When promoting an alloca to registers discard any lifetime intrinsics.
[llvm/stm8.git] / lib / Analysis / ValueTracking.cpp
blobdab5aebd6c646356a64264c613ad2efea401ef26
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Operator.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/PatternMatch.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include <cstring>
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 const unsigned MaxDepth = 6;
35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36 /// unknown returns 0). For vector types, returns the element type's bitwidth.
37 static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
45 /// known to be either zero or one and return them in the KnownZero/KnownOne
46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47 /// processing.
48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49 /// we cannot optimize based on the assumption that it is zero without changing
50 /// it to be an explicit zero. If we don't change it to zero, other code could
51 /// optimized based on the contradictory assumption that it is non-zero.
52 /// Because instcombine aggressively folds operations with undef args anyway,
53 /// this won't lose us code quality.
54 ///
55 /// This function is defined on values with integer type, values with pointer
56 /// type (but only if TD is non-null), and vectors of integers. In the case
57 /// where V is a vector, the mask, known zero, and known one values are the
58 /// same width as the vector element, and the bit is set only if it is true
59 /// for all of the elements in the vector.
60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
62 const TargetData *TD, unsigned Depth) {
63 assert(V && "No Value?");
64 assert(Depth <= MaxDepth && "Limit Search Depth");
65 unsigned BitWidth = Mask.getBitWidth();
66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
67 && "Not integer or pointer type!");
68 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
70 (!V->getType()->isIntOrIntVectorTy() ||
71 V->getType()->getScalarSizeInBits() == BitWidth) &&
72 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
82 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
85 KnownOne.clearAllBits();
86 KnownZero = Mask;
87 return;
89 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
92 KnownZero.setAllBits(); KnownOne.setAllBits();
93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
100 return;
102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106 const Type *ObjectType = GV->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
121 return;
123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
132 return;
135 if (Argument *A = dyn_cast<Argument>(V)) {
136 // Get alignment information off byval arguments if specified in the IR.
137 if (A->hasByValAttr())
138 if (unsigned Align = A->getParamAlignment())
139 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
140 CountTrailingZeros_32(Align));
141 return;
144 // Start out not knowing anything.
145 KnownZero.clearAllBits(); KnownOne.clearAllBits();
147 if (Depth == MaxDepth || Mask == 0)
148 return; // Limit search depth.
150 Operator *I = dyn_cast<Operator>(V);
151 if (!I) return;
153 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
154 switch (I->getOpcode()) {
155 default: break;
156 case Instruction::And: {
157 // If either the LHS or the RHS are Zero, the result is zero.
158 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
159 APInt Mask2(Mask & ~KnownZero);
160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161 Depth+1);
162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
165 // Output known-1 bits are only known if set in both the LHS & RHS.
166 KnownOne &= KnownOne2;
167 // Output known-0 are known to be clear if zero in either the LHS | RHS.
168 KnownZero |= KnownZero2;
169 return;
171 case Instruction::Or: {
172 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
173 APInt Mask2(Mask & ~KnownOne);
174 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
175 Depth+1);
176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
177 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
179 // Output known-0 bits are only known if clear in both the LHS & RHS.
180 KnownZero &= KnownZero2;
181 // Output known-1 are known to be set if set in either the LHS | RHS.
182 KnownOne |= KnownOne2;
183 return;
185 case Instruction::Xor: {
186 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
187 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
188 Depth+1);
189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
190 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
192 // Output known-0 bits are known if clear or set in both the LHS & RHS.
193 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
194 // Output known-1 are known to be set if set in only one of the LHS, RHS.
195 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
196 KnownZero = KnownZeroOut;
197 return;
199 case Instruction::Mul: {
200 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
201 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
202 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
203 Depth+1);
204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
205 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
207 // If low bits are zero in either operand, output low known-0 bits.
208 // Also compute a conserative estimate for high known-0 bits.
209 // More trickiness is possible, but this is sufficient for the
210 // interesting case of alignment computation.
211 KnownOne.clearAllBits();
212 unsigned TrailZ = KnownZero.countTrailingOnes() +
213 KnownZero2.countTrailingOnes();
214 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
215 KnownZero2.countLeadingOnes(),
216 BitWidth) - BitWidth;
218 TrailZ = std::min(TrailZ, BitWidth);
219 LeadZ = std::min(LeadZ, BitWidth);
220 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
221 APInt::getHighBitsSet(BitWidth, LeadZ);
222 KnownZero &= Mask;
223 return;
225 case Instruction::UDiv: {
226 // For the purposes of computing leading zeros we can conservatively
227 // treat a udiv as a logical right shift by the power of 2 known to
228 // be less than the denominator.
229 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
230 ComputeMaskedBits(I->getOperand(0),
231 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
232 unsigned LeadZ = KnownZero2.countLeadingOnes();
234 KnownOne2.clearAllBits();
235 KnownZero2.clearAllBits();
236 ComputeMaskedBits(I->getOperand(1),
237 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
238 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
239 if (RHSUnknownLeadingOnes != BitWidth)
240 LeadZ = std::min(BitWidth,
241 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
243 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
244 return;
246 case Instruction::Select:
247 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
248 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
249 Depth+1);
250 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
251 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
253 // Only known if known in both the LHS and RHS.
254 KnownOne &= KnownOne2;
255 KnownZero &= KnownZero2;
256 return;
257 case Instruction::FPTrunc:
258 case Instruction::FPExt:
259 case Instruction::FPToUI:
260 case Instruction::FPToSI:
261 case Instruction::SIToFP:
262 case Instruction::UIToFP:
263 return; // Can't work with floating point.
264 case Instruction::PtrToInt:
265 case Instruction::IntToPtr:
266 // We can't handle these if we don't know the pointer size.
267 if (!TD) return;
268 // FALL THROUGH and handle them the same as zext/trunc.
269 case Instruction::ZExt:
270 case Instruction::Trunc: {
271 const Type *SrcTy = I->getOperand(0)->getType();
273 unsigned SrcBitWidth;
274 // Note that we handle pointer operands here because of inttoptr/ptrtoint
275 // which fall through here.
276 if (SrcTy->isPointerTy())
277 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
278 else
279 SrcBitWidth = SrcTy->getScalarSizeInBits();
281 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
282 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
283 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
284 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
285 Depth+1);
286 KnownZero = KnownZero.zextOrTrunc(BitWidth);
287 KnownOne = KnownOne.zextOrTrunc(BitWidth);
288 // Any top bits are known to be zero.
