When promoting an alloca to registers discard any lifetime intrinsics.
[llvm/stm8.git] / lib / VMCore / Verifier.cpp
blob139e035230191c3fc91da21f2d1ad8d53c774cb1
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/TypeSymbolTable.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cstdarg>
69 using namespace llvm;
71 namespace { // Anonymous namespace for class
72 struct PreVerifier : public FunctionPass {
73 static char ID; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(ID) {
76 initializePreVerifierPass(*PassRegistry::getPassRegistry());
79 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80 AU.setPreservesAll();
83 // Check that the prerequisites for successful DominatorTree construction
84 // are satisfied.
85 bool runOnFunction(Function &F) {
86 bool Broken = false;
88 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
89 if (I->empty() || !I->back().isTerminator()) {
90 dbgs() << "Basic Block in function '" << F.getName()
91 << "' does not have terminator!\n";
92 WriteAsOperand(dbgs(), I, true);
93 dbgs() << "\n";
94 Broken = true;
98 if (Broken)
99 report_fatal_error("Broken module, no Basic Block terminator!");
101 return false;
106 char PreVerifier::ID = 0;
107 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
108 false, false)
109 static char &PreVerifyID = PreVerifier::ID;
111 namespace {
112 class TypeSet : public AbstractTypeUser {
113 public:
114 TypeSet() {}
116 /// Insert a type into the set of types.
117 bool insert(const Type *Ty) {
118 if (!Types.insert(Ty))
119 return false;
120 if (Ty->isAbstract())
121 Ty->addAbstractTypeUser(this);
122 return true;
125 // Remove ourselves as abstract type listeners for any types that remain
126 // abstract when the TypeSet is destroyed.
127 ~TypeSet() {
128 for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
129 E = Types.end(); I != E; ++I) {
130 const Type *Ty = *I;
131 if (Ty->isAbstract())
132 Ty->removeAbstractTypeUser(this);
136 // Abstract type user interface.
138 /// Remove types from the set when refined. Do not insert the type it was
139 /// refined to because that type hasn't been verified yet.
140 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
141 Types.remove(OldTy);
142 OldTy->removeAbstractTypeUser(this);
145 /// Stop listening for changes to a type which is no longer abstract.
146 void typeBecameConcrete(const DerivedType *AbsTy) {
147 AbsTy->removeAbstractTypeUser(this);
150 void dump() const {}
152 private:
153 SmallSetVector<const Type *, 16> Types;
155 // Disallow copying.
156 TypeSet(const TypeSet &);
157 TypeSet &operator=(const TypeSet &);
160 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
161 static char ID; // Pass ID, replacement for typeid
162 bool Broken; // Is this module found to be broken?
163 bool RealPass; // Are we not being run by a PassManager?
164 VerifierFailureAction action;
165 // What to do if verification fails.
166 Module *Mod; // Module we are verifying right now
167 LLVMContext *Context; // Context within which we are verifying
168 DominatorTree *DT; // Dominator Tree, caution can be null!
170 std::string Messages;
171 raw_string_ostream MessagesStr;
173 /// InstInThisBlock - when verifying a basic block, keep track of all of the
174 /// instructions we have seen so far. This allows us to do efficient
175 /// dominance checks for the case when an instruction has an operand that is
176 /// an instruction in the same block.
177 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
179 /// Types - keep track of the types that have been checked already.
180 TypeSet Types;
182 /// MDNodes - keep track of the metadata nodes that have been checked
183 /// already.
184 SmallPtrSet<MDNode *, 32> MDNodes;
186 Verifier()
187 : FunctionPass(ID),
188 Broken(false), RealPass(true), action(AbortProcessAction),
189 Mod(0), Context(0), DT(0), MessagesStr(Messages) {
190 initializeVerifierPass(*PassRegistry::getPassRegistry());
192 explicit Verifier(VerifierFailureAction ctn)
193 : FunctionPass(ID),
194 Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
195 MessagesStr(Messages) {
196 initializeVerifierPass(*PassRegistry::getPassRegistry());
199 bool doInitialization(Module &M) {
200 Mod = &M;
201 Context = &M.getContext();
202 verifyTypeSymbolTable(M.getTypeSymbolTable());
204 // If this is a real pass, in a pass manager, we must abort before
205 // returning back to the pass manager, or else the pass manager may try to
206 // run other passes on the broken module.
