterator.h"
82 #include "llvm/Support/InstIterator.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/ADT/Statistic.h"
86 #include "llvm/ADT/STLExtras.h"
87 #include "llvm/ADT/SmallPtrSet.h"
91 STATISTIC(NumArrayLenItCounts
,
92 "Number of trip counts computed with array length");
93 STATISTIC(NumTripCountsComputed
,
94 "Number of loops with predictable loop counts");
95 STATISTIC(NumTripCountsNotComputed
,
96 "Number of loops without predictable loop counts");
97 STATISTIC(NumBruteForceTripCountsComputed
,
98 "Number of loops with trip counts computed by force");
100 static cl::opt
<unsigned>
101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
102 cl::desc("Maximum number of iterations SCEV will "
103 "symbolically execute a constant "
107 INITIALIZE_PASS_BEGIN(ScalarEvolution
, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
110 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
111 INITIALIZE_PASS_END(ScalarEvolution
, "scalar-evolution",
112 "Scalar Evolution Analysis", false, true)
113 char ScalarEvolution::ID
= 0;
115 //===----------------------------------------------------------------------===//
116 // SCEV class definitions
117 //===----------------------------------------------------------------------===//
119 //===----------------------------------------------------------------------===//
120 // Implementation of the SCEV class.
123 void SCEV::dump() const {
128 void SCEV::print(raw_ostream
&OS
) const {
129 switch (getSCEVType()) {
131 WriteAsOperand(OS
, cast
<SCEVConstant
>(this)->getValue(), false);
134 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(this);
135 const SCEV
*Op
= Trunc
->getOperand();
136 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to "
137 << *Trunc
->getType() << ")";
141 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(this);
142 const SCEV
*Op
= ZExt
->getOperand();
143 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to "
144 << *ZExt
->getType() << ")";
148 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(this);
149 const SCEV
*Op
= SExt
->getOperand();
150 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to "
151 << *SExt
->getType() << ")";
155 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(this);
156 OS
<< "{" << *AR
->getOperand(0);
157 for (unsigned i
= 1, e
= AR
->getNumOperands(); i
!= e
; ++i
)
158 OS
<< ",+," << *AR
->getOperand(i
);
160 if (AR
->getNoWrapFlags(FlagNUW
))
162 if (AR
->getNoWrapFlags(FlagNSW
))
164 if (AR
->getNoWrapFlags(FlagNW
) &&
165 !AR
->getNoWrapFlags((NoWrapFlags
)(FlagNUW
| FlagNSW
)))
167 WriteAsOperand(OS
, AR
->getLoop()->getHeader(), /*PrintType=*/false);
175 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(this);
176 const char *OpStr
= 0;
177 switch (NAry
->getSCEVType()) {
178 case scAddExpr
: OpStr
= " + "; break;
179 case scMulExpr
: OpStr
= " * "; break;
180 case scUMaxExpr
: OpStr
= " umax "; break;
181 case scSMaxExpr
: OpStr
= " smax "; break;
184 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
187 if (llvm::next(I
) != E
)
194 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(this);
195 OS
<< "(" << *UDiv
->getLHS() << " /u " << *UDiv
->getRHS() << ")";
199 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(this);
201 if (U
->isSizeOf(AllocTy
)) {
202 OS
<< "sizeof(" << *AllocTy
<< ")";
205 if (U
->isAlignOf(AllocTy
)) {
206 OS
<< "alignof(" << *AllocTy
<< ")";
212 if (U
->isOffsetOf(CTy
, FieldNo
)) {
213 OS
<< "offsetof(" << *CTy
<< ", ";
214 WriteAsOperand(OS
, FieldNo
, false);
219 // Otherwise just print it normally.
220 WriteAsOperand(OS
, U
->getValue(), false);
223 case scCouldNotCompute
:
224 OS
<< "***COULDNOTCOMPUTE***";
228 llvm_unreachable("Unknown SCEV kind!");
231 const Type
*SCEV::getType() const {
232 switch (getSCEVType()) {
234 return cast
<SCEVConstant
>(this)->getType();
238 return cast
<SCEVCastExpr
>(this)->getType();
243 return cast
<SCEVNAryExpr
>(this)->getType();
245 return cast
<SCEVAddExpr
>(this)->getType();
247 return cast
<SCEVUDivExpr
>(this)->getType();
249 return cast
<SCEVUnknown
>(this)->getType();
250 case scCouldNotCompute
:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
255 llvm_unreachable("Unknown SCEV kind!");
259 bool SCEV::isZero() const {
260 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
261 return SC
->getValue()->isZero();
265 bool SCEV::isOne() const {
266 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
267 return SC
->getValue()->isOne();
271 bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
273 return SC
->getValue()->isAllOnesValue();
277 SCEVCouldNotCompute::SCEVCouldNotCompute() :
278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute
) {}
280 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
281 return S
->getSCEVType() == scCouldNotCompute
;
284 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
286 ID
.AddInteger(scConstant
);
289 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
290 SCEV
*S
= new (SCEVAllocator
) SCEVConstant(ID
.Intern(SCEVAllocator
), V
);
291 UniqueSCEVs
.InsertNode(S
, IP
);
295 const SCEV
*ScalarEvolution::getConstant(const APInt
& Val
) {
296 return getConstant(ConstantInt::get(getContext(), Val
));
300 ScalarEvolution::getConstant(const Type
*Ty
, uint64_t V
, bool isSigned
) {
301 const IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
302 return getConstant(ConstantInt::get(ITy
, V
, isSigned
));
305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID
,
306 unsigned SCEVTy
, const SCEV
*op
, const Type
*ty
)
307 : SCEV(ID
, SCEVTy
), Op(op
), Ty(ty
) {}
309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID
,
310 const SCEV
*op
, const Type
*ty
)
311 : SCEVCastExpr(ID
, scTruncate
, op
, ty
) {
312 assert((Op
->getType()->isIntegerTy() || Op
->getType()->isPointerTy()) &&
313 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
314 "Cannot truncate non-integer value!");
317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID
,
318 const SCEV
*op
, const Type
*ty
)
319 : SCEVCastExpr(ID
, scZeroExtend
, op
, ty
) {
320 assert((Op
->getType()->isIntegerTy() || Op
->getType()->isPointerTy()) &&
321 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
322 "Cannot zero extend non-integer value!");
325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID
,
326 const SCEV
*op
, const Type
*ty
)
327 : SCEVCastExpr(ID
, scSignExtend
, op
, ty
) {
328 assert((Op
->getType()->isIntegerTy() || Op
->getType()->isPointerTy()) &&
329 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
330 "Cannot sign extend non-integer value!");
333 void SCEVUnknown::deleted() {
334 // Clear this SCEVUnknown from various maps.
335 SE
->forgetMemoizedResults(this);
337 // Remove this SCEVUnknown from the uniquing map.
338 SE
->UniqueSCEVs
.RemoveNode(this);
340 // Release the value.
344 void SCEVUnknown::allUsesReplacedWith(Value
*New
) {
345 // Clear this SCEVUnknown from various maps.
346 SE
->forgetMemoizedResults(this);
348 // Remove this SCEVUnknown from the uniquing map.
349 SE
->UniqueSCEVs
.RemoveNode(this);
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
357 bool SCEVUnknown::isSizeOf(const Type
*&AllocTy
) const {
358 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
359 if (VCE
->getOpcode() == Instruction::PtrToInt
)
360 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
361 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
362 CE
->getOperand(0)->isNullValue() &&
363 CE
->getNumOperands() == 2)
364 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(1)))
366 AllocTy
= cast
<PointerType
>(CE
->getOperand(0)->getType())
374 bool SCEVUnknown::isAlignOf(const Type
*&AllocTy
) const {
375 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
376 if (VCE
->getOpcode() == Instruction::PtrToInt
)
377 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
378 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
379 CE
->getOperand(0)->isNullValue()) {
381 cast
<PointerType
>(CE
->getOperand(0)->getType())->getElementType();
382 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
))
383 if (!STy
->isPacked() &&
384 CE
->getNumOperands() == 3 &&
385 CE
->getOperand(1)->isNullValue()) {
386 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(2)))
388 STy
->getNumElements() == 2 &&
389 STy
->getElementType(0)->isIntegerTy(1)) {
390 AllocTy
= STy
->getElementType(1);
399 bool SCEVUnknown::isOffsetOf(const Type
*&CTy
, Constant
*&FieldNo
) const {
400 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
401 if (VCE
->getOpcode() == Instruction::PtrToInt
)
402 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
403 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
404 CE
->getNumOperands() == 3 &&
405 CE
->getOperand(0)->isNullValue() &&
406 CE
->getOperand(1)->isNullValue()) {
408 cast
<PointerType
>(CE
->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
411 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
413 FieldNo
= CE
->getOperand(2);
421 //===----------------------------------------------------------------------===//
423 //===----------------------------------------------------------------------===//
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
429 class SCEVComplexityCompare
{
430 const LoopInfo
*const LI
;
432 explicit SCEVComplexityCompare(const LoopInfo
*li
) : LI(li
) {}
434 // Return true or false if LHS is less than, or at least RHS, respectively.
435 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
436 return compare(LHS
, RHS
) < 0;
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV
*LHS
, const SCEV
*RHS
) const {
443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
447 // Primarily, sort the SCEVs by their getSCEVType().
448 unsigned LType
= LHS
->getSCEVType(), RType
= RHS
->getSCEVType();
450 return (int)LType
- (int)RType
;
452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
457 const SCEVUnknown
*LU
= cast
<SCEVUnknown
>(LHS
);
458 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
462 const Value
*LV
= LU
->getValue(), *RV
= RU
->getValue();
464 // Order pointer values after integer values. This helps SCEVExpander
466 bool LIsPointer
= LV
->getType()->isPointerTy(),
467 RIsPointer
= RV
->getType()->isPointerTy();
468 if (LIsPointer
!= RIsPointer
)
469 return (int)LIsPointer
- (int)RIsPointer
;
471 // Compare getValueID values.
472 unsigned LID
= LV
->getValueID(),
473 RID
= RV
->getValueID();
475 return (int)LID
- (int)RID
;
477 // Sort arguments by their position.
478 if (const Argument
*LA
= dyn_cast
<Argument
>(LV
)) {
479 const Argument
*RA
= cast
<Argument
>(RV
);
480 unsigned LArgNo
= LA
->getArgNo(), RArgNo
= RA
->getArgNo();
481 return (int)LArgNo
- (int)RArgNo
;
484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
486 if (const Instruction
*LInst
= dyn_cast
<Instruction
>(LV
)) {
487 const Instruction
*RInst
= cast
<Instruction
>(RV
);
489 // Compare loop depths.
490 const BasicBlock
*LParent
= LInst
->getParent(),
491 *RParent
= RInst
->getParent();
492 if (LParent
!= RParent
) {
493 unsigned LDepth
= LI
->getLoopDepth(LParent
),
494 RDepth
= LI
->getLoopDepth(RParent
);
495 if (LDepth
!= RDepth
)
496 return (int)LDepth
- (int)RDepth
;
499 // Compare the number of operands.
500 unsigned LNumOps
= LInst
->getNumOperands(),
501 RNumOps
= RInst
->getNumOperands();
502 return (int)LNumOps
- (int)RNumOps
;
509 const SCEVConstant
*LC
= cast
<SCEVConstant
>(LHS
);
510 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
512 // Compare constant values.
513 const APInt
&LA
= LC
->getValue()->getValue();
514 const APInt
&RA
= RC
->getValue()->getValue();
515 unsigned LBitWidth
= LA
.getBitWidth(), RBitWidth
= RA
.getBitWidth();
516 if (LBitWidth
!= RBitWidth
)
517 return (int)LBitWidth
- (int)RBitWidth
;
518 return LA
.ult(RA
) ? -1 : 1;
522 const SCEVAddRecExpr
*LA
= cast
<SCEVAddRecExpr
>(LHS
);
523 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
525 // Compare addrec loop depths.
526 const Loop
*LLoop
= LA
->getLoop(), *RLoop
= RA
->getLoop();
527 if (LLoop
!= RLoop
) {
528 unsigned LDepth
= LLoop
->getLoopDepth(),
529 RDepth
= RLoop
->getLoopDepth();
530 if (LDepth
!= RDepth
)
531 return (int)LDepth
- (int)RDepth
;
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps
= LA
->getNumOperands(), RNumOps
= RA
->getNumOperands();
536 if (LNumOps
!= RNumOps
)
537 return (int)LNumOps
- (int)RNumOps
;
539 // Lexicographically compare.
540 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
541 long X
= compare(LA
->getOperand(i
), RA
->getOperand(i
));
553 const SCEVNAryExpr
*LC
= cast
<SCEVNAryExpr
>(LHS
);
554 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
556 // Lexicographically compare n-ary expressions.
557 unsigned LNumOps
= LC
->getNumOperands(), RNumOps
= RC
->getNumOperands();
558 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
561 long X
= compare(LC
->getOperand(i
), RC
->getOperand(i
));
565 return (int)LNumOps
- (int)RNumOps
;
569 const SCEVUDivExpr
*LC
= cast
<SCEVUDivExpr
>(LHS
);
570 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
572 // Lexicographically compare udiv expressions.
573 long X
= compare(LC
->getLHS(), RC
->getLHS());
576 return compare(LC
->getRHS(), RC
->getRHS());
582 const SCEVCastExpr
*LC
= cast
<SCEVCastExpr
>(LHS
);
583 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
585 // Compare cast expressions by operand.
586 return compare(LC
->getOperand(), RC
->getOperand());
593 llvm_unreachable("Unknown SCEV kind!");
599 /// GroupByComplexity - Given a list of SCEV objects, order them by their
600 /// complexity, and group objects of the same complexity together by value.
601 /// When this routine is finished, we know that any duplicates in the vector are
602 /// consecutive and that complexity is monotonically increasing.
604 /// Note that we go take special precautions to ensure that we get deterministic
605 /// results from this routine. In other words, we don't want the results of
606 /// this to depend on where the addresses of various SCEV objects happened to
609 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
611 if (Ops
.size() < 2) return; // Noop
612 if (Ops
.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
615 const SCEV
*&LHS
= Ops
[0], *&RHS
= Ops
[1];
616 if (SCEVComplexityCompare(LI
)(RHS
, LHS
))
621 // Do the rough sort by complexity.
622 std::stable_sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare(LI
));
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
629 const SCEV
*S
= Ops
[i
];
630 unsigned Complexity
= S
->getSCEVType();
632 // If there are any objects of the same complexity and same value as this
634 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
635 if (Ops
[j
] == S
) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops
[i
+1], Ops
[j
]);
638 ++i
; // no need to rescan it.
639 if (i
== e
-2) return; // Done!
647 //===----------------------------------------------------------------------===//
648 // Simple SCEV method implementations
649 //===----------------------------------------------------------------------===//
651 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
653 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
655 const Type
* ResultTy
) {
656 // Handle the simplest case efficiently.
658 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
660 // We are using the following formula for BC(It, K):
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
669 // However, this code doesn't use exactly that formula; the formula it uses
670 // is something like the following, where T is the number of factors of 2 in
671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
712 return SE
.getCouldNotCompute();
714 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt
OddFactorial(W
, 1);
722 for (unsigned i
= 3; i
<= K
; ++i
) {
724 unsigned TwoFactors
= Mult
.countTrailingZeros();
726 Mult
= Mult
.lshr(TwoFactors
);
727 OddFactorial
*= Mult
;
730 // We need at least W + T bits for the multiplication step
731 unsigned CalculationBits
= W
+ T
;
733 // Calculate 2^T, at width T+W.
734 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
739 APInt Mod
= APInt::getSignedMinValue(W
+1);
740 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
741 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
742 MultiplyFactor
= MultiplyFactor
.trunc(W
);
744 // Calculate the product, at width T+W
745 const IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
747 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
748 for (unsigned i
= 1; i
!= K
; ++i
) {
749 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getConstant(It
->getType(), i
));
750 Dividend
= SE
.getMulExpr(Dividend
,
751 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
755 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
757 // Truncate the result, and divide by K! / 2^T.
759 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
760 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
763 /// evaluateAtIteration - Return the value of this chain of recurrences at
764 /// the specified iteration number. We can evaluate this recurrence by
765 /// multiplying each element in the chain by the binomial coefficient
766 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
768 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
770 /// where BC(It, k) stands for binomial coefficient.
772 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
773 ScalarEvolution
&SE
) const {
774 const SCEV
*Result
= getStart();
775 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
779 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
780 if (isa
<SCEVCouldNotCompute
>(Coeff
))
783 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
788 //===----------------------------------------------------------------------===//
789 // SCEV Expression folder implementations
790 //===----------------------------------------------------------------------===//
792 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
,
794 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
795 "This is not a truncating conversion!");
796 assert(isSCEVable(Ty
) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty
= getEffectiveSCEVType(Ty
);
801 ID
.AddInteger(scTruncate
);
805 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
807 // Fold if the operand is constant.
808 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
810 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(),
811 getEffectiveSCEVType(Ty
))));
813 // trunc(trunc(x)) --> trunc(x)
814 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
815 return getTruncateExpr(ST
->getOperand(), Ty
);
817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
819 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
823 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
828 SmallVector
<const SCEV
*, 4> Operands
;
829 bool hasTrunc
= false;
830 for (unsigned i
= 0, e
= SA
->getNumOperands(); i
!= e
&& !hasTrunc
; ++i
) {
831 const SCEV
*S
= getTruncateExpr(SA
->getOperand(i
), Ty
);
832 hasTrunc
= isa
<SCEVTruncateExpr
>(S
);
833 Operands
.push_back(S
);
836 return getAddExpr(Operands
);
837 UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
); // Mutates IP, returns NULL.
840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr
*SM
= dyn_cast
<SCEVMulExpr
>(Op
)) {
843 SmallVector
<const SCEV
*, 4> Operands
;
844 bool hasTrunc
= false;
845 for (unsigned i
= 0, e
= SM
->getNumOperands(); i
!= e
&& !hasTrunc
; ++i
) {
846 const SCEV
*S
= getTruncateExpr(SM
->getOperand(i
), Ty
);
847 hasTrunc
= isa
<SCEVTruncateExpr
>(S
);
848 Operands
.push_back(S
);
851 return getMulExpr(Operands
);
852 UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
); // Mutates IP, returns NULL.
855 // If the input value is a chrec scev, truncate the chrec's operands.
856 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
857 SmallVector
<const SCEV
*, 4> Operands
;
858 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
859 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
860 return getAddRecExpr(Operands
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
866 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Op
))
867 if (isa
<UndefValue
>(U
->getValue()))
868 return getSCEV(UndefValue::get(Ty
));
870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
873 SCEV
*S
= new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
),
875 UniqueSCEVs
.InsertNode(S
, IP
);
879 const SCEV
*ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
,
881 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
882 "This is not an extending conversion!");
883 assert(isSCEVable(Ty
) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty
= getEffectiveSCEVType(Ty
);
887 // Fold if the operand is constant.
888 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
890 cast
<ConstantInt
>(ConstantExpr::getZExt(SC
->getValue(),
891 getEffectiveSCEVType(Ty
))));
893 // zext(zext(x)) --> zext(x)
894 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
895 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
900 ID
.AddInteger(scZeroExtend
);
904 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV
*X
= ST
->getOperand();
911 ConstantRange CR
= getUnsignedRange(X
);
912 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
913 unsigned NewBits
= getTypeSizeInBits(Ty
);
914 if (CR
.truncate(TruncBits
).zeroExtend(NewBits
).contains(
915 CR
.zextOrTrunc(NewBits
)))
916 return getTruncateOrZeroExtend(X
, Ty
);
919 // If the input value is a chrec scev, and we can prove that the value
920 // did not overflow the old, smaller, value, we can zero extend all of the
921 // operands (often constants). This allows analysis of something like
922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
924 if (AR
->isAffine()) {
925 const SCEV
*Start
= AR
->getStart();
926 const SCEV
*Step
= AR
->getStepRecurrence(*this);
927 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
928 const Loop
*L
= AR
->getLoop();
930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
932 if (AR
->getNoWrapFlags(SCEV::FlagNUW
))
933 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
934 getZeroExtendExpr(Step
, Ty
),
935 L
, AR
->getNoWrapFlags());
937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
945 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
946 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
947 // Manually compute the final value for AR, checking for
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
952 const SCEV
*CastedMaxBECount
=
953 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
954 const SCEV
*RecastedMaxBECount
=
955 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
956 if (MaxBECount
== RecastedMaxBECount
) {
957 const Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
959 const SCEV
*ZMul
= getMulExpr(CastedMaxBECount
, Step
);
960 const SCEV
*Add
= getAddExpr(Start
, ZMul
);
961 const SCEV
*OperandExtendedAdd
=
962 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
964 getZeroExtendExpr(Step
, WideTy
)));
965 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNUW
);
968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
970 getZeroExtendExpr(Step
, Ty
),
971 L
, AR
->getNoWrapFlags());
973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
975 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
);
976 Add
= getAddExpr(Start
, SMul
);
978 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
980 getSignExtendExpr(Step
, WideTy
)));
981 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNW
);
985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
987 getSignExtendExpr(Step
, Ty
),
988 L
, AR
->getNoWrapFlags());
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step
)) {
997 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
998 getUnsignedRange(Step
).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
1000 (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_ULT
, Start
, N
) &&
1001 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
,
1002 AR
->getPostIncExpr(*this), N
))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNUW
);
1005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
1007 getZeroExtendExpr(Step
, Ty
),
1008 L
, AR
->getNoWrapFlags());
1010 } else if (isKnownNegative(Step
)) {
1011 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
1012 getSignedRange(Step
).getSignedMin());
1013 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) ||
1014 (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_UGT
, Start
, N
) &&
1015 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
,
1016 AR
->getPostIncExpr(*this), N
))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNW
);
1020 // Return the expression with the addrec on the outside.
1021 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
1022 getSignExtendExpr(Step
, Ty
),
1023 L
, AR
->getNoWrapFlags());
1029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
1031 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1032 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1034 UniqueSCEVs
.InsertNode(S
, IP
);
1038 // Get the limit of a recurrence such that incrementing by Step cannot cause
1039 // signed overflow as long as the value of the recurrence within the loop does
1040 // not exceed this limit before incrementing.
1041 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1042 ICmpInst::Predicate
*Pred
,
1043 ScalarEvolution
*SE
) {
1044 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1045 if (SE
->isKnownPositive(Step
)) {
1046 *Pred
= ICmpInst::ICMP_SLT
;
1047 return SE
->getConstant(APInt::getSignedMinValue(BitWidth
) -
1048 SE
->getSignedRange(Step
).getSignedMax());
1050 if (SE
->isKnownNegative(Step
)) {
1051 *Pred
= ICmpInst::ICMP_SGT
;
1052 return SE
->getConstant(APInt::getSignedMaxValue(BitWidth
) -
1053 SE
->getSignedRange(Step
).getSignedMin());
1058 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060 // or postincrement sibling. This allows normalizing a sign extended AddRec as
1061 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062 // result, the expression "Step + sext(PreIncAR)" is congruent with
1063 // "sext(PostIncAR)"
1064 static const SCEV
*getPreStartForSignExtend(const SCEVAddRecExpr
*AR
,
1066 ScalarEvolution
*SE
) {
1067 const Loop
*L
= AR
->getLoop();
1068 const SCEV
*Start
= AR
->getStart();
1069 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Start
);
1073 if (!SA
|| SA
->getNumOperands() != 2 || SA
->getOperand(0) != Step
)
1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077 // same three conditions that getSignExtendedExpr checks.
1079 // 1. NSW flags on the step increment.
1080 const SCEV
*PreStart
= SA
->getOperand(1);
1081 const SCEVAddRecExpr
*PreAR
= dyn_cast
<SCEVAddRecExpr
>(
1082 SE
->getAddRecExpr(PreStart
, Step
, L
, SCEV::FlagAnyWrap
));
1084 if (PreAR
&& PreAR
->getNoWrapFlags(SCEV::FlagNSW
))
1087 // 2. Direct overflow check on the step operation's expression.
1088 unsigned BitWidth
= SE
->getTypeSizeInBits(AR
->getType());
1089 const Type
*WideTy
= IntegerType::get(SE
->getContext(), BitWidth
* 2);
1090 const SCEV
*OperandExtendedStart
=
1091 SE
->getAddExpr(SE
->getSignExtendExpr(PreStart
, WideTy
),
1092 SE
->getSignExtendExpr(Step
, WideTy
));
1093 if (SE
->getSignExtendExpr(Start
, WideTy
) == OperandExtendedStart
) {
1094 // Cache knowledge of PreAR NSW.
1096 const_cast<SCEVAddRecExpr
*>(PreAR
)->setNoWrapFlags(SCEV::FlagNSW
);
1097 // FIXME: this optimization needs a unit test
1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1102 // 3. Loop precondition.
1103 ICmpInst::Predicate Pred
;
1104 const SCEV
*OverflowLimit
= getOverflowLimitForStep(Step
, &Pred
, SE
);
1106 if (OverflowLimit
&&
1107 SE
->isLoopEntryGuardedByCond(L
, Pred
, PreStart
, OverflowLimit
)) {
1113 // Get the normalized sign-extended expression for this AddRec's Start.
