1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains routines that help analyze properties that chains of
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Operator.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/PatternMatch.h"
28 #include "llvm/ADT/SmallPtrSet.h"
31 using namespace llvm::PatternMatch
;
33 const unsigned MaxDepth
= 6;
35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36 /// unknown returns 0). For vector types, returns the element type's bitwidth.
37 static unsigned getBitWidth(const Type
*Ty
, const TargetData
*TD
) {
38 if (unsigned BitWidth
= Ty
->getScalarSizeInBits())
40 assert(isa
<PointerType
>(Ty
) && "Expected a pointer type!");
41 return TD
? TD
->getPointerSizeInBits() : 0;
44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
45 /// known to be either zero or one and return them in the KnownZero/KnownOne
46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49 /// we cannot optimize based on the assumption that it is zero without changing
50 /// it to be an explicit zero. If we don't change it to zero, other code could
51 /// optimized based on the contradictory assumption that it is non-zero.
52 /// Because instcombine aggressively folds operations with undef args anyway,
53 /// this won't lose us code quality.
55 /// This function is defined on values with integer type, values with pointer
56 /// type (but only if TD is non-null), and vectors of integers. In the case
57 /// where V is a vector, the mask, known zero, and known one values are the
58 /// same width as the vector element, and the bit is set only if it is true
59 /// for all of the elements in the vector.
60 void llvm::ComputeMaskedBits(Value
*V
, const APInt
&Mask
,
61 APInt
&KnownZero
, APInt
&KnownOne
,
62 const TargetData
*TD
, unsigned Depth
) {
63 assert(V
&& "No Value?");
64 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
65 unsigned BitWidth
= Mask
.getBitWidth();
66 assert((V
->getType()->isIntOrIntVectorTy() || V
->getType()->isPointerTy())
67 && "Not integer or pointer type!");
69 TD
->getTypeSizeInBits(V
->getType()->getScalarType()) == BitWidth
) &&
70 (!V
->getType()->isIntOrIntVectorTy() ||
71 V
->getType()->getScalarSizeInBits() == BitWidth
) &&
72 KnownZero
.getBitWidth() == BitWidth
&&
73 KnownOne
.getBitWidth() == BitWidth
&&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
76 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
77 // We know all of the bits for a constant!
78 KnownOne
= CI
->getValue() & Mask
;
79 KnownZero
= ~KnownOne
& Mask
;
82 // Null and aggregate-zero are all-zeros.
83 if (isa
<ConstantPointerNull
>(V
) ||
84 isa
<ConstantAggregateZero
>(V
)) {
85 KnownOne
.clearAllBits();
89 // Handle a constant vector by taking the intersection of the known bits of
91 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
92 KnownZero
.setAllBits(); KnownOne
.setAllBits();
93 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
94 APInt
KnownZero2(BitWidth
, 0), KnownOne2(BitWidth
, 0);
95 ComputeMaskedBits(CV
->getOperand(i
), Mask
, KnownZero2
, KnownOne2
,
97 KnownZero
&= KnownZero2
;
98 KnownOne
&= KnownOne2
;
102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
104 unsigned Align
= GV
->getAlignment();
105 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized()) {
106 const Type
*ObjectType
= GV
->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV
->isDeclaration() && !GV
->mayBeOverridden())
111 Align
= TD
->getPrefTypeAlignment(ObjectType
);
113 Align
= TD
->getABITypeAlignment(ObjectType
);
116 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
117 CountTrailingZeros_32(Align
));
119 KnownZero
.clearAllBits();
120 KnownOne
.clearAllBits();
123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
126 if (GA
->mayBeOverridden()) {
127 KnownZero
.clearAllBits(); KnownOne
.clearAllBits();
129 ComputeMaskedBits(GA
->getAliasee(), Mask
, KnownZero
, KnownOne
,
135 if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
136 // Get alignment information off byval arguments if specified in the IR.
137 if (A
->hasByValAttr())
138 if (unsigned Align
= A
->getParamAlignment())
139 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
140 CountTrailingZeros_32(Align
));
144 // Start out not knowing anything.
145 KnownZero
.clearAllBits(); KnownOne
.clearAllBits();
147 if (Depth
== MaxDepth
|| Mask
== 0)
148 return; // Limit search depth.
150 Operator
*I
= dyn_cast
<Operator
>(V
);
153 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
154 switch (I
->getOpcode()) {
156 case Instruction::And
: {
157 // If either the LHS or the RHS are Zero, the result is zero.
158 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
159 APInt
Mask2(Mask
& ~KnownZero
);
160 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
162 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
165 // Output known-1 bits are only known if set in both the LHS & RHS.
166 KnownOne
&= KnownOne2
;
167 // Output known-0 are known to be clear if zero in either the LHS | RHS.
168 KnownZero
|= KnownZero2
;
171 case Instruction::Or
: {
172 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
173 APInt
Mask2(Mask
& ~KnownOne
);
174 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
176 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
177 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
179 // Output known-0 bits are only known if clear in both the LHS & RHS.
180 KnownZero
&= KnownZero2
;
181 // Output known-1 are known to be set if set in either the LHS | RHS.
182 KnownOne
|= KnownOne2
;
185 case Instruction::Xor
: {
186 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
187 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, TD
,
189 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
190 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
192 // Output known-0 bits are known if clear or set in both the LHS & RHS.
193 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
194 // Output known-1 are known to be set if set in only one of the LHS, RHS.
195 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
196 KnownZero
= KnownZeroOut
;
199 case Instruction::Mul
: {
200 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
201 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero
, KnownOne
, TD
,Depth
+1);
202 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
204 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
205 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
207 // If low bits are zero in either operand, output low known-0 bits.
208 // Also compute a conserative estimate for high known-0 bits.
209 // More trickiness is possible, but this is sufficient for the
210 // interesting case of alignment computation.
211 KnownOne
.clearAllBits();
212 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
213 KnownZero2
.countTrailingOnes();
214 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
215 KnownZero2
.countLeadingOnes(),
216 BitWidth
) - BitWidth
;
218 TrailZ
= std::min(TrailZ
, BitWidth
);
219 LeadZ
= std::min(LeadZ
, BitWidth
);
220 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
221 APInt::getHighBitsSet(BitWidth
, LeadZ
);
225 case Instruction::UDiv
: {
226 // For the purposes of computing leading zeros we can conservatively
227 // treat a udiv as a logical right shift by the power of 2 known to
228 // be less than the denominator.
229 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
230 ComputeMaskedBits(I
->getOperand(0),
231 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
232 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
234 KnownOne2
.clearAllBits();
235 KnownZero2
.clearAllBits();
236 ComputeMaskedBits(I
->getOperand(1),
237 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
238 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
239 if (RHSUnknownLeadingOnes
!= BitWidth
)
240 LeadZ
= std::min(BitWidth
,
241 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
243 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
246 case Instruction::Select
:
247 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
248 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, TD
,
250 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
251 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
253 // Only known if known in both the LHS and RHS.
254 KnownOne
&= KnownOne2
;
255 KnownZero
&= KnownZero2
;
257 case Instruction::FPTrunc
:
258 case Instruction::FPExt
:
259 case Instruction::FPToUI
:
260 case Instruction::FPToSI
:
261 case Instruction::SIToFP
:
262 case Instruction::UIToFP
:
263 return; // Can't work with floating point.
264 case Instruction::PtrToInt
:
265 case Instruction::IntToPtr
:
266 // We can't handle these if we don't know the pointer size.
268 // FALL THROUGH and handle them the same as zext/trunc.