289 if (BitWidth > SrcBitWidth)
290 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
291 return;
293 case Instruction::BitCast: {
294 const Type *SrcTy = I->getOperand(0)->getType();
295 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
296 // TODO: For now, not handling conversions like:
297 // (bitcast i64 %x to <2 x i32>)
298 !I->getType()->isVectorTy()) {
299 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
300 Depth+1);
301 return;
303 break;
305 case Instruction::SExt: {
306 // Compute the bits in the result that are not present in the input.
307 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
309 APInt MaskIn = Mask.trunc(SrcBitWidth);
310 KnownZero = KnownZero.trunc(SrcBitWidth);
311 KnownOne = KnownOne.trunc(SrcBitWidth);
312 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
313 Depth+1);
314 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
315 KnownZero = KnownZero.zext(BitWidth);
316 KnownOne = KnownOne.zext(BitWidth);
318 // If the sign bit of the input is known set or clear, then we know the
319 // top bits of the result.
320 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
321 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
322 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
323 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
324 return;
326 case Instruction::Shl:
327 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
328 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
329 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
330 APInt Mask2(Mask.lshr(ShiftAmt));
331 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
332 Depth+1);
333 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
334 KnownZero <<= ShiftAmt;
335 KnownOne <<= ShiftAmt;
336 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
337 return;
339 break;
340 case Instruction::LShr:
341 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
342 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
343 // Compute the new bits that are at the top now.
344 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
346 // Unsigned shift right.
347 APInt Mask2(Mask.shl(ShiftAmt));
348 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
349 Depth+1);
350 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
351 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
352 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
353 // high bits known zero.
354 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
355 return;
357 break;
358 case Instruction::AShr:
359 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
360 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
361 // Compute the new bits that are at the top now.
362 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
364 // Signed shift right.
365 APInt Mask2(Mask.shl(ShiftAmt));
366 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
367 Depth+1);
368 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
369 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
370 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
372 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
373 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
374 KnownZero |= HighBits;
375 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
376 KnownOne |= HighBits;
377 return;
379 break;
380 case Instruction::Sub: {
381 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
382 // We know that the top bits of C-X are clear if X contains less bits
383 // than C (i.e. no wrap-around can happen). For example, 20-X is
384 // positive if we can prove that X is >= 0 and < 16.
385 if (!CLHS->getValue().isNegative()) {
386 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
387 // NLZ can't be BitWidth with no sign bit
388 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
389 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
390 TD, Depth+1);
392 // If all of the MaskV bits are known to be zero, then we know the
393 // output top bits are zero, because we now know that the output is
394 // from [0-C].
395 if ((KnownZero2 & MaskV) == MaskV) {
396 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
397 // Top bits known zero.
398 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
403 // fall through
404 case Instruction::Add: {
405 // If one of the operands has trailing zeros, then the bits that the
406 // other operand has in those bit positions will be preserved in the
407 // result. For an add, this works with either operand. For a subtract,
408 // this only works if the known zeros are in the right operand.
409 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
410 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
411 BitWidth - Mask.countLeadingZeros());
412 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
413 Depth+1);
414 assert((LHSKnownZero & LHSKnownOne) == 0 &&
415 "Bits known to be one AND zero?");
416 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
418 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
419 Depth+1);
420 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
421 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
423 // Determine which operand has more trailing zeros, and use that
424 // many bits from the other operand.
425 if (LHSKnownZeroOut > RHSKnownZeroOut) {
426 if (I->getOpcode() == Instruction::Add) {
427 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
428 KnownZero |= KnownZero2 & Mask;
429 KnownOne |= KnownOne2 & Mask;
430 } else {
431 // If the known zeros are in the left operand for a subtract,
432 // fall back to the minimum known zeros in both operands.
433 KnownZero |= APInt::getLowBitsSet(BitWidth,
434 std::min(LHSKnownZeroOut,
435 RHSKnownZeroOut));
437 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
438 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
439 KnownZero |= LHSKnownZero & Mask;
440 KnownOne |= LHSKnownOne & Mask;
443 // Are we still trying to solve for the sign bit?
444 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
445 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
446 if (OBO->hasNoSignedWrap()) {
447 if (I->getOpcode() == Instruction::Add) {
448 // Adding two positive numbers can't wrap into negative
449 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
450 KnownZero |= APInt::getSignBit(BitWidth);
451 // and adding two negative numbers can't wrap into positive.
452 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
453 KnownOne |= APInt::getSignBit(BitWidth);
454 } else {
455 // Subtracting a negative number from a positive one can't wrap
456 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
457 KnownZero |= APInt::getSignBit(BitWidth);
458 // neither can subtracting a positive number from a negative one.
459 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
460 KnownOne |= APInt::getSignBit(BitWidth);
465 return;
467 case Instruction::SRem:
468 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
469 APInt RA = Rem->getValue().abs();
470 if (RA.isPowerOf2()) {
471 APInt LowBits = RA - 1;
472 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
473 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
474 Depth+1);
476 // The low bits of the first operand are unchanged by the srem.
477 KnownZero = KnownZero2 & LowBits;
478 KnownOne = KnownOne2 & LowBits;
480 // If the first operand is non-negative or has all low bits zero, then
481 // the upper bits are all zero.
482 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
483 KnownZero |= ~LowBits;
485 // If the first operand is negative and not all low bits are zero, then
486 // the upper bits are all one.
487 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
488 KnownOne |= ~LowBits;
490 KnownZero &= Mask;
491 KnownOne &= Mask;
493 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
497 // The sign bit is the LHS's sign bit, except when the result of the
498 // remainder is zero.
499 if (Mask.isNegative() && KnownZero.isNonNegative()) {
500 APInt Mask2 = APInt::getSignBit(BitWidth);
501 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
502 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
503 Depth+1);
504 // If it's known zero, our sign bit is also zero.
505 if (LHSKnownZero.isNegative())
506 KnownZero |= LHSKnownZero;
509 break;
510 case Instruction::URem: {
511 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
512 APInt RA = Rem->getValue();
513 if (RA.isPowerOf2()) {
514 APInt LowBits = (RA - 1);
515 APInt Mask2 = LowBits & Mask;
516 KnownZero |= ~LowBits & Mask;
517 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
518 Depth+1);
519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
520 break;
524 // Since the result is less than or equal to either operand, any leading
525 // zero bits in either operand must also exist in the result.