1114 static const SCEV
*getSignExtendAddRecStart(const SCEVAddRecExpr
*AR
,
1116 ScalarEvolution
*SE
) {
1117 const SCEV
*PreStart
= getPreStartForSignExtend(AR
, Ty
, SE
);
1119 return SE
->getSignExtendExpr(AR
->getStart(), Ty
);
1121 return SE
->getAddExpr(SE
->getSignExtendExpr(AR
->getStepRecurrence(*SE
), Ty
),
1122 SE
->getSignExtendExpr(PreStart
, Ty
));
1125 const SCEV
*ScalarEvolution::getSignExtendExpr(const SCEV
*Op
,
1127 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1128 "This is not an extending conversion!");
1129 assert(isSCEVable(Ty
) &&
1130 "This is not a conversion to a SCEVable type!");
1131 Ty
= getEffectiveSCEVType(Ty
);
1133 // Fold if the operand is constant.
1134 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1136 cast
<ConstantInt
>(ConstantExpr::getSExt(SC
->getValue(),
1137 getEffectiveSCEVType(Ty
))));
1139 // sext(sext(x)) --> sext(x)
1140 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1141 return getSignExtendExpr(SS
->getOperand(), Ty
);
1143 // sext(zext(x)) --> zext(x)
1144 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1145 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
1147 // Before doing any expensive analysis, check to see if we've already
1148 // computed a SCEV for this Op and Ty.
1149 FoldingSetNodeID ID
;
1150 ID
.AddInteger(scSignExtend
);
1154 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1156 // If the input value is provably positive, build a zext instead.
1157 if (isKnownNonNegative(Op
))
1158 return getZeroExtendExpr(Op
, Ty
);
1160 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1162 // It's possible the bits taken off by the truncate were all sign bits. If
1163 // so, we should be able to simplify this further.
1164 const SCEV
*X
= ST
->getOperand();
1165 ConstantRange CR
= getSignedRange(X
);
1166 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1167 unsigned NewBits
= getTypeSizeInBits(Ty
);
1168 if (CR
.truncate(TruncBits
).signExtend(NewBits
).contains(
1169 CR
.sextOrTrunc(NewBits
)))
1170 return getTruncateOrSignExtend(X
, Ty
);
1173 // If the input value is a chrec scev, and we can prove that the value
1174 // did not overflow the old, smaller, value, we can sign extend all of the
1175 // operands (often constants). This allows analysis of something like
1176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1177 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1178 if (AR
->isAffine()) {
1179 const SCEV
*Start
= AR
->getStart();
1180 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1181 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1182 const Loop
*L
= AR
->getLoop();
1184 // If we have special knowledge that this addrec won't overflow,
1185 // we don't need to do any further analysis.
1186 if (AR
->getNoWrapFlags(SCEV::FlagNSW
))
1187 return getAddRecExpr(getSignExtendAddRecStart(AR
, Ty
, this),
1188 getSignExtendExpr(Step
, Ty
),
1191 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192 // Note that this serves two purposes: It filters out loops that are
1193 // simply not analyzable, and it covers the case where this code is
1194 // being called from within backedge-taken count analysis, such that
1195 // attempting to ask for the backedge-taken count would likely result
1196 // in infinite recursion. In the later case, the analysis code will
1197 // cope with a conservative value, and it will take care to purge
1198 // that value once it has finished.
1199 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
1200 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1201 // Manually compute the final value for AR, checking for
1204 // Check whether the backedge-taken count can be losslessly casted to
1205 // the addrec's type. The count is always unsigned.
1206 const SCEV
*CastedMaxBECount
=
1207 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
1208 const SCEV
*RecastedMaxBECount
=
1209 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
1210 if (MaxBECount
== RecastedMaxBECount
) {
1211 const Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
1212 // Check whether Start+Step*MaxBECount has no signed overflow.
1213 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
);
1214 const SCEV
*Add
= getAddExpr(Start
, SMul
);
1215 const SCEV
*OperandExtendedAdd
=
1216 getAddExpr(getSignExtendExpr(Start
, WideTy
),
1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
1218 getSignExtendExpr(Step
, WideTy
)));
1219 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
) {
1220 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
1222 // Return the expression with the addrec on the outside.
1223 return getAddRecExpr(getSignExtendAddRecStart(AR
, Ty
, this),
1224 getSignExtendExpr(Step
, Ty
),
1225 L
, AR
->getNoWrapFlags());
1227 // Similar to above, only this time treat the step value as unsigned.
1228 // This covers loops that count up with an unsigned step.
1229 const SCEV
*UMul
= getMulExpr(CastedMaxBECount
, Step
);
1230 Add
= getAddExpr(Start
, UMul
);
1231 OperandExtendedAdd
=
1232 getAddExpr(getSignExtendExpr(Start
, WideTy
),
1233 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
1234 getZeroExtendExpr(Step
, WideTy
)));
1235 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
) {
1236 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
1238 // Return the expression with the addrec on the outside.
1239 return getAddRecExpr(getSignExtendAddRecStart(AR
, Ty
, this),
1240 getZeroExtendExpr(Step
, Ty
),
1241 L
, AR
->getNoWrapFlags());
1245 // If the backedge is guarded by a comparison with the pre-inc value
1246 // the addrec is safe. Also, if the entry is guarded by a comparison
1247 // with the start value and the backedge is guarded by a comparison
1248 // with the post-inc value, the addrec is safe.
1249 ICmpInst::Predicate Pred
;
1250 const SCEV
*OverflowLimit
= getOverflowLimitForStep(Step
, &Pred
, this);
1251 if (OverflowLimit
&&
1252 (isLoopBackedgeGuardedByCond(L
, Pred
, AR
, OverflowLimit
) ||
1253 (isLoopEntryGuardedByCond(L
, Pred
, Start
, OverflowLimit
) &&
1254 isLoopBackedgeGuardedByCond(L
, Pred
, AR
->getPostIncExpr(*this),
1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
1258 return getAddRecExpr(getSignExtendAddRecStart(AR
, Ty
, this),
1259 getSignExtendExpr(Step
, Ty
),
1260 L
, AR
->getNoWrapFlags());
1265 // The cast wasn't folded; create an explicit cast node.
1266 // Recompute the insert position, as it may have been invalidated.
1267 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1268 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
1270 UniqueSCEVs
.InsertNode(S
, IP
);
1274 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275 /// unspecified bits out to the given type.
1277 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
1279 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1280 "This is not an extending conversion!");
1281 assert(isSCEVable(Ty
) &&
1282 "This is not a conversion to a SCEVable type!");
1283 Ty
= getEffectiveSCEVType(Ty
);
1285 // Sign-extend negative constants.
1286 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1287 if (SC
->getValue()->getValue().isNegative())
1288 return getSignExtendExpr(Op
, Ty
);
1290 // Peel off a truncate cast.
1291 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1292 const SCEV
*NewOp
= T
->getOperand();
1293 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
1294 return getAnyExtendExpr(NewOp
, Ty
);
1295 return getTruncateOrNoop(NewOp
, Ty
);
1298 // Next try a zext cast. If the cast is folded, use it.
1299 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
1300 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
1303 // Next try a sext cast. If the cast is folded, use it.
1304 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
1305 if (!isa
<SCEVSignExtendExpr
>(SExt
))
1308 // Force the cast to be folded into the operands of an addrec.
1309 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
1310 SmallVector
<const SCEV
*, 4> Ops
;
1311 for (SCEVAddRecExpr::op_iterator I
= AR
->op_begin(), E
= AR
->op_end();
1313 Ops
.push_back(getAnyExtendExpr(*I
, Ty
));
1314 return getAddRecExpr(Ops
, AR
->getLoop(), SCEV::FlagNW
);
1317 // As a special case, fold anyext(undef) to undef. We don't want to
1318 // know too much about SCEVUnknowns, but this special case is handy
1320 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Op
))
1321 if (isa
<UndefValue
>(U
->getValue()))
1322 return getSCEV(UndefValue::get(Ty
));
1324 // If the expression is obviously signed, use the sext cast value.
1325 if (isa
<SCEVSMaxExpr
>(Op
))
1328 // Absent any other information, use the zext cast value.
1332 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1333 /// a list of operands to be added under the given scale, update the given
1334 /// map. This is a helper function for getAddRecExpr. As an example of
1335 /// what it does, given a sequence of operands that would form an add
1336 /// expression like this:
1338 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1340 /// where A and B are constants, update the map with these values:
1342 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1344 /// and add 13 + A*B*29 to AccumulatedConstant.
1345 /// This will allow getAddRecExpr to produce this:
1347 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1349 /// This form often exposes folding opportunities that are hidden in
1350 /// the original operand list.
1352 /// Return true iff it appears that any interesting folding opportunities
1353 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354 /// the common case where no interesting opportunities are present, and
1355 /// is also used as a check to avoid infinite recursion.
1358 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
1359 SmallVector
<const SCEV
*, 8> &NewOps
,
1360 APInt
&AccumulatedConstant
,
1361 const SCEV
*const *Ops
, size_t NumOperands
,
1363 ScalarEvolution
&SE
) {
1364 bool Interesting
= false;
1366 // Iterate over the add operands. They are sorted, with constants first.
1368 while (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1370 // Pull a buried constant out to the outside.
1371 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->getValue()->isZero())
1373 AccumulatedConstant
+= Scale
* C
->getValue()->getValue();
1376 // Next comes everything else. We're especially interested in multiplies
1377 // here, but they're in the middle, so just visit the rest with one loop.
1378 for (; i
!= NumOperands
; ++i
) {
1379 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
1380 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
1382 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getValue()->getValue();
1383 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
1384 // A multiplication of a constant with another add; recurse.
1385 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(Mul
->getOperand(1));
1387 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1388 Add
->op_begin(), Add
->getNumOperands(),
1391 // A multiplication of a constant with some other value. Update
1393 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin()+1, Mul
->op_end());
1394 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
1395 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1396 M
.insert(std::make_pair(Key
, NewScale
));
1398 NewOps
.push_back(Pair
.first
->first
);
1400 Pair
.first
->second
+= NewScale
;
1401 // The map already had an entry for this value, which may indicate
1402 // a folding opportunity.
1407 // An ordinary operand. Update the map.
1408 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1409 M
.insert(std::make_pair(Ops
[i
], Scale
));
1411 NewOps
.push_back(Pair
.first
->first
);
1413 Pair
.first
->second
+= Scale
;
1414 // The map already had an entry for this value, which may indicate
1415 // a folding opportunity.
1425 struct APIntCompare
{
1426 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
1427 return LHS
.ult(RHS
);
1432 /// getAddExpr - Get a canonical add expression, or something simpler if
1434 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
1435 SCEV::NoWrapFlags Flags
) {
1436 assert(!(Flags
& ~(SCEV::FlagNUW
| SCEV::FlagNSW
)) &&
1437 "only nuw or nsw allowed");
1438 assert(!Ops
.empty() && "Cannot get empty add!");
1439 if (Ops
.size() == 1) return Ops
[0];
1441 const Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
1442 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1443 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
1444 "SCEVAddExpr operand types don't match!");
1447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1449 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
1450 SCEV::NoWrapFlags SignOrUnsignWrap
= maskFlags(Flags
, SignOrUnsignMask
);
1451 if (SignOrUnsignWrap
&& (SignOrUnsignWrap
!= SignOrUnsignMask
)) {
1453 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= Ops
.begin(),
1454 E
= Ops
.end(); I
!= E
; ++I
)
1455 if (!isKnownNonNegative(*I
)) {
1459 if (All
) Flags
= setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
1462 // Sort by complexity, this groups all similar expression types together.
1463 GroupByComplexity(Ops
, LI
);
1465 // If there are any constants, fold them together.
1467 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1469 assert(Idx
< Ops
.size());
1470 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1471 // We found two constants, fold them together!
1472 Ops
[0] = getConstant(LHSC
->getValue()->getValue() +
1473 RHSC
->getValue()->getValue());
1474 if (Ops
.size() == 2) return Ops
[0];
1475 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1476 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1479 // If we are left with a constant zero being added, strip it off.
1480 if (LHSC
->getValue()->isZero()) {
1481 Ops
.erase(Ops
.begin());
1485 if (Ops
.size() == 1) return Ops
[0];
1488 // Okay, check to see if the same value occurs in the operand list more than
1489 // once. If so, merge them together into an multiply expression. Since we
1490 // sorted the list, these values are required to be adjacent.
1491 const Type
*Ty
= Ops
[0]->getType();
1492 bool FoundMatch
= false;
1493 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-1; ++i
)
1494 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
1495 // Scan ahead to count how many equal operands there are.
1497 while (i
+Count
!= e
&& Ops
[i
+Count
] == Ops
[i
])
1499 // Merge the values into a multiply.
1500 const SCEV
*Scale
= getConstant(Ty
, Count
);
1501 const SCEV
*Mul
= getMulExpr(Scale
, Ops
[i
]);
1502 if (Ops
.size() == Count
)
1505 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+Count
);
1506 --i
; e
-= Count
- 1;
1510 return getAddExpr(Ops
, Flags
);
1512 // Check for truncates. If all the operands are truncated from the same
1513 // type, see if factoring out the truncate would permit the result to be
1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515 // if the contents of the resulting outer trunc fold to something simple.
1516 for (; Idx
< Ops
.size() && isa
<SCEVTruncateExpr
>(Ops
[Idx
]); ++Idx
) {
1517 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(Ops
[Idx
]);
1518 const Type
*DstType
= Trunc
->getType();
1519 const Type
*SrcType
= Trunc
->getOperand()->getType();
1520 SmallVector
<const SCEV
*, 8> LargeOps
;
1522 // Check all the operands to see if they can be represented in the
1523 // source type of the truncate.
1524 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1525 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
1526 if (T
->getOperand()->getType() != SrcType
) {
1530 LargeOps
.push_back(T
->getOperand());
1531 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1532 LargeOps
.push_back(getAnyExtendExpr(C
, SrcType
));
1533 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
1534 SmallVector
<const SCEV
*, 8> LargeMulOps
;
1535 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
1536 if (const SCEVTruncateExpr
*T
=
1537 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
1538 if (T
->getOperand()->getType() != SrcType
) {
1542 LargeMulOps
.push_back(T
->getOperand());
1543 } else if (const SCEVConstant
*C
=
1544 dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
1545 LargeMulOps
.push_back(getAnyExtendExpr(C
, SrcType
));
1552 LargeOps
.push_back(getMulExpr(LargeMulOps
));
1559 // Evaluate the expression in the larger type.
1560 const SCEV
*Fold
= getAddExpr(LargeOps
, Flags
);
1561 // If it folds to something simple, use it. Otherwise, don't.
1562 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
1563 return getTruncateExpr(Fold
, DstType
);
1567 // Skip past any other cast SCEVs.
1568 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
1571 // If there are add operands they would be next.
1572 if (Idx
< Ops
.size()) {
1573 bool DeletedAdd
= false;
1574 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
1575 // If we have an add, expand the add operands onto the end of the operands
1577 Ops
.erase(Ops
.begin()+Idx
);
1578 Ops
.append(Add
->op_begin(), Add
->op_end());
1582 // If we deleted at least one add, we added operands to the end of the list,
1583 // and they are not necessarily sorted. Recurse to resort and resimplify
1584 // any operands we just acquired.
1586 return getAddExpr(Ops
);
1589 // Skip over the add expression until we get to a multiply.
1590 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1593 // Check to see if there are any folding opportunities present with
1594 // operands multiplied by constant values.
1595 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
1596 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
1597 DenseMap
<const SCEV
*, APInt
> M
;
1598 SmallVector
<const SCEV
*, 8> NewOps
;
1599 APInt
AccumulatedConstant(BitWidth
, 0);
1600 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1601 Ops
.data(), Ops
.size(),
1602 APInt(BitWidth
, 1), *this)) {
1603 // Some interesting folding opportunity is present, so its worthwhile to
1604 // re-generate the operands list. Group the operands by constant scale,
1605 // to avoid multiplying by the same constant scale multiple times.
1606 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
1607 for (SmallVector
<const SCEV
*, 8>::const_iterator I
= NewOps
.begin(),
1608 E
= NewOps
.end(); I
!= E
; ++I
)
1609 MulOpLists
[M
.find(*I
)->second
].push_back(*I
);
1610 // Re-generate the operands list.
1612 if (AccumulatedConstant
!= 0)
1613 Ops
.push_back(getConstant(AccumulatedConstant
));
1614 for (std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
>::iterator
1615 I
= MulOpLists
.begin(), E
= MulOpLists
.end(); I
!= E
; ++I
)
1617 Ops
.push_back(getMulExpr(getConstant(I
->first
),
1618 getAddExpr(I
->second
)));
1620 return getConstant(Ty
, 0);
1621 if (Ops
.size() == 1)
1623 return getAddExpr(Ops
);
1627 // If we are adding something to a multiply expression, make sure the
1628 // something is not already an operand of the multiply. If so, merge it into
1630 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
1631 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
1632 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
1633 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
1634 if (isa
<SCEVConstant
>(MulOpSCEV
))
1636 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
1637 if (MulOpSCEV
== Ops
[AddOp
]) {
1638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1639 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
1640 if (Mul
->getNumOperands() != 2) {
1641 // If the multiply has more than two operands, we must get the
1643 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
1644 Mul
->op_begin()+MulOp
);
1645 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
1646 InnerMul
= getMulExpr(MulOps
);
1648 const SCEV
*One
= getConstant(Ty
, 1);
1649 const SCEV
*AddOne
= getAddExpr(One
, InnerMul
);
1650 const SCEV
*OuterMul
= getMulExpr(AddOne
, MulOpSCEV
);
1651 if (Ops
.size() == 2) return OuterMul
;
1653 Ops
.erase(Ops
.begin()+AddOp
);
1654 Ops
.erase(Ops
.begin()+Idx
-1);
1656 Ops
.erase(Ops
.begin()+Idx
);
1657 Ops
.erase(Ops
.begin()+AddOp
-1);
1659 Ops
.push_back(OuterMul
);
1660 return getAddExpr(Ops
);
1663 // Check this multiply against other multiplies being added together.
1664 for (unsigned OtherMulIdx
= Idx
+1;
1665 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1667 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1668 // If MulOp occurs in OtherMul, we can fold the two multiplies
1670 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
1671 OMulOp
!= e
; ++OMulOp
)
1672 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1674 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
1675 if (Mul
->getNumOperands() != 2) {
1676 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
1677 Mul
->op_begin()+MulOp
);
1678 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
1679 InnerMul1
= getMulExpr(MulOps
);
1681 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
1682 if (OtherMul
->getNumOperands() != 2) {
1683 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
1684 OtherMul
->op_begin()+OMulOp
);
1685 MulOps
.append(OtherMul
->op_begin()+OMulOp
+1, OtherMul
->op_end());
1686 InnerMul2
= getMulExpr(MulOps
);
1688 const SCEV
*InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
1689 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
1690 if (Ops
.size() == 2) return OuterMul
;
1691 Ops
.erase(Ops
.begin()+Idx
);
1692 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
1693 Ops
.push_back(OuterMul
);
1694 return getAddExpr(Ops
);
1700 // If there are any add recurrences in the operands list, see if any other
1701 // added values are loop invariant. If so, we can fold them into the
1703 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1706 // Scan over all recurrences, trying to fold loop invariants into them.
1707 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1708 // Scan all of the other operands to this add and add them to the vector if
1709 // they are loop invariant w.r.t. the recurrence.
1710 SmallVector
<const SCEV
*, 8> LIOps
;
1711 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1712 const Loop
*AddRecLoop
= AddRec
->getLoop();
1713 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1714 if (isLoopInvariant(Ops
[i
], AddRecLoop
)) {
1715 LIOps
.push_back(Ops
[i
]);
1716 Ops
.erase(Ops
.begin()+i
);
1720 // If we found some loop invariants, fold them into the recurrence.
1721 if (!LIOps
.empty()) {
1722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1723 LIOps
.push_back(AddRec
->getStart());
1725 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
1727 AddRecOps
[0] = getAddExpr(LIOps
);
1729 // Build the new addrec. Propagate the NUW and NSW flags if both the
1730 // outer add and the inner addrec are guaranteed to have no overflow.
1731 // Always propagate NW.
1732 Flags
= AddRec
->getNoWrapFlags(setFlags(Flags
, SCEV::FlagNW
));
1733 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRecLoop
, Flags
);
1735 // If all of the other operands were loop invariant, we are done.
1736 if (Ops
.size() == 1) return NewRec
;
1738 // Otherwise, add the folded AddRec by the non-liv parts.
1739 for (unsigned i
= 0;; ++i
)
1740 if (Ops
[i
] == AddRec
) {
1744 return getAddExpr(Ops
);
1747 // Okay, if there weren't any loop invariants to be folded, check to see if
1748 // there are multiple AddRec's with the same loop induction variable being
1749 // added together. If so, we can fold them.
1750 for (unsigned OtherIdx
= Idx
+1;
1751 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1753 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1755 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
1757 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1759 if (const SCEVAddRecExpr
*OtherAddRec
=
1760 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]))
1761 if (OtherAddRec
->getLoop() == AddRecLoop
) {
1762 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands();
1764 if (i
>= AddRecOps
.size()) {
1765 AddRecOps
.append(OtherAddRec
->op_begin()+i
,
1766 OtherAddRec
->op_end());
1769 AddRecOps
[i
] = getAddExpr(AddRecOps
[i
],
1770 OtherAddRec
->getOperand(i
));
1772 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
1774 // Step size has changed, so we cannot guarantee no self-wraparound.
1775 Ops
[Idx
] = getAddRecExpr(AddRecOps
, AddRecLoop
, SCEV::FlagAnyWrap
);
1776 return getAddExpr(Ops
);
1779 // Otherwise couldn't fold anything into this recurrence. Move onto the
1783 // Okay, it looks like we really DO need an add expr. Check to see if we
1784 // already have one, otherwise create a new one.
1785 FoldingSetNodeID ID
;
1786 ID
.AddInteger(scAddExpr
);
1787 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1788 ID
.AddPointer(Ops
[i
]);
1791 static_cast<SCEVAddExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
1793 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
1794 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
1795 S
= new (SCEVAllocator
) SCEVAddExpr(ID
.Intern(SCEVAllocator
),
1797 UniqueSCEVs
.InsertNode(S
, IP
);
1799 S
->setNoWrapFlags(Flags
);
1803 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1805 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
1806 SCEV::NoWrapFlags Flags
) {
1807 assert(Flags
== maskFlags(Flags
, SCEV::FlagNUW
| SCEV::FlagNSW
) &&
1808 "only nuw or nsw allowed");
1809 assert(!Ops
.empty() && "Cannot get empty mul!");
1810 if (Ops
.size() == 1) return Ops
[0];
1812 const Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
1813 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1814 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
1815 "SCEVMulExpr operand types don't match!");
1818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1820 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
1821 SCEV::NoWrapFlags SignOrUnsignWrap
= maskFlags(Flags
, SignOrUnsignMask
);
1822 if (SignOrUnsignWrap
&& (SignOrUnsignWrap
!= SignOrUnsignMask
)) {
1824 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= Ops
.begin(),
1825 E
= Ops
.end(); I
!= E
; ++I
)
1826 if (!isKnownNonNegative(*I
)) {
1830 if (All
) Flags
= setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
1833 // Sort by complexity, this groups all similar expression types together.
1834 GroupByComplexity(Ops
, LI
);
1836 // If there are any constants, fold them together.
1838 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1840 // C1*(C2+V) -> C1*C2 + C1*V
1841 if (Ops
.size() == 2)
1842 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1843 if (Add
->getNumOperands() == 2 &&
1844 isa
<SCEVConstant
>(Add
->getOperand(0)))
1845 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1846 getMulExpr(LHSC
, Add
->getOperand(1)));
1849 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1850 // We found two constants, fold them together!
1851 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1852 LHSC
->getValue()->getValue() *
1853 RHSC
->getValue()->getValue());
1854 Ops
[0] = getConstant(Fold
);
1855 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1856 if (Ops
.size() == 1) return Ops
[0];
1857 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1860 // If we are left with a constant one being multiplied, strip it off.
1861 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1862 Ops
.erase(Ops
.begin());
1864 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1865 // If we have a multiply of zero, it will always be zero.
1867 } else if (Ops
[0]->isAllOnesValue()) {
1868 // If we have a mul by -1 of an add, try distributing the -1 among the
1870 if (Ops
.size() == 2) {
1871 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1])) {
1872 SmallVector
<const SCEV
*, 4> NewOps
;
1873 bool AnyFolded
= false;
1874 for (SCEVAddRecExpr::op_iterator I
= Add
->op_begin(),
1875 E
= Add
->op_end(); I
!= E
; ++I
) {
1876 const SCEV
*Mul
= getMulExpr(Ops
[0], *I
);
1877 if (!isa
<SCEVMulExpr
>(Mul
)) AnyFolded
= true;
1878 NewOps
.push_back(Mul
);
1881 return getAddExpr(NewOps
);
1883 else if (const SCEVAddRecExpr
*
1884 AddRec
= dyn_cast
<SCEVAddRecExpr
>(Ops
[1])) {
1885 // Negation preserves a recurrence's no self-wrap property.