269 case Instruction::ZExt
:
270 case Instruction::Trunc
: {
271 const Type
*SrcTy
= I
->getOperand(0)->getType();
273 unsigned SrcBitWidth
;
274 // Note that we handle pointer operands here because of inttoptr/ptrtoint
275 // which fall through here.
276 if (SrcTy
->isPointerTy())
277 SrcBitWidth
= TD
->getTypeSizeInBits(SrcTy
);
279 SrcBitWidth
= SrcTy
->getScalarSizeInBits();
281 APInt MaskIn
= Mask
.zextOrTrunc(SrcBitWidth
);
282 KnownZero
= KnownZero
.zextOrTrunc(SrcBitWidth
);
283 KnownOne
= KnownOne
.zextOrTrunc(SrcBitWidth
);
284 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
286 KnownZero
= KnownZero
.zextOrTrunc(BitWidth
);
287 KnownOne
= KnownOne
.zextOrTrunc(BitWidth
);
288 // Any top bits are known to be zero.
289 if (BitWidth
> SrcBitWidth
)
290 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
293 case Instruction::BitCast
: {
294 const Type
*SrcTy
= I
->getOperand(0)->getType();
295 if ((SrcTy
->isIntegerTy() || SrcTy
->isPointerTy()) &&
296 // TODO: For now, not handling conversions like:
297 // (bitcast i64 %x to <2 x i32>)
298 !I
->getType()->isVectorTy()) {
299 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
305 case Instruction::SExt
: {
306 // Compute the bits in the result that are not present in the input.
307 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
309 APInt MaskIn
= Mask
.trunc(SrcBitWidth
);
310 KnownZero
= KnownZero
.trunc(SrcBitWidth
);
311 KnownOne
= KnownOne
.trunc(SrcBitWidth
);
312 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
314 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
315 KnownZero
= KnownZero
.zext(BitWidth
);
316 KnownOne
= KnownOne
.zext(BitWidth
);
318 // If the sign bit of the input is known set or clear, then we know the
319 // top bits of the result.
320 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
321 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
322 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
323 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
326 case Instruction::Shl
:
327 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
328 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
329 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
330 APInt
Mask2(Mask
.lshr(ShiftAmt
));
331 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
333 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
334 KnownZero
<<= ShiftAmt
;
335 KnownOne
<<= ShiftAmt
;
336 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
340 case Instruction::LShr
:
341 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
342 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
343 // Compute the new bits that are at the top now.
344 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
346 // Unsigned shift right.
347 APInt
Mask2(Mask
.shl(ShiftAmt
));
348 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
, TD
,
350 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
351 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
352 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
353 // high bits known zero.
354 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
358 case Instruction::AShr
:
359 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
360 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
361 // Compute the new bits that are at the top now.
362 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
364 // Signed shift right.
365 APInt
Mask2(Mask
.shl(ShiftAmt
));
366 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
368 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
369 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
370 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
372 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
373 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
374 KnownZero
|= HighBits
;
375 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
376 KnownOne
|= HighBits
;
380 case Instruction::Sub
: {
381 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
382 // We know that the top bits of C-X are clear if X contains less bits
383 // than C (i.e. no wrap-around can happen). For example, 20-X is
384 // positive if we can prove that X is >= 0 and < 16.
385 if (!CLHS
->getValue().isNegative()) {
386 unsigned NLZ
= (CLHS
->getValue()+1).countLeadingZeros();
387 // NLZ can't be BitWidth with no sign bit
388 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
389 ComputeMaskedBits(I
->getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
392 // If all of the MaskV bits are known to be zero, then we know the
393 // output top bits are zero, because we now know that the output is
395 if ((KnownZero2
& MaskV
) == MaskV
) {
396 unsigned NLZ2
= CLHS
->getValue().countLeadingZeros();
397 // Top bits known zero.
398 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
404 case Instruction::Add
: {
405 // If one of the operands has trailing zeros, then the bits that the
406 // other operand has in those bit positions will be preserved in the
407 // result. For an add, this works with either operand. For a subtract,
408 // this only works if the known zeros are in the right operand.
409 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
410 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
411 BitWidth
- Mask
.countLeadingZeros());
412 ComputeMaskedBits(I
->getOperand(0), Mask2
, LHSKnownZero
, LHSKnownOne
, TD
,
414 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
415 "Bits known to be one AND zero?");
416 unsigned LHSKnownZeroOut
= LHSKnownZero
.countTrailingOnes();
418 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero2
, KnownOne2
, TD
,
420 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
421 unsigned RHSKnownZeroOut
= KnownZero2
.countTrailingOnes();
423 // Determine which operand has more trailing zeros, and use that
424 // many bits from the other operand.
425 if (LHSKnownZeroOut
> RHSKnownZeroOut
) {
426 if (I
->getOpcode() == Instruction::Add
) {
427 APInt Mask
= APInt::getLowBitsSet(BitWidth
, LHSKnownZeroOut
);
428 KnownZero
|= KnownZero2
& Mask
;
429 KnownOne
|= KnownOne2
& Mask
;
431 // If the known zeros are in the left operand for a subtract,
432 // fall back to the minimum known zeros in both operands.
433 KnownZero
|= APInt::getLowBitsSet(BitWidth
,
434 std::min(LHSKnownZeroOut
,
437 } else if (RHSKnownZeroOut
>= LHSKnownZeroOut
) {
438 APInt Mask
= APInt::getLowBitsSet(BitWidth
, RHSKnownZeroOut
);
439 KnownZero
|= LHSKnownZero
& Mask
;
440 KnownOne
|= LHSKnownOne
& Mask
;
443 // Are we still trying to solve for the sign bit?
444 if (Mask
.isNegative() && !KnownZero
.isNegative() && !KnownOne
.isNegative()){
445 OverflowingBinaryOperator
*OBO
= cast
<OverflowingBinaryOperator
>(I
);
446 if (OBO
->hasNoSignedWrap()) {
447 if (I
->getOpcode() == Instruction::Add
) {
448 // Adding two positive numbers can't wrap into negative
449 if (LHSKnownZero
.isNegative() && KnownZero2
.isNegative())
450 KnownZero
|= APInt::getSignBit(BitWidth
);
451 // and adding two negative numbers can't wrap into positive.
452 else if (LHSKnownOne
.isNegative() && KnownOne2
.isNegative())
453 KnownOne
|= APInt::getSignBit(BitWidth
);
455 // Subtracting a negative number from a positive one can't wrap
456 if (LHSKnownZero
.isNegative() && KnownOne2
.isNegative())
457 KnownZero
|= APInt::getSignBit(BitWidth
);
458 // neither can subtracting a positive number from a negative one.
459 else if (LHSKnownOne
.isNegative() && KnownZero2
.isNegative())
460 KnownOne
|= APInt::getSignBit(BitWidth
);
467 case Instruction::SRem
:
468 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
469 APInt RA
= Rem
->getValue().abs();
470 if (RA
.isPowerOf2()) {
471 APInt LowBits
= RA
- 1;
472 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
473 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
476 // The low bits of the first operand are unchanged by the srem.
477 KnownZero
= KnownZero2
& LowBits
;
478 KnownOne
= KnownOne2
& LowBits
;
480 // If the first operand is non-negative or has all low bits zero, then
481 // the upper bits are all zero.
482 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
483 KnownZero
|= ~LowBits
;
485 // If the first operand is negative and not all low bits are zero, then
486 // the upper bits are all one.
487 if (KnownOne2
[BitWidth
-1] && ((KnownOne2
& LowBits
) != 0))
488 KnownOne
|= ~LowBits
;
493 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
497 // The sign bit is the LHS's sign bit, except when the result of the
498 // remainder is zero.