526 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
527 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
528 TD, Depth+1);
529 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
530 TD, Depth+1);
532 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
533 KnownZero2.countLeadingOnes());
534 KnownOne.clearAllBits();
535 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
536 break;
539 case Instruction::Alloca: {
540 AllocaInst *AI = cast<AllocaInst>(V);
541 unsigned Align = AI->getAlignment();
542 if (Align == 0 && TD)
543 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
545 if (Align > 0)
546 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
547 CountTrailingZeros_32(Align));
548 break;
550 case Instruction::GetElementPtr: {
551 // Analyze all of the subscripts of this getelementptr instruction
552 // to determine if we can prove known low zero bits.
553 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
554 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
555 ComputeMaskedBits(I->getOperand(0), LocalMask,
556 LocalKnownZero, LocalKnownOne, TD, Depth+1);
557 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
559 gep_type_iterator GTI = gep_type_begin(I);
560 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
561 Value *Index = I->getOperand(i);
562 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
563 // Handle struct member offset arithmetic.
564 if (!TD) return;
565 const StructLayout *SL = TD->getStructLayout(STy);
566 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
567 uint64_t Offset = SL->getElementOffset(Idx);
568 TrailZ = std::min(TrailZ,
569 CountTrailingZeros_64(Offset));
570 } else {
571 // Handle array index arithmetic.
572 const Type *IndexedTy = GTI.getIndexedType();
573 if (!IndexedTy->isSized()) return;
574 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
575 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
576 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
577 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
578 ComputeMaskedBits(Index, LocalMask,
579 LocalKnownZero, LocalKnownOne, TD, Depth+1);
580 TrailZ = std::min(TrailZ,
581 unsigned(CountTrailingZeros_64(TypeSize) +
582 LocalKnownZero.countTrailingOnes()));
586 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
587 break;
589 case Instruction::PHI: {
590 PHINode *P = cast<PHINode>(I);
591 // Handle the case of a simple two-predecessor recurrence PHI.
592 // There's a lot more that could theoretically be done here, but
593 // this is sufficient to catch some interesting cases.
594 if (P->getNumIncomingValues() == 2) {
595 for (unsigned i = 0; i != 2; ++i) {
596 Value *L = P->getIncomingValue(i);
597 Value *R = P->getIncomingValue(!i);
598 Operator *LU = dyn_cast<Operator>(L);
599 if (!LU)
600 continue;
601 unsigned Opcode = LU->getOpcode();
602 // Check for operations that have the property that if
603 // both their operands have low zero bits, the result
604 // will have low zero bits.
605 if (Opcode == Instruction::Add ||
606 Opcode == Instruction::Sub ||
607 Opcode == Instruction::And ||
608 Opcode == Instruction::Or ||
609 Opcode == Instruction::Mul) {
610 Value *LL = LU->getOperand(0);
611 Value *LR = LU->getOperand(1);
612 // Find a recurrence.
613 if (LL == I)
614 L = LR;
615 else if (LR == I)
616 L = LL;
617 else
618 break;
619 // Ok, we have a PHI of the form L op= R. Check for low
620 // zero bits.
621 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
622 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
623 Mask2 = APInt::getLowBitsSet(BitWidth,
624 KnownZero2.countTrailingOnes());
626 // We need to take the minimum number of known bits
627 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
628 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
630 KnownZero = Mask &
631 APInt::getLowBitsSet(BitWidth,
632 std::min(KnownZero2.countTrailingOnes(),
633 KnownZero3.countTrailingOnes()));
634 break;
639 // Unreachable blocks may have zero-operand PHI nodes.
640 if (P->getNumIncomingValues() == 0)
641 return;
643 // Otherwise take the unions of the known bit sets of the operands,
644 // taking conservative care to avoid excessive recursion.
645 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
646 // Skip if every incoming value references to ourself.
647 if (P->hasConstantValue() == P)
648 break;
650 KnownZero = APInt::getAllOnesValue(BitWidth);
651 KnownOne = APInt::getAllOnesValue(BitWidth);
652 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
653 // Skip direct self references.
654 if (P->getIncomingValue(i) == P) continue;
656 KnownZero2 = APInt(BitWidth, 0);
657 KnownOne2 = APInt(BitWidth, 0);
658 // Recurse, but cap the recursion to one level, because we don't
659 // want to waste time spinning around in loops.
660 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
661 KnownZero2, KnownOne2, TD, MaxDepth-1);
662 KnownZero &= KnownZero2;
663 KnownOne &= KnownOne2;
664 // If all bits have been ruled out, there's no need to check
665 // more operands.
666 if (!KnownZero && !KnownOne)
667 break;
670 break;
672 case Instruction::Call:
673 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
674 switch (II->getIntrinsicID()) {
675 default: break;
676 case Intrinsic::ctpop:
677 case Intrinsic::ctlz:
678 case Intrinsic::cttz: {
679 unsigned LowBits = Log2_32(BitWidth)+1;
680 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
681 break;
683 case Intrinsic::x86_sse42_crc32_64_8:
684 case Intrinsic::x86_sse42_crc32_64_64:
685 KnownZero = APInt::getHighBitsSet(64, 32);
686 break;
689 break;
693 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
694 /// one. Convenience wrapper around ComputeMaskedBits.
695 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
696 const TargetData *TD, unsigned Depth) {
697 unsigned BitWidth = getBitWidth(V->getType(), TD);
698 if (!BitWidth) {
699 KnownZero = false;
700 KnownOne = false;
701 return;
703 APInt ZeroBits(BitWidth, 0);
704 APInt OneBits(BitWidth, 0);
705 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
706 Depth);
707 KnownOne = OneBits[BitWidth - 1];
708 KnownZero = ZeroBits[BitWidth - 1];
711 /// isPowerOfTwo - Return true if the given value is known to have exactly one
712 /// bit set when defined. For vectors return true if every element is known to
713 /// be a power of two when defined. Supports values with integer or pointer
714 /// types and vectors of integers.
715 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
716 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
717 return CI->getValue().isPowerOf2();
718 // TODO: Handle vector constants.
720 // 1 << X is clearly a power of two if the one is not shifted off the end. If
721 // it is shifted off the end then the result is undefined.
722 if (match(V, m_Shl(m_One(), m_Value())))
723 return true;
725 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
726 // bottom. If it is shifted off the bottom then the result is undefined.