1886 SmallVector
<const SCEV
*, 4> Operands
;
1887 for (SCEVAddRecExpr::op_iterator I
= AddRec
->op_begin(),
1888 E
= AddRec
->op_end(); I
!= E
; ++I
) {
1889 Operands
.push_back(getMulExpr(Ops
[0], *I
));
1891 return getAddRecExpr(Operands
, AddRec
->getLoop(),
1892 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
1897 if (Ops
.size() == 1)
1901 // Skip over the add expression until we get to a multiply.
1902 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1905 // If there are mul operands inline them all into this expression.
1906 if (Idx
< Ops
.size()) {
1907 bool DeletedMul
= false;
1908 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1909 // If we have an mul, expand the mul operands onto the end of the operands
1911 Ops
.erase(Ops
.begin()+Idx
);
1912 Ops
.append(Mul
->op_begin(), Mul
->op_end());
1916 // If we deleted at least one mul, we added operands to the end of the list,
1917 // and they are not necessarily sorted. Recurse to resort and resimplify
1918 // any operands we just acquired.
1920 return getMulExpr(Ops
);
1923 // If there are any add recurrences in the operands list, see if any other
1924 // added values are loop invariant. If so, we can fold them into the
1926 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1929 // Scan over all recurrences, trying to fold loop invariants into them.
1930 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1931 // Scan all of the other operands to this mul and add them to the vector if
1932 // they are loop invariant w.r.t. the recurrence.
1933 SmallVector
<const SCEV
*, 8> LIOps
;
1934 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1935 const Loop
*AddRecLoop
= AddRec
->getLoop();
1936 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1937 if (isLoopInvariant(Ops
[i
], AddRecLoop
)) {
1938 LIOps
.push_back(Ops
[i
]);
1939 Ops
.erase(Ops
.begin()+i
);
1943 // If we found some loop invariants, fold them into the recurrence.
1944 if (!LIOps
.empty()) {
1945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1946 SmallVector
<const SCEV
*, 4> NewOps
;
1947 NewOps
.reserve(AddRec
->getNumOperands());
1948 const SCEV
*Scale
= getMulExpr(LIOps
);
1949 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1950 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1952 // Build the new addrec. Propagate the NUW and NSW flags if both the
1953 // outer mul and the inner addrec are guaranteed to have no overflow.
1955 // No self-wrap cannot be guaranteed after changing the step size, but
1956 // will be inferred if either NUW or NSW is true.
1957 Flags
= AddRec
->getNoWrapFlags(clearFlags(Flags
, SCEV::FlagNW
));
1958 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRecLoop
, Flags
);
1960 // If all of the other operands were loop invariant, we are done.
1961 if (Ops
.size() == 1) return NewRec
;
1963 // Otherwise, multiply the folded AddRec by the non-liv parts.
1964 for (unsigned i
= 0;; ++i
)
1965 if (Ops
[i
] == AddRec
) {
1969 return getMulExpr(Ops
);
1972 // Okay, if there weren't any loop invariants to be folded, check to see if
1973 // there are multiple AddRec's with the same loop induction variable being
1974 // multiplied together. If so, we can fold them.
1975 for (unsigned OtherIdx
= Idx
+1;
1976 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1978 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
1979 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1980 // {A*C,+,F*D + G*B + B*D}<L>
1981 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1983 if (const SCEVAddRecExpr
*OtherAddRec
=
1984 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]))
1985 if (OtherAddRec
->getLoop() == AddRecLoop
) {
1986 const SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1987 const SCEV
*NewStart
= getMulExpr(F
->getStart(), G
->getStart());
1988 const SCEV
*B
= F
->getStepRecurrence(*this);
1989 const SCEV
*D
= G
->getStepRecurrence(*this);
1990 const SCEV
*NewStep
= getAddExpr(getMulExpr(F
, D
),
1993 const SCEV
*NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1996 if (Ops
.size() == 2) return NewAddRec
;
1997 Ops
[Idx
] = AddRec
= cast
<SCEVAddRecExpr
>(NewAddRec
);
1998 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
2000 return getMulExpr(Ops
);
2003 // Otherwise couldn't fold anything into this recurrence. Move onto the
2007 // Okay, it looks like we really DO need an mul expr. Check to see if we
2008 // already have one, otherwise create a new one.
2009 FoldingSetNodeID ID
;
2010 ID
.AddInteger(scMulExpr
);
2011 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2012 ID
.AddPointer(Ops
[i
]);
2015 static_cast<SCEVMulExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2017 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2018 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2019 S
= new (SCEVAllocator
) SCEVMulExpr(ID
.Intern(SCEVAllocator
),
2021 UniqueSCEVs
.InsertNode(S
, IP
);
2023 S
->setNoWrapFlags(Flags
);
2027 /// getUDivExpr - Get a canonical unsigned division expression, or something
2028 /// simpler if possible.
2029 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
2031 assert(getEffectiveSCEVType(LHS
->getType()) ==
2032 getEffectiveSCEVType(RHS
->getType()) &&
2033 "SCEVUDivExpr operand types don't match!");
2035 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
2036 if (RHSC
->getValue()->equalsInt(1))
2037 return LHS
; // X udiv 1 --> x
2038 // If the denominator is zero, the result of the udiv is undefined. Don't
2039 // try to analyze it, because the resolution chosen here may differ from
2040 // the resolution chosen in other parts of the compiler.
2041 if (!RHSC
->getValue()->isZero()) {
2042 // Determine if the division can be folded into the operands of
2044 // TODO: Generalize this to non-constants by using known-bits information.
2045 const Type
*Ty
= LHS
->getType();
2046 unsigned LZ
= RHSC
->getValue()->getValue().countLeadingZeros();
2047 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
- 1;
2048 // For non-power-of-two values, effectively round the value up to the
2049 // nearest power of two.
2050 if (!RHSC
->getValue()->getValue().isPowerOf2())
2052 const IntegerType
*ExtTy
=
2053 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
2054 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2055 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
2056 if (const SCEVConstant
*Step
=
2057 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this)))
2058 if (!Step
->getValue()->getValue()
2059 .urem(RHSC
->getValue()->getValue()) &&
2060 getZeroExtendExpr(AR
, ExtTy
) ==
2061 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
2062 getZeroExtendExpr(Step
, ExtTy
),
2063 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
2064 SmallVector
<const SCEV
*, 4> Operands
;
2065 for (unsigned i
= 0, e
= AR
->getNumOperands(); i
!= e
; ++i
)
2066 Operands
.push_back(getUDivExpr(AR
->getOperand(i
), RHS
));
2067 return getAddRecExpr(Operands
, AR
->getLoop(),
2070 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2071 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
2072 SmallVector
<const SCEV
*, 4> Operands
;
2073 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
)
2074 Operands
.push_back(getZeroExtendExpr(M
->getOperand(i
), ExtTy
));
2075 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
2076 // Find an operand that's safely divisible.
2077 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
2078 const SCEV
*Op
= M
->getOperand(i
);
2079 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
2080 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
2081 Operands
= SmallVector
<const SCEV
*, 4>(M
->op_begin(),
2084 return getMulExpr(Operands
);
2088 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2089 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
2090 SmallVector
<const SCEV
*, 4> Operands
;
2091 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
)
2092 Operands
.push_back(getZeroExtendExpr(A
->getOperand(i
), ExtTy
));
2093 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
2095 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
2096 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
2097 if (isa
<SCEVUDivExpr
>(Op
) ||
2098 getMulExpr(Op
, RHS
) != A
->getOperand(i
))
2100 Operands
.push_back(Op
);
2102 if (Operands
.size() == A
->getNumOperands())
2103 return getAddExpr(Operands
);
2107 // Fold if both operands are constant.
2108 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
2109 Constant
*LHSCV
= LHSC
->getValue();
2110 Constant
*RHSCV
= RHSC
->getValue();
2111 return getConstant(cast
<ConstantInt
>(ConstantExpr::getUDiv(LHSCV
,
2117 FoldingSetNodeID ID
;
2118 ID
.AddInteger(scUDivExpr
);
2122 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2123 SCEV
*S
= new (SCEVAllocator
) SCEVUDivExpr(ID
.Intern(SCEVAllocator
),
2125 UniqueSCEVs
.InsertNode(S
, IP
);
2130 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2131 /// Simplify the expression as much as possible.
2132 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
, const SCEV
*Step
,
2134 SCEV::NoWrapFlags Flags
) {
2135 SmallVector
<const SCEV
*, 4> Operands
;
2136 Operands
.push_back(Start
);
2137 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
2138 if (StepChrec
->getLoop() == L
) {
2139 Operands
.append(StepChrec
->op_begin(), StepChrec
->op_end());
2140 return getAddRecExpr(Operands
, L
, maskFlags(Flags
, SCEV::FlagNW
));
2143 Operands
.push_back(Step
);
2144 return getAddRecExpr(Operands
, L
, Flags
);
2147 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2148 /// Simplify the expression as much as possible.
2150 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
2151 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
2152 if (Operands
.size() == 1) return Operands
[0];
2154 const Type
*ETy
= getEffectiveSCEVType(Operands
[0]->getType());
2155 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
2156 assert(getEffectiveSCEVType(Operands
[i
]->getType()) == ETy
&&
2157 "SCEVAddRecExpr operand types don't match!");
2158 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
2159 assert(isLoopInvariant(Operands
[i
], L
) &&
2160 "SCEVAddRecExpr operand is not loop-invariant!");
2163 if (Operands
.back()->isZero()) {
2164 Operands
.pop_back();
2165 return getAddRecExpr(Operands
, L
, SCEV::FlagAnyWrap
); // {X,+,0} --> X
2168 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2169 // use that information to infer NUW and NSW flags. However, computing a
2170 // BE count requires calling getAddRecExpr, so we may not yet have a
2171 // meaningful BE count at this point (and if we don't, we'd be stuck
2172 // with a SCEVCouldNotCompute as the cached BE count).
2174 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2176 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
2177 SCEV::NoWrapFlags SignOrUnsignWrap
= maskFlags(Flags
, SignOrUnsignMask
);
2178 if (SignOrUnsignWrap
&& (SignOrUnsignWrap
!= SignOrUnsignMask
)) {
2180 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= Operands
.begin(),
2181 E
= Operands
.end(); I
!= E
; ++I
)
2182 if (!isKnownNonNegative(*I
)) {
2186 if (All
) Flags
= setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
2189 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2190 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
2191 const Loop
*NestedLoop
= NestedAR
->getLoop();
2192 if (L
->contains(NestedLoop
) ?
2193 (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) :
2194 (!NestedLoop
->contains(L
) &&
2195 DT
->dominates(L
->getHeader(), NestedLoop
->getHeader()))) {
2196 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->op_begin(),
2197 NestedAR
->op_end());
2198 Operands
[0] = NestedAR
->getStart();
2199 // AddRecs require their operands be loop-invariant with respect to their
2200 // loops. Don't perform this transformation if it would break this
2202 bool AllInvariant
= true;
2203 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
2204 if (!isLoopInvariant(Operands
[i
], L
)) {
2205 AllInvariant
= false;
2209 // Create a recurrence for the outer loop with the same step size.
2211 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2212 // inner recurrence has the same property.
2213 SCEV::NoWrapFlags OuterFlags
=
2214 maskFlags(Flags
, SCEV::FlagNW
| NestedAR
->getNoWrapFlags());
2216 NestedOperands
[0] = getAddRecExpr(Operands
, L
, OuterFlags
);
2217 AllInvariant
= true;
2218 for (unsigned i
= 0, e
= NestedOperands
.size(); i
!= e
; ++i
)
2219 if (!isLoopInvariant(NestedOperands
[i
], NestedLoop
)) {
2220 AllInvariant
= false;
2224 // Ok, both add recurrences are valid after the transformation.
2226 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2227 // the outer recurrence has the same property.
2228 SCEV::NoWrapFlags InnerFlags
=
2229 maskFlags(NestedAR
->getNoWrapFlags(), SCEV::FlagNW
| Flags
);
2230 return getAddRecExpr(NestedOperands
, NestedLoop
, InnerFlags
);
2233 // Reset Operands to its original state.
2234 Operands
[0] = NestedAR
;
2238 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2239 // already have one, otherwise create a new one.
2240 FoldingSetNodeID ID
;
2241 ID
.AddInteger(scAddRecExpr
);
2242 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
2243 ID
.AddPointer(Operands
[i
]);
2247 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2249 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Operands
.size());
2250 std::uninitialized_copy(Operands
.begin(), Operands
.end(), O
);
2251 S
= new (SCEVAllocator
) SCEVAddRecExpr(ID
.Intern(SCEVAllocator
),
2252 O
, Operands
.size(), L
);
2253 UniqueSCEVs
.InsertNode(S
, IP
);
2255 S
->setNoWrapFlags(Flags
);
2259 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
,
2261 SmallVector
<const SCEV
*, 2> Ops
;
2264 return getSMaxExpr(Ops
);
2268 ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
2269 assert(!Ops
.empty() && "Cannot get empty smax!");
2270 if (Ops
.size() == 1) return Ops
[0];
2272 const Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2273 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2274 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2275 "SCEVSMaxExpr operand types don't match!");
2278 // Sort by complexity, this groups all similar expression types together.
2279 GroupByComplexity(Ops
, LI
);
2281 // If there are any constants, fold them together.
2283 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2285 assert(Idx
< Ops
.size());
2286 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2287 // We found two constants, fold them together!
2288 ConstantInt
*Fold
= ConstantInt::get(getContext(),
2289 APIntOps::smax(LHSC
->getValue()->getValue(),
2290 RHSC
->getValue()->getValue()));
2291 Ops
[0] = getConstant(Fold
);
2292 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2293 if (Ops
.size() == 1) return Ops
[0];
2294 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2297 // If we are left with a constant minimum-int, strip it off.
2298 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
2299 Ops
.erase(Ops
.begin());
2301 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(true)) {
2302 // If we have an smax with a constant maximum-int, it will always be
2307 if (Ops
.size() == 1) return Ops
[0];
2310 // Find the first SMax
2311 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
2314 // Check to see if one of the operands is an SMax. If so, expand its operands
2315 // onto our operand list, and recurse to simplify.
2316 if (Idx
< Ops
.size()) {
2317 bool DeletedSMax
= false;
2318 while (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
2319 Ops
.erase(Ops
.begin()+Idx
);
2320 Ops
.append(SMax
->op_begin(), SMax
->op_end());
2325 return getSMaxExpr(Ops
);
2328 // Okay, check to see if the same value occurs in the operand list twice. If
2329 // so, delete one. Since we sorted the list, these values are required to
2331 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
2332 // X smax Y smax Y --> X smax Y
2333 // X smax Y --> X, if X is always greater than Y
2334 if (Ops
[i
] == Ops
[i
+1] ||
2335 isKnownPredicate(ICmpInst::ICMP_SGE
, Ops
[i
], Ops
[i
+1])) {
2336 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+2);
2338 } else if (isKnownPredicate(ICmpInst::ICMP_SLE
, Ops
[i
], Ops
[i
+1])) {
2339 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
2343 if (Ops
.size() == 1) return Ops
[0];
2345 assert(!Ops
.empty() && "Reduced smax down to nothing!");
2347 // Okay, it looks like we really DO need an smax expr. Check to see if we
2348 // already have one, otherwise create a new one.
2349 FoldingSetNodeID ID
;
2350 ID
.AddInteger(scSMaxExpr
);
2351 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2352 ID
.AddPointer(Ops
[i
]);
2354 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2355 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2356 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2357 SCEV
*S
= new (SCEVAllocator
) SCEVSMaxExpr(ID
.Intern(SCEVAllocator
),
2359 UniqueSCEVs
.InsertNode(S
, IP
);
2363 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
,
2365 SmallVector
<const SCEV
*, 2> Ops
;
2368 return getUMaxExpr(Ops
);
2372 ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
2373 assert(!Ops
.empty() && "Cannot get empty umax!");
2374 if (Ops
.size() == 1) return Ops
[0];
2376 const Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2377 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2378 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2379 "SCEVUMaxExpr operand types don't match!");
2382 // Sort by complexity, this groups all similar expression types together.
2383 GroupByComplexity(Ops
, LI
);
2385 // If there are any constants, fold them together.
2387 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2389 assert(Idx
< Ops
.size());
2390 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2391 // We found two constants, fold them together!
2392 ConstantInt
*Fold
= ConstantInt::get(getContext(),
2393 APIntOps::umax(LHSC
->getValue()->getValue(),
2394 RHSC
->getValue()->getValue()));
2395 Ops
[0] = getConstant(Fold
);
2396 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2397 if (Ops
.size() == 1) return Ops
[0];
2398 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2401 // If we are left with a constant minimum-int, strip it off.
2402 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
2403 Ops
.erase(Ops
.begin());
2405 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(false)) {
2406 // If we have an umax with a constant maximum-int, it will always be
2411 if (Ops
.size() == 1) return Ops
[0];
2414 // Find the first UMax
2415 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
2418 // Check to see if one of the operands is a UMax. If so, expand its operands
2419 // onto our operand list, and recurse to simplify.
2420 if (Idx
< Ops
.size()) {
2421 bool DeletedUMax
= false;
2422 while (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
2423 Ops
.erase(Ops
.begin()+Idx
);
2424 Ops
.append(UMax
->op_begin(), UMax
->op_end());
2429 return getUMaxExpr(Ops
);
2432 // Okay, check to see if the same value occurs in the operand list twice. If
2433 // so, delete one. Since we sorted the list, these values are required to
2435 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
2436 // X umax Y umax Y --> X umax Y
2437 // X umax Y --> X, if X is always greater than Y
2438 if (Ops
[i
] == Ops
[i
+1] ||
2439 isKnownPredicate(ICmpInst::ICMP_UGE
, Ops
[i
], Ops
[i
+1])) {
2440 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+2);
2442 } else if (isKnownPredicate(ICmpInst::ICMP_ULE
, Ops
[i
], Ops
[i
+1])) {
2443 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
2447 if (Ops
.size() == 1) return Ops
[0];
2449 assert(!Ops
.empty() && "Reduced umax down to nothing!");
2451 // Okay, it looks like we really DO need a umax expr. Check to see if we
2452 // already have one, otherwise create a new one.
2453 FoldingSetNodeID ID
;
2454 ID
.AddInteger(scUMaxExpr
);
2455 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2456 ID
.AddPointer(Ops
[i
]);
2458 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2459 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2460 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2461 SCEV
*S
= new (SCEVAllocator
) SCEVUMaxExpr(ID
.Intern(SCEVAllocator
),
2463 UniqueSCEVs
.InsertNode(S
, IP
);
2467 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
2469 // ~smax(~x, ~y) == smin(x, y).
2470 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2473 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
2475 // ~umax(~x, ~y) == umin(x, y)
2476 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2479 const SCEV
*ScalarEvolution::getSizeOfExpr(const Type
*AllocTy
) {
2480 // If we have TargetData, we can bypass creating a target-independent
2481 // constant expression and then folding it back into a ConstantInt.
2482 // This is just a compile-time optimization.
2484 return getConstant(TD
->getIntPtrType(getContext()),
2485 TD
->getTypeAllocSize(AllocTy
));
2487 Constant
*C
= ConstantExpr::getSizeOf(AllocTy
);
2488 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
2489 if (Constant
*Folded
= ConstantFoldConstantExpression(CE
, TD
))
2491 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(AllocTy
));
2492 return getTruncateOrZeroExtend(getSCEV(C
), Ty
);
2495 const SCEV
*ScalarEvolution::getAlignOfExpr(const Type
*AllocTy
) {
2496 Constant
*C
= ConstantExpr::getAlignOf(AllocTy
);
2497 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
2498 if (Constant
*Folded
= ConstantFoldConstantExpression(CE
, TD
))
2500 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(AllocTy
));
2501 return getTruncateOrZeroExtend(getSCEV(C
), Ty
);
2504 const SCEV
*ScalarEvolution::getOffsetOfExpr(const StructType
*STy
,
2506 // If we have TargetData, we can bypass creating a target-independent
2507 // constant expression and then folding it back into a ConstantInt.
2508 // This is just a compile-time optimization.
2510 return getConstant(TD
->getIntPtrType(getContext()),
2511 TD
->getStructLayout(STy
)->getElementOffset(FieldNo
));
2513 Constant
*C
= ConstantExpr::getOffsetOf(STy
, FieldNo
);
2514 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
2515 if (Constant
*Folded
= ConstantFoldConstantExpression(CE
, TD
))
2517 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(STy
));
2518 return getTruncateOrZeroExtend(getSCEV(C
), Ty
);
2521 const SCEV
*ScalarEvolution::getOffsetOfExpr(const Type
*CTy
,
2522 Constant
*FieldNo
) {
2523 Constant
*C
= ConstantExpr::getOffsetOf(CTy
, FieldNo
);
2524 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
2525 if (Constant
*Folded
= ConstantFoldConstantExpression(CE
, TD
))
2527 const Type
*Ty
= getEffectiveSCEVType(PointerType::getUnqual(CTy
));
2528 return getTruncateOrZeroExtend(getSCEV(C
), Ty
);
2531 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
2532 // Don't attempt to do anything other than create a SCEVUnknown object
2533 // here. createSCEV only calls getUnknown after checking for all other
2534 // interesting possibilities, and any other code that calls getUnknown
2535 // is doing so in order to hide a value from SCEV canonicalization.
2537 FoldingSetNodeID ID
;
2538 ID
.AddInteger(scUnknown
);
2541 if (SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) {
2542 assert(cast
<SCEVUnknown
>(S
)->getValue() == V
&&
2543 "Stale SCEVUnknown in uniquing map!");
2546 SCEV
*S
= new (SCEVAllocator
) SCEVUnknown(ID
.Intern(SCEVAllocator
), V
, this,
2548 FirstUnknown
= cast
<SCEVUnknown
>(S
);
2549 UniqueSCEVs
.InsertNode(S
, IP
);
2553 //===----------------------------------------------------------------------===//
2554 // Basic SCEV Analysis and PHI Idiom Recognition Code
2557 /// isSCEVable - Test if values of the given type are analyzable within
2558 /// the SCEV framework. This primarily includes integer types, and it
2559 /// can optionally include pointer types if the ScalarEvolution class
2560 /// has access to target-specific information.
2561 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
2562 // Integers and pointers are always SCEVable.
2563 return Ty
->isIntegerTy() || Ty
->isPointerTy();
2566 /// getTypeSizeInBits - Return the size in bits of the specified type,
2567 /// for which isSCEVable must return true.
2568 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
2569 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2571 // If we have a TargetData, use it!
2573 return TD
->getTypeSizeInBits(Ty
);
2575 // Integer types have fixed sizes.
2576 if (Ty
->isIntegerTy())
2577 return Ty
->getPrimitiveSizeInBits();
2579 // The only other support type is pointer. Without TargetData, conservatively
2580 // assume pointers are 64-bit.
2581 assert(Ty
->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2585 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2586 /// the given type and which represents how SCEV will treat the given
2587 /// type, for which isSCEVable must return true. For pointer types,
2588 /// this is the pointer-sized integer type.
2589 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
2590 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2592 if (Ty
->isIntegerTy())
2595 // The only other support type is pointer.
2596 assert(Ty
->isPointerTy() && "Unexpected non-pointer non-integer type!");
2597 if (TD
) return TD
->getIntPtrType(getContext());
2599 // Without TargetData, conservatively assume pointers are 64-bit.
2600 return Type::getInt64Ty(getContext());
2603 const SCEV
*ScalarEvolution::getCouldNotCompute() {
2604 return &CouldNotCompute
;
2607 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2608 /// expression and create a new one.
2609 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
2610 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
2612 ValueExprMapType::const_iterator I
= ValueExprMap
.find(V
);
2613 if (I
!= ValueExprMap
.end()) return I
->second
;
2614 const SCEV
*S
= createSCEV(V
);
2616 // The process of creating a SCEV for V may have caused other SCEVs
2617 // to have been created, so it's necessary to insert the new entry
2618 // from scratch, rather than trying to remember the insert position
2620 ValueExprMap
.insert(std::make_pair(SCEVCallbackVH(V
, this), S
));
2624 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2626 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
) {
2627 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2629 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
2631 const Type
*Ty
= V
->getType();
2632 Ty
= getEffectiveSCEVType(Ty
);
2633 return getMulExpr(V
,
2634 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
))));
2637 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2638 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
2639 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2641 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
2643 const Type
*Ty
= V
->getType();
2644 Ty
= getEffectiveSCEVType(Ty
);
2645 const SCEV
*AllOnes
=
2646 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
)));
2647 return getMinusSCEV(AllOnes
, V
);
2650 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
2651 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
, const SCEV
*RHS
,
2652 SCEV::NoWrapFlags Flags
) {
2653 assert(!maskFlags(Flags
, SCEV::FlagNUW
) && "subtraction does not have NUW");
2655 // Fast path: X - X --> 0.