499 if (Mask
.isNegative() && KnownZero
.isNonNegative()) {
500 APInt Mask2
= APInt::getSignBit(BitWidth
);
501 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
502 ComputeMaskedBits(I
->getOperand(0), Mask2
, LHSKnownZero
, LHSKnownOne
, TD
,
504 // If it's known zero, our sign bit is also zero.
505 if (LHSKnownZero
.isNegative())
506 KnownZero
|= LHSKnownZero
;
510 case Instruction::URem
: {
511 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
512 APInt RA
= Rem
->getValue();
513 if (RA
.isPowerOf2()) {
514 APInt LowBits
= (RA
- 1);
515 APInt Mask2
= LowBits
& Mask
;
516 KnownZero
|= ~LowBits
& Mask
;
517 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
519 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
524 // Since the result is less than or equal to either operand, any leading
525 // zero bits in either operand must also exist in the result.
526 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
527 ComputeMaskedBits(I
->getOperand(0), AllOnes
, KnownZero
, KnownOne
,
529 ComputeMaskedBits(I
->getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
532 unsigned Leaders
= std::max(KnownZero
.countLeadingOnes(),
533 KnownZero2
.countLeadingOnes());
534 KnownOne
.clearAllBits();
535 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
539 case Instruction::Alloca
: {
540 AllocaInst
*AI
= cast
<AllocaInst
>(V
);
541 unsigned Align
= AI
->getAlignment();
542 if (Align
== 0 && TD
)
543 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
546 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
547 CountTrailingZeros_32(Align
));
550 case Instruction::GetElementPtr
: {
551 // Analyze all of the subscripts of this getelementptr instruction
552 // to determine if we can prove known low zero bits.
553 APInt LocalMask
= APInt::getAllOnesValue(BitWidth
);
554 APInt
LocalKnownZero(BitWidth
, 0), LocalKnownOne(BitWidth
, 0);
555 ComputeMaskedBits(I
->getOperand(0), LocalMask
,
556 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
557 unsigned TrailZ
= LocalKnownZero
.countTrailingOnes();
559 gep_type_iterator GTI
= gep_type_begin(I
);
560 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
561 Value
*Index
= I
->getOperand(i
);
562 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
563 // Handle struct member offset arithmetic.
565 const StructLayout
*SL
= TD
->getStructLayout(STy
);
566 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
567 uint64_t Offset
= SL
->getElementOffset(Idx
);
568 TrailZ
= std::min(TrailZ
,
569 CountTrailingZeros_64(Offset
));
571 // Handle array index arithmetic.
572 const Type
*IndexedTy
= GTI
.getIndexedType();
573 if (!IndexedTy
->isSized()) return;
574 unsigned GEPOpiBits
= Index
->getType()->getScalarSizeInBits();
575 uint64_t TypeSize
= TD
? TD
->getTypeAllocSize(IndexedTy
) : 1;
576 LocalMask
= APInt::getAllOnesValue(GEPOpiBits
);
577 LocalKnownZero
= LocalKnownOne
= APInt(GEPOpiBits
, 0);
578 ComputeMaskedBits(Index
, LocalMask
,
579 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
580 TrailZ
= std::min(TrailZ
,
581 unsigned(CountTrailingZeros_64(TypeSize
) +
582 LocalKnownZero
.countTrailingOnes()));
586 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) & Mask
;
589 case Instruction::PHI
: {
590 PHINode
*P
= cast
<PHINode
>(I
);
591 // Handle the case of a simple two-predecessor recurrence PHI.
592 // There's a lot more that could theoretically be done here, but
593 // this is sufficient to catch some interesting cases.
594 if (P
->getNumIncomingValues() == 2) {
595 for (unsigned i
= 0; i
!= 2; ++i
) {
596 Value
*L
= P
->getIncomingValue(i
);
597 Value
*R
= P
->getIncomingValue(!i
);
598 Operator
*LU
= dyn_cast
<Operator
>(L
);
601 unsigned Opcode
= LU
->getOpcode();
602 // Check for operations that have the property that if
603 // both their operands have low zero bits, the result
604 // will have low zero bits.
605 if (Opcode
== Instruction::Add
||
606 Opcode
== Instruction::Sub
||
607 Opcode
== Instruction::And
||
608 Opcode
== Instruction::Or
||
609 Opcode
== Instruction::Mul
) {
610 Value
*LL
= LU
->getOperand(0);
611 Value
*LR
= LU
->getOperand(1);
612 // Find a recurrence.
619 // Ok, we have a PHI of the form L op= R. Check for low
621 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
622 ComputeMaskedBits(R
, Mask2
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
623 Mask2
= APInt::getLowBitsSet(BitWidth
,
624 KnownZero2
.countTrailingOnes());
626 // We need to take the minimum number of known bits
627 APInt
KnownZero3(KnownZero
), KnownOne3(KnownOne
);
628 ComputeMaskedBits(L
, Mask2
, KnownZero3
, KnownOne3
, TD
, Depth
+1);
631 APInt::getLowBitsSet(BitWidth
,
632 std::min(KnownZero2
.countTrailingOnes(),
633 KnownZero3
.countTrailingOnes()));
639 // Unreachable blocks may have zero-operand PHI nodes.
640 if (P
->getNumIncomingValues() == 0)
643 // Otherwise take the unions of the known bit sets of the operands,
644 // taking conservative care to avoid excessive recursion.
645 if (Depth
< MaxDepth
- 1 && !KnownZero
&& !KnownOne
) {
646 // Skip if every incoming value references to ourself.
647 if (P
->hasConstantValue() == P
)
650 KnownZero
= APInt::getAllOnesValue(BitWidth
);
651 KnownOne
= APInt::getAllOnesValue(BitWidth
);
652 for (unsigned i
= 0, e
= P
->getNumIncomingValues(); i
!= e
; ++i
) {
653 // Skip direct self references.
654 if (P
->getIncomingValue(i
) == P
) continue;
656 KnownZero2
= APInt(BitWidth
, 0);
657 KnownOne2
= APInt(BitWidth
, 0);
658 // Recurse, but cap the recursion to one level, because we don't
659 // want to waste time spinning around in loops.
660 ComputeMaskedBits(P
->getIncomingValue(i
), KnownZero
| KnownOne
,
661 KnownZero2
, KnownOne2
, TD
, MaxDepth
-1);
662 KnownZero
&= KnownZero2
;
663 KnownOne
&= KnownOne2
;
664 // If all bits have been ruled out, there's no need to check
666 if (!KnownZero
&& !KnownOne
)
672 case Instruction::Call
:
673 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
674 switch (II
->getIntrinsicID()) {
676 case Intrinsic::ctpop
:
677 case Intrinsic::ctlz
:
678 case Intrinsic::cttz
: {
679 unsigned LowBits
= Log2_32(BitWidth
)+1;
680 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
683 case Intrinsic::x86_sse42_crc32_64_8
:
684 case Intrinsic::x86_sse42_crc32_64_64
:
685 KnownZero
= APInt::getHighBitsSet(64, 32);
693 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
694 /// one. Convenience wrapper around ComputeMaskedBits.
695 void llvm::ComputeSignBit(Value
*V
, bool &KnownZero
, bool &KnownOne
,
696 const TargetData
*TD
, unsigned Depth
) {
697 unsigned BitWidth
= getBitWidth(V
->getType(), TD
);
703 APInt
ZeroBits(BitWidth
, 0);
704 APInt
OneBits(BitWidth
, 0);
705 ComputeMaskedBits(V
, APInt::getSignBit(BitWidth
), ZeroBits
, OneBits
, TD
,
707 KnownOne
= OneBits
[BitWidth
- 1];
708 KnownZero
= ZeroBits
[BitWidth
- 1];
711 /// isPowerOfTwo - Return true if the given value is known to have exactly one
712 /// bit set when defined. For vectors return true if every element is known to
713 /// be a power of two when defined. Supports values with integer or pointer
714 /// types and vectors of integers.