727 if (match(V, m_LShr(m_SignBit(), m_Value())))
728 return true;
730 // The remaining tests are all recursive, so bail out if we hit the limit.
731 if (Depth++ == MaxDepth)
732 return false;
734 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
735 return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
737 if (SelectInst *SI = dyn_cast<SelectInst>(V))
738 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
739 isPowerOfTwo(SI->getFalseValue(), TD, Depth);
741 // An exact divide or right shift can only shift off zero bits, so the result
742 // is a power of two only if the first operand is a power of two and not
743 // copying a sign bit (sdiv int_min, 2).
744 if (match(V, m_LShr(m_Value(), m_Value())) ||
745 match(V, m_UDiv(m_Value(), m_Value()))) {
746 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
747 if (PEO->isExact())
748 return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
751 return false;
754 /// isKnownNonZero - Return true if the given value is known to be non-zero
755 /// when defined. For vectors return true if every element is known to be
756 /// non-zero when defined. Supports values with integer or pointer type and
757 /// vectors of integers.
758 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
759 if (Constant *C = dyn_cast<Constant>(V)) {
760 if (C->isNullValue())
761 return false;
762 if (isa<ConstantInt>(C))
763 // Must be non-zero due to null test above.
764 return true;
765 // TODO: Handle vectors
766 return false;
769 // The remaining tests are all recursive, so bail out if we hit the limit.
770 if (Depth++ == MaxDepth)
771 return false;
773 unsigned BitWidth = getBitWidth(V->getType(), TD);
775 // X | Y != 0 if X != 0 or Y != 0.
776 Value *X = 0, *Y = 0;
777 if (match(V, m_Or(m_Value(X), m_Value(Y))))
778 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
780 // ext X != 0 if X != 0.
781 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
782 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
784 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
785 // if the lowest bit is shifted off the end.
786 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
787 // shl nuw can't remove any non-zero bits.
788 BinaryOperator *BO = cast<BinaryOperator>(V);
789 if (BO->hasNoUnsignedWrap())
790 return isKnownNonZero(X, TD, Depth);
792 APInt KnownZero(BitWidth, 0);
793 APInt KnownOne(BitWidth, 0);
794 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
795 if (KnownOne[0])
796 return true;
798 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
799 // defined if the sign bit is shifted off the end.
800 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
801 // shr exact can only shift out zero bits.
802 BinaryOperator *BO = cast<BinaryOperator>(V);
803 if (BO->isExact())
804 return isKnownNonZero(X, TD, Depth);
806 bool XKnownNonNegative, XKnownNegative;
807 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
808 if (XKnownNegative)
809 return true;
811 // div exact can only produce a zero if the dividend is zero.
812 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
813 BinaryOperator *BO = cast<BinaryOperator>(V);
814 if (BO->isExact())
815 return isKnownNonZero(X, TD, Depth);
817 // X + Y.
818 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
819 bool XKnownNonNegative, XKnownNegative;
820 bool YKnownNonNegative, YKnownNegative;
821 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
822 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
824 // If X and Y are both non-negative (as signed values) then their sum is not
825 // zero unless both X and Y are zero.
826 if (XKnownNonNegative && YKnownNonNegative)
827 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
828 return true;
830 // If X and Y are both negative (as signed values) then their sum is not
831 // zero unless both X and Y equal INT_MIN.
832 if (BitWidth && XKnownNegative && YKnownNegative) {
833 APInt KnownZero(BitWidth, 0);
834 APInt KnownOne(BitWidth, 0);
835 APInt Mask = APInt::getSignedMaxValue(BitWidth);
836 // The sign bit of X is set. If some other bit is set then X is not equal
837 // to INT_MIN.
838 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
839 if ((KnownOne & Mask) != 0)
840 return true;
841 // The sign bit of Y is set. If some other bit is set then Y is not equal
842 // to INT_MIN.
843 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
844 if ((KnownOne & Mask) != 0)
845 return true;
848 // The sum of a non-negative number and a power of two is not zero.
849 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
850 return true;
851 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
852 return true;
854 // (C ? X : Y) != 0 if X != 0 and Y != 0.
855 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
856 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
857 isKnownNonZero(SI->getFalseValue(), TD, Depth))
858 return true;
861 if (!BitWidth) return false;
862 APInt KnownZero(BitWidth, 0);
863 APInt KnownOne(BitWidth, 0);
864 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
865 TD, Depth);
866 return KnownOne != 0;
869 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
870 /// this predicate to simplify operations downstream. Mask is known to be zero
871 /// for bits that V cannot have.
873 /// This function is defined on values with integer type, values with pointer
874 /// type (but only if TD is non-null), and vectors of integers. In the case
875 /// where V is a vector, the mask, known zero, and known one values are the
876 /// same width as the vector element, and the bit is set only if it is true
877 /// for all of the elements in the vector.
878 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
879 const TargetData *TD, unsigned Depth) {
880 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
881 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
882 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
883 return (KnownZero & Mask) == Mask;
888 /// ComputeNumSignBits - Return the number of times the sign bit of the
889 /// register is replicated into the other bits. We know that at least 1 bit
890 /// is always equal to the sign bit (itself), but other cases can give us
891 /// information. For example, immediately after an "ashr X, 2", we know that
892 /// the top 3 bits are all equal to each other, so we return 3.
894 /// 'Op' must have a scalar integer type.
896 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
897 unsigned Depth) {
898 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
899 "ComputeNumSignBits requires a TargetData object to operate "
900 "on non-integer values!");
901 const Type *Ty = V->getType();
902 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
903 Ty->getScalarSizeInBits();
904 unsigned Tmp, Tmp2;
905 unsigned FirstAnswer = 1;
907 // Note that ConstantInt is handled by the general ComputeMaskedBits case
908 // below.
910 if (Depth == 6)
911 return 1; // Limit search depth.
913 Operator *U = dyn_cast<Operator>(V);
914 switch (Operator::getOpcode(V)) {
915 default: break;
916 case Instruction::SExt:
917 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
918 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
920 case Instruction::AShr:
921 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
922 // ashr X, C -> adds C sign bits.
923 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
924 Tmp += C->getZExtValue();
925 if (Tmp > TyBits) Tmp = TyBits;
927 // vector ashr X, <C, C, C, C> -> adds C sign bits
928 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
929 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
930 Tmp += CI->getZExtValue();
931 if (Tmp > TyBits) Tmp = TyBits;
934 return Tmp;
935 case Instruction::Shl:
936 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
937 // shl destroys sign bits.