2657 return getConstant(LHS
->getType(), 0);
2660 return getAddExpr(LHS
, getNegativeSCEV(RHS
), Flags
);
2663 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2664 /// input value to the specified type. If the type must be extended, it is zero
2667 ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
, const Type
*Ty
) {
2668 const Type
*SrcTy
= V
->getType();
2669 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2670 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2671 "Cannot truncate or zero extend with non-integer arguments!");
2672 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2673 return V
; // No conversion
2674 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2675 return getTruncateExpr(V
, Ty
);
2676 return getZeroExtendExpr(V
, Ty
);
2679 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2680 /// input value to the specified type. If the type must be extended, it is sign
2683 ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
,
2685 const Type
*SrcTy
= V
->getType();
2686 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2687 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2688 "Cannot truncate or zero extend with non-integer arguments!");
2689 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2690 return V
; // No conversion
2691 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2692 return getTruncateExpr(V
, Ty
);
2693 return getSignExtendExpr(V
, Ty
);
2696 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2697 /// input value to the specified type. If the type must be extended, it is zero
2698 /// extended. The conversion must not be narrowing.
2700 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, const Type
*Ty
) {
2701 const Type
*SrcTy
= V
->getType();
2702 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2703 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2704 "Cannot noop or zero extend with non-integer arguments!");
2705 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2706 "getNoopOrZeroExtend cannot truncate!");
2707 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2708 return V
; // No conversion
2709 return getZeroExtendExpr(V
, Ty
);
2712 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2713 /// input value to the specified type. If the type must be extended, it is sign
2714 /// extended. The conversion must not be narrowing.
2716 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, const Type
*Ty
) {
2717 const Type
*SrcTy
= V
->getType();
2718 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2719 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2720 "Cannot noop or sign extend with non-integer arguments!");
2721 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2722 "getNoopOrSignExtend cannot truncate!");
2723 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2724 return V
; // No conversion
2725 return getSignExtendExpr(V
, Ty
);
2728 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2729 /// the input value to the specified type. If the type must be extended,
2730 /// it is extended with unspecified bits. The conversion must not be
2733 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, const Type
*Ty
) {
2734 const Type
*SrcTy
= V
->getType();
2735 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2736 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2737 "Cannot noop or any extend with non-integer arguments!");
2738 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2739 "getNoopOrAnyExtend cannot truncate!");
2740 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2741 return V
; // No conversion
2742 return getAnyExtendExpr(V
, Ty
);
2745 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2746 /// input value to the specified type. The conversion must not be widening.
2748 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, const Type
*Ty
) {
2749 const Type
*SrcTy
= V
->getType();
2750 assert((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
2751 (Ty
->isIntegerTy() || Ty
->isPointerTy()) &&
2752 "Cannot truncate or noop with non-integer arguments!");
2753 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
2754 "getTruncateOrNoop cannot extend!");
2755 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2756 return V
; // No conversion
2757 return getTruncateExpr(V
, Ty
);
2760 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2761 /// the types using zero-extension, and then perform a umax operation
2763 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
2765 const SCEV
*PromotedLHS
= LHS
;
2766 const SCEV
*PromotedRHS
= RHS
;
2768 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2769 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2771 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2773 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
2776 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2777 /// the types using zero-extension, and then perform a umin operation
2779 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
2781 const SCEV
*PromotedLHS
= LHS
;
2782 const SCEV
*PromotedRHS
= RHS
;
2784 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2785 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2787 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2789 return getUMinExpr(PromotedLHS
, PromotedRHS
);
2792 /// getPointerBase - Transitively follow the chain of pointer-type operands
2793 /// until reaching a SCEV that does not have a single pointer operand. This
2794 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2795 /// but corner cases do exist.
2796 const SCEV
*ScalarEvolution::getPointerBase(const SCEV
*V
) {
2797 // A pointer operand may evaluate to a nonpointer expression, such as null.
2798 if (!V
->getType()->isPointerTy())
2801 if (const SCEVCastExpr
*Cast
= dyn_cast
<SCEVCastExpr
>(V
)) {
2802 return getPointerBase(Cast
->getOperand());
2804 else if (const SCEVNAryExpr
*NAry
= dyn_cast
<SCEVNAryExpr
>(V
)) {
2805 const SCEV
*PtrOp
= 0;
2806 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
2808 if ((*I
)->getType()->isPointerTy()) {
2809 // Cannot find the base of an expression with multiple pointer operands.
2817 return getPointerBase(PtrOp
);
2822 /// PushDefUseChildren - Push users of the given Instruction
2823 /// onto the given Worklist.
2825 PushDefUseChildren(Instruction
*I
,
2826 SmallVectorImpl
<Instruction
*> &Worklist
) {
2827 // Push the def-use children onto the Worklist stack.
2828 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
2830 Worklist
.push_back(cast
<Instruction
>(*UI
));
2833 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2834 /// instructions that depend on the given instruction and removes them from
2835 /// the ValueExprMapType map if they reference SymName. This is used during PHI
2838 ScalarEvolution::ForgetSymbolicName(Instruction
*PN
, const SCEV
*SymName
) {
2839 SmallVector
<Instruction
*, 16> Worklist
;
2840 PushDefUseChildren(PN
, Worklist
);
2842 SmallPtrSet
<Instruction
*, 8> Visited
;
2844 while (!Worklist
.empty()) {
2845 Instruction
*I
= Worklist
.pop_back_val();
2846 if (!Visited
.insert(I
)) continue;
2848 ValueExprMapType::iterator It
=
2849 ValueExprMap
.find(static_cast<Value
*>(I
));
2850 if (It
!= ValueExprMap
.end()) {
2851 const SCEV
*Old
= It
->second
;
2853 // Short-circuit the def-use traversal if the symbolic name
2854 // ceases to appear in expressions.
2855 if (Old
!= SymName
&& !hasOperand(Old
, SymName
))
2858 // SCEVUnknown for a PHI either means that it has an unrecognized
2859 // structure, it's a PHI that's in the progress of being computed
2860 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2861 // additional loop trip count information isn't going to change anything.
2862 // In the second case, createNodeForPHI will perform the necessary
2863 // updates on its own when it gets to that point. In the third, we do
2864 // want to forget the SCEVUnknown.
2865 if (!isa
<PHINode
>(I
) ||
2866 !isa
<SCEVUnknown
>(Old
) ||
2867 (I
!= PN
&& Old
== SymName
)) {
2868 forgetMemoizedResults(Old
);
2869 ValueExprMap
.erase(It
);
2873 PushDefUseChildren(I
, Worklist
);
2877 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2878 /// a loop header, making it a potential recurrence, or it doesn't.
2880 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
2881 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
2882 if (L
->getHeader() == PN
->getParent()) {
2883 // The loop may have multiple entrances or multiple exits; we can analyze
2884 // this phi as an addrec if it has a unique entry value and a unique
2886 Value
*BEValueV
= 0, *StartValueV
= 0;
2887 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2888 Value
*V
= PN
->getIncomingValue(i
);
2889 if (L
->contains(PN
->getIncomingBlock(i
))) {
2892 } else if (BEValueV
!= V
) {
2896 } else if (!StartValueV
) {
2898 } else if (StartValueV
!= V
) {
2903 if (BEValueV
&& StartValueV
) {
2904 // While we are analyzing this PHI node, handle its value symbolically.
2905 const SCEV
*SymbolicName
= getUnknown(PN
);
2906 assert(ValueExprMap
.find(PN
) == ValueExprMap
.end() &&
2907 "PHI node already processed?");
2908 ValueExprMap
.insert(std::make_pair(SCEVCallbackVH(PN
, this), SymbolicName
));
2910 // Using this symbolic name for the PHI, analyze the value coming around
2912 const SCEV
*BEValue
= getSCEV(BEValueV
);
2914 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2915 // has a special value for the first iteration of the loop.
2917 // If the value coming around the backedge is an add with the symbolic
2918 // value we just inserted, then we found a simple induction variable!
2919 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
2920 // If there is a single occurrence of the symbolic value, replace it
2921 // with a recurrence.
2922 unsigned FoundIndex
= Add
->getNumOperands();
2923 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2924 if (Add
->getOperand(i
) == SymbolicName
)
2925 if (FoundIndex
== e
) {
2930 if (FoundIndex
!= Add
->getNumOperands()) {
2931 // Create an add with everything but the specified operand.
2932 SmallVector
<const SCEV
*, 8> Ops
;
2933 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2934 if (i
!= FoundIndex
)
2935 Ops
.push_back(Add
->getOperand(i
));
2936 const SCEV
*Accum
= getAddExpr(Ops
);
2938 // This is not a valid addrec if the step amount is varying each
2939 // loop iteration, but is not itself an addrec in this loop.
2940 if (isLoopInvariant(Accum
, L
) ||
2941 (isa
<SCEVAddRecExpr
>(Accum
) &&
2942 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
2943 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
2945 // If the increment doesn't overflow, then neither the addrec nor
2946 // the post-increment will overflow.
2947 if (const AddOperator
*OBO
= dyn_cast
<AddOperator
>(BEValueV
)) {
2948 if (OBO
->hasNoUnsignedWrap())
2949 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
2950 if (OBO
->hasNoSignedWrap())
2951 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
2952 } else if (const GEPOperator
*GEP
=
2953 dyn_cast
<GEPOperator
>(BEValueV
)) {
2954 // If the increment is an inbounds GEP, then we know the address
2955 // space cannot be wrapped around. We cannot make any guarantee
2956 // about signed or unsigned overflow because pointers are
2957 // unsigned but we may have a negative index from the base
2959 if (GEP
->isInBounds())
2960 Flags
= setFlags(Flags
, SCEV::FlagNW
);
2963 const SCEV
*StartVal
= getSCEV(StartValueV
);
2964 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
2966 // Since the no-wrap flags are on the increment, they apply to the
2967 // post-incremented value as well.
2968 if (isLoopInvariant(Accum
, L
))
2969 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
),
2972 // Okay, for the entire analysis of this edge we assumed the PHI
2973 // to be symbolic. We now need to go back and purge all of the
2974 // entries for the scalars that use the symbolic expression.
2975 ForgetSymbolicName(PN
, SymbolicName
);
2976 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
2980 } else if (const SCEVAddRecExpr
*AddRec
=
2981 dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
2982 // Otherwise, this could be a loop like this:
2983 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2984 // In this case, j = {1,+,1} and BEValue is j.
2985 // Because the other in-value of i (0) fits the evolution of BEValue
2986 // i really is an addrec evolution.
2987 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
2988 const SCEV
*StartVal
= getSCEV(StartValueV
);
2990 // If StartVal = j.start - j.stride, we can use StartVal as the
2991 // initial step of the addrec evolution.
2992 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
2993 AddRec
->getOperand(1))) {
2994 // FIXME: For constant StartVal, we should be able to infer
2996 const SCEV
*PHISCEV
=
2997 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
,
3000 // Okay, for the entire analysis of this edge we assumed the PHI
3001 // to be symbolic. We now need to go back and purge all of the
3002 // entries for the scalars that use the symbolic expression.
3003 ForgetSymbolicName(PN
, SymbolicName
);
3004 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
3012 // If the PHI has a single incoming value, follow that value, unless the
3013 // PHI's incoming blocks are in a different loop, in which case doing so
3014 // risks breaking LCSSA form. Instcombine would normally zap these, but
3015 // it doesn't have DominatorTree information, so it may miss cases.
3016 if (Value
*V
= SimplifyInstruction(PN
, TD
, DT
))
3017 if (LI
->replacementPreservesLCSSAForm(PN
, V
))
3020 // If it's not a loop phi, we can't handle it yet.
3021 return getUnknown(PN
);
3024 /// createNodeForGEP - Expand GEP instructions into add and multiply
3025 /// operations. This allows them to be analyzed by regular SCEV code.
3027 const SCEV
*ScalarEvolution::createNodeForGEP(GEPOperator
*GEP
) {
3029 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3030 // Add expression, because the Instruction may be guarded by control flow
3031 // and the no-overflow bits may not be valid for the expression in any
3033 bool isInBounds
= GEP
->isInBounds();
3035 const Type
*IntPtrTy
= getEffectiveSCEVType(GEP
->getType());
3036 Value
*Base
= GEP
->getOperand(0);
3037 // Don't attempt to analyze GEPs over unsized objects.
3038 if (!cast
<PointerType
>(Base
->getType())->getElementType()->isSized())
3039 return getUnknown(GEP
);
3040 const SCEV
*TotalOffset
= getConstant(IntPtrTy
, 0);
3041 gep_type_iterator GTI
= gep_type_begin(GEP
);
3042 for (GetElementPtrInst::op_iterator I
= llvm::next(GEP
->op_begin()),
3046 // Compute the (potentially symbolic) offset in bytes for this index.
3047 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
3048 // For a struct, add the member offset.
3049 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
3050 const SCEV
*FieldOffset
= getOffsetOfExpr(STy
, FieldNo
);
3052 // Add the field offset to the running total offset.
3053 TotalOffset
= getAddExpr(TotalOffset
, FieldOffset
);
3055 // For an array, add the element offset, explicitly scaled.
3056 const SCEV
*ElementSize
= getSizeOfExpr(*GTI
);
3057 const SCEV
*IndexS
= getSCEV(Index
);
3058 // Getelementptr indices are signed.
3059 IndexS
= getTruncateOrSignExtend(IndexS
, IntPtrTy
);
3061 // Multiply the index by the element size to compute the element offset.
3062 const SCEV
*LocalOffset
= getMulExpr(IndexS
, ElementSize
,
3063 isInBounds
? SCEV::FlagNSW
:
3066 // Add the element offset to the running total offset.
3067 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
3071 // Get the SCEV for the GEP base.
3072 const SCEV
*BaseS
= getSCEV(Base
);
3074 // Add the total offset from all the GEP indices to the base.
3075 return getAddExpr(BaseS
, TotalOffset
,
3076 isInBounds
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
);
3079 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3080 /// guaranteed to end in (at every loop iteration). It is, at the same time,
3081 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3082 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
3084 ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
3085 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
3086 return C
->getValue()->getValue().countTrailingZeros();
3088 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
3089 return std::min(GetMinTrailingZeros(T
->getOperand()),
3090 (uint32_t)getTypeSizeInBits(T
->getType()));
3092 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
3093 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
3094 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
3095 getTypeSizeInBits(E
->getType()) : OpRes
;
3098 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
3099 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
3100 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
3101 getTypeSizeInBits(E
->getType()) : OpRes
;
3104 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
3105 // The result is the min of all operands results.
3106 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
3107 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
3108 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
3112 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
3113 // The result is the sum of all operands results.
3114 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
3115 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
3116 for (unsigned i
= 1, e
= M
->getNumOperands();
3117 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
3118 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)),
3123 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3124 // The result is the min of all operands results.
3125 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
3126 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
3127 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
3131 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
3132 // The result is the min of all operands results.
3133 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
3134 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
3135 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
3139 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
3140 // The result is the min of all operands results.
3141 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
3142 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
3143 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
3147 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
3148 // For a SCEVUnknown, ask ValueTracking.
3149 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
3150 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
3151 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
3152 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
);
3153 return Zeros
.countTrailingOnes();
3160 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3163 ScalarEvolution::getUnsignedRange(const SCEV
*S
) {
3164 // See if we've computed this range already.
3165 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= UnsignedRanges
.find(S
);
3166 if (I
!= UnsignedRanges
.end())
3169 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
3170 return setUnsignedRange(C
, ConstantRange(C
->getValue()->getValue()));
3172 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
3173 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
3175 // If the value has known zeros, the maximum unsigned value will have those
3176 // known zeros as well.
3177 uint32_t TZ
= GetMinTrailingZeros(S
);
3179 ConservativeResult
=
3180 ConstantRange(APInt::getMinValue(BitWidth
),
3181 APInt::getMaxValue(BitWidth
).lshr(TZ
).shl(TZ
) + 1);
3183 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
3184 ConstantRange X
= getUnsignedRange(Add
->getOperand(0));
3185 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
3186 X
= X
.add(getUnsignedRange(Add
->getOperand(i
)));
3187 return setUnsignedRange(Add
, ConservativeResult
.intersectWith(X
));
3190 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
3191 ConstantRange X
= getUnsignedRange(Mul
->getOperand(0));
3192 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
3193 X
= X
.multiply(getUnsignedRange(Mul
->getOperand(i
)));
3194 return setUnsignedRange(Mul
, ConservativeResult
.intersectWith(X
));
3197 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
3198 ConstantRange X
= getUnsignedRange(SMax
->getOperand(0));
3199 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
3200 X
= X
.smax(getUnsignedRange(SMax
->getOperand(i
)));
3201 return setUnsignedRange(SMax
, ConservativeResult
.intersectWith(X
));
3204 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
3205 ConstantRange X
= getUnsignedRange(UMax
->getOperand(0));
3206 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
3207 X
= X
.umax(getUnsignedRange(UMax
->getOperand(i
)));
3208 return setUnsignedRange(UMax
, ConservativeResult
.intersectWith(X
));
3211 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
3212 ConstantRange X
= getUnsignedRange(UDiv
->getLHS());
3213 ConstantRange Y
= getUnsignedRange(UDiv
->getRHS());
3214 return setUnsignedRange(UDiv
, ConservativeResult
.intersectWith(X
.udiv(Y
)));
3217 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
3218 ConstantRange X
= getUnsignedRange(ZExt
->getOperand());
3219 return setUnsignedRange(ZExt
,
3220 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
)));
3223 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
3224 ConstantRange X
= getUnsignedRange(SExt
->getOperand());
3225 return setUnsignedRange(SExt
,
3226 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
)));
3229 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
3230 ConstantRange X
= getUnsignedRange(Trunc
->getOperand());
3231 return setUnsignedRange(Trunc
,
3232 ConservativeResult
.intersectWith(X
.truncate(BitWidth
)));
3235 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3236 // If there's no unsigned wrap, the value will never be less than its
3238 if (AddRec
->getNoWrapFlags(SCEV::FlagNUW
))
3239 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(AddRec
->getStart()))
3240 if (!C
->getValue()->isZero())
3241 ConservativeResult
=
3242 ConservativeResult
.intersectWith(
3243 ConstantRange(C
->getValue()->getValue(), APInt(BitWidth
, 0)));
3245 // TODO: non-affine addrec
3246 if (AddRec
->isAffine()) {
3247 const Type
*Ty
= AddRec
->getType();
3248 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
3249 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
3250 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
) {
3251 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
3253 const SCEV
*Start
= AddRec
->getStart();
3254 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
3256 ConstantRange StartRange
= getUnsignedRange(Start
);
3257 ConstantRange StepRange
= getSignedRange(Step
);
3258 ConstantRange MaxBECountRange
= getUnsignedRange(MaxBECount
);
3259 ConstantRange EndRange
=
3260 StartRange
.add(MaxBECountRange
.multiply(StepRange
));
3262 // Check for overflow. This must be done with ConstantRange arithmetic
3263 // because we could be called from within the ScalarEvolution overflow
3265 ConstantRange ExtStartRange
= StartRange
.zextOrTrunc(BitWidth
*2+1);
3266 ConstantRange ExtStepRange
= StepRange
.sextOrTrunc(BitWidth
*2+1);
3267 ConstantRange ExtMaxBECountRange
=
3268 MaxBECountRange
.zextOrTrunc(BitWidth
*2+1);
3269 ConstantRange ExtEndRange
= EndRange
.zextOrTrunc(BitWidth
*2+1);
3270 if (ExtStartRange
.add(ExtMaxBECountRange
.multiply(ExtStepRange
)) !=
3272 return setUnsignedRange(AddRec
, ConservativeResult
);
3274 APInt Min
= APIntOps::umin(StartRange
.getUnsignedMin(),
3275 EndRange
.getUnsignedMin());
3276 APInt Max
= APIntOps::umax(StartRange
.getUnsignedMax(),
3277 EndRange
.getUnsignedMax());
3278 if (Min
.isMinValue() && Max
.isMaxValue())
3279 return setUnsignedRange(AddRec
, ConservativeResult
);
3280 return setUnsignedRange(AddRec
,
3281 ConservativeResult
.intersectWith(ConstantRange(Min
, Max
+1)));
3285 return setUnsignedRange(AddRec
, ConservativeResult
);
3288 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
3289 // For a SCEVUnknown, ask ValueTracking.
3290 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
3291 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
3292 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
, TD
);
3293 if (Ones
== ~Zeros
+ 1)
3294 return setUnsignedRange(U
, ConservativeResult
);
3295 return setUnsignedRange(U
,
3296 ConservativeResult
.intersectWith(ConstantRange(Ones
, ~Zeros
+ 1)));
3299 return setUnsignedRange(S
, ConservativeResult
);
3302 /// getSignedRange - Determine the signed range for a particular SCEV.
3305 ScalarEvolution::getSignedRange(const SCEV
*S
) {
3306 // See if we've computed this range already.
3307 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= SignedRanges
.find(S
);
3308 if (I
!= SignedRanges
.end())
3311 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
3312 return setSignedRange(C
, ConstantRange(C
->getValue()->getValue()));
3314 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
3315 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
3317 // If the value has known zeros, the maximum signed value will have those
3318 // known zeros as well.
3319 uint32_t TZ
= GetMinTrailingZeros(S
);
3321 ConservativeResult
=
3322 ConstantRange(APInt::getSignedMinValue(BitWidth
),
3323 APInt::getSignedMaxValue(BitWidth
).ashr(TZ
).shl(TZ
) + 1);
3325 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
3326 ConstantRange X
= getSignedRange(Add
->getOperand(0));
3327 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
3328 X
= X
.add(getSignedRange(Add
->getOperand(i
)));
3329 return setSignedRange(Add
, ConservativeResult
.intersectWith(X
));
3332 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
3333 ConstantRange X
= getSignedRange(Mul
->getOperand(0));
3334 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
3335 X
= X
.multiply(getSignedRange(Mul
->getOperand(i
)));
3336 return setSignedRange(Mul
, ConservativeResult
.intersectWith(X
));
3339 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
3340 ConstantRange X
= getSignedRange(SMax
->getOperand(0));
3341 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
3342 X
= X
.smax(getSignedRange(SMax
->getOperand(i
)));
3343 return setSignedRange(SMax
, ConservativeResult
.intersectWith(X
));
3346 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
3347 ConstantRange X
= getSignedRange(UMax
->getOperand(0));
3348 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
3349 X
= X
.umax(getSignedRange(UMax
->getOperand(i
)));
3350 return setSignedRange(UMax
, ConservativeResult
.intersectWith(X
));
3353 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
3354 ConstantRange X
= getSignedRange(UDiv
->getLHS());
3355 ConstantRange Y
= getSignedRange(UDiv
->getRHS());
3356 return setSignedRange(UDiv
, ConservativeResult
.intersectWith(X
.udiv(Y
)));
3359 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
3360 ConstantRange X
= getSignedRange(ZExt
->getOperand());
3361 return setSignedRange(ZExt
,
3362 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
)));
3365 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
3366 ConstantRange X
= getSignedRange(SExt
->getOperand());
3367 return setSignedRange(SExt
,
3368 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
)));
3371 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
3372 ConstantRange X
= getSignedRange(Trunc
->getOperand());
3373 return setSignedRange(Trunc
,
3374 ConservativeResult
.intersectWith(X
.truncate(BitWidth
)));
3377 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3378 // If there's no signed wrap, and all the operands have the same sign or
3379 // zero, the value won't ever change sign.
3380 if (AddRec
->getNoWrapFlags(SCEV::FlagNSW
)) {
3381 bool AllNonNeg
= true;
3382 bool AllNonPos
= true;
3383 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
3384 if (!isKnownNonNegative(AddRec
->getOperand(i
))) AllNonNeg
= false;
3385 if (!isKnownNonPositive(AddRec
->getOperand(i
))) AllNonPos
= false;
3388 ConservativeResult
= ConservativeResult
.intersectWith(
3389 ConstantRange(APInt(BitWidth
, 0),
3390 APInt::getSignedMinValue(BitWidth
)));
3392 ConservativeResult
= ConservativeResult
.intersectWith(
3393 ConstantRange(APInt::getSignedMinValue(BitWidth
),
3394 APInt(BitWidth
, 1)));
3397 // TODO: non-affine addrec
3398 if (AddRec
->isAffine()) {
3399 const Type
*Ty
= AddRec
->getType();
3400 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
3401 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
3402 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
) {
3403 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
3405 const SCEV
*Start
= AddRec
->getStart();
3406 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
3408 ConstantRange StartRange
= getSignedRange(Start
);
3409 ConstantRange StepRange
= getSignedRange(Step
);
3410 ConstantRange MaxBECountRange
= getUnsignedRange(MaxBECount
);
3411 ConstantRange EndRange
=
3412 StartRange
.add(MaxBECountRange
.multiply(StepRange
));
3414 // Check for overflow. This must be done with ConstantRange arithmetic
3415 // because we could be called from within the ScalarEvolution overflow
3417 ConstantRange ExtStartRange
= StartRange
.sextOrTrunc(BitWidth
*2+1);
3418 ConstantRange ExtStepRange
= StepRange
.sextOrTrunc(BitWidth
*2+1);
3419 ConstantRange ExtMaxBECountRange
=
3420 MaxBECountRange
.zextOrTrunc(BitWidth
*2+1);
3421 ConstantRange ExtEndRange
= EndRange
.sextOrTrunc(BitWidth
*2+1);
3422 if (ExtStartRange
.add(ExtMaxBECountRange
.multiply(ExtStepRange
)) !=
3424 return setSignedRange(AddRec
, ConservativeResult
);
3426 APInt Min
= APIntOps::smin(StartRange
.getSignedMin(),
3427 EndRange
.getSignedMin());
3428 APInt Max
= APIntOps::smax(StartRange
.getSignedMax(),
3429 EndRange
.getSignedMax());
3430 if (Min
.isMinSignedValue() && Max
.isMaxSignedValue())
3431 return setSignedRange(AddRec
, ConservativeResult
);
3432 return setSignedRange(AddRec
,
3433 ConservativeResult
.intersectWith(ConstantRange(Min
, Max
+1)));
3437 return setSignedRange(AddRec
, ConservativeResult
);
3440 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
3441 // For a SCEVUnknown, ask ValueTracking.