715 bool llvm::isPowerOfTwo(Value
*V
, const TargetData
*TD
, unsigned Depth
) {
716 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
717 return CI
->getValue().isPowerOf2();
718 // TODO: Handle vector constants.
720 // 1 << X is clearly a power of two if the one is not shifted off the end. If
721 // it is shifted off the end then the result is undefined.
722 if (match(V
, m_Shl(m_One(), m_Value())))
725 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
726 // bottom. If it is shifted off the bottom then the result is undefined.
727 if (match(V
, m_LShr(m_SignBit(), m_Value())))
730 // The remaining tests are all recursive, so bail out if we hit the limit.
731 if (Depth
++ == MaxDepth
)
734 if (ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(V
))
735 return isPowerOfTwo(ZI
->getOperand(0), TD
, Depth
);
737 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
))
738 return isPowerOfTwo(SI
->getTrueValue(), TD
, Depth
) &&
739 isPowerOfTwo(SI
->getFalseValue(), TD
, Depth
);
741 // An exact divide or right shift can only shift off zero bits, so the result
742 // is a power of two only if the first operand is a power of two and not
743 // copying a sign bit (sdiv int_min, 2).
744 if (match(V
, m_LShr(m_Value(), m_Value())) ||
745 match(V
, m_UDiv(m_Value(), m_Value()))) {
746 PossiblyExactOperator
*PEO
= cast
<PossiblyExactOperator
>(V
);
748 return isPowerOfTwo(PEO
->getOperand(0), TD
, Depth
);
754 /// isKnownNonZero - Return true if the given value is known to be non-zero
755 /// when defined. For vectors return true if every element is known to be
756 /// non-zero when defined. Supports values with integer or pointer type and
757 /// vectors of integers.
758 bool llvm::isKnownNonZero(Value
*V
, const TargetData
*TD
, unsigned Depth
) {
759 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
760 if (C
->isNullValue())
762 if (isa
<ConstantInt
>(C
))
763 // Must be non-zero due to null test above.
765 // TODO: Handle vectors
769 // The remaining tests are all recursive, so bail out if we hit the limit.
770 if (Depth
++ == MaxDepth
)
773 unsigned BitWidth
= getBitWidth(V
->getType(), TD
);
775 // X | Y != 0 if X != 0 or Y != 0.
776 Value
*X
= 0, *Y
= 0;
777 if (match(V
, m_Or(m_Value(X
), m_Value(Y
))))
778 return isKnownNonZero(X
, TD
, Depth
) || isKnownNonZero(Y
, TD
, Depth
);
780 // ext X != 0 if X != 0.
781 if (isa
<SExtInst
>(V
) || isa
<ZExtInst
>(V
))
782 return isKnownNonZero(cast
<Instruction
>(V
)->getOperand(0), TD
, Depth
);
784 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
785 // if the lowest bit is shifted off the end.
786 if (BitWidth
&& match(V
, m_Shl(m_Value(X
), m_Value(Y
)))) {
787 // shl nuw can't remove any non-zero bits.
788 BinaryOperator
*BO
= cast
<BinaryOperator
>(V
);
789 if (BO
->hasNoUnsignedWrap())
790 return isKnownNonZero(X
, TD
, Depth
);
792 APInt
KnownZero(BitWidth
, 0);
793 APInt
KnownOne(BitWidth
, 0);
794 ComputeMaskedBits(X
, APInt(BitWidth
, 1), KnownZero
, KnownOne
, TD
, Depth
);
798 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
799 // defined if the sign bit is shifted off the end.
800 else if (match(V
, m_Shr(m_Value(X
), m_Value(Y
)))) {
801 // shr exact can only shift out zero bits.
802 BinaryOperator
*BO
= cast
<BinaryOperator
>(V
);
804 return isKnownNonZero(X
, TD
, Depth
);
806 bool XKnownNonNegative
, XKnownNegative
;
807 ComputeSignBit(X
, XKnownNonNegative
, XKnownNegative
, TD
, Depth
);
811 // div exact can only produce a zero if the dividend is zero.
812 else if (match(V
, m_IDiv(m_Value(X
), m_Value()))) {
813 BinaryOperator
*BO
= cast
<BinaryOperator
>(V
);
815 return isKnownNonZero(X
, TD
, Depth
);
818 else if (match(V
, m_Add(m_Value(X
), m_Value(Y
)))) {
819 bool XKnownNonNegative
, XKnownNegative
;
820 bool YKnownNonNegative
, YKnownNegative
;
821 ComputeSignBit(X
, XKnownNonNegative
, XKnownNegative
, TD
, Depth
);
822 ComputeSignBit(Y
, YKnownNonNegative
, YKnownNegative
, TD
, Depth
);
824 // If X and Y are both non-negative (as signed values) then their sum is not
825 // zero unless both X and Y are zero.
826 if (XKnownNonNegative
&& YKnownNonNegative
)
827 if (isKnownNonZero(X
, TD
, Depth
) || isKnownNonZero(Y
, TD
, Depth
))
830 // If X and Y are both negative (as signed values) then their sum is not
831 // zero unless both X and Y equal INT_MIN.
832 if (BitWidth
&& XKnownNegative
&& YKnownNegative
) {
833 APInt
KnownZero(BitWidth
, 0);
834 APInt
KnownOne(BitWidth
, 0);
835 APInt Mask
= APInt::getSignedMaxValue(BitWidth
);
836 // The sign bit of X is set. If some other bit is set then X is not equal
838 ComputeMaskedBits(X
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
839 if ((KnownOne
& Mask
) != 0)
841 // The sign bit of Y is set. If some other bit is set then Y is not equal
843 ComputeMaskedBits(Y
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
844 if ((KnownOne
& Mask
) != 0)
848 // The sum of a non-negative number and a power of two is not zero.
849 if (XKnownNonNegative
&& isPowerOfTwo(Y
, TD
, Depth
))
851 if (YKnownNonNegative
&& isPowerOfTwo(X
, TD
, Depth
))
854 // (C ? X : Y) != 0 if X != 0 and Y != 0.
855 else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
856 if (isKnownNonZero(SI
->getTrueValue(), TD
, Depth
) &&
857 isKnownNonZero(SI
->getFalseValue(), TD
, Depth
))
861 if (!BitWidth
) return false;
862 APInt
KnownZero(BitWidth
, 0);
863 APInt
KnownOne(BitWidth
, 0);
864 ComputeMaskedBits(V
, APInt::getAllOnesValue(BitWidth
), KnownZero
, KnownOne
,
866 return KnownOne
!= 0;
869 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
870 /// this predicate to simplify operations downstream. Mask is known to be zero
871 /// for bits that V cannot have.
873 /// This function is defined on values with integer type, values with pointer
874 /// type (but only if TD is non-null), and vectors of integers. In the case
875 /// where V is a vector, the mask, known zero, and known one values are the
876 /// same width as the vector element, and the bit is set only if it is true
877 /// for all of the elements in the vector.
878 bool llvm::MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
879 const TargetData
*TD
, unsigned Depth
) {
880 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
881 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
882 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
883 return (KnownZero
& Mask
) == Mask
;
888 /// ComputeNumSignBits - Return the number of times the sign bit of the
889 /// register is replicated into the other bits. We know that at least 1 bit
890 /// is always equal to the sign bit (itself), but other cases can give us
891 /// information. For example, immediately after an "ashr X, 2", we know that
892 /// the top 3 bits are all equal to each other, so we return 3.
894 /// 'Op' must have a scalar integer type.