938 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
939 if (C->getZExtValue() >= TyBits || // Bad shift.
940 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
941 return Tmp - C->getZExtValue();
943 break;
944 case Instruction::And:
945 case Instruction::Or:
946 case Instruction::Xor: // NOT is handled here.
947 // Logical binary ops preserve the number of sign bits at the worst.
948 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
949 if (Tmp != 1) {
950 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
951 FirstAnswer = std::min(Tmp, Tmp2);
952 // We computed what we know about the sign bits as our first
953 // answer. Now proceed to the generic code that uses
954 // ComputeMaskedBits, and pick whichever answer is better.
956 break;
958 case Instruction::Select:
959 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
960 if (Tmp == 1) return 1; // Early out.
961 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
962 return std::min(Tmp, Tmp2);
964 case Instruction::Add:
965 // Add can have at most one carry bit. Thus we know that the output
966 // is, at worst, one more bit than the inputs.
967 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
968 if (Tmp == 1) return 1; // Early out.
970 // Special case decrementing a value (ADD X, -1):
971 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
972 if (CRHS->isAllOnesValue()) {
973 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
974 APInt Mask = APInt::getAllOnesValue(TyBits);
975 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
976 Depth+1);
978 // If the input is known to be 0 or 1, the output is 0/-1, which is all
979 // sign bits set.
980 if ((KnownZero | APInt(TyBits, 1)) == Mask)
981 return TyBits;
983 // If we are subtracting one from a positive number, there is no carry
984 // out of the result.
985 if (KnownZero.isNegative())
986 return Tmp;
989 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
990 if (Tmp2 == 1) return 1;
991 return std::min(Tmp, Tmp2)-1;
993 case Instruction::Sub:
994 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
995 if (Tmp2 == 1) return 1;
997 // Handle NEG.
998 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
999 if (CLHS->isNullValue()) {
1000 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1001 APInt Mask = APInt::getAllOnesValue(TyBits);
1002 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
1003 TD, Depth+1);
1004 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1005 // sign bits set.
1006 if ((KnownZero | APInt(TyBits, 1)) == Mask)
1007 return TyBits;
1009 // If the input is known to be positive (the sign bit is known clear),
1010 // the output of the NEG has the same number of sign bits as the input.
1011 if (KnownZero.isNegative())
1012 return Tmp2;
1014 // Otherwise, we treat this like a SUB.
1017 // Sub can have at most one carry bit. Thus we know that the output
1018 // is, at worst, one more bit than the inputs.
1019 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1020 if (Tmp == 1) return 1; // Early out.
1021 return std::min(Tmp, Tmp2)-1;
1023 case Instruction::PHI: {
1024 PHINode *PN = cast<PHINode>(U);
1025 // Don't analyze large in-degree PHIs.
1026 if (PN->getNumIncomingValues() > 4) break;
1028 // Take the minimum of all incoming values. This can't infinitely loop
1029 // because of our depth threshold.
1030 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1031 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1032 if (Tmp == 1) return Tmp;
1033 Tmp = std::min(Tmp,
1034 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1036 return Tmp;
1039 case Instruction::Trunc:
1040 // FIXME: it's tricky to do anything useful for this, but it is an important
1041 // case for targets like X86.
1042 break;
1045 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1046 // use this information.
1047 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1048 APInt Mask = APInt::getAllOnesValue(TyBits);
1049 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1051 if (KnownZero.isNegative()) { // sign bit is 0
1052 Mask = KnownZero;
1053 } else if (KnownOne.isNegative()) { // sign bit is 1;
1054 Mask = KnownOne;
1055 } else {
1056 // Nothing known.
1057 return FirstAnswer;
1060 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1061 // the number of identical bits in the top of the input value.
1062 Mask = ~Mask;
1063 Mask <<= Mask.getBitWidth()-TyBits;
1064 // Return # leading zeros. We use 'min' here in case Val was zero before
1065 // shifting. We don't want to return '64' as for an i32 "0".
1066 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1069 /// ComputeMultiple - This function computes the integer multiple of Base that
1070 /// equals V. If successful, it returns true and returns the multiple in
1071 /// Multiple. If unsuccessful, it returns false. It looks
1072 /// through SExt instructions only if LookThroughSExt is true.
1073 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1074 bool LookThroughSExt, unsigned Depth) {
1075 const unsigned MaxDepth = 6;
1077 assert(V && "No Value?");
1078 assert(Depth <= MaxDepth && "Limit Search Depth");
1079 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1081 const Type *T = V->getType();
1083 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1085 if (Base == 0)
1086 return false;
1088 if (Base == 1) {
1089 Multiple = V;
1090 return true;
1093 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1094 Constant *BaseVal = ConstantInt::get(T, Base);
1095 if (CO && CO == BaseVal) {
1096 // Multiple is 1.
1097 Multiple = ConstantInt::get(T, 1);
1098 return true;
1101 if (CI && CI->getZExtValue() % Base == 0) {
1102 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1103 return true;
1106 if (Depth == MaxDepth) return false; // Limit search depth.
1108 Operator *I = dyn_cast<Operator>(V);
1109 if (!I) return false;
1111 switch (I->getOpcode()) {
1112 default: break;
1113 case Instruction::SExt:
1114 if (!LookThroughSExt) return false;
1115 // otherwise fall through to ZExt
1116 case Instruction::ZExt:
1117 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1118 LookThroughSExt, Depth+1);
1119 case Instruction::Shl:
1120 case Instruction::Mul: {
1121 Value *Op0 = I->getOperand(0);
1122 Value *Op1 = I->getOperand(1);
1124 if (I->getOpcode() == Instruction::Shl) {
1125 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1126 if (!Op1CI) return false;
1127 // Turn Op0 << Op1 into Op0 * 2^Op1
1128 APInt Op1Int = Op1CI->getValue();
1129 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1130 APInt API(Op1Int.getBitWidth(), 0);
1131 API.setBit(BitToSet);
1132 Op1 = ConstantInt::get(V->getContext(), API);
1135 Value *Mul0 = NULL;
1136 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1137 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1138 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1139 if (Op1C->getType()->getPrimitiveSizeInBits() <
1140 MulC->getType()->getPrimitiveSizeInBits())
1141 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1142 if (Op1C->getType()->getPrimitiveSizeInBits() >
1143 MulC->getType()->getPrimitiveSizeInBits())
1144 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1146 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1147 Multiple = ConstantExpr::getMul(MulC, Op1C);
1148 return true;
1151 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1152 if (Mul0CI->getValue() == 1) {
1153 // V == Base * Op1, so return Op1
1154 Multiple = Op1;
1155 return true;
1159 Value *Mul1 = NULL;
1160 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1161 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1162 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1163 if (Op0C->getType()->getPrimitiveSizeInBits() <
1164 MulC->getType()->getPrimitiveSizeInBits())
1165 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1166 if (Op0C->getType()->getPrimitiveSizeInBits() >
1167 MulC->getType()->getPrimitiveSizeInBits())
1168 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1170 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1171 Multiple = ConstantExpr::getMul(MulC, Op0C);
1172 return true;
1175 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1176 if (Mul1CI->getValue() == 1) {
1177 // V == Base * Op0, so return Op0
1178 Multiple = Op0;
1179 return true;
1185 // We could not determine if V is a multiple of Base.