3442 if (!U
->getValue()->getType()->isIntegerTy() && !TD
)
3443 return setSignedRange(U
, ConservativeResult
);
3444 unsigned NS
= ComputeNumSignBits(U
->getValue(), TD
);
3446 return setSignedRange(U
, ConservativeResult
);
3447 return setSignedRange(U
, ConservativeResult
.intersectWith(
3448 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
3449 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1)+1)));
3452 return setSignedRange(S
, ConservativeResult
);
3455 /// createSCEV - We know that there is no SCEV for the specified value.
3456 /// Analyze the expression.
3458 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
3459 if (!isSCEVable(V
->getType()))
3460 return getUnknown(V
);
3462 unsigned Opcode
= Instruction::UserOp1
;
3463 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
3464 Opcode
= I
->getOpcode();
3466 // Don't attempt to analyze instructions in blocks that aren't
3467 // reachable. Such instructions don't matter, and they aren't required
3468 // to obey basic rules for definitions dominating uses which this
3469 // analysis depends on.
3470 if (!DT
->isReachableFromEntry(I
->getParent()))
3471 return getUnknown(V
);
3472 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
3473 Opcode
= CE
->getOpcode();
3474 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
3475 return getConstant(CI
);
3476 else if (isa
<ConstantPointerNull
>(V
))
3477 return getConstant(V
->getType(), 0);
3478 else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
3479 return GA
->mayBeOverridden() ? getUnknown(V
) : getSCEV(GA
->getAliasee());
3481 return getUnknown(V
);
3483 Operator
*U
= cast
<Operator
>(V
);
3485 case Instruction::Add
: {
3486 // The simple thing to do would be to just call getSCEV on both operands
3487 // and call getAddExpr with the result. However if we're looking at a
3488 // bunch of things all added together, this can be quite inefficient,
3489 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3490 // Instead, gather up all the operands and make a single getAddExpr call.
3491 // LLVM IR canonical form means we need only traverse the left operands.
3492 SmallVector
<const SCEV
*, 4> AddOps
;
3493 AddOps
.push_back(getSCEV(U
->getOperand(1)));
3494 for (Value
*Op
= U
->getOperand(0); ; Op
= U
->getOperand(0)) {
3495 unsigned Opcode
= Op
->getValueID() - Value::InstructionVal
;
3496 if (Opcode
!= Instruction::Add
&& Opcode
!= Instruction::Sub
)
3498 U
= cast
<Operator
>(Op
);
3499 const SCEV
*Op1
= getSCEV(U
->getOperand(1));
3500 if (Opcode
== Instruction::Sub
)
3501 AddOps
.push_back(getNegativeSCEV(Op1
));
3503 AddOps
.push_back(Op1
);
3505 AddOps
.push_back(getSCEV(U
->getOperand(0)));
3506 return getAddExpr(AddOps
);
3508 case Instruction::Mul
: {
3509 // See the Add code above.
3510 SmallVector
<const SCEV
*, 4> MulOps
;
3511 MulOps
.push_back(getSCEV(U
->getOperand(1)));
3512 for (Value
*Op
= U
->getOperand(0);
3513 Op
->getValueID() == Instruction::Mul
+ Value::InstructionVal
;
3514 Op
= U
->getOperand(0)) {
3515 U
= cast
<Operator
>(Op
);
3516 MulOps
.push_back(getSCEV(U
->getOperand(1)));
3518 MulOps
.push_back(getSCEV(U
->getOperand(0)));
3519 return getMulExpr(MulOps
);
3521 case Instruction::UDiv
:
3522 return getUDivExpr(getSCEV(U
->getOperand(0)),
3523 getSCEV(U
->getOperand(1)));
3524 case Instruction::Sub
:
3525 return getMinusSCEV(getSCEV(U
->getOperand(0)),
3526 getSCEV(U
->getOperand(1)));
3527 case Instruction::And
:
3528 // For an expression like x&255 that merely masks off the high bits,
3529 // use zext(trunc(x)) as the SCEV expression.
3530 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3531 if (CI
->isNullValue())
3532 return getSCEV(U
->getOperand(1));
3533 if (CI
->isAllOnesValue())
3534 return getSCEV(U
->getOperand(0));
3535 const APInt
&A
= CI
->getValue();
3537 // Instcombine's ShrinkDemandedConstant may strip bits out of
3538 // constants, obscuring what would otherwise be a low-bits mask.
3539 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3540 // knew about to reconstruct a low-bits mask value.
3541 unsigned LZ
= A
.countLeadingZeros();
3542 unsigned BitWidth
= A
.getBitWidth();
3543 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
3544 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
3545 ComputeMaskedBits(U
->getOperand(0), AllOnes
, KnownZero
, KnownOne
, TD
);
3547 APInt EffectiveMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
);
3549 if (LZ
!= 0 && !((~A
& ~KnownZero
) & EffectiveMask
))
3551 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
3552 IntegerType::get(getContext(), BitWidth
- LZ
)),
3557 case Instruction::Or
:
3558 // If the RHS of the Or is a constant, we may have something like:
3559 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3560 // optimizations will transparently handle this case.
3562 // In order for this transformation to be safe, the LHS must be of the
3563 // form X*(2^n) and the Or constant must be less than 2^n.
3564 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3565 const SCEV
*LHS
= getSCEV(U
->getOperand(0));
3566 const APInt
&CIVal
= CI
->getValue();
3567 if (GetMinTrailingZeros(LHS
) >=
3568 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros())) {
3569 // Build a plain add SCEV.
3570 const SCEV
*S
= getAddExpr(LHS
, getSCEV(CI
));
3571 // If the LHS of the add was an addrec and it has no-wrap flags,
3572 // transfer the no-wrap flags, since an or won't introduce a wrap.
3573 if (const SCEVAddRecExpr
*NewAR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
3574 const SCEVAddRecExpr
*OldAR
= cast
<SCEVAddRecExpr
>(LHS
);
3575 const_cast<SCEVAddRecExpr
*>(NewAR
)->setNoWrapFlags(
3576 OldAR
->getNoWrapFlags());
3582 case Instruction::Xor
:
3583 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3584 // If the RHS of the xor is a signbit, then this is just an add.
3585 // Instcombine turns add of signbit into xor as a strength reduction step.
3586 if (CI
->getValue().isSignBit())
3587 return getAddExpr(getSCEV(U
->getOperand(0)),
3588 getSCEV(U
->getOperand(1)));
3590 // If the RHS of xor is -1, then this is a not operation.
3591 if (CI
->isAllOnesValue())
3592 return getNotSCEV(getSCEV(U
->getOperand(0)));
3594 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3595 // This is a variant of the check for xor with -1, and it handles
3596 // the case where instcombine has trimmed non-demanded bits out
3597 // of an xor with -1.
3598 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
->getOperand(0)))
3599 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
3600 if (BO
->getOpcode() == Instruction::And
&&
3601 LCI
->getValue() == CI
->getValue())
3602 if (const SCEVZeroExtendExpr
*Z
=
3603 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(U
->getOperand(0)))) {
3604 const Type
*UTy
= U
->getType();
3605 const SCEV
*Z0
= Z
->getOperand();
3606 const Type
*Z0Ty
= Z0
->getType();
3607 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
3609 // If C is a low-bits mask, the zero extend is serving to
3610 // mask off the high bits. Complement the operand and
3611 // re-apply the zext.
3612 if (APIntOps::isMask(Z0TySize
, CI
->getValue()))
3613 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
3615 // If C is a single bit, it may be in the sign-bit position
3616 // before the zero-extend. In this case, represent the xor
3617 // using an add, which is equivalent, and re-apply the zext.
3618 APInt Trunc
= CI
->getValue().trunc(Z0TySize
);
3619 if (Trunc
.zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
3621 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
3627 case Instruction::Shl
:
3628 // Turn shift left of a constant amount into a multiply.
3629 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3630 uint32_t BitWidth
= cast
<IntegerType
>(U
->getType())->getBitWidth();
3632 // If the shift count is not less than the bitwidth, the result of
3633 // the shift is undefined. Don't try to analyze it, because the
3634 // resolution chosen here may differ from the resolution chosen in
3635 // other parts of the compiler.
3636 if (SA
->getValue().uge(BitWidth
))
3639 Constant
*X
= ConstantInt::get(getContext(),
3640 APInt(BitWidth
, 1).shl(SA
->getZExtValue()));
3641 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
3645 case Instruction::LShr
:
3646 // Turn logical shift right of a constant into a unsigned divide.
3647 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
3648 uint32_t BitWidth
= cast
<IntegerType
>(U
->getType())->getBitWidth();
3650 // If the shift count is not less than the bitwidth, the result of
3651 // the shift is undefined. Don't try to analyze it, because the
3652 // resolution chosen here may differ from the resolution chosen in
3653 // other parts of the compiler.
3654 if (SA
->getValue().uge(BitWidth
))
3657 Constant
*X
= ConstantInt::get(getContext(),
3658 APInt(BitWidth
, 1).shl(SA
->getZExtValue()));
3659 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
3663 case Instruction::AShr
:
3664 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3665 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
3666 if (Operator
*L
= dyn_cast
<Operator
>(U
->getOperand(0)))
3667 if (L
->getOpcode() == Instruction::Shl
&&
3668 L
->getOperand(1) == U
->getOperand(1)) {
3669 uint64_t BitWidth
= getTypeSizeInBits(U
->getType());
3671 // If the shift count is not less than the bitwidth, the result of
3672 // the shift is undefined. Don't try to analyze it, because the
3673 // resolution chosen here may differ from the resolution chosen in
3674 // other parts of the compiler.
3675 if (CI
->getValue().uge(BitWidth
))
3678 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
3679 if (Amt
== BitWidth
)
3680 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
3682 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
3683 IntegerType::get(getContext(),
3689 case Instruction::Trunc
:
3690 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
3692 case Instruction::ZExt
:
3693 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
3695 case Instruction::SExt
:
3696 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
3698 case Instruction::BitCast
:
3699 // BitCasts are no-op casts so we just eliminate the cast.
3700 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
3701 return getSCEV(U
->getOperand(0));
3704 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3705 // lead to pointer expressions which cannot safely be expanded to GEPs,
3706 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3707 // simplifying integer expressions.
3709 case Instruction::GetElementPtr
:
3710 return createNodeForGEP(cast
<GEPOperator
>(U
));
3712 case Instruction::PHI
:
3713 return createNodeForPHI(cast
<PHINode
>(U
));
3715 case Instruction::Select
:
3716 // This could be a smax or umax that was lowered earlier.
3717 // Try to recover it.
3718 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
3719 Value
*LHS
= ICI
->getOperand(0);
3720 Value
*RHS
= ICI
->getOperand(1);
3721 switch (ICI
->getPredicate()) {
3722 case ICmpInst::ICMP_SLT
:
3723 case ICmpInst::ICMP_SLE
:
3724 std::swap(LHS
, RHS
);
3726 case ICmpInst::ICMP_SGT
:
3727 case ICmpInst::ICMP_SGE
:
3728 // a >s b ? a+x : b+x -> smax(a, b)+x
3729 // a >s b ? b+x : a+x -> smin(a, b)+x
3730 if (LHS
->getType() == U
->getType()) {
3731 const SCEV
*LS
= getSCEV(LHS
);
3732 const SCEV
*RS
= getSCEV(RHS
);
3733 const SCEV
*LA
= getSCEV(U
->getOperand(1));
3734 const SCEV
*RA
= getSCEV(U
->getOperand(2));
3735 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
3736 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
3738 return getAddExpr(getSMaxExpr(LS
, RS
), LDiff
);
3739 LDiff
= getMinusSCEV(LA
, RS
);
3740 RDiff
= getMinusSCEV(RA
, LS
);
3742 return getAddExpr(getSMinExpr(LS
, RS
), LDiff
);
3745 case ICmpInst::ICMP_ULT
:
3746 case ICmpInst::ICMP_ULE
:
3747 std::swap(LHS
, RHS
);
3749 case ICmpInst::ICMP_UGT
:
3750 case ICmpInst::ICMP_UGE
:
3751 // a >u b ? a+x : b+x -> umax(a, b)+x
3752 // a >u b ? b+x : a+x -> umin(a, b)+x
3753 if (LHS
->getType() == U
->getType()) {
3754 const SCEV
*LS
= getSCEV(LHS
);
3755 const SCEV
*RS
= getSCEV(RHS
);
3756 const SCEV
*LA
= getSCEV(U
->getOperand(1));
3757 const SCEV
*RA
= getSCEV(U
->getOperand(2));
3758 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
3759 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
3761 return getAddExpr(getUMaxExpr(LS
, RS
), LDiff
);
3762 LDiff
= getMinusSCEV(LA
, RS
);
3763 RDiff
= getMinusSCEV(RA
, LS
);
3765 return getAddExpr(getUMinExpr(LS
, RS
), LDiff
);
3768 case ICmpInst::ICMP_NE
:
3769 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3770 if (LHS
->getType() == U
->getType() &&
3771 isa
<ConstantInt
>(RHS
) &&
3772 cast
<ConstantInt
>(RHS
)->isZero()) {
3773 const SCEV
*One
= getConstant(LHS
->getType(), 1);
3774 const SCEV
*LS
= getSCEV(LHS
);
3775 const SCEV
*LA
= getSCEV(U
->getOperand(1));
3776 const SCEV
*RA
= getSCEV(U
->getOperand(2));
3777 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
3778 const SCEV
*RDiff
= getMinusSCEV(RA
, One
);
3780 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
3783 case ICmpInst::ICMP_EQ
:
3784 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3785 if (LHS
->getType() == U
->getType() &&
3786 isa
<ConstantInt
>(RHS
) &&
3787 cast
<ConstantInt
>(RHS
)->isZero()) {
3788 const SCEV
*One
= getConstant(LHS
->getType(), 1);
3789 const SCEV
*LS
= getSCEV(LHS
);
3790 const SCEV
*LA
= getSCEV(U
->getOperand(1));
3791 const SCEV
*RA
= getSCEV(U
->getOperand(2));
3792 const SCEV
*LDiff
= getMinusSCEV(LA
, One
);
3793 const SCEV
*RDiff
= getMinusSCEV(RA
, LS
);
3795 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
3803 default: // We cannot analyze this expression.
3807 return getUnknown(V
);
3812 //===----------------------------------------------------------------------===//
3813 // Iteration Count Computation Code
3816 /// getBackedgeTakenCount - If the specified loop has a predictable
3817 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3818 /// object. The backedge-taken count is the number of times the loop header
3819 /// will be branched to from within the loop. This is one less than the
3820 /// trip count of the loop, since it doesn't count the first iteration,
3821 /// when the header is branched to from outside the loop.
3823 /// Note that it is not valid to call this method on a loop without a
3824 /// loop-invariant backedge-taken count (see
3825 /// hasLoopInvariantBackedgeTakenCount).
3827 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
3828 return getBackedgeTakenInfo(L
).Exact
;
3831 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3832 /// return the least SCEV value that is known never to be less than the
3833 /// actual backedge taken count.
3834 const SCEV
*ScalarEvolution::getMaxBackedgeTakenCount(const Loop
*L
) {
3835 return getBackedgeTakenInfo(L
).Max
;
3838 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3839 /// onto the given Worklist.
3841 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
3842 BasicBlock
*Header
= L
->getHeader();
3844 // Push all Loop-header PHIs onto the Worklist stack.
3845 for (BasicBlock::iterator I
= Header
->begin();
3846 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
3847 Worklist
.push_back(PN
);
3850 const ScalarEvolution::BackedgeTakenInfo
&
3851 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
3852 // Initially insert a CouldNotCompute for this loop. If the insertion
3853 // succeeds, proceed to actually compute a backedge-taken count and
3854 // update the value. The temporary CouldNotCompute value tells SCEV
3855 // code elsewhere that it shouldn't attempt to request a new
3856 // backedge-taken count, which could result in infinite recursion.
3857 std::pair
<DenseMap
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
3858 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
3860 return Pair
.first
->second
;
3862 BackedgeTakenInfo Result
= getCouldNotCompute();
3863 BackedgeTakenInfo Computed
= ComputeBackedgeTakenCount(L
);
3864 if (Computed
.Exact
!= getCouldNotCompute()) {
3865 assert(isLoopInvariant(Computed
.Exact
, L
) &&
3866 isLoopInvariant(Computed
.Max
, L
) &&
3867 "Computed backedge-taken count isn't loop invariant for loop!");
3868 ++NumTripCountsComputed
;
3870 // Update the value in the map.
3873 if (Computed
.Max
!= getCouldNotCompute())
3874 // Update the value in the map.
3876 if (isa
<PHINode
>(L
->getHeader()->begin()))
3877 // Only count loops that have phi nodes as not being computable.
3878 ++NumTripCountsNotComputed
;
3881 // Now that we know more about the trip count for this loop, forget any
3882 // existing SCEV values for PHI nodes in this loop since they are only
3883 // conservative estimates made without the benefit of trip count
3884 // information. This is similar to the code in forgetLoop, except that
3885 // it handles SCEVUnknown PHI nodes specially.
3886 if (Computed
.hasAnyInfo()) {
3887 SmallVector
<Instruction
*, 16> Worklist
;
3888 PushLoopPHIs(L
, Worklist
);
3890 SmallPtrSet
<Instruction
*, 8> Visited
;
3891 while (!Worklist
.empty()) {
3892 Instruction
*I
= Worklist
.pop_back_val();
3893 if (!Visited
.insert(I
)) continue;
3895 ValueExprMapType::iterator It
=
3896 ValueExprMap
.find(static_cast<Value
*>(I
));
3897 if (It
!= ValueExprMap
.end()) {
3898 const SCEV
*Old
= It
->second
;
3900 // SCEVUnknown for a PHI either means that it has an unrecognized
3901 // structure, or it's a PHI that's in the progress of being computed
3902 // by createNodeForPHI. In the former case, additional loop trip
3903 // count information isn't going to change anything. In the later
3904 // case, createNodeForPHI will perform the necessary updates on its
3905 // own when it gets to that point.
3906 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(Old
)) {
3907 forgetMemoizedResults(Old
);
3908 ValueExprMap
.erase(It
);
3910 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3911 ConstantEvolutionLoopExitValue
.erase(PN
);
3914 PushDefUseChildren(I
, Worklist
);
3918 // Re-lookup the insert position, since the call to
3919 // ComputeBackedgeTakenCount above could result in a
3920 // recusive call to getBackedgeTakenInfo (on a different
3921 // loop), which would invalidate the iterator computed
3923 return BackedgeTakenCounts
.find(L
)->second
= Result
;
3926 /// forgetLoop - This method should be called by the client when it has
3927 /// changed a loop in a way that may effect ScalarEvolution's ability to
3928 /// compute a trip count, or if the loop is deleted.
3929 void ScalarEvolution::forgetLoop(const Loop
*L
) {
3930 // Drop any stored trip count value.
3931 BackedgeTakenCounts
.erase(L
);
3933 // Drop information about expressions based on loop-header PHIs.
3934 SmallVector
<Instruction
*, 16> Worklist
;
3935 PushLoopPHIs(L
, Worklist
);
3937 SmallPtrSet
<Instruction
*, 8> Visited
;
3938 while (!Worklist
.empty()) {
3939 Instruction
*I
= Worklist
.pop_back_val();
3940 if (!Visited
.insert(I
)) continue;
3942 ValueExprMapType::iterator It
= ValueExprMap
.find(static_cast<Value
*>(I
));
3943 if (It
!= ValueExprMap
.end()) {
3944 forgetMemoizedResults(It
->second
);
3945 ValueExprMap
.erase(It
);
3946 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3947 ConstantEvolutionLoopExitValue
.erase(PN
);
3950 PushDefUseChildren(I
, Worklist
);
3953 // Forget all contained loops too, to avoid dangling entries in the
3954 // ValuesAtScopes map.
3955 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
3959 /// forgetValue - This method should be called by the client when it has
3960 /// changed a value in a way that may effect its value, or which may
3961 /// disconnect it from a def-use chain linking it to a loop.
3962 void ScalarEvolution::forgetValue(Value
*V
) {
3963 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3966 // Drop information about expressions based on loop-header PHIs.
3967 SmallVector
<Instruction
*, 16> Worklist
;
3968 Worklist
.push_back(I
);
3970 SmallPtrSet
<Instruction
*, 8> Visited
;
3971 while (!Worklist
.empty()) {
3972 I
= Worklist
.pop_back_val();
3973 if (!Visited
.insert(I
)) continue;
3975 ValueExprMapType::iterator It
= ValueExprMap
.find(static_cast<Value
*>(I
));
3976 if (It
!= ValueExprMap
.end()) {
3977 forgetMemoizedResults(It
->second
);
3978 ValueExprMap
.erase(It
);
3979 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3980 ConstantEvolutionLoopExitValue
.erase(PN
);
3983 PushDefUseChildren(I
, Worklist
);
3987 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3988 /// of the specified loop will execute.
3989 ScalarEvolution::BackedgeTakenInfo
3990 ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
3991 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
3992 L
->getExitingBlocks(ExitingBlocks
);
3994 // Examine all exits and pick the most conservative values.
3995 const SCEV
*BECount
= getCouldNotCompute();
3996 const SCEV
*MaxBECount
= getCouldNotCompute();
3997 bool CouldNotComputeBECount
= false;
3998 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
3999 BackedgeTakenInfo NewBTI
=
4000 ComputeBackedgeTakenCountFromExit(L
, ExitingBlocks
[i
]);
4002 if (NewBTI
.Exact
== getCouldNotCompute()) {
4003 // We couldn't compute an exact value for this exit, so
4004 // we won't be able to compute an exact value for the loop.
4005 CouldNotComputeBECount
= true;
4006 BECount
= getCouldNotCompute();
4007 } else if (!CouldNotComputeBECount
) {
4008 if (BECount
== getCouldNotCompute())
4009 BECount
= NewBTI
.Exact
;
4011 BECount
= getUMinFromMismatchedTypes(BECount
, NewBTI
.Exact
);
4013 if (MaxBECount
== getCouldNotCompute())
4014 MaxBECount
= NewBTI
.Max
;
4015 else if (NewBTI
.Max
!= getCouldNotCompute())
4016 MaxBECount
= getUMinFromMismatchedTypes(MaxBECount
, NewBTI
.Max
);
4019 return BackedgeTakenInfo(BECount
, MaxBECount
);
4022 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
4023 /// of the specified loop will execute if it exits via the specified block.
4024 ScalarEvolution::BackedgeTakenInfo
4025 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop
*L
,
4026 BasicBlock
*ExitingBlock
) {
4028 // Okay, we've chosen an exiting block. See what condition causes us to
4029 // exit at this block.
4031 // FIXME: we should be able to handle switch instructions (with a single exit)
4032 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
4033 if (ExitBr
== 0) return getCouldNotCompute();
4034 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
4036 // At this point, we know we have a conditional branch that determines whether
4037 // the loop is exited. However, we don't know if the branch is executed each
4038 // time through the loop. If not, then the execution count of the branch will
4039 // not be equal to the trip count of the loop.
4041 // Currently we check for this by checking to see if the Exit branch goes to
4042 // the loop header. If so, we know it will always execute the same number of
4043 // times as the loop. We also handle the case where the exit block *is* the
4044 // loop header. This is common for un-rotated loops.
4046 // If both of those tests fail, walk up the unique predecessor chain to the
4047 // header, stopping if there is an edge that doesn't exit the loop. If the
4048 // header is reached, the execution count of the branch will be equal to the
4049 // trip count of the loop.
4051 // More extensive analysis could be done to handle more cases here.
4053 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
4054 ExitBr
->getSuccessor(1) != L
->getHeader() &&
4055 ExitBr
->getParent() != L
->getHeader()) {
4056 // The simple checks failed, try climbing the unique predecessor chain
4057 // up to the header.
4059 for (BasicBlock
*BB
= ExitBr
->getParent(); BB
; ) {
4060 BasicBlock
*Pred
= BB
->getUniquePredecessor();
4062 return getCouldNotCompute();
4063 TerminatorInst
*PredTerm
= Pred
->getTerminator();
4064 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
) {
4065 BasicBlock
*PredSucc
= PredTerm
->getSuccessor(i
);
4068 // If the predecessor has a successor that isn't BB and isn't
4069 // outside the loop, assume the worst.
4070 if (L
->contains(PredSucc
))
4071 return getCouldNotCompute();
4073 if (Pred
== L
->getHeader()) {
4080 return getCouldNotCompute();
4083 // Proceed to the next level to examine the exit condition expression.