896 unsigned llvm::ComputeNumSignBits(Value
*V
, const TargetData
*TD
,
898 assert((TD
|| V
->getType()->isIntOrIntVectorTy()) &&
899 "ComputeNumSignBits requires a TargetData object to operate "
900 "on non-integer values!");
901 const Type
*Ty
= V
->getType();
902 unsigned TyBits
= TD
? TD
->getTypeSizeInBits(V
->getType()->getScalarType()) :
903 Ty
->getScalarSizeInBits();
905 unsigned FirstAnswer
= 1;
907 // Note that ConstantInt is handled by the general ComputeMaskedBits case
911 return 1; // Limit search depth.
913 Operator
*U
= dyn_cast
<Operator
>(V
);
914 switch (Operator::getOpcode(V
)) {
916 case Instruction::SExt
:
917 Tmp
= TyBits
- U
->getOperand(0)->getType()->getScalarSizeInBits();
918 return ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1) + Tmp
;
920 case Instruction::AShr
:
921 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
922 // ashr X, C -> adds C sign bits.
923 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
924 Tmp
+= C
->getZExtValue();
925 if (Tmp
> TyBits
) Tmp
= TyBits
;
927 // vector ashr X, <C, C, C, C> -> adds C sign bits
928 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(U
->getOperand(1))) {
929 if (ConstantInt
*CI
= dyn_cast_or_null
<ConstantInt
>(C
->getSplatValue())) {
930 Tmp
+= CI
->getZExtValue();
931 if (Tmp
> TyBits
) Tmp
= TyBits
;
935 case Instruction::Shl
:
936 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
937 // shl destroys sign bits.
938 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
939 if (C
->getZExtValue() >= TyBits
|| // Bad shift.
940 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
941 return Tmp
- C
->getZExtValue();
944 case Instruction::And
:
945 case Instruction::Or
:
946 case Instruction::Xor
: // NOT is handled here.
947 // Logical binary ops preserve the number of sign bits at the worst.
948 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
950 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
951 FirstAnswer
= std::min(Tmp
, Tmp2
);
952 // We computed what we know about the sign bits as our first
953 // answer. Now proceed to the generic code that uses
954 // ComputeMaskedBits, and pick whichever answer is better.
958 case Instruction::Select
:
959 Tmp
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
960 if (Tmp
== 1) return 1; // Early out.
961 Tmp2
= ComputeNumSignBits(U
->getOperand(2), TD
, Depth
+1);
962 return std::min(Tmp
, Tmp2
);
964 case Instruction::Add
:
965 // Add can have at most one carry bit. Thus we know that the output
966 // is, at worst, one more bit than the inputs.
967 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
968 if (Tmp
== 1) return 1; // Early out.
970 // Special case decrementing a value (ADD X, -1):
971 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
972 if (CRHS
->isAllOnesValue()) {
973 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
974 APInt Mask
= APInt::getAllOnesValue(TyBits
);
975 ComputeMaskedBits(U
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
978 // If the input is known to be 0 or 1, the output is 0/-1, which is all
980 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
983 // If we are subtracting one from a positive number, there is no carry
984 // out of the result.
985 if (KnownZero
.isNegative())
989 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
990 if (Tmp2
== 1) return 1;
991 return std::min(Tmp
, Tmp2
)-1;
993 case Instruction::Sub
:
994 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
995 if (Tmp2
== 1) return 1;
998 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(U
->getOperand(0)))
999 if (CLHS
->isNullValue()) {
1000 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
1001 APInt Mask
= APInt::getAllOnesValue(TyBits
);
1002 ComputeMaskedBits(U
->getOperand(1), Mask
, KnownZero
, KnownOne
,
1004 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1006 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
1009 // If the input is known to be positive (the sign bit is known clear),
1010 // the output of the NEG has the same number of sign bits as the input.
1011 if (KnownZero
.isNegative())
1014 // Otherwise, we treat this like a SUB.
1017 // Sub can have at most one carry bit. Thus we know that the output
1018 // is, at worst, one more bit than the inputs.
1019 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
1020 if (Tmp
== 1) return 1; // Early out.
1021 return std::min(Tmp
, Tmp2
)-1;
1023 case Instruction::PHI
: {
1024 PHINode
*PN
= cast
<PHINode
>(U
);
1025 // Don't analyze large in-degree PHIs.
1026 if (PN
->getNumIncomingValues() > 4) break;
1028 // Take the minimum of all incoming values. This can't infinitely loop
1029 // because of our depth threshold.
1030 Tmp
= ComputeNumSignBits(PN
->getIncomingValue(0), TD
, Depth
+1);
1031 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1032 if (Tmp
== 1) return Tmp
;
1034 ComputeNumSignBits(PN
->getIncomingValue(i
), TD
, Depth
+1));
1039 case Instruction::Trunc
:
1040 // FIXME: it's tricky to do anything useful for this, but it is an important
1041 // case for targets like X86.
1045 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1046 // use this information.
1047 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
1048 APInt Mask
= APInt::getAllOnesValue(TyBits
);
1049 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
1051 if (KnownZero
.isNegative()) { // sign bit is 0
1053 } else if (KnownOne
.isNegative()) { // sign bit is 1;
1060 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1061 // the number of identical bits in the top of the input value.
1063 Mask
<<= Mask
.getBitWidth()-TyBits
;
1064 // Return # leading zeros. We use 'min' here in case Val was zero before
1065 // shifting. We don't want to return '64' as for an i32 "0".
1066 return std::max(FirstAnswer
, std::min(TyBits
, Mask
.countLeadingZeros()));
1069 /// ComputeMultiple - This function computes the integer multiple of Base that
1070 /// equals V. If successful, it returns true and returns the multiple in
1071 /// Multiple. If unsuccessful, it returns false. It looks
1072 /// through SExt instructions only if LookThroughSExt is true.
1073 bool llvm::ComputeMultiple(Value
*V
, unsigned Base
, Value
*&Multiple
,
1074 bool LookThroughSExt
, unsigned Depth
) {
1075 const unsigned MaxDepth
= 6;
1077 assert(V
&& "No Value?");
1078 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
1079 assert(V
->getType()->isIntegerTy() && "Not integer or pointer type!");
1081 const Type
*T
= V
->getType();
1083 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
1093 ConstantExpr
*CO
= dyn_cast
<ConstantExpr
>(V
);
1094 Constant
*BaseVal
= ConstantInt::get(T
, Base
);
1095 if (CO
&& CO
== BaseVal
) {
1097 Multiple
= ConstantInt::get(T
, 1);
1101 if (CI
&& CI
->getZExtValue() % Base
== 0) {
1102 Multiple
= ConstantInt::get(T
, CI
->getZExtValue() / Base
);
1106 if (Depth
== MaxDepth
) return false; // Limit search depth.