1186 return false;
1189 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1190 /// value is never equal to -0.0.
1192 /// NOTE: this function will need to be revisited when we support non-default
1193 /// rounding modes!
1195 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1196 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1197 return !CFP->getValueAPF().isNegZero();
1199 if (Depth == 6)
1200 return 1; // Limit search depth.
1202 const Operator *I = dyn_cast<Operator>(V);
1203 if (I == 0) return false;
1205 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1206 if (I->getOpcode() == Instruction::FAdd &&
1207 isa<ConstantFP>(I->getOperand(1)) &&
1208 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1209 return true;
1211 // sitofp and uitofp turn into +0.0 for zero.
1212 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1213 return true;
1215 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1216 // sqrt(-0.0) = -0.0, no other negative results are possible.
1217 if (II->getIntrinsicID() == Intrinsic::sqrt)
1218 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1220 if (const CallInst *CI = dyn_cast<CallInst>(I))
1221 if (const Function *F = CI->getCalledFunction()) {
1222 if (F->isDeclaration()) {
1223 // abs(x) != -0.0
1224 if (F->getName() == "abs") return true;
1225 // fabs[lf](x) != -0.0
1226 if (F->getName() == "fabs") return true;
1227 if (F->getName() == "fabsf") return true;
1228 if (F->getName() == "fabsl") return true;
1229 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1230 F->getName() == "sqrtl")
1231 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1235 return false;
1238 /// isBytewiseValue - If the specified value can be set by repeating the same
1239 /// byte in memory, return the i8 value that it is represented with. This is
1240 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1241 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1242 /// byte store (e.g. i16 0x1234), return null.
1243 Value *llvm::isBytewiseValue(Value *V) {
1244 // All byte-wide stores are splatable, even of arbitrary variables.
1245 if (V->getType()->isIntegerTy(8)) return V;
1247 // Handle 'null' ConstantArrayZero etc.
1248 if (Constant *C = dyn_cast<Constant>(V))
1249 if (C->isNullValue())
1250 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1252 // Constant float and double values can be handled as integer values if the
1253 // corresponding integer value is "byteable". An important case is 0.0.
1254 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1255 if (CFP->getType()->isFloatTy())
1256 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1257 if (CFP->getType()->isDoubleTy())
1258 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1259 // Don't handle long double formats, which have strange constraints.
1262 // We can handle constant integers that are power of two in size and a
1263 // multiple of 8 bits.
1264 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1265 unsigned Width = CI->getBitWidth();
1266 if (isPowerOf2_32(Width) && Width > 8) {
1267 // We can handle this value if the recursive binary decomposition is the
1268 // same at all levels.
1269 APInt Val = CI->getValue();
1270 APInt Val2;
1271 while (Val.getBitWidth() != 8) {
1272 unsigned NextWidth = Val.getBitWidth()/2;
1273 Val2 = Val.lshr(NextWidth);
1274 Val2 = Val2.trunc(Val.getBitWidth()/2);
1275 Val = Val.trunc(Val.getBitWidth()/2);
1277 // If the top/bottom halves aren't the same, reject it.
1278 if (Val != Val2)
1279 return 0;
1281 return ConstantInt::get(V->getContext(), Val);
1285 // A ConstantArray is splatable if all its members are equal and also
1286 // splatable.
1287 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1288 if (CA->getNumOperands() == 0)
1289 return 0;
1291 Value *Val = isBytewiseValue(CA->getOperand(0));
1292 if (!Val)
1293 return 0;
1295 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1296 if (CA->getOperand(I-1) != CA->getOperand(I))
1297 return 0;
1299 return Val;
1302 // Conceptually, we could handle things like:
1303 // %a = zext i8 %X to i16
1304 // %b = shl i16 %a, 8
1305 // %c = or i16 %a, %b
1306 // but until there is an example that actually needs this, it doesn't seem
1307 // worth worrying about.
1308 return 0;
1312 // This is the recursive version of BuildSubAggregate. It takes a few different
1313 // arguments. Idxs is the index within the nested struct From that we are
1314 // looking at now (which is of type IndexedType). IdxSkip is the number of
1315 // indices from Idxs that should be left out when inserting into the resulting
1316 // struct. To is the result struct built so far, new insertvalue instructions
1317 // build on that.
1318 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
1319 SmallVector<unsigned, 10> &Idxs,
1320 unsigned IdxSkip,
1321 Instruction *InsertBefore) {
1322 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1323 if (STy) {
1324 // Save the original To argument so we can modify it
1325 Value *OrigTo = To;
1326 // General case, the type indexed by Idxs is a struct
1327 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1328 // Process each struct element recursively
1329 Idxs.push_back(i);
1330 Value *PrevTo = To;
1331 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1332 InsertBefore);
1333 Idxs.pop_back();
1334 if (!To) {
1335 // Couldn't find any inserted value for this index? Cleanup
1336 while (PrevTo != OrigTo) {
1337 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1338 PrevTo = Del->getAggregateOperand();
1339 Del->eraseFromParent();
1341 // Stop processing elements
1342 break;
1345 // If we successfully found a value for each of our subaggregates
1346 if (To)
1347 return To;
1349 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1350 // the struct's elements had a value that was inserted directly. In the latter
1351 // case, perhaps we can't determine each of the subelements individually, but
1352 // we might be able to find the complete struct somewhere.