4084 return ComputeBackedgeTakenCountFromExitCond(L
, ExitBr
->getCondition(),
4085 ExitBr
->getSuccessor(0),
4086 ExitBr
->getSuccessor(1));
4089 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
4090 /// backedge of the specified loop will execute if its exit condition
4091 /// were a conditional branch of ExitCond, TBB, and FBB.
4092 ScalarEvolution::BackedgeTakenInfo
4093 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop
*L
,
4097 // Check if the controlling expression for this loop is an And or Or.
4098 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(ExitCond
)) {
4099 if (BO
->getOpcode() == Instruction::And
) {
4100 // Recurse on the operands of the and.
4101 BackedgeTakenInfo BTI0
=
4102 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
4103 BackedgeTakenInfo BTI1
=
4104 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
4105 const SCEV
*BECount
= getCouldNotCompute();
4106 const SCEV
*MaxBECount
= getCouldNotCompute();
4107 if (L
->contains(TBB
)) {
4108 // Both conditions must be true for the loop to continue executing.
4109 // Choose the less conservative count.
4110 if (BTI0
.Exact
== getCouldNotCompute() ||
4111 BTI1
.Exact
== getCouldNotCompute())
4112 BECount
= getCouldNotCompute();
4114 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
4115 if (BTI0
.Max
== getCouldNotCompute())
4116 MaxBECount
= BTI1
.Max
;
4117 else if (BTI1
.Max
== getCouldNotCompute())
4118 MaxBECount
= BTI0
.Max
;
4120 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
4122 // Both conditions must be true at the same time for the loop to exit.
4123 // For now, be conservative.
4124 assert(L
->contains(FBB
) && "Loop block has no successor in loop!");
4125 if (BTI0
.Max
== BTI1
.Max
)
4126 MaxBECount
= BTI0
.Max
;
4127 if (BTI0
.Exact
== BTI1
.Exact
)
4128 BECount
= BTI0
.Exact
;
4131 return BackedgeTakenInfo(BECount
, MaxBECount
);
4133 if (BO
->getOpcode() == Instruction::Or
) {
4134 // Recurse on the operands of the or.
4135 BackedgeTakenInfo BTI0
=
4136 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
4137 BackedgeTakenInfo BTI1
=
4138 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
4139 const SCEV
*BECount
= getCouldNotCompute();
4140 const SCEV
*MaxBECount
= getCouldNotCompute();
4141 if (L
->contains(FBB
)) {
4142 // Both conditions must be false for the loop to continue executing.
4143 // Choose the less conservative count.
4144 if (BTI0
.Exact
== getCouldNotCompute() ||
4145 BTI1
.Exact
== getCouldNotCompute())
4146 BECount
= getCouldNotCompute();
4148 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
4149 if (BTI0
.Max
== getCouldNotCompute())
4150 MaxBECount
= BTI1
.Max
;
4151 else if (BTI1
.Max
== getCouldNotCompute())
4152 MaxBECount
= BTI0
.Max
;
4154 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
4156 // Both conditions must be false at the same time for the loop to exit.
4157 // For now, be conservative.
4158 assert(L
->contains(TBB
) && "Loop block has no successor in loop!");
4159 if (BTI0
.Max
== BTI1
.Max
)
4160 MaxBECount
= BTI0
.Max
;
4161 if (BTI0
.Exact
== BTI1
.Exact
)
4162 BECount
= BTI0
.Exact
;
4165 return BackedgeTakenInfo(BECount
, MaxBECount
);
4169 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4170 // Proceed to the next level to examine the icmp.
4171 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
))
4172 return ComputeBackedgeTakenCountFromExitCondICmp(L
, ExitCondICmp
, TBB
, FBB
);
4174 // Check for a constant condition. These are normally stripped out by
4175 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4176 // preserve the CFG and is temporarily leaving constant conditions
4178 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ExitCond
)) {
4179 if (L
->contains(FBB
) == !CI
->getZExtValue())
4180 // The backedge is always taken.
4181 return getCouldNotCompute();
4183 // The backedge is never taken.
4184 return getConstant(CI
->getType(), 0);
4187 // If it's not an integer or pointer comparison then compute it the hard way.
4188 return ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
4191 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4192 /// backedge of the specified loop will execute if its exit condition
4193 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4194 ScalarEvolution::BackedgeTakenInfo
4195 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop
*L
,
4200 // If the condition was exit on true, convert the condition to exit on false
4201 ICmpInst::Predicate Cond
;
4202 if (!L
->contains(FBB
))
4203 Cond
= ExitCond
->getPredicate();
4205 Cond
= ExitCond
->getInversePredicate();
4207 // Handle common loops like: for (X = "string"; *X; ++X)
4208 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
4209 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
4210 BackedgeTakenInfo ItCnt
=
4211 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
4212 if (ItCnt
.hasAnyInfo())
4216 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
4217 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
4219 // Try to evaluate any dependencies out of the loop.
4220 LHS
= getSCEVAtScope(LHS
, L
);
4221 RHS
= getSCEVAtScope(RHS
, L
);
4223 // At this point, we would like to compute how many iterations of the
4224 // loop the predicate will return true for these inputs.
4225 if (isLoopInvariant(LHS
, L
) && !isLoopInvariant(RHS
, L
)) {
4226 // If there is a loop-invariant, force it into the RHS.
4227 std::swap(LHS
, RHS
);
4228 Cond
= ICmpInst::getSwappedPredicate(Cond
);
4231 // Simplify the operands before analyzing them.
4232 (void)SimplifyICmpOperands(Cond
, LHS
, RHS
);
4234 // If we have a comparison of a chrec against a constant, try to use value
4235 // ranges to answer this query.
4236 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
4237 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
4238 if (AddRec
->getLoop() == L
) {
4239 // Form the constant range.
4240 ConstantRange
CompRange(
4241 ICmpInst::makeConstantRange(Cond
, RHSC
->getValue()->getValue()));
4243 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
4244 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
4248 case ICmpInst::ICMP_NE
: { // while (X != Y)
4249 // Convert to: while (X-Y != 0)
4250 BackedgeTakenInfo BTI
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
4251 if (BTI
.hasAnyInfo()) return BTI
;
4254 case ICmpInst::ICMP_EQ
: { // while (X == Y)
4255 // Convert to: while (X-Y == 0)
4256 BackedgeTakenInfo BTI
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
4257 if (BTI
.hasAnyInfo()) return BTI
;
4260 case ICmpInst::ICMP_SLT
: {
4261 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, true);
4262 if (BTI
.hasAnyInfo()) return BTI
;
4265 case ICmpInst::ICMP_SGT
: {
4266 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
4267 getNotSCEV(RHS
), L
, true);
4268 if (BTI
.hasAnyInfo()) return BTI
;
4271 case ICmpInst::ICMP_ULT
: {
4272 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, false);
4273 if (BTI
.hasAnyInfo()) return BTI
;
4276 case ICmpInst::ICMP_UGT
: {
4277 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
4278 getNotSCEV(RHS
), L
, false);
4279 if (BTI
.hasAnyInfo()) return BTI
;
4284 dbgs() << "ComputeBackedgeTakenCount ";
4285 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
4286 dbgs() << "[unsigned] ";
4287 dbgs() << *LHS
<< " "
4288 << Instruction::getOpcodeName(Instruction::ICmp
)
4289 << " " << *RHS
<< "\n";
4294 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
4297 static ConstantInt
*
4298 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
4299 ScalarEvolution
&SE
) {
4300 const SCEV
*InVal
= SE
.getConstant(C
);
4301 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
4302 assert(isa
<SCEVConstant
>(Val
) &&
4303 "Evaluation of SCEV at constant didn't fold correctly?");
4304 return cast
<SCEVConstant
>(Val
)->getValue();
4307 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
4308 /// and a GEP expression (missing the pointer index) indexing into it, return
4309 /// the addressed element of the initializer or null if the index expression is
4312 GetAddressedElementFromGlobal(GlobalVariable
*GV
,
4313 const std::vector
<ConstantInt
*> &Indices
) {
4314 Constant
*Init
= GV
->getInitializer();
4315 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
4316 uint64_t Idx
= Indices
[i
]->getZExtValue();
4317 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
4318 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
4319 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
4320 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
4321 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
4322 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
4323 } else if (isa
<ConstantAggregateZero
>(Init
)) {
4324 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
4325 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
4326 Init
= Constant::getNullValue(STy
->getElementType(Idx
));
4327 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
4328 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
4329 Init
= Constant::getNullValue(ATy
->getElementType());
4331 llvm_unreachable("Unknown constant aggregate type!");
4335 return 0; // Unknown initializer type
4341 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4342 /// 'icmp op load X, cst', try to see if we can compute the backedge
4343 /// execution count.
4344 ScalarEvolution::BackedgeTakenInfo
4345 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4349 ICmpInst::Predicate predicate
) {
4350 if (LI
->isVolatile()) return getCouldNotCompute();
4352 // Check to see if the loaded pointer is a getelementptr of a global.
4353 // TODO: Use SCEV instead of manually grubbing with GEPs.
4354 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
4355 if (!GEP
) return getCouldNotCompute();
4357 // Make sure that it is really a constant global we are gepping, with an
4358 // initializer, and make sure the first IDX is really 0.
4359 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
4360 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
4361 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
4362 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
4363 return getCouldNotCompute();
4365 // Okay, we allow one non-constant index into the GEP instruction.
4367 std::vector
<ConstantInt
*> Indexes
;
4368 unsigned VarIdxNum
= 0;
4369 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
4370 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
4371 Indexes
.push_back(CI
);
4372 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
4373 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
4374 VarIdx
= GEP
->getOperand(i
);
4376 Indexes
.push_back(0);
4379 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4380 // Check to see if X is a loop variant variable value now.
4381 const SCEV
*Idx
= getSCEV(VarIdx
);
4382 Idx
= getSCEVAtScope(Idx
, L
);
4384 // We can only recognize very limited forms of loop index expressions, in
4385 // particular, only affine AddRec's like {C1,+,C2}.
4386 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
4387 if (!IdxExpr
|| !IdxExpr
->isAffine() || isLoopInvariant(IdxExpr
, L
) ||
4388 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
4389 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
4390 return getCouldNotCompute();
4392 unsigned MaxSteps
= MaxBruteForceIterations
;
4393 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
4394 ConstantInt
*ItCst
= ConstantInt::get(
4395 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
4396 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
4398 // Form the GEP offset.
4399 Indexes
[VarIdxNum
] = Val
;
4401 Constant
*Result
= GetAddressedElementFromGlobal(GV
, Indexes
);
4402 if (Result
== 0) break; // Cannot compute!
4404 // Evaluate the condition for this iteration.
4405 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
4406 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
4407 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
4409 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4410 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
4413 ++NumArrayLenItCounts
;
4414 return getConstant(ItCst
); // Found terminating iteration!
4417 return getCouldNotCompute();
4421 /// CanConstantFold - Return true if we can constant fold an instruction of the
4422 /// specified type, assuming that all operands were constants.
4423 static bool CanConstantFold(const Instruction
*I
) {
4424 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
4425 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
4428 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
4429 if (const Function
*F
= CI
->getCalledFunction())
4430 return canConstantFoldCallTo(F
);
4434 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4435 /// in the loop that V is derived from. We allow arbitrary operations along the
4436 /// way, but the operands of an operation must either be constants or a value
4437 /// derived from a constant PHI. If this expression does not fit with these
4438 /// constraints, return null.
4439 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
4440 // If this is not an instruction, or if this is an instruction outside of the
4441 // loop, it can't be derived from a loop PHI.
4442 Instruction
*I
= dyn_cast
<Instruction
>(V
);
4443 if (I
== 0 || !L
->contains(I
)) return 0;
4445 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
4446 if (L
->getHeader() == I
->getParent())
4449 // We don't currently keep track of the control flow needed to evaluate
4450 // PHIs, so we cannot handle PHIs inside of loops.
4454 // If we won't be able to constant fold this expression even if the operands
4455 // are constants, return early.
4456 if (!CanConstantFold(I
)) return 0;
4458 // Otherwise, we can evaluate this instruction if all of its operands are
4459 // constant or derived from a PHI node themselves.
4461 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
4462 if (!isa
<Constant
>(I
->getOperand(Op
))) {
4463 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
4464 if (P
== 0) return 0; // Not evolving from PHI
4468 return 0; // Evolving from multiple different PHIs.
4471 // This is a expression evolving from a constant PHI!
4475 /// EvaluateExpression - Given an expression that passes the
4476 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4477 /// in the loop has the value PHIVal. If we can't fold this expression for some
4478 /// reason, return null.
4479 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
,
4480 const TargetData
*TD
) {
4481 if (isa
<PHINode
>(V
)) return PHIVal
;
4482 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
4483 Instruction
*I
= cast
<Instruction
>(V
);
4485 std::vector
<Constant
*> Operands(I
->getNumOperands());
4487 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
4488 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
, TD
);
4489 if (Operands
[i
] == 0) return 0;
4492 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
4493 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Operands
[0],
4495 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
4496 &Operands
[0], Operands
.size(), TD
);
4499 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4500 /// in the header of its containing loop, we know the loop executes a
4501 /// constant number of times, and the PHI node is just a recurrence
4502 /// involving constants, fold it.
4504 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
4507 DenseMap
<PHINode
*, Constant
*>::const_iterator I
=
4508 ConstantEvolutionLoopExitValue
.find(PN
);
4509 if (I
!= ConstantEvolutionLoopExitValue
.end())
4512 if (BEs
.ugt(MaxBruteForceIterations
))
4513 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
4515 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
4517 // Since the loop is canonicalized, the PHI node must have two entries. One
4518 // entry must be a constant (coming in from outside of the loop), and the
4519 // second must be derived from the same PHI.
4520 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
4521 Constant
*StartCST
=
4522 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
4524 return RetVal
= 0; // Must be a constant.
4526 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
4527 if (getConstantEvolvingPHI(BEValue
, L
) != PN
&&
4528 !isa
<Constant
>(BEValue
))
4529 return RetVal
= 0; // Not derived from same PHI.
4531 // Execute the loop symbolically to determine the exit value.
4532 if (BEs
.getActiveBits() >= 32)
4533 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
4535 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
4536 unsigned IterationNum
= 0;
4537 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
4538 if (IterationNum
== NumIterations
)
4539 return RetVal
= PHIVal
; // Got exit value!
4541 // Compute the value of the PHI node for the next iteration.
4542 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
, TD
);
4543 if (NextPHI
== PHIVal
)
4544 return RetVal
= NextPHI
; // Stopped evolving!
4546 return 0; // Couldn't evaluate!
4551 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4552 /// constant number of times (the condition evolves only from constants),
4553 /// try to evaluate a few iterations of the loop until we get the exit
4554 /// condition gets a value of ExitWhen (true or false). If we cannot
4555 /// evaluate the trip count of the loop, return getCouldNotCompute().
4557 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop
*L
,
4560 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
4561 if (PN
== 0) return getCouldNotCompute();
4563 // If the loop is canonicalized, the PHI will have exactly two entries.
4564 // That's the only form we support here.
4565 if (PN
->getNumIncomingValues() != 2) return getCouldNotCompute();
4567 // One entry must be a constant (coming in from outside of the loop), and the
4568 // second must be derived from the same PHI.
4569 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
4570 Constant
*StartCST
=
4571 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
4572 if (StartCST
== 0) return getCouldNotCompute(); // Must be a constant.
4574 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
4575 if (getConstantEvolvingPHI(BEValue
, L
) != PN
&&
4576 !isa
<Constant
>(BEValue
))
4577 return getCouldNotCompute(); // Not derived from same PHI.
4579 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4580 // the loop symbolically to determine when the condition gets a value of
4582 unsigned IterationNum
= 0;
4583 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
4584 for (Constant
*PHIVal
= StartCST
;
4585 IterationNum
!= MaxIterations
; ++IterationNum
) {
4586 ConstantInt
*CondVal
=
4587 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
, TD
));
4589 // Couldn't symbolically evaluate.
4590 if (!CondVal
) return getCouldNotCompute();
4592 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
4593 ++NumBruteForceTripCountsComputed
;
4594 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
4597 // Compute the value of the PHI node for the next iteration.
4598 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
, TD
);
4599 if (NextPHI
== 0 || NextPHI
== PHIVal
)
4600 return getCouldNotCompute();// Couldn't evaluate or not making progress...
4604 // Too many iterations were needed to evaluate.
4605 return getCouldNotCompute();
4608 /// getSCEVAtScope - Return a SCEV expression for the specified value
4609 /// at the specified scope in the program. The L value specifies a loop
4610 /// nest to evaluate the expression at, where null is the top-level or a
4611 /// specified loop is immediately inside of the loop.
4613 /// This method can be used to compute the exit value for a variable defined
4614 /// in a loop by querying what the value will hold in the parent loop.
4616 /// In the case that a relevant loop exit value cannot be computed, the
4617 /// original value V is returned.
4618 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
4619 // Check to see if we've folded this expression at this loop before.
4620 std::map
<const Loop
*, const SCEV
*> &Values
= ValuesAtScopes
[V
];
4621 std::pair
<std::map
<const Loop
*, const SCEV
*>::iterator
, bool> Pair
=
4622 Values
.insert(std::make_pair(L
, static_cast<const SCEV
*>(0)));
4624 return Pair
.first
->second
? Pair
.first
->second
: V
;
4626 // Otherwise compute it.
4627 const SCEV
*C
= computeSCEVAtScope(V
, L
);
4628 ValuesAtScopes
[V
][L
] = C
;
4632 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
4633 if (isa
<SCEVConstant
>(V
)) return V
;
4635 // If this instruction is evolved from a constant-evolving PHI, compute the
4636 // exit value from the loop without using SCEVs.
4637 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
4638 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
4639 const Loop
*LI
= (*this->LI
)[I
->getParent()];
4640 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
4641 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
4642 if (PN
->getParent() == LI
->getHeader()) {
4643 // Okay, there is no closed form solution for the PHI node. Check
4644 // to see if the loop that contains it has a known backedge-taken
4645 // count. If so, we may be able to force computation of the exit
4647 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(LI
);
4648 if (const SCEVConstant
*BTCC
=
4649 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
4650 // Okay, we know how many times the containing loop executes. If
4651 // this is a constant evolving PHI node, get the final value at
4652 // the specified iteration number.
4653 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
4654 BTCC
->getValue()->getValue(),
4656 if (RV
) return getSCEV(RV
);
4660 // Okay, this is an expression that we cannot symbolically evaluate
4661 // into a SCEV. Check to see if it's possible to symbolically evaluate
4662 // the arguments into constants, and if so, try to constant propagate the
4663 // result. This is particularly useful for computing loop exit values.
4664 if (CanConstantFold(I
)) {
4665 SmallVector
<Constant
*, 4> Operands
;
4666 bool MadeImprovement
= false;
4667 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
4668 Value
*Op
= I
->getOperand(i
);
4669 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
4670 Operands
.push_back(C
);
4674 // If any of the operands is non-constant and if they are
4675 // non-integer and non-pointer, don't even try to analyze them
4676 // with scev techniques.
4677 if (!isSCEVable(Op
->getType()))
4680 const SCEV
*OrigV
= getSCEV(Op
);
4681 const SCEV
*OpV
= getSCEVAtScope(OrigV
, L
);
4682 MadeImprovement
|= OrigV
!= OpV
;
4685 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
))
4687 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
))
4688 C
= dyn_cast
<Constant
>(SU
->getValue());
4690 if (C
->getType() != Op
->getType())
4691 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
4695 Operands
.push_back(C
);
4698 // Check to see if getSCEVAtScope actually made an improvement.
4699 if (MadeImprovement
) {
4701 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
4702 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
4703 Operands
[0], Operands
[1], TD
);
4705 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
4706 &Operands
[0], Operands
.size(), TD
);
4713 // This is some other type of SCEVUnknown, just return it.
4717 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
4718 // Avoid performing the look-up in the common case where the specified
4719 // expression has no loop-variant portions.
4720 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
4721 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
4722 if (OpAtScope
!= Comm
->getOperand(i
)) {
4723 // Okay, at least one of these operands is loop variant but might be
4724 // foldable. Build a new instance of the folded commutative expression.
4725 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
4726 Comm
->op_begin()+i
);
4727 NewOps
.push_back(OpAtScope
);
4729 for (++i
; i
!= e
; ++i
) {
4730 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
4731 NewOps
.push_back(OpAtScope
);
4733 if (isa
<SCEVAddExpr
>(Comm
))
4734 return getAddExpr(NewOps
);
4735 if (isa
<SCEVMulExpr
>(Comm
))
4736 return getMulExpr(NewOps
);
4737 if (isa
<SCEVSMaxExpr
>(Comm
))
4738 return getSMaxExpr(NewOps
);
4739 if (isa
<SCEVUMaxExpr
>(Comm
))
4740 return getUMaxExpr(NewOps
);
4741 llvm_unreachable("Unknown commutative SCEV type!");
4744 // If we got here, all operands are loop invariant.
4748 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
4749 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
4750 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
4751 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
4752 return Div
; // must be loop invariant
4753 return getUDivExpr(LHS
, RHS
);
4756 // If this is a loop recurrence for a loop that does not contain L, then we
4757 // are dealing with the final value computed by the loop.
4758 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
4759 // First, attempt to evaluate each operand.
4760 // Avoid performing the look-up in the common case where the specified
4761 // expression has no loop-variant portions.
4762 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
4763 const SCEV
*OpAtScope
= getSCEVAtScope(AddRec
->getOperand(i
), L
);
4764 if (OpAtScope
== AddRec
->getOperand(i
))
4767 // Okay, at least one of these operands is loop variant but might be
4768 // foldable. Build a new instance of the folded commutative expression.
4769 SmallVector
<const SCEV
*, 8> NewOps(AddRec
->op_begin(),
4770 AddRec
->op_begin()+i
);
4771 NewOps
.push_back(OpAtScope
);
4772 for (++i
; i
!= e
; ++i
)
4773 NewOps
.push_back(getSCEVAtScope(AddRec
->getOperand(i
), L
));
4775 const SCEV
*FoldedRec
=
4776 getAddRecExpr(NewOps
, AddRec
->getLoop(),
4777 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
4778 AddRec
= dyn_cast
<SCEVAddRecExpr
>(FoldedRec
);
4779 // The addrec may be folded to a nonrecurrence, for example, if the
4780 // induction variable is multiplied by zero after constant folding. Go
4781 // ahead and return the folded value.
4787 // If the scope is outside the addrec's loop, evaluate it by using the
4788 // loop exit value of the addrec.
4789 if (!AddRec
->getLoop()->contains(L
)) {
4790 // To evaluate this recurrence, we need to know how many times the AddRec
4791 // loop iterates. Compute this now.
4792 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
4793 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
4795 // Then, evaluate the AddRec.
4796 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
4802 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
4803 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4804 if (Op
== Cast
->getOperand())
4805 return Cast
; // must be loop invariant
4806 return getZeroExtendExpr(Op
, Cast
->getType());
4809 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
4810 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4811 if (Op
== Cast
->getOperand())
4812 return Cast
; // must be loop invariant
4813 return getSignExtendExpr(Op
, Cast
->getType());
4816 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
4817 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
4818 if (Op
== Cast
->getOperand())
4819 return Cast
; // must be loop invariant
4820 return getTruncateExpr(Op
, Cast
->getType());
4823 llvm_unreachable("Unknown SCEV type!");
4827 /// getSCEVAtScope - This is a convenience function which does
4828 /// getSCEVAtScope(getSCEV(V), L).
4829 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
4830 return getSCEVAtScope(getSCEV(V
), L
);
4833 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4834 /// following equation:
4836 /// A * X = B (mod N)
4838 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4839 /// A and B isn't important.
4841 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4842 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
4843 ScalarEvolution
&SE
) {
4844 uint32_t BW
= A
.getBitWidth();
4845 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
4846 assert(A
!= 0 && "A must be non-zero.");
4850 // The gcd of A and N may have only one prime factor: 2. The number of
4851 // trailing zeros in A is its multiplicity
4852 uint32_t Mult2
= A
.countTrailingZeros();
4855 // 2. Check if B is divisible by D.
4857 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4858 // is not less than multiplicity of this prime factor for D.
4859 if (B
.countTrailingZeros() < Mult2
)
4860 return SE
.getCouldNotCompute();
4862 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4865 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4866 // bit width during computations.
4867 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
4868 APInt
Mod(BW
+ 1, 0);
4869 Mod
.setBit(BW
- Mult2
); // Mod = N / D
4870 APInt I
= AD
.multiplicativeInverse(Mod
);
4872 // 4. Compute the minimum unsigned root of the equation:
4873 // I * (B / D) mod (N / D)
4874 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
4876 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4878 return SE
.getConstant(Result
.trunc(BW
));
4881 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4882 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4883 /// might be the same) or two SCEVCouldNotCompute objects.
4885 static std::pair
<const SCEV
*,const SCEV
*>
4886 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
4887 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
4888 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
4889 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
4890 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
4892 // We currently can only solve this if the coefficients are constants.