1108 Operator
*I
= dyn_cast
<Operator
>(V
);
1109 if (!I
) return false;
1111 switch (I
->getOpcode()) {
1113 case Instruction::SExt
:
1114 if (!LookThroughSExt
) return false;
1115 // otherwise fall through to ZExt
1116 case Instruction::ZExt
:
1117 return ComputeMultiple(I
->getOperand(0), Base
, Multiple
,
1118 LookThroughSExt
, Depth
+1);
1119 case Instruction::Shl
:
1120 case Instruction::Mul
: {
1121 Value
*Op0
= I
->getOperand(0);
1122 Value
*Op1
= I
->getOperand(1);
1124 if (I
->getOpcode() == Instruction::Shl
) {
1125 ConstantInt
*Op1CI
= dyn_cast
<ConstantInt
>(Op1
);
1126 if (!Op1CI
) return false;
1127 // Turn Op0 << Op1 into Op0 * 2^Op1
1128 APInt Op1Int
= Op1CI
->getValue();
1129 uint64_t BitToSet
= Op1Int
.getLimitedValue(Op1Int
.getBitWidth() - 1);
1130 APInt
API(Op1Int
.getBitWidth(), 0);
1131 API
.setBit(BitToSet
);
1132 Op1
= ConstantInt::get(V
->getContext(), API
);
1136 if (ComputeMultiple(Op0
, Base
, Mul0
, LookThroughSExt
, Depth
+1)) {
1137 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
))
1138 if (Constant
*MulC
= dyn_cast
<Constant
>(Mul0
)) {
1139 if (Op1C
->getType()->getPrimitiveSizeInBits() <
1140 MulC
->getType()->getPrimitiveSizeInBits())
1141 Op1C
= ConstantExpr::getZExt(Op1C
, MulC
->getType());
1142 if (Op1C
->getType()->getPrimitiveSizeInBits() >
1143 MulC
->getType()->getPrimitiveSizeInBits())
1144 MulC
= ConstantExpr::getZExt(MulC
, Op1C
->getType());
1146 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1147 Multiple
= ConstantExpr::getMul(MulC
, Op1C
);
1151 if (ConstantInt
*Mul0CI
= dyn_cast
<ConstantInt
>(Mul0
))
1152 if (Mul0CI
->getValue() == 1) {
1153 // V == Base * Op1, so return Op1
1160 if (ComputeMultiple(Op1
, Base
, Mul1
, LookThroughSExt
, Depth
+1)) {
1161 if (Constant
*Op0C
= dyn_cast
<Constant
>(Op0
))
1162 if (Constant
*MulC
= dyn_cast
<Constant
>(Mul1
)) {
1163 if (Op0C
->getType()->getPrimitiveSizeInBits() <
1164 MulC
->getType()->getPrimitiveSizeInBits())
1165 Op0C
= ConstantExpr::getZExt(Op0C
, MulC
->getType());
1166 if (Op0C
->getType()->getPrimitiveSizeInBits() >
1167 MulC
->getType()->getPrimitiveSizeInBits())
1168 MulC
= ConstantExpr::getZExt(MulC
, Op0C
->getType());
1170 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1171 Multiple
= ConstantExpr::getMul(MulC
, Op0C
);
1175 if (ConstantInt
*Mul1CI
= dyn_cast
<ConstantInt
>(Mul1
))
1176 if (Mul1CI
->getValue() == 1) {
1177 // V == Base * Op0, so return Op0
1185 // We could not determine if V is a multiple of Base.
1189 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1190 /// value is never equal to -0.0.
1192 /// NOTE: this function will need to be revisited when we support non-default
1195 bool llvm::CannotBeNegativeZero(const Value
*V
, unsigned Depth
) {
1196 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
))
1197 return !CFP
->getValueAPF().isNegZero();
1200 return 1; // Limit search depth.
1202 const Operator
*I
= dyn_cast
<Operator
>(V
);
1203 if (I
== 0) return false;
1205 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1206 if (I
->getOpcode() == Instruction::FAdd
&&
1207 isa
<ConstantFP
>(I
->getOperand(1)) &&
1208 cast
<ConstantFP
>(I
->getOperand(1))->isNullValue())
1211 // sitofp and uitofp turn into +0.0 for zero.
1212 if (isa
<SIToFPInst
>(I
) || isa
<UIToFPInst
>(I
))
1215 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
1216 // sqrt(-0.0) = -0.0, no other negative results are possible.
1217 if (II
->getIntrinsicID() == Intrinsic::sqrt
)
1218 return CannotBeNegativeZero(II
->getArgOperand(0), Depth
+1);
1220 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
1221 if (const Function
*F
= CI
->getCalledFunction()) {
1222 if (F
->isDeclaration()) {
1224 if (F
->getName() == "abs") return true;
1225 // fabs[lf](x) != -0.0
1226 if (F
->getName() == "fabs") return true;
1227 if (F
->getName() == "fabsf") return true;
1228 if (F
->getName() == "fabsl") return true;
1229 if (F
->getName() == "sqrt" || F
->getName() == "sqrtf" ||
1230 F
->getName() == "sqrtl")
1231 return CannotBeNegativeZero(CI
->getArgOperand(0), Depth
+1);
1238 /// isBytewiseValue - If the specified value can be set by repeating the same
1239 /// byte in memory, return the i8 value that it is represented with. This is
1240 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1241 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1242 /// byte store (e.g. i16 0x1234), return null.
1243 Value
*llvm::isBytewiseValue(Value
*V
) {
1244 // All byte-wide stores are splatable, even of arbitrary variables.
1245 if (V
->getType()->isIntegerTy(8)) return V
;
1247 // Handle 'null' ConstantArrayZero etc.
1248 if (Constant
*C
= dyn_cast
<Constant
>(V
))
1249 if (C
->isNullValue())
1250 return Constant::getNullValue(Type::getInt8Ty(V
->getContext()));
1252 // Constant float and double values can be handled as integer values if the
1253 // corresponding integer value is "byteable". An important case is 0.0.
1254 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
1255 if (CFP
->getType()->isFloatTy())
1256 V
= ConstantExpr::getBitCast(CFP
, Type::getInt32Ty(V
->getContext()));
1257 if (CFP
->getType()->isDoubleTy())
1258 V
= ConstantExpr::getBitCast(CFP
, Type::getInt64Ty(V
->getContext()));
1259 // Don't handle long double formats, which have strange constraints.
1262 // We can handle constant integers that are power of two in size and a
1263 // multiple of 8 bits.
1264 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
1265 unsigned Width
= CI
->getBitWidth();
1266 if (isPowerOf2_32(Width
) && Width
> 8) {
1267 // We can handle this value if the recursive binary decomposition is the
1268 // same at all levels.
1269 APInt Val
= CI
->getValue();
1271 while (Val
.getBitWidth() != 8) {
1272 unsigned NextWidth
= Val
.getBitWidth()/2;
1273 Val2
= Val
.lshr(NextWidth
);
1274 Val2
= Val2
.trunc(Val
.getBitWidth()/2);
1275 Val
= Val
.trunc(Val
.getBitWidth()/2);
1277 // If the top/bottom halves aren't the same, reject it.
1281 return ConstantInt::get(V
->getContext(), Val
);
1285 // A ConstantArray is splatable if all its members are equal and also
1287 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(V
)) {
1288 if (CA
->getNumOperands() == 0)
1291 Value
*Val
= isBytewiseValue(CA
->getOperand(0));
1295 for (unsigned I
= 1, E
= CA
->getNumOperands(); I
!= E
; ++I
)
1296 if (CA
->getOperand(I
-1) != CA
->getOperand(I
))
1302 // Conceptually, we could handle things like:
1303 // %a = zext i8 %X to i16
1304 // %b = shl i16 %a, 8
1305 // %c = or i16 %a, %b
1306 // but until there is an example that actually needs this, it doesn't seem
1307 // worth worrying about.
1312 // This is the recursive version of BuildSubAggregate. It takes a few different
1313 // arguments. Idxs is the index within the nested struct From that we are
1314 // looking at now (which is of type IndexedType). IdxSkip is the number of
1315 // indices from Idxs that should be left out when inserting into the resulting
1316 // struct. To is the result struct built so far, new insertvalue instructions
1318 static Value
*BuildSubAggregate(Value
*From
, Value
* To
, const Type
*IndexedType
,
1319 SmallVector
<unsigned, 10> &Idxs
,
1321 Instruction
*InsertBefore
) {
1322 const llvm::StructType
*STy
= llvm::dyn_cast
<llvm::StructType
>(IndexedType
);
1324 // Save the original To argument so we can modify it
1326 // General case, the type indexed by Idxs is a struct
1327 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1328 // Process each struct element recursively
1331 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
1335 // Couldn't find any inserted value for this index? Cleanup
1336 while (PrevTo
!= OrigTo
) {
1337 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
1338 PrevTo
= Del
->getAggregateOperand();
1339 Del
->eraseFromParent();
1341 // Stop processing elements
1345 // If we successfully found a value for each of our subaggregates
1349 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1350 // the struct's elements had a value that was inserted directly. In the latter
1351 // case, perhaps we can't determine each of the subelements individually, but
1352 // we might be able to find the complete struct somewhere.