1354 // Find the value that is at that particular spot
1355 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
1357 if (!V)
1358 return NULL;
1360 // Insert the value in the new (sub) aggregrate
1361 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
1362 Idxs.end(), "tmp", InsertBefore);
1365 // This helper takes a nested struct and extracts a part of it (which is again a
1366 // struct) into a new value. For example, given the struct:
1367 // { a, { b, { c, d }, e } }
1368 // and the indices "1, 1" this returns
1369 // { c, d }.
1371 // It does this by inserting an insertvalue for each element in the resulting
1372 // struct, as opposed to just inserting a single struct. This will only work if
1373 // each of the elements of the substruct are known (ie, inserted into From by an
1374 // insertvalue instruction somewhere).
1376 // All inserted insertvalue instructions are inserted before InsertBefore
1377 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1378 const unsigned *idx_end,
1379 Instruction *InsertBefore) {
1380 assert(InsertBefore && "Must have someplace to insert!");
1381 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1382 idx_begin,
1383 idx_end);
1384 Value *To = UndefValue::get(IndexedType);
1385 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1386 unsigned IdxSkip = Idxs.size();
1388 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1391 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1392 /// the scalar value indexed is already around as a register, for example if it
1393 /// were inserted directly into the aggregrate.
1395 /// If InsertBefore is not null, this function will duplicate (modified)
1396 /// insertvalues when a part of a nested struct is extracted.
1397 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1398 const unsigned *idx_end, Instruction *InsertBefore) {
1399 // Nothing to index? Just return V then (this is useful at the end of our
1400 // recursion)
1401 if (idx_begin == idx_end)
1402 return V;
1403 // We have indices, so V should have an indexable type
1404 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1405 && "Not looking at a struct or array?");
1406 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1407 && "Invalid indices for type?");
1408 const CompositeType *PTy = cast<CompositeType>(V->getType());
1410 if (isa<UndefValue>(V))
1411 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1412 idx_begin,
1413 idx_end));
1414 else if (isa<ConstantAggregateZero>(V))
1415 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
1416 idx_begin,
1417 idx_end));
1418 else if (Constant *C = dyn_cast<Constant>(V)) {
1419 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1420 // Recursively process this constant
1421 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1422 idx_end, InsertBefore);
1423 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1424 // Loop the indices for the insertvalue instruction in parallel with the
1425 // requested indices
1426 const unsigned *req_idx = idx_begin;
1427 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1428 i != e; ++i, ++req_idx) {
1429 if (req_idx == idx_end) {
1430 if (InsertBefore)
1431 // The requested index identifies a part of a nested aggregate. Handle
1432 // this specially. For example,
1433 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1434 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1435 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1436 // This can be changed into
1437 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1438 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1439 // which allows the unused 0,0 element from the nested struct to be
1440 // removed.
1441 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1442 else
1443 // We can't handle this without inserting insertvalues
1444 return 0;
1447 // This insert value inserts something else than what we are looking for.
1448 // See if the (aggregrate) value inserted into has the value we are
1449 // looking for, then.
1450 if (*req_idx != *i)
1451 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1452 InsertBefore);
1454 // If we end up here, the indices of the insertvalue match with those
1455 // requested (though possibly only partially). Now we recursively look at
1456 // the inserted value, passing any remaining indices.
1457 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1458 InsertBefore);
1459 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1460 // If we're extracting a value from an aggregrate that was extracted from
1461 // something else, we can extract from that something else directly instead.
1462 // However, we will need to chain I's indices with the requested indices.
1464 // Calculate the number of indices required
1465 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1466 // Allocate some space to put the new indices in
1467 SmallVector<unsigned, 5> Idxs;
1468 Idxs.reserve(size);
1469 // Add indices from the extract value instruction
1470 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1471 i != e; ++i)
1472 Idxs.push_back(*i);
1474 // Add requested indices
1475 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1476 Idxs.push_back(*i);
1478 assert(Idxs.size() == size
1479 && "Number of indices added not correct?");
1481 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1482 InsertBefore);
1484 // Otherwise, we don't know (such as, extracting from a function return value
1485 // or load instruction)
1486 return 0;
1489 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1490 /// it can be expressed as a base pointer plus a constant offset. Return the
1491 /// base and offset to the caller.
1492 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1493 const TargetData &TD) {
1494 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1495 if (PtrOp == 0) return Ptr;
1497 // Just look through bitcasts.
1498 if (PtrOp->getOpcode() == Instruction::BitCast)
1499 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1501 // If this is a GEP with constant indices, we can look through it.
1502 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1503 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1505 gep_type_iterator GTI = gep_type_begin(GEP);
1506 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1507 ++I, ++GTI) {
1508 ConstantInt *OpC = cast<ConstantInt>(*I);
1509 if (OpC->isZero()) continue;
1511 // Handle a struct and array indices which add their offset to the pointer.
1512 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1513 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1514 } else {
1515 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1516 Offset += OpC->getSExtValue()*Size;
1520 // Re-sign extend from the pointer size if needed to get overflow edge cases
1521 // right.
1522 unsigned PtrSize = TD.getPointerSizeInBits();
1523 if (PtrSize < 64)
1524 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1526 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1530 /// GetConstantStringInfo - This function computes the length of a
1531 /// null-terminated C string pointed to by V. If successful, it returns true
1532 /// and returns the string in Str. If unsuccessful, it returns false.
1533 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
1534 uint64_t Offset,
1535 bool StopAtNul) {
1536 // If V is NULL then return false;
1537 if (V == NULL) return false;
1539 // Look through bitcast instructions.
1540 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1541 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1543 // If the value is not a GEP instruction nor a constant expression with a
1544 // GEP instruction, then return false because ConstantArray can't occur
1545 // any other way
1546 const User *GEP = 0;
1547 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1548 GEP = GEPI;
1549 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1550 if (CE->getOpcode() == Instruction::BitCast)
1551 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1552 if (CE->getOpcode() != Instruction::GetElementPtr)
1553 return false;
1554 GEP = CE;
1557 if (GEP) {
1558 // Make sure the GEP has exactly three arguments.
1559 if (GEP->getNumOperands() != 3)
1560 return false;
1562 // Make sure the index-ee is a pointer to array of i8.
1563 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1564 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1565 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1566 return false;
1568 // Check to make sure that the first operand of the GEP is an integer and
1569 // has value 0 so that we are sure we're indexing into the initializer.