4893 if (!LC
|| !MC
|| !NC
) {
4894 const SCEV
*CNC
= SE
.getCouldNotCompute();
4895 return std::make_pair(CNC
, CNC
);
4898 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
4899 const APInt
&L
= LC
->getValue()->getValue();
4900 const APInt
&M
= MC
->getValue()->getValue();
4901 const APInt
&N
= NC
->getValue()->getValue();
4902 APInt
Two(BitWidth
, 2);
4903 APInt
Four(BitWidth
, 4);
4906 using namespace APIntOps
;
4908 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4909 // The B coefficient is M-N/2
4913 // The A coefficient is N/2
4914 APInt
A(N
.sdiv(Two
));
4916 // Compute the B^2-4ac term.
4919 SqrtTerm
-= Four
* (A
* C
);
4921 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4922 // integer value or else APInt::sqrt() will assert.
4923 APInt
SqrtVal(SqrtTerm
.sqrt());
4925 // Compute the two solutions for the quadratic formula.
4926 // The divisions must be performed as signed divisions.
4928 APInt
TwoA( A
<< 1 );
4929 if (TwoA
.isMinValue()) {
4930 const SCEV
*CNC
= SE
.getCouldNotCompute();
4931 return std::make_pair(CNC
, CNC
);
4934 LLVMContext
&Context
= SE
.getContext();
4936 ConstantInt
*Solution1
=
4937 ConstantInt::get(Context
, (NegB
+ SqrtVal
).sdiv(TwoA
));
4938 ConstantInt
*Solution2
=
4939 ConstantInt::get(Context
, (NegB
- SqrtVal
).sdiv(TwoA
));
4941 return std::make_pair(SE
.getConstant(Solution1
),
4942 SE
.getConstant(Solution2
));
4943 } // end APIntOps namespace
4946 /// HowFarToZero - Return the number of times a backedge comparing the specified
4947 /// value to zero will execute. If not computable, return CouldNotCompute.
4949 /// This is only used for loops with a "x != y" exit test. The exit condition is
4950 /// now expressed as a single expression, V = x-y. So the exit test is
4951 /// effectively V != 0. We know and take advantage of the fact that this
4952 /// expression only being used in a comparison by zero context.
4953 ScalarEvolution::BackedgeTakenInfo
4954 ScalarEvolution::HowFarToZero(const SCEV
*V
, const Loop
*L
) {
4955 // If the value is a constant
4956 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4957 // If the value is already zero, the branch will execute zero times.
4958 if (C
->getValue()->isZero()) return C
;
4959 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4962 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
4963 if (!AddRec
|| AddRec
->getLoop() != L
)
4964 return getCouldNotCompute();
4966 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4967 // the quadratic equation to solve it.
4968 if (AddRec
->isQuadratic() && AddRec
->getType()->isIntegerTy()) {
4969 std::pair
<const SCEV
*,const SCEV
*> Roots
=
4970 SolveQuadraticEquation(AddRec
, *this);
4971 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4972 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4975 dbgs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
4976 << " sol#2: " << *R2
<< "\n";
4978 // Pick the smallest positive root value.
4979 if (ConstantInt
*CB
=
4980 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(CmpInst::ICMP_ULT
,
4983 if (CB
->getZExtValue() == false)
4984 std::swap(R1
, R2
); // R1 is the minimum root now.
4986 // We can only use this value if the chrec ends up with an exact zero
4987 // value at this index. When solving for "X*X != 5", for example, we
4988 // should not accept a root of 2.
4989 const SCEV
*Val
= AddRec
->evaluateAtIteration(R1
, *this);
4991 return R1
; // We found a quadratic root!
4994 return getCouldNotCompute();
4997 // Otherwise we can only handle this if it is affine.
4998 if (!AddRec
->isAffine())
4999 return getCouldNotCompute();
5001 // If this is an affine expression, the execution count of this branch is
5002 // the minimum unsigned root of the following equation:
5004 // Start + Step*N = 0 (mod 2^BW)
5008 // Step*N = -Start (mod 2^BW)
5010 // where BW is the common bit width of Start and Step.
5012 // Get the initial value for the loop.
5013 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
5014 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
5016 // For now we handle only constant steps.
5018 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5019 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5020 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5021 // We have not yet seen any such cases.
5022 const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
);
5024 return getCouldNotCompute();
5026 // For positive steps (counting up until unsigned overflow):
5027 // N = -Start/Step (as unsigned)
5028 // For negative steps (counting down to zero):
5030 // First compute the unsigned distance from zero in the direction of Step.
5031 bool CountDown
= StepC
->getValue()->getValue().isNegative();
5032 const SCEV
*Distance
= CountDown
? Start
: getNegativeSCEV(Start
);
5034 // Handle unitary steps, which cannot wraparound.
5035 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5036 // N = Distance (as unsigned)
5037 if (StepC
->getValue()->equalsInt(1) || StepC
->getValue()->isAllOnesValue())
5040 // If the recurrence is known not to wraparound, unsigned divide computes the
5041 // back edge count. We know that the value will either become zero (and thus
5042 // the loop terminates), that the loop will terminate through some other exit
5043 // condition first, or that the loop has undefined behavior. This means
5044 // we can't "miss" the exit value, even with nonunit stride.
5046 // FIXME: Prove that loops always exhibits *acceptable* undefined
5047 // behavior. Loops must exhibit defined behavior until a wrapped value is
5048 // actually used. So the trip count computed by udiv could be smaller than the
5049 // number of well-defined iterations.
5050 if (AddRec
->getNoWrapFlags(SCEV::FlagNW
))
5051 // FIXME: We really want an "isexact" bit for udiv.
5052 return getUDivExpr(Distance
, CountDown
? getNegativeSCEV(Step
) : Step
);
5054 // Then, try to solve the above equation provided that Start is constant.
5055 if (const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
5056 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
5057 -StartC
->getValue()->getValue(),
5059 return getCouldNotCompute();
5062 /// HowFarToNonZero - Return the number of times a backedge checking the
5063 /// specified value for nonzero will execute. If not computable, return
5065 ScalarEvolution::BackedgeTakenInfo
5066 ScalarEvolution::HowFarToNonZero(const SCEV
*V
, const Loop
*L
) {
5067 // Loops that look like: while (X == 0) are very strange indeed. We don't
5068 // handle them yet except for the trivial case. This could be expanded in the
5069 // future as needed.
5071 // If the value is a constant, check to see if it is known to be non-zero
5072 // already. If so, the backedge will execute zero times.
5073 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
5074 if (!C
->getValue()->isNullValue())
5075 return getConstant(C
->getType(), 0);
5076 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5079 // We could implement others, but I really doubt anyone writes loops like
5080 // this, and if they did, they would already be constant folded.
5081 return getCouldNotCompute();
5084 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5085 /// (which may not be an immediate predecessor) which has exactly one
5086 /// successor from which BB is reachable, or null if no such block is
5089 std::pair
<BasicBlock
*, BasicBlock
*>
5090 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
5091 // If the block has a unique predecessor, then there is no path from the
5092 // predecessor to the block that does not go through the direct edge
5093 // from the predecessor to the block.
5094 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
5095 return std::make_pair(Pred
, BB
);
5097 // A loop's header is defined to be a block that dominates the loop.
5098 // If the header has a unique predecessor outside the loop, it must be
5099 // a block that has exactly one successor that can reach the loop.
5100 if (Loop
*L
= LI
->getLoopFor(BB
))
5101 return std::make_pair(L
->getLoopPredecessor(), L
->getHeader());
5103 return std::pair
<BasicBlock
*, BasicBlock
*>();
5106 /// HasSameValue - SCEV structural equivalence is usually sufficient for
5107 /// testing whether two expressions are equal, however for the purposes of
5108 /// looking for a condition guarding a loop, it can be useful to be a little
5109 /// more general, since a front-end may have replicated the controlling
5112 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
5113 // Quick check to see if they are the same SCEV.
5114 if (A
== B
) return true;
5116 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5117 // two different instructions with the same value. Check for this case.
5118 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
5119 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
5120 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
5121 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
5122 if (AI
->isIdenticalTo(BI
) && !AI
->mayReadFromMemory())
5125 // Otherwise assume they may have a different value.
5129 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5130 /// predicate Pred. Return true iff any changes were made.
5132 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate
&Pred
,
5133 const SCEV
*&LHS
, const SCEV
*&RHS
) {
5134 bool Changed
= false;
5136 // Canonicalize a constant to the right side.
5137 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
5138 // Check for both operands constant.
5139 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
5140 if (ConstantExpr::getICmp(Pred
,
5142 RHSC
->getValue())->isNullValue())
5143 goto trivially_false
;
5145 goto trivially_true
;
5147 // Otherwise swap the operands to put the constant on the right.
5148 std::swap(LHS
, RHS
);
5149 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5153 // If we're comparing an addrec with a value which is loop-invariant in the
5154 // addrec's loop, put the addrec on the left. Also make a dominance check,
5155 // as both operands could be addrecs loop-invariant in each other's loop.
5156 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
)) {
5157 const Loop
*L
= AR
->getLoop();
5158 if (isLoopInvariant(LHS
, L
) && properlyDominates(LHS
, L
->getHeader())) {
5159 std::swap(LHS
, RHS
);
5160 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5165 // If there's a constant operand, canonicalize comparisons with boundary
5166 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5167 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
5168 const APInt
&RA
= RC
->getValue()->getValue();
5170 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5171 case ICmpInst::ICMP_EQ
:
5172 case ICmpInst::ICMP_NE
:
5174 case ICmpInst::ICMP_UGE
:
5175 if ((RA
- 1).isMinValue()) {
5176 Pred
= ICmpInst::ICMP_NE
;
5177 RHS
= getConstant(RA
- 1);
5181 if (RA
.isMaxValue()) {
5182 Pred
= ICmpInst::ICMP_EQ
;
5186 if (RA
.isMinValue()) goto trivially_true
;
5188 Pred
= ICmpInst::ICMP_UGT
;
5189 RHS
= getConstant(RA
- 1);
5192 case ICmpInst::ICMP_ULE
:
5193 if ((RA
+ 1).isMaxValue()) {
5194 Pred
= ICmpInst::ICMP_NE
;
5195 RHS
= getConstant(RA
+ 1);
5199 if (RA
.isMinValue()) {
5200 Pred
= ICmpInst::ICMP_EQ
;
5204 if (RA
.isMaxValue()) goto trivially_true
;
5206 Pred
= ICmpInst::ICMP_ULT
;
5207 RHS
= getConstant(RA
+ 1);
5210 case ICmpInst::ICMP_SGE
:
5211 if ((RA
- 1).isMinSignedValue()) {
5212 Pred
= ICmpInst::ICMP_NE
;
5213 RHS
= getConstant(RA
- 1);
5217 if (RA
.isMaxSignedValue()) {
5218 Pred
= ICmpInst::ICMP_EQ
;
5222 if (RA
.isMinSignedValue()) goto trivially_true
;
5224 Pred
= ICmpInst::ICMP_SGT
;
5225 RHS
= getConstant(RA
- 1);
5228 case ICmpInst::ICMP_SLE
:
5229 if ((RA
+ 1).isMaxSignedValue()) {
5230 Pred
= ICmpInst::ICMP_NE
;
5231 RHS
= getConstant(RA
+ 1);
5235 if (RA
.isMinSignedValue()) {
5236 Pred
= ICmpInst::ICMP_EQ
;
5240 if (RA
.isMaxSignedValue()) goto trivially_true
;
5242 Pred
= ICmpInst::ICMP_SLT
;
5243 RHS
= getConstant(RA
+ 1);
5246 case ICmpInst::ICMP_UGT
:
5247 if (RA
.isMinValue()) {
5248 Pred
= ICmpInst::ICMP_NE
;
5252 if ((RA
+ 1).isMaxValue()) {
5253 Pred
= ICmpInst::ICMP_EQ
;
5254 RHS
= getConstant(RA
+ 1);
5258 if (RA
.isMaxValue()) goto trivially_false
;
5260 case ICmpInst::ICMP_ULT
:
5261 if (RA
.isMaxValue()) {
5262 Pred
= ICmpInst::ICMP_NE
;
5266 if ((RA
- 1).isMinValue()) {
5267 Pred
= ICmpInst::ICMP_EQ
;
5268 RHS
= getConstant(RA
- 1);
5272 if (RA
.isMinValue()) goto trivially_false
;
5274 case ICmpInst::ICMP_SGT
:
5275 if (RA
.isMinSignedValue()) {
5276 Pred
= ICmpInst::ICMP_NE
;
5280 if ((RA
+ 1).isMaxSignedValue()) {
5281 Pred
= ICmpInst::ICMP_EQ
;
5282 RHS
= getConstant(RA
+ 1);
5286 if (RA
.isMaxSignedValue()) goto trivially_false
;
5288 case ICmpInst::ICMP_SLT
:
5289 if (RA
.isMaxSignedValue()) {
5290 Pred
= ICmpInst::ICMP_NE
;
5294 if ((RA
- 1).isMinSignedValue()) {
5295 Pred
= ICmpInst::ICMP_EQ
;
5296 RHS
= getConstant(RA
- 1);
5300 if (RA
.isMinSignedValue()) goto trivially_false
;
5305 // Check for obvious equality.
5306 if (HasSameValue(LHS
, RHS
)) {
5307 if (ICmpInst::isTrueWhenEqual(Pred
))
5308 goto trivially_true
;
5309 if (ICmpInst::isFalseWhenEqual(Pred
))
5310 goto trivially_false
;
5313 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5314 // adding or subtracting 1 from one of the operands.
5316 case ICmpInst::ICMP_SLE
:
5317 if (!getSignedRange(RHS
).getSignedMax().isMaxSignedValue()) {
5318 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
5320 Pred
= ICmpInst::ICMP_SLT
;
5322 } else if (!getSignedRange(LHS
).getSignedMin().isMinSignedValue()) {
5323 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
5325 Pred
= ICmpInst::ICMP_SLT
;
5329 case ICmpInst::ICMP_SGE
:
5330 if (!getSignedRange(RHS
).getSignedMin().isMinSignedValue()) {
5331 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
5333 Pred
= ICmpInst::ICMP_SGT
;
5335 } else if (!getSignedRange(LHS
).getSignedMax().isMaxSignedValue()) {
5336 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
5338 Pred
= ICmpInst::ICMP_SGT
;
5342 case ICmpInst::ICMP_ULE
:
5343 if (!getUnsignedRange(RHS
).getUnsignedMax().isMaxValue()) {
5344 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
5346 Pred
= ICmpInst::ICMP_ULT
;
5348 } else if (!getUnsignedRange(LHS
).getUnsignedMin().isMinValue()) {
5349 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
5351 Pred
= ICmpInst::ICMP_ULT
;
5355 case ICmpInst::ICMP_UGE
:
5356 if (!getUnsignedRange(RHS
).getUnsignedMin().isMinValue()) {
5357 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
5359 Pred
= ICmpInst::ICMP_UGT
;
5361 } else if (!getUnsignedRange(LHS
).getUnsignedMax().isMaxValue()) {
5362 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
5364 Pred
= ICmpInst::ICMP_UGT
;
5372 // TODO: More simplifications are possible here.
5378 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
5379 Pred
= ICmpInst::ICMP_EQ
;
5384 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
5385 Pred
= ICmpInst::ICMP_NE
;
5389 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
5390 return getSignedRange(S
).getSignedMax().isNegative();
5393 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
5394 return getSignedRange(S
).getSignedMin().isStrictlyPositive();
5397 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
5398 return !getSignedRange(S
).getSignedMin().isNegative();
5401 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
5402 return !getSignedRange(S
).getSignedMax().isStrictlyPositive();
5405 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
5406 return isKnownNegative(S
) || isKnownPositive(S
);
5409 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
5410 const SCEV
*LHS
, const SCEV
*RHS
) {
5411 // Canonicalize the inputs first.
5412 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
5414 // If LHS or RHS is an addrec, check to see if the condition is true in
5415 // every iteration of the loop.
5416 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
5417 if (isLoopEntryGuardedByCond(
5418 AR
->getLoop(), Pred
, AR
->getStart(), RHS
) &&
5419 isLoopBackedgeGuardedByCond(
5420 AR
->getLoop(), Pred
, AR
->getPostIncExpr(*this), RHS
))
5422 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
))
5423 if (isLoopEntryGuardedByCond(
5424 AR
->getLoop(), Pred
, LHS
, AR
->getStart()) &&
5425 isLoopBackedgeGuardedByCond(
5426 AR
->getLoop(), Pred
, LHS
, AR
->getPostIncExpr(*this)))
5429 // Otherwise see what can be done with known constant ranges.
5430 return isKnownPredicateWithRanges(Pred
, LHS
, RHS
);
5434 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred
,
5435 const SCEV
*LHS
, const SCEV
*RHS
) {
5436 if (HasSameValue(LHS
, RHS
))
5437 return ICmpInst::isTrueWhenEqual(Pred
);
5439 // This code is split out from isKnownPredicate because it is called from
5440 // within isLoopEntryGuardedByCond.
5443 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5445 case ICmpInst::ICMP_SGT
:
5446 Pred
= ICmpInst::ICMP_SLT
;
5447 std::swap(LHS
, RHS
);
5448 case ICmpInst::ICMP_SLT
: {
5449 ConstantRange LHSRange
= getSignedRange(LHS
);
5450 ConstantRange RHSRange
= getSignedRange(RHS
);
5451 if (LHSRange
.getSignedMax().slt(RHSRange
.getSignedMin()))
5453 if (LHSRange
.getSignedMin().sge(RHSRange
.getSignedMax()))
5457 case ICmpInst::ICMP_SGE
:
5458 Pred
= ICmpInst::ICMP_SLE
;
5459 std::swap(LHS
, RHS
);
5460 case ICmpInst::ICMP_SLE
: {
5461 ConstantRange LHSRange
= getSignedRange(LHS
);
5462 ConstantRange RHSRange
= getSignedRange(RHS
);
5463 if (LHSRange
.getSignedMax().sle(RHSRange
.getSignedMin()))
5465 if (LHSRange
.getSignedMin().sgt(RHSRange
.getSignedMax()))
5469 case ICmpInst::ICMP_UGT
:
5470 Pred
= ICmpInst::ICMP_ULT
;
5471 std::swap(LHS
, RHS
);
5472 case ICmpInst::ICMP_ULT
: {
5473 ConstantRange LHSRange
= getUnsignedRange(LHS
);
5474 ConstantRange RHSRange
= getUnsignedRange(RHS
);
5475 if (LHSRange
.getUnsignedMax().ult(RHSRange
.getUnsignedMin()))
5477 if (LHSRange
.getUnsignedMin().uge(RHSRange
.getUnsignedMax()))
5481 case ICmpInst::ICMP_UGE
:
5482 Pred
= ICmpInst::ICMP_ULE
;
5483 std::swap(LHS
, RHS
);
5484 case ICmpInst::ICMP_ULE
: {
5485 ConstantRange LHSRange
= getUnsignedRange(LHS
);
5486 ConstantRange RHSRange
= getUnsignedRange(RHS
);
5487 if (LHSRange
.getUnsignedMax().ule(RHSRange
.getUnsignedMin()))
5489 if (LHSRange
.getUnsignedMin().ugt(RHSRange
.getUnsignedMax()))
5493 case ICmpInst::ICMP_NE
: {
5494 if (getUnsignedRange(LHS
).intersectWith(getUnsignedRange(RHS
)).isEmptySet())
5496 if (getSignedRange(LHS
).intersectWith(getSignedRange(RHS
)).isEmptySet())
5499 const SCEV
*Diff
= getMinusSCEV(LHS
, RHS
);
5500 if (isKnownNonZero(Diff
))
5504 case ICmpInst::ICMP_EQ
:
5505 // The check at the top of the function catches the case where
5506 // the values are known to be equal.
5512 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5513 /// protected by a conditional between LHS and RHS. This is used to
5514 /// to eliminate casts.
5516 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
5517 ICmpInst::Predicate Pred
,
5518 const SCEV
*LHS
, const SCEV
*RHS
) {
5519 // Interpret a null as meaning no loop, where there is obviously no guard
5520 // (interprocedural conditions notwithstanding).
5521 if (!L
) return true;
5523 BasicBlock
*Latch
= L
->getLoopLatch();
5527 BranchInst
*LoopContinuePredicate
=
5528 dyn_cast
<BranchInst
>(Latch
->getTerminator());
5529 if (!LoopContinuePredicate
||
5530 LoopContinuePredicate
->isUnconditional())
5533 return isImpliedCond(Pred
, LHS
, RHS
,
5534 LoopContinuePredicate
->getCondition(),
5535 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader());
5538 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5539 /// by a conditional between LHS and RHS. This is used to help avoid max
5540 /// expressions in loop trip counts, and to eliminate casts.
5542 ScalarEvolution::isLoopEntryGuardedByCond(const Loop
*L
,
5543 ICmpInst::Predicate Pred
,
5544 const SCEV
*LHS
, const SCEV
*RHS
) {
5545 // Interpret a null as meaning no loop, where there is obviously no guard
5546 // (interprocedural conditions notwithstanding).
5547 if (!L
) return false;
5549 // Starting at the loop predecessor, climb up the predecessor chain, as long
5550 // as there are predecessors that can be found that have unique successors
5551 // leading to the original header.
5552 for (std::pair
<BasicBlock
*, BasicBlock
*>
5553 Pair(L
->getLoopPredecessor(), L
->getHeader());
5555 Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
5557 BranchInst
*LoopEntryPredicate
=
5558 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
5559 if (!LoopEntryPredicate
||
5560 LoopEntryPredicate
->isUnconditional())
5563 if (isImpliedCond(Pred
, LHS
, RHS
,
5564 LoopEntryPredicate
->getCondition(),
5565 LoopEntryPredicate
->getSuccessor(0) != Pair
.second
))
5572 /// isImpliedCond - Test whether the condition described by Pred, LHS,
5573 /// and RHS is true whenever the given Cond value evaluates to true.
5574 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
,
5575 const SCEV
*LHS
, const SCEV
*RHS
,
5576 Value
*FoundCondValue
,
5578 // Recursively handle And and Or conditions.
5579 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FoundCondValue
)) {
5580 if (BO
->getOpcode() == Instruction::And
) {
5582 return isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(0), Inverse
) ||
5583 isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(1), Inverse
);
5584 } else if (BO
->getOpcode() == Instruction::Or
) {
5586 return isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(0), Inverse
) ||
5587 isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(1), Inverse
);
5591 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(FoundCondValue
);
5592 if (!ICI
) return false;
5594 // Bail if the ICmp's operands' types are wider than the needed type
5595 // before attempting to call getSCEV on them. This avoids infinite
5596 // recursion, since the analysis of widening casts can require loop
5597 // exit condition information for overflow checking, which would
5599 if (getTypeSizeInBits(LHS
->getType()) <
5600 getTypeSizeInBits(ICI
->getOperand(0)->getType()))
5603 // Now that we found a conditional branch that dominates the loop, check to
5604 // see if it is the comparison we are looking for.
5605 ICmpInst::Predicate FoundPred
;
5607 FoundPred
= ICI
->getInversePredicate();
5609 FoundPred
= ICI
->getPredicate();
5611 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
5612 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
5614 // Balance the types. The case where FoundLHS' type is wider than
5615 // LHS' type is checked for above.
5616 if (getTypeSizeInBits(LHS
->getType()) >
5617 getTypeSizeInBits(FoundLHS
->getType())) {
5618 if (CmpInst::isSigned(Pred
)) {
5619 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
5620 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
5622 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
5623 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
5627 // Canonicalize the query to match the way instcombine will have
5628 // canonicalized the comparison.
5629 if (SimplifyICmpOperands(Pred
, LHS
, RHS
))
5631 return CmpInst::isTrueWhenEqual(Pred
);
5632 if (SimplifyICmpOperands(FoundPred
, FoundLHS
, FoundRHS
))
5633 if (FoundLHS
== FoundRHS
)
5634 return CmpInst::isFalseWhenEqual(Pred
);
5636 // Check to see if we can make the LHS or RHS match.
5637 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
5638 if (isa
<SCEVConstant
>(RHS
)) {
5639 std::swap(FoundLHS
, FoundRHS
);
5640 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
5642 std::swap(LHS
, RHS
);
5643 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5647 // Check whether the found predicate is the same as the desired predicate.
5648 if (FoundPred
== Pred
)
5649 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
5651 // Check whether swapping the found predicate makes it the same as the
5652 // desired predicate.
5653 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
5654 if (isa
<SCEVConstant
>(RHS
))
5655 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
);
5657 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred
),
5658 RHS
, LHS
, FoundLHS
, FoundRHS
);
5661 // Check whether the actual condition is beyond sufficient.
5662 if (FoundPred
== ICmpInst::ICMP_EQ
)
5663 if (ICmpInst::isTrueWhenEqual(Pred
))
5664 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
5666 if (Pred
== ICmpInst::ICMP_NE
)
5667 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
5668 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
5671 // Otherwise assume the worst.
5675 /// isImpliedCondOperands - Test whether the condition described by Pred,
5676 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5677 /// and FoundRHS is true.