1354 // Find the value that is at that particular spot
1355 Value
*V
= FindInsertedValue(From
, Idxs
.begin(), Idxs
.end());
1360 // Insert the value in the new (sub) aggregrate
1361 return llvm::InsertValueInst::Create(To
, V
, Idxs
.begin() + IdxSkip
,
1362 Idxs
.end(), "tmp", InsertBefore
);
1365 // This helper takes a nested struct and extracts a part of it (which is again a
1366 // struct) into a new value. For example, given the struct:
1367 // { a, { b, { c, d }, e } }
1368 // and the indices "1, 1" this returns
1371 // It does this by inserting an insertvalue for each element in the resulting
1372 // struct, as opposed to just inserting a single struct. This will only work if
1373 // each of the elements of the substruct are known (ie, inserted into From by an
1374 // insertvalue instruction somewhere).
1376 // All inserted insertvalue instructions are inserted before InsertBefore
1377 static Value
*BuildSubAggregate(Value
*From
, const unsigned *idx_begin
,
1378 const unsigned *idx_end
,
1379 Instruction
*InsertBefore
) {
1380 assert(InsertBefore
&& "Must have someplace to insert!");
1381 const Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
1384 Value
*To
= UndefValue::get(IndexedType
);
1385 SmallVector
<unsigned, 10> Idxs(idx_begin
, idx_end
);
1386 unsigned IdxSkip
= Idxs
.size();
1388 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
, InsertBefore
);
1391 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1392 /// the scalar value indexed is already around as a register, for example if it
1393 /// were inserted directly into the aggregrate.
1395 /// If InsertBefore is not null, this function will duplicate (modified)
1396 /// insertvalues when a part of a nested struct is extracted.
1397 Value
*llvm::FindInsertedValue(Value
*V
, const unsigned *idx_begin
,
1398 const unsigned *idx_end
, Instruction
*InsertBefore
) {
1399 // Nothing to index? Just return V then (this is useful at the end of our
1401 if (idx_begin
== idx_end
)
1403 // We have indices, so V should have an indexable type
1404 assert((V
->getType()->isStructTy() || V
->getType()->isArrayTy())
1405 && "Not looking at a struct or array?");
1406 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_begin
, idx_end
)
1407 && "Invalid indices for type?");
1408 const CompositeType
*PTy
= cast
<CompositeType
>(V
->getType());
1410 if (isa
<UndefValue
>(V
))
1411 return UndefValue::get(ExtractValueInst::getIndexedType(PTy
,
1414 else if (isa
<ConstantAggregateZero
>(V
))
1415 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy
,
1418 else if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
1419 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
))
1420 // Recursively process this constant
1421 return FindInsertedValue(C
->getOperand(*idx_begin
), idx_begin
+ 1,
1422 idx_end
, InsertBefore
);
1423 } else if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
1424 // Loop the indices for the insertvalue instruction in parallel with the
1425 // requested indices
1426 const unsigned *req_idx
= idx_begin
;
1427 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
1428 i
!= e
; ++i
, ++req_idx
) {
1429 if (req_idx
== idx_end
) {
1431 // The requested index identifies a part of a nested aggregate. Handle
1432 // this specially. For example,
1433 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1434 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1435 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1436 // This can be changed into
1437 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1438 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1439 // which allows the unused 0,0 element from the nested struct to be
1441 return BuildSubAggregate(V
, idx_begin
, req_idx
, InsertBefore
);
1443 // We can't handle this without inserting insertvalues
1447 // This insert value inserts something else than what we are looking for.
1448 // See if the (aggregrate) value inserted into has the value we are
1449 // looking for, then.
1451 return FindInsertedValue(I
->getAggregateOperand(), idx_begin
, idx_end
,
1454 // If we end up here, the indices of the insertvalue match with those
1455 // requested (though possibly only partially). Now we recursively look at
1456 // the inserted value, passing any remaining indices.
1457 return FindInsertedValue(I
->getInsertedValueOperand(), req_idx
, idx_end
,
1459 } else if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
1460 // If we're extracting a value from an aggregrate that was extracted from
1461 // something else, we can extract from that something else directly instead.
1462 // However, we will need to chain I's indices with the requested indices.
1464 // Calculate the number of indices required
1465 unsigned size
= I
->getNumIndices() + (idx_end
- idx_begin
);
1466 // Allocate some space to put the new indices in
1467 SmallVector
<unsigned, 5> Idxs
;
1469 // Add indices from the extract value instruction
1470 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
1474 // Add requested indices
1475 for (const unsigned *i
= idx_begin
, *e
= idx_end
; i
!= e
; ++i
)
1478 assert(Idxs
.size() == size
1479 && "Number of indices added not correct?");
1481 return FindInsertedValue(I
->getAggregateOperand(), Idxs
.begin(), Idxs
.end(),
1484 // Otherwise, we don't know (such as, extracting from a function return value
1485 // or load instruction)
1489 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1490 /// it can be expressed as a base pointer plus a constant offset. Return the
1491 /// base and offset to the caller.
1492 Value
*llvm::GetPointerBaseWithConstantOffset(Value
*Ptr
, int64_t &Offset
,
1493 const TargetData
&TD
) {
1494 Operator
*PtrOp
= dyn_cast
<Operator
>(Ptr
);
1495 if (PtrOp
== 0) return Ptr
;
1497 // Just look through bitcasts.
1498 if (PtrOp
->getOpcode() == Instruction::BitCast
)
1499 return GetPointerBaseWithConstantOffset(PtrOp
->getOperand(0), Offset
, TD
);
1501 // If this is a GEP with constant indices, we can look through it.
1502 GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(PtrOp
);
1503 if (GEP
== 0 || !GEP
->hasAllConstantIndices()) return Ptr
;
1505 gep_type_iterator GTI
= gep_type_begin(GEP
);
1506 for (User::op_iterator I
= GEP
->idx_begin(), E
= GEP
->idx_end(); I
!= E
;
1508 ConstantInt
*OpC
= cast
<ConstantInt
>(*I
);
1509 if (OpC
->isZero()) continue;
1511 // Handle a struct and array indices which add their offset to the pointer.
1512 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
1513 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
1515 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
1516 Offset
+= OpC
->getSExtValue()*Size
;
1520 // Re-sign extend from the pointer size if needed to get overflow edge cases
1522 unsigned PtrSize
= TD
.getPointerSizeInBits();
1524 Offset
= (Offset
<< (64-PtrSize
)) >> (64-PtrSize
);
1526 return GetPointerBaseWithConstantOffset(GEP
->getPointerOperand(), Offset
, TD
);
1530 /// GetConstantStringInfo - This function computes the length of a
1531 /// null-terminated C string pointed to by V. If successful, it returns true
1532 /// and returns the string in Str. If unsuccessful, it returns false.
1533 bool llvm::GetConstantStringInfo(const Value
*V
, std::string
&Str
,
1536 // If V is NULL then return false;
1537 if (V
== NULL
) return false;
1539 // Look through bitcast instructions.