1570 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1571 if (FirstIdx == 0 || !FirstIdx->isZero())
1572 return false;
1574 // If the second index isn't a ConstantInt, then this is a variable index
1575 // into the array. If this occurs, we can't say anything meaningful about
1576 // the string.
1577 uint64_t StartIdx = 0;
1578 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1579 StartIdx = CI->getZExtValue();
1580 else
1581 return false;
1582 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1583 StopAtNul);
1586 // The GEP instruction, constant or instruction, must reference a global
1587 // variable that is a constant and is initialized. The referenced constant
1588 // initializer is the array that we'll use for optimization.
1589 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1590 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1591 return false;
1592 const Constant *GlobalInit = GV->getInitializer();
1594 // Handle the ConstantAggregateZero case
1595 if (isa<ConstantAggregateZero>(GlobalInit)) {
1596 // This is a degenerate case. The initializer is constant zero so the
1597 // length of the string must be zero.
1598 Str.clear();
1599 return true;
1602 // Must be a Constant Array
1603 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1604 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
1605 return false;
1607 // Get the number of elements in the array
1608 uint64_t NumElts = Array->getType()->getNumElements();
1610 if (Offset > NumElts)
1611 return false;
1613 // Traverse the constant array from 'Offset' which is the place the GEP refers
1614 // to in the array.
1615 Str.reserve(NumElts-Offset);
1616 for (unsigned i = Offset; i != NumElts; ++i) {
1617 const Constant *Elt = Array->getOperand(i);
1618 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1619 if (!CI) // This array isn't suitable, non-int initializer.
1620 return false;
1621 if (StopAtNul && CI->isZero())
1622 return true; // we found end of string, success!
1623 Str += (char)CI->getZExtValue();
1626 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1627 return true;
1630 // These next two are very similar to the above, but also look through PHI
1631 // nodes.
1632 // TODO: See if we can integrate these two together.
1634 /// GetStringLengthH - If we can compute the length of the string pointed to by
1635 /// the specified pointer, return 'len+1'. If we can't, return 0.
1636 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1637 // Look through noop bitcast instructions.
1638 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1639 return GetStringLengthH(BCI->getOperand(0), PHIs);
1641 // If this is a PHI node, there are two cases: either we have already seen it
1642 // or we haven't.
1643 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1644 if (!PHIs.insert(PN))
1645 return ~0ULL; // already in the set.
1647 // If it was new, see if all the input strings are the same length.
1648 uint64_t LenSoFar = ~0ULL;
1649 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1650 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1651 if (Len == 0) return 0; // Unknown length -> unknown.
1653 if (Len == ~0ULL) continue;
1655 if (Len != LenSoFar && LenSoFar != ~0ULL)
1656 return 0; // Disagree -> unknown.
1657 LenSoFar = Len;
1660 // Success, all agree.
1661 return LenSoFar;
1664 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1665 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1666 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1667 if (Len1 == 0) return 0;
1668 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1669 if (Len2 == 0) return 0;
1670 if (Len1 == ~0ULL) return Len2;
1671 if (Len2 == ~0ULL) return Len1;
1672 if (Len1 != Len2) return 0;
1673 return Len1;
1676 // If the value is not a GEP instruction nor a constant expression with a
1677 // GEP instruction, then return unknown.
1678 User *GEP = 0;
1679 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1680 GEP = GEPI;
1681 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1682 if (CE->getOpcode() != Instruction::GetElementPtr)
1683 return 0;
1684 GEP = CE;
1685 } else {
1686 return 0;
1689 // Make sure the GEP has exactly three arguments.
1690 if (GEP->getNumOperands() != 3)
1691 return 0;
1693 // Check to make sure that the first operand of the GEP is an integer and
1694 // has value 0 so that we are sure we're indexing into the initializer.
1695 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1696 if (!Idx->isZero())
1697 return 0;
1698 } else
1699 return 0;
1701 // If the second index isn't a ConstantInt, then this is a variable index
1702 // into the array. If this occurs, we can't say anything meaningful about
1703 // the string.
1704 uint64_t StartIdx = 0;
1705 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1706 StartIdx = CI->getZExtValue();
1707 else
1708 return 0;
1710 // The GEP instruction, constant or instruction, must reference a global
1711 // variable that is a constant and is initialized. The referenced constant
1712 // initializer is the array that we'll use for optimization.
1713 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1714 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1715 GV->mayBeOverridden())
1716 return 0;
1717 Constant *GlobalInit = GV->getInitializer();
1719 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1720 // initializer is constant zero so the length of the string must be zero.
1721 if (isa<ConstantAggregateZero>(GlobalInit))
1722 return 1; // Len = 0 offset by 1.
1724 // Must be a Constant Array
1725 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1726 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1727 return false;
1729 // Get the number of elements in the array
1730 uint64_t NumElts = Array->getType()->getNumElements();
1732 // Traverse the constant array from StartIdx (derived above) which is
1733 // the place the GEP refers to in the array.
1734 for (unsigned i = StartIdx; i != NumElts; ++i) {
1735 Constant *Elt = Array->getOperand(i);
1736 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1737 if (!CI) // This array isn't suitable, non-int initializer.
1738 return 0;
1739 if (CI->isZero())
1740 return i-StartIdx+1; // We found end of string, success!
1743 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1746 /// GetStringLength - If we can compute the length of the string pointed to by
1747 /// the specified pointer, return 'len+1'. If we can't, return 0.
1748 uint64_t llvm::GetStringLength(Value *V) {
1749 if (!V->getType()->isPointerTy()) return 0;
1751 SmallPtrSet<PHINode*, 32> PHIs;
1752 uint64_t Len = GetStringLengthH(V, PHIs);
1753 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1754 // an empty string as a length.
1755 return Len == ~0ULL ? 1 : Len;
1758 Value *
1759 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
1760 if (!V->getType()->isPointerTy())
1761 return V;
1762 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1763 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1764 V = GEP->getPointerOperand();
1765 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1766 V = cast<Operator>(V)->getOperand(0);
1767 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1768 if (GA->mayBeOverridden())
1769 return V;
1770 V = GA->getAliasee();
1771 } else {
1772 // See if InstructionSimplify knows any relevant tricks.
1773 if (Instruction *I = dyn_cast<Instruction>(V))
1774 // TODO: Acquire a DominatorTree and use it.
1775 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1776 V = Simplified;
1777 continue;
1780 return V;
1782 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1784 return V;