5678 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
5679 const SCEV
*LHS
, const SCEV
*RHS
,
5680 const SCEV
*FoundLHS
,
5681 const SCEV
*FoundRHS
) {
5682 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
5683 FoundLHS
, FoundRHS
) ||
5684 // ~x < ~y --> x > y
5685 isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
5686 getNotSCEV(FoundRHS
),
5687 getNotSCEV(FoundLHS
));
5690 /// isImpliedCondOperandsHelper - Test whether the condition described by
5691 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
5692 /// FoundLHS, and FoundRHS is true.
5694 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
5695 const SCEV
*LHS
, const SCEV
*RHS
,
5696 const SCEV
*FoundLHS
,
5697 const SCEV
*FoundRHS
) {
5699 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5700 case ICmpInst::ICMP_EQ
:
5701 case ICmpInst::ICMP_NE
:
5702 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
5705 case ICmpInst::ICMP_SLT
:
5706 case ICmpInst::ICMP_SLE
:
5707 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
5708 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
5711 case ICmpInst::ICMP_SGT
:
5712 case ICmpInst::ICMP_SGE
:
5713 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
5714 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
5717 case ICmpInst::ICMP_ULT
:
5718 case ICmpInst::ICMP_ULE
:
5719 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
5720 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
5723 case ICmpInst::ICMP_UGT
:
5724 case ICmpInst::ICMP_UGE
:
5725 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
5726 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
5734 /// getBECount - Subtract the end and start values and divide by the step,
5735 /// rounding up, to get the number of times the backedge is executed. Return
5736 /// CouldNotCompute if an intermediate computation overflows.
5737 const SCEV
*ScalarEvolution::getBECount(const SCEV
*Start
,
5741 assert(!isKnownNegative(Step
) &&
5742 "This code doesn't handle negative strides yet!");
5744 const Type
*Ty
= Start
->getType();
5746 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5747 // here because SCEV may not be able to determine that the unsigned division
5748 // after rounding is zero.
5750 return getConstant(Ty
, 0);
5752 const SCEV
*NegOne
= getConstant(Ty
, (uint64_t)-1);
5753 const SCEV
*Diff
= getMinusSCEV(End
, Start
);
5754 const SCEV
*RoundUp
= getAddExpr(Step
, NegOne
);
5756 // Add an adjustment to the difference between End and Start so that
5757 // the division will effectively round up.
5758 const SCEV
*Add
= getAddExpr(Diff
, RoundUp
);
5761 // Check Add for unsigned overflow.
5762 // TODO: More sophisticated things could be done here.
5763 const Type
*WideTy
= IntegerType::get(getContext(),
5764 getTypeSizeInBits(Ty
) + 1);
5765 const SCEV
*EDiff
= getZeroExtendExpr(Diff
, WideTy
);
5766 const SCEV
*ERoundUp
= getZeroExtendExpr(RoundUp
, WideTy
);
5767 const SCEV
*OperandExtendedAdd
= getAddExpr(EDiff
, ERoundUp
);
5768 if (getZeroExtendExpr(Add
, WideTy
) != OperandExtendedAdd
)
5769 return getCouldNotCompute();
5772 return getUDivExpr(Add
, Step
);
5775 /// HowManyLessThans - Return the number of times a backedge containing the
5776 /// specified less-than comparison will execute. If not computable, return
5777 /// CouldNotCompute.
5778 ScalarEvolution::BackedgeTakenInfo
5779 ScalarEvolution::HowManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
5780 const Loop
*L
, bool isSigned
) {
5781 // Only handle: "ADDREC < LoopInvariant".
5782 if (!isLoopInvariant(RHS
, L
)) return getCouldNotCompute();
5784 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
5785 if (!AddRec
|| AddRec
->getLoop() != L
)
5786 return getCouldNotCompute();
5788 // Check to see if we have a flag which makes analysis easy.
5789 bool NoWrap
= isSigned
? AddRec
->getNoWrapFlags(SCEV::FlagNSW
) :
5790 AddRec
->getNoWrapFlags(SCEV::FlagNUW
);
5792 if (AddRec
->isAffine()) {
5793 unsigned BitWidth
= getTypeSizeInBits(AddRec
->getType());
5794 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
5797 return getCouldNotCompute();
5798 if (Step
->isOne()) {
5799 // With unit stride, the iteration never steps past the limit value.
5800 } else if (isKnownPositive(Step
)) {
5801 // Test whether a positive iteration can step past the limit
5802 // value and past the maximum value for its type in a single step.
5803 // Note that it's not sufficient to check NoWrap here, because even
5804 // though the value after a wrap is undefined, it's not undefined
5805 // behavior, so if wrap does occur, the loop could either terminate or
5806 // loop infinitely, but in either case, the loop is guaranteed to
5807 // iterate at least until the iteration where the wrapping occurs.
5808 const SCEV
*One
= getConstant(Step
->getType(), 1);
5810 APInt Max
= APInt::getSignedMaxValue(BitWidth
);
5811 if ((Max
- getSignedRange(getMinusSCEV(Step
, One
)).getSignedMax())
5812 .slt(getSignedRange(RHS
).getSignedMax()))
5813 return getCouldNotCompute();
5815 APInt Max
= APInt::getMaxValue(BitWidth
);
5816 if ((Max
- getUnsignedRange(getMinusSCEV(Step
, One
)).getUnsignedMax())
5817 .ult(getUnsignedRange(RHS
).getUnsignedMax()))
5818 return getCouldNotCompute();
5821 // TODO: Handle negative strides here and below.
5822 return getCouldNotCompute();
5824 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5825 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5826 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5827 // treat m-n as signed nor unsigned due to overflow possibility.
5829 // First, we get the value of the LHS in the first iteration: n
5830 const SCEV
*Start
= AddRec
->getOperand(0);
5832 // Determine the minimum constant start value.
5833 const SCEV
*MinStart
= getConstant(isSigned
?
5834 getSignedRange(Start
).getSignedMin() :
5835 getUnsignedRange(Start
).getUnsignedMin());
5837 // If we know that the condition is true in order to enter the loop,
5838 // then we know that it will run exactly (m-n)/s times. Otherwise, we
5839 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5840 // the division must round up.
5841 const SCEV
*End
= RHS
;
5842 if (!isLoopEntryGuardedByCond(L
,
5843 isSigned
? ICmpInst::ICMP_SLT
:
5845 getMinusSCEV(Start
, Step
), RHS
))
5846 End
= isSigned
? getSMaxExpr(RHS
, Start
)
5847 : getUMaxExpr(RHS
, Start
);
5849 // Determine the maximum constant end value.
5850 const SCEV
*MaxEnd
= getConstant(isSigned
?
5851 getSignedRange(End
).getSignedMax() :
5852 getUnsignedRange(End
).getUnsignedMax());
5854 // If MaxEnd is within a step of the maximum integer value in its type,
5855 // adjust it down to the minimum value which would produce the same effect.
5856 // This allows the subsequent ceiling division of (N+(step-1))/step to
5857 // compute the correct value.
5858 const SCEV
*StepMinusOne
= getMinusSCEV(Step
,
5859 getConstant(Step
->getType(), 1));
5862 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth
)),
5865 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth
)),
5868 // Finally, we subtract these two values and divide, rounding up, to get
5869 // the number of times the backedge is executed.
5870 const SCEV
*BECount
= getBECount(Start
, End
, Step
, NoWrap
);
5872 // The maximum backedge count is similar, except using the minimum start
5873 // value and the maximum end value.
5874 // If we already have an exact constant BECount, use it instead.
5875 const SCEV
*MaxBECount
= isa
<SCEVConstant
>(BECount
) ? BECount
5876 : getBECount(MinStart
, MaxEnd
, Step
, NoWrap
);
5878 // If the stride is nonconstant, and NoWrap == true, then
5879 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
5880 // exact BECount and invalid MaxBECount, which should be avoided to catch
5881 // more optimization opportunities.
5882 if (isa
<SCEVCouldNotCompute
>(MaxBECount
))
5883 MaxBECount
= BECount
;
5885 return BackedgeTakenInfo(BECount
, MaxBECount
);
5888 return getCouldNotCompute();
5891 /// getNumIterationsInRange - Return the number of iterations of this loop that
5892 /// produce values in the specified constant range. Another way of looking at
5893 /// this is that it returns the first iteration number where the value is not in
5894 /// the condition, thus computing the exit count. If the iteration count can't
5895 /// be computed, an instance of SCEVCouldNotCompute is returned.
5896 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
5897 ScalarEvolution
&SE
) const {
5898 if (Range
.isFullSet()) // Infinite loop.
5899 return SE
.getCouldNotCompute();
5901 // If the start is a non-zero constant, shift the range to simplify things.
5902 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
5903 if (!SC
->getValue()->isZero()) {
5904 SmallVector
<const SCEV
*, 4> Operands(op_begin(), op_end());
5905 Operands
[0] = SE
.getConstant(SC
->getType(), 0);
5906 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop(),
5907 getNoWrapFlags(FlagNW
));
5908 if (const SCEVAddRecExpr
*ShiftedAddRec
=
5909 dyn_cast
<SCEVAddRecExpr
>(Shifted
))
5910 return ShiftedAddRec
->getNumIterationsInRange(
5911 Range
.subtract(SC
->getValue()->getValue()), SE
);
5912 // This is strange and shouldn't happen.
5913 return SE
.getCouldNotCompute();
5916 // The only time we can solve this is when we have all constant indices.
5917 // Otherwise, we cannot determine the overflow conditions.
5918 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5919 if (!isa
<SCEVConstant
>(getOperand(i
)))
5920 return SE
.getCouldNotCompute();
5923 // Okay at this point we know that all elements of the chrec are constants and
5924 // that the start element is zero.
5926 // First check to see if the range contains zero. If not, the first
5928 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
5929 if (!Range
.contains(APInt(BitWidth
, 0)))
5930 return SE
.getConstant(getType(), 0);
5933 // If this is an affine expression then we have this situation:
5934 // Solve {0,+,A} in Range === Ax in Range
5936 // We know that zero is in the range. If A is positive then we know that
5937 // the upper value of the range must be the first possible exit value.
5938 // If A is negative then the lower of the range is the last possible loop
5939 // value. Also note that we already checked for a full range.
5940 APInt
One(BitWidth
,1);
5941 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
5942 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
5944 // The exit value should be (End+A)/A.
5945 APInt ExitVal
= (End
+ A
).udiv(A
);
5946 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
5948 // Evaluate at the exit value. If we really did fall out of the valid
5949 // range, then we computed our trip count, otherwise wrap around or other
5950 // things must have happened.
5951 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
5952 if (Range
.contains(Val
->getValue()))
5953 return SE
.getCouldNotCompute(); // Something strange happened
5955 // Ensure that the previous value is in the range. This is a sanity check.
5956 assert(Range
.contains(
5957 EvaluateConstantChrecAtConstant(this,
5958 ConstantInt::get(SE
.getContext(), ExitVal
- One
), SE
)->getValue()) &&
5959 "Linear scev computation is off in a bad way!");
5960 return SE
.getConstant(ExitValue
);
5961 } else if (isQuadratic()) {
5962 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5963 // quadratic equation to solve it. To do this, we must frame our problem in
5964 // terms of figuring out when zero is crossed, instead of when
5965 // Range.getUpper() is crossed.
5966 SmallVector
<const SCEV
*, 4> NewOps(op_begin(), op_end());
5967 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
5968 const SCEV
*NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop(),
5969 // getNoWrapFlags(FlagNW)
5972 // Next, solve the constructed addrec
5973 std::pair
<const SCEV
*,const SCEV
*> Roots
=
5974 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
5975 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
5976 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
5978 // Pick the smallest positive root value.
5979 if (ConstantInt
*CB
=
5980 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
5981 R1
->getValue(), R2
->getValue()))) {
5982 if (CB
->getZExtValue() == false)
5983 std::swap(R1
, R2
); // R1 is the minimum root now.
5985 // Make sure the root is not off by one. The returned iteration should
5986 // not be in the range, but the previous one should be. When solving
5987 // for "X*X < 5", for example, we should not return a root of 2.
5988 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
5991 if (Range
.contains(R1Val
->getValue())) {
5992 // The next iteration must be out of the range...
5993 ConstantInt
*NextVal
=
5994 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()+1);
5996 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
5997 if (!Range
.contains(R1Val
->getValue()))
5998 return SE
.getConstant(NextVal
);
5999 return SE
.getCouldNotCompute(); // Something strange happened
6002 // If R1 was not in the range, then it is a good return value. Make
6003 // sure that R1-1 WAS in the range though, just in case.
6004 ConstantInt
*NextVal
=
6005 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()-1);
6006 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
6007 if (Range
.contains(R1Val
->getValue()))
6009 return SE
.getCouldNotCompute(); // Something strange happened
6014 return SE
.getCouldNotCompute();
6019 //===----------------------------------------------------------------------===//
6020 // SCEVCallbackVH Class Implementation
6021 //===----------------------------------------------------------------------===//
6023 void ScalarEvolution::SCEVCallbackVH::deleted() {
6024 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
6025 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
6026 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
6027 SE
->ValueExprMap
.erase(getValPtr());
6028 // this now dangles!
6031 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*V
) {
6032 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
6034 // Forget all the expressions associated with users of the old value,
6035 // so that future queries will recompute the expressions using the new
6037 Value
*Old
= getValPtr();
6038 SmallVector
<User
*, 16> Worklist
;
6039 SmallPtrSet
<User
*, 8> Visited
;
6040 for (Value::use_iterator UI
= Old
->use_begin(), UE
= Old
->use_end();
6042 Worklist
.push_back(*UI
);
6043 while (!Worklist
.empty()) {
6044 User
*U
= Worklist
.pop_back_val();
6045 // Deleting the Old value will cause this to dangle. Postpone
6046 // that until everything else is done.
6049 if (!Visited
.insert(U
))
6051 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
6052 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
6053 SE
->ValueExprMap
.erase(U
);
6054 for (Value::use_iterator UI
= U
->use_begin(), UE
= U
->use_end();
6056 Worklist
.push_back(*UI
);
6058 // Delete the Old value.
6059 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
6060 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
6061 SE
->ValueExprMap
.erase(Old
);
6062 // this now dangles!
6065 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
6066 : CallbackVH(V
), SE(se
) {}
6068 //===----------------------------------------------------------------------===//
6069 // ScalarEvolution Class Implementation
6070 //===----------------------------------------------------------------------===//
6072 ScalarEvolution::ScalarEvolution()
6073 : FunctionPass(ID
), FirstUnknown(0) {
6074 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6077 bool ScalarEvolution::runOnFunction(Function
&F
) {
6079 LI
= &getAnalysis
<LoopInfo
>();
6080 TD
= getAnalysisIfAvailable
<TargetData
>();
6081 DT
= &getAnalysis
<DominatorTree
>();
6085 void ScalarEvolution::releaseMemory() {
6086 // Iterate through all the SCEVUnknown instances and call their
6087 // destructors, so that they release their references to their values.
6088 for (SCEVUnknown
*U
= FirstUnknown
; U
; U
= U
->Next
)
6092 ValueExprMap
.clear();
6093 BackedgeTakenCounts
.clear();
6094 ConstantEvolutionLoopExitValue
.clear();
6095 ValuesAtScopes
.clear();
6096 LoopDispositions
.clear();
6097 BlockDispositions
.clear();
6098 UnsignedRanges
.clear();
6099 SignedRanges
.clear();
6100 UniqueSCEVs
.clear();
6101 SCEVAllocator
.Reset();
6104 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
6105 AU
.setPreservesAll();
6106 AU
.addRequiredTransitive
<LoopInfo
>();
6107 AU
.addRequiredTransitive
<DominatorTree
>();
6110 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
6111 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
6114 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
6116 // Print all inner loops first
6117 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
6118 PrintLoopInfo(OS
, SE
, *I
);
6121 WriteAsOperand(OS
, L
->getHeader(), /*PrintType=*/false);
6124 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
6125 L
->getExitBlocks(ExitBlocks
);
6126 if (ExitBlocks
.size() != 1)
6127 OS
<< "<multiple exits> ";
6129 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
6130 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
6132 OS
<< "Unpredictable backedge-taken count. ";
6137 WriteAsOperand(OS
, L
->getHeader(), /*PrintType=*/false);
6140 if (!isa
<SCEVCouldNotCompute
>(SE
->getMaxBackedgeTakenCount(L
))) {
6141 OS
<< "max backedge-taken count is " << *SE
->getMaxBackedgeTakenCount(L
);
6143 OS
<< "Unpredictable max backedge-taken count. ";
6149 void ScalarEvolution::print(raw_ostream
&OS
, const Module
*) const {
6150 // ScalarEvolution's implementation of the print method is to print
6151 // out SCEV values of all instructions that are interesting. Doing
6152 // this potentially causes it to create new SCEV objects though,
6153 // which technically conflicts with the const qualifier. This isn't
6154 // observable from outside the class though, so casting away the
6155 // const isn't dangerous.
6156 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
6158 OS
<< "Classifying expressions for: ";
6159 WriteAsOperand(OS
, F
, /*PrintType=*/false);
6161 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
6162 if (isSCEVable(I
->getType()) && !isa
<CmpInst
>(*I
)) {
6165 const SCEV
*SV
= SE
.getSCEV(&*I
);
6168 const Loop
*L
= LI
->getLoopFor((*I
).getParent());
6170 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
6177 OS
<< "\t\t" "Exits: ";
6178 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
6179 if (!SE
.isLoopInvariant(ExitValue
, L
)) {
6180 OS
<< "<<Unknown>>";
6189 OS
<< "Determining loop execution counts for: ";
6190 WriteAsOperand(OS
, F
, /*PrintType=*/false);
6192 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
6193 PrintLoopInfo(OS
, &SE
, *I
);
6196 ScalarEvolution::LoopDisposition
6197 ScalarEvolution::getLoopDisposition(const SCEV
*S
, const Loop
*L
) {
6198 std::map
<const Loop
*, LoopDisposition
> &Values
= LoopDispositions
[S
];
6199 std::pair
<std::map
<const Loop
*, LoopDisposition
>::iterator
, bool> Pair
=
6200 Values
.insert(std::make_pair(L
, LoopVariant
));
6202 return Pair
.first
->second
;
6204 LoopDisposition D
= computeLoopDisposition(S
, L
);
6205 return LoopDispositions
[S
][L
] = D
;
6208 ScalarEvolution::LoopDisposition
6209 ScalarEvolution::computeLoopDisposition(const SCEV
*S
, const Loop
*L
) {
6210 switch (S
->getSCEVType()) {
6212 return LoopInvariant
;
6216 return getLoopDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), L
);
6217 case scAddRecExpr
: {
6218 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
6220 // If L is the addrec's loop, it's computable.
6221 if (AR
->getLoop() == L
)
6222 return LoopComputable
;
6224 // Add recurrences are never invariant in the function-body (null loop).
6228 // This recurrence is variant w.r.t. L if L contains AR's loop.
6229 if (L
->contains(AR
->getLoop()))
6232 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6233 if (AR
->getLoop()->contains(L
))
6234 return LoopInvariant
;
6236 // This recurrence is variant w.r.t. L if any of its operands
6238 for (SCEVAddRecExpr::op_iterator I
= AR
->op_begin(), E
= AR
->op_end();
6240 if (!isLoopInvariant(*I
, L
))
6243 // Otherwise it's loop-invariant.
6244 return LoopInvariant
;
6250 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(S
);
6251 bool HasVarying
= false;
6252 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
6254 LoopDisposition D
= getLoopDisposition(*I
, L
);
6255 if (D
== LoopVariant
)
6257 if (D
== LoopComputable
)
6260 return HasVarying
? LoopComputable
: LoopInvariant
;
6263 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
6264 LoopDisposition LD
= getLoopDisposition(UDiv
->getLHS(), L
);
6265 if (LD
== LoopVariant
)
6267 LoopDisposition RD
= getLoopDisposition(UDiv
->getRHS(), L
);
6268 if (RD
== LoopVariant
)
6270 return (LD
== LoopInvariant
&& RD
== LoopInvariant
) ?
6271 LoopInvariant
: LoopComputable
;
6274 // All non-instruction values are loop invariant. All instructions are loop
6275 // invariant if they are not contained in the specified loop.
6276 // Instructions are never considered invariant in the function body
6277 // (null loop) because they are defined within the "loop".
6278 if (Instruction
*I
= dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue()))
6279 return (L
&& !L
->contains(I
)) ? LoopInvariant
: LoopVariant
;
6280 return LoopInvariant
;
6281 case scCouldNotCompute
:
6282 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6286 llvm_unreachable("Unknown SCEV kind!");
6290 bool ScalarEvolution::isLoopInvariant(const SCEV
*S
, const Loop
*L
) {
6291 return getLoopDisposition(S
, L
) == LoopInvariant
;
6294 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV
*S
, const Loop
*L
) {
6295 return getLoopDisposition(S
, L
) == LoopComputable
;
6298 ScalarEvolution::BlockDisposition
6299 ScalarEvolution::getBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
6300 std::map
<const BasicBlock
*, BlockDisposition
> &Values
= BlockDispositions
[S
];
6301 std::pair
<std::map
<const BasicBlock
*, BlockDisposition
>::iterator
, bool>
6302 Pair
= Values
.insert(std::make_pair(BB
, DoesNotDominateBlock
));
6304 return Pair
.first
->second
;
6306 BlockDisposition D
= computeBlockDisposition(S
, BB
);
6307 return BlockDispositions
[S
][BB
] = D
;
6310 ScalarEvolution::BlockDisposition
6311 ScalarEvolution::computeBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
6312 switch (S
->getSCEVType()) {
6314 return ProperlyDominatesBlock
;
6318 return getBlockDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), BB
);
6319 case scAddRecExpr
: {
6320 // This uses a "dominates" query instead of "properly dominates" query
6321 // to test for proper dominance too, because the instruction which
6322 // produces the addrec's value is a PHI, and a PHI effectively properly
6323 // dominates its entire containing block.
6324 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
6325 if (!DT
->dominates(AR
->getLoop()->getHeader(), BB
))
6326 return DoesNotDominateBlock
;
6328 // FALL THROUGH into SCEVNAryExpr handling.
6333 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(S
);
6335 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
6337 BlockDisposition D
= getBlockDisposition(*I
, BB
);
6338 if (D
== DoesNotDominateBlock
)
6339 return DoesNotDominateBlock
;
6340 if (D
== DominatesBlock
)
6343 return Proper
? ProperlyDominatesBlock
: DominatesBlock
;
6346 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
6347 const SCEV
*LHS
= UDiv
->getLHS(), *RHS
= UDiv
->getRHS();
6348 BlockDisposition LD
= getBlockDisposition(LHS
, BB
);
6349 if (LD
== DoesNotDominateBlock
)
6350 return DoesNotDominateBlock
;
6351 BlockDisposition RD
= getBlockDisposition(RHS
, BB
);
6352 if (RD
== DoesNotDominateBlock
)
6353 return DoesNotDominateBlock
;
6354 return (LD
== ProperlyDominatesBlock
&& RD
== ProperlyDominatesBlock
) ?
6355 ProperlyDominatesBlock
: DominatesBlock
;
6358 if (Instruction
*I
=
6359 dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue())) {
6360 if (I
->getParent() == BB
)
6361 return DominatesBlock
;
6362 if (DT
->properlyDominates(I
->getParent(), BB
))
6363 return ProperlyDominatesBlock
;
6364 return DoesNotDominateBlock
;
6366 return ProperlyDominatesBlock
;
6367 case scCouldNotCompute
:
6368 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6369 return DoesNotDominateBlock
;
6372 llvm_unreachable("Unknown SCEV kind!");
6373 return DoesNotDominateBlock
;
6376 bool ScalarEvolution::dominates(const SCEV
*S
, const BasicBlock
*BB
) {
6377 return getBlockDisposition(S
, BB
) >= DominatesBlock
;
6380 bool ScalarEvolution::properlyDominates(const SCEV
*S
, const BasicBlock
*BB
) {
6381 return getBlockDisposition(S
, BB
) == ProperlyDominatesBlock
;
6384 bool ScalarEvolution::hasOperand(const SCEV
*S
, const SCEV
*Op
) const {
6385 switch (S
->getSCEVType()) {
6390 case scSignExtend
: {
6391 const SCEVCastExpr
*Cast
= cast
<SCEVCastExpr
>(S
);
6392 const SCEV
*CastOp
= Cast
->getOperand();
6393 return Op
== CastOp
|| hasOperand(CastOp
, Op
);
6400 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(S
);
6401 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
6403 const SCEV
*NAryOp
= *I
;
6404 if (NAryOp
== Op
|| hasOperand(NAryOp
, Op
))
6410 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
6411 const SCEV
*LHS
= UDiv
->getLHS(), *RHS
= UDiv
->getRHS();
6412 return LHS
== Op
|| hasOperand(LHS
, Op
) ||
6413 RHS
== Op
|| hasOperand(RHS
, Op
);
6417 case scCouldNotCompute
:
6418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6422 llvm_unreachable("Unknown SCEV kind!");
6426 void ScalarEvolution::forgetMemoizedResults(const SCEV
*S
) {
6427 ValuesAtScopes
.erase(S
);
6428 LoopDispositions
.erase(S
);
6429 BlockDispositions
.erase(S
);
6430 UnsignedRanges
.erase(S
);
6431 SignedRanges
.erase(S
);