1540 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1541 return GetConstantStringInfo(BCI
->getOperand(0), Str
, Offset
, StopAtNul
);
1543 // If the value is not a GEP instruction nor a constant expression with a
1544 // GEP instruction, then return false because ConstantArray can't occur
1546 const User
*GEP
= 0;
1547 if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1549 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1550 if (CE
->getOpcode() == Instruction::BitCast
)
1551 return GetConstantStringInfo(CE
->getOperand(0), Str
, Offset
, StopAtNul
);
1552 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1558 // Make sure the GEP has exactly three arguments.
1559 if (GEP
->getNumOperands() != 3)
1562 // Make sure the index-ee is a pointer to array of i8.
1563 const PointerType
*PT
= cast
<PointerType
>(GEP
->getOperand(0)->getType());
1564 const ArrayType
*AT
= dyn_cast
<ArrayType
>(PT
->getElementType());
1565 if (AT
== 0 || !AT
->getElementType()->isIntegerTy(8))
1568 // Check to make sure that the first operand of the GEP is an integer and
1569 // has value 0 so that we are sure we're indexing into the initializer.
1570 const ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
1571 if (FirstIdx
== 0 || !FirstIdx
->isZero())
1574 // If the second index isn't a ConstantInt, then this is a variable index
1575 // into the array. If this occurs, we can't say anything meaningful about
1577 uint64_t StartIdx
= 0;
1578 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1579 StartIdx
= CI
->getZExtValue();
1582 return GetConstantStringInfo(GEP
->getOperand(0), Str
, StartIdx
+Offset
,
1586 // The GEP instruction, constant or instruction, must reference a global
1587 // variable that is a constant and is initialized. The referenced constant
1588 // initializer is the array that we'll use for optimization.
1589 const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V
);
1590 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
1592 const Constant
*GlobalInit
= GV
->getInitializer();
1594 // Handle the ConstantAggregateZero case
1595 if (isa
<ConstantAggregateZero
>(GlobalInit
)) {
1596 // This is a degenerate case. The initializer is constant zero so the
1597 // length of the string must be zero.
1602 // Must be a Constant Array
1603 const ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1604 if (Array
== 0 || !Array
->getType()->getElementType()->isIntegerTy(8))
1607 // Get the number of elements in the array
1608 uint64_t NumElts
= Array
->getType()->getNumElements();
1610 if (Offset
> NumElts
)
1613 // Traverse the constant array from 'Offset' which is the place the GEP refers
1615 Str
.reserve(NumElts
-Offset
);
1616 for (unsigned i
= Offset
; i
!= NumElts
; ++i
) {
1617 const Constant
*Elt
= Array
->getOperand(i
);
1618 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1619 if (!CI
) // This array isn't suitable, non-int initializer.
1621 if (StopAtNul
&& CI
->isZero())
1622 return true; // we found end of string, success!
1623 Str
+= (char)CI
->getZExtValue();
1626 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1630 // These next two are very similar to the above, but also look through PHI
1632 // TODO: See if we can integrate these two together.
1634 /// GetStringLengthH - If we can compute the length of the string pointed to by
1635 /// the specified pointer, return 'len+1'. If we can't, return 0.
1636 static uint64_t GetStringLengthH(Value
*V
, SmallPtrSet
<PHINode
*, 32> &PHIs
) {
1637 // Look through noop bitcast instructions.
1638 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1639 return GetStringLengthH(BCI
->getOperand(0), PHIs
);
1641 // If this is a PHI node, there are two cases: either we have already seen it
1643 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
1644 if (!PHIs
.insert(PN
))
1645 return ~0ULL; // already in the set.
1647 // If it was new, see if all the input strings are the same length.
1648 uint64_t LenSoFar
= ~0ULL;
1649 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1650 uint64_t Len
= GetStringLengthH(PN
->getIncomingValue(i
), PHIs
);
1651 if (Len
== 0) return 0; // Unknown length -> unknown.
1653 if (Len
== ~0ULL) continue;
1655 if (Len
!= LenSoFar
&& LenSoFar
!= ~0ULL)
1656 return 0; // Disagree -> unknown.
1660 // Success, all agree.
1664 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1665 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
1666 uint64_t Len1
= GetStringLengthH(SI
->getTrueValue(), PHIs
);
1667 if (Len1
== 0) return 0;
1668 uint64_t Len2
= GetStringLengthH(SI
->getFalseValue(), PHIs
);
1669 if (Len2
== 0) return 0;
1670 if (Len1
== ~0ULL) return Len2
;
1671 if (Len2
== ~0ULL) return Len1
;
1672 if (Len1
!= Len2
) return 0;
1676 // If the value is not a GEP instruction nor a constant expression with a
1677 // GEP instruction, then return unknown.
1679 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1681 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1682 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1689 // Make sure the GEP has exactly three arguments.
1690 if (GEP
->getNumOperands() != 3)
1693 // Check to make sure that the first operand of the GEP is an integer and
1694 // has value 0 so that we are sure we're indexing into the initializer.
1695 if (ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1))) {
1701 // If the second index isn't a ConstantInt, then this is a variable index
1702 // into the array. If this occurs, we can't say anything meaningful about
1704 uint64_t StartIdx
= 0;
1705 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1706 StartIdx
= CI
->getZExtValue();
1710 // The GEP instruction, constant or instruction, must reference a global
1711 // variable that is a constant and is initialized. The referenced constant
1712 // initializer is the array that we'll use for optimization.
1713 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
1714 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
1715 GV
->mayBeOverridden())
1717 Constant
*GlobalInit
= GV
->getInitializer();
1719 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1720 // initializer is constant zero so the length of the string must be zero.
1721 if (isa
<ConstantAggregateZero
>(GlobalInit
))
1722 return 1; // Len = 0 offset by 1.
1724 // Must be a Constant Array
1725 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1726 if (!Array
|| !Array
->getType()->getElementType()->isIntegerTy(8))
1729 // Get the number of elements in the array
1730 uint64_t NumElts
= Array
->getType()->getNumElements();
1732 // Traverse the constant array from StartIdx (derived above) which is
1733 // the place the GEP refers to in the array.
1734 for (unsigned i
= StartIdx
; i
!= NumElts
; ++i
) {
1735 Constant
*Elt
= Array
->getOperand(i
);
1736 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1737 if (!CI
) // This array isn't suitable, non-int initializer.
1740 return i
-StartIdx
+1; // We found end of string, success!
1743 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1746 /// GetStringLength - If we can compute the length of the string pointed to by
1747 /// the specified pointer, return 'len+1'. If we can't, return 0.
1748 uint64_t llvm::GetStringLength(Value
*V
) {
1749 if (!V
->getType()->isPointerTy()) return 0;
1751 SmallPtrSet
<PHINode
*, 32> PHIs
;
1752 uint64_t Len
= GetStringLengthH(V
, PHIs
);
1753 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1754 // an empty string as a length.
1755 return Len
== ~0ULL ? 1 : Len
;
1759 llvm::GetUnderlyingObject(Value
*V
, const TargetData
*TD
, unsigned MaxLookup
) {
1760 if (!V
->getType()->isPointerTy())
1762 for (unsigned Count
= 0; MaxLookup
== 0 || Count
< MaxLookup
; ++Count
) {
1763 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
1764 V
= GEP
->getPointerOperand();
1765 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
1766 V
= cast
<Operator
>(V
)->getOperand(0);
1767 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
1768 if (GA
->mayBeOverridden())
1770 V
= GA
->getAliasee();
1772 // See if InstructionSimplify knows any relevant tricks.
1773 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1774 // TODO: Acquire a DominatorTree and use it.
1775 if (Value
*Simplified
= SimplifyInstruction(I
, TD
, 0)) {
1782 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");