207 if (RealPass)
208 return abortIfBroken();
209 return false;
212 bool runOnFunction(Function &F) {
213 // Get dominator information if we are being run by PassManager
214 if (RealPass) DT = &getAnalysis<DominatorTree>();
216 Mod = F.getParent();
217 if (!Context) Context = &F.getContext();
219 visit(F);
220 InstsInThisBlock.clear();
222 // If this is a real pass, in a pass manager, we must abort before
223 // returning back to the pass manager, or else the pass manager may try to
224 // run other passes on the broken module.
225 if (RealPass)
226 return abortIfBroken();
228 return false;
231 bool doFinalization(Module &M) {
232 // Scan through, checking all of the external function's linkage now...
233 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
234 visitGlobalValue(*I);
236 // Check to make sure function prototypes are okay.
237 if (I->isDeclaration()) visitFunction(*I);
240 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
241 I != E; ++I)
242 visitGlobalVariable(*I);
244 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
245 I != E; ++I)
246 visitGlobalAlias(*I);
248 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
249 E = M.named_metadata_end(); I != E; ++I)
250 visitNamedMDNode(*I);
252 // If the module is broken, abort at this time.
253 return abortIfBroken();
256 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
257 AU.setPreservesAll();
258 AU.addRequiredID(PreVerifyID);
259 if (RealPass)
260 AU.addRequired<DominatorTree>();
263 /// abortIfBroken - If the module is broken and we are supposed to abort on
264 /// this condition, do so.
266 bool abortIfBroken() {
267 if (!Broken) return false;
268 MessagesStr << "Broken module found, ";
269 switch (action) {
270 default: llvm_unreachable("Unknown action");
271 case AbortProcessAction:
272 MessagesStr << "compilation aborted!\n";
273 dbgs() << MessagesStr.str();
274 // Client should choose different reaction if abort is not desired
275 abort();
276 case PrintMessageAction:
277 MessagesStr << "verification continues.\n";
278 dbgs() << MessagesStr.str();
279 return false;
280 case ReturnStatusAction:
281 MessagesStr << "compilation terminated.\n";
282 return true;
287 // Verification methods...
288 void verifyTypeSymbolTable(TypeSymbolTable &ST);
289 void visitGlobalValue(GlobalValue &GV);
290 void visitGlobalVariable(GlobalVariable &GV);
291 void visitGlobalAlias(GlobalAlias &GA);
292 void visitNamedMDNode(NamedMDNode &NMD);
293 void visitMDNode(MDNode &MD, Function *F);
294 void visitFunction(Function &F);
295 void visitBasicBlock(BasicBlock &BB);
296 using InstVisitor<Verifier>::visit;
298 void visit(Instruction &I);
300 void visitTruncInst(TruncInst &I);
301 void visitZExtInst(ZExtInst &I);
302 void visitSExtInst(SExtInst &I);
303 void visitFPTruncInst(FPTruncInst &I);
304 void visitFPExtInst(FPExtInst &I);
305 void visitFPToUIInst(FPToUIInst &I);
306 void visitFPToSIInst(FPToSIInst &I);
307 void visitUIToFPInst(UIToFPInst &I);
308 void visitSIToFPInst(SIToFPInst &I);
309 void visitIntToPtrInst(IntToPtrInst &I);
310 void visitPtrToIntInst(PtrToIntInst &I);
311 void visitBitCastInst(BitCastInst &I);
312 void visitPHINode(PHINode &PN);
313 void visitBinaryOperator(BinaryOperator &B);
314 void visitICmpInst(ICmpInst &IC);
315 void visitFCmpInst(FCmpInst &FC);
316 void visitExtractElementInst(ExtractElementInst &EI);
317 void visitInsertElementInst(InsertElementInst &EI);
318 void visitShuffleVectorInst(ShuffleVectorInst &EI);
319 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
320 void visitCallInst(CallInst &CI);
321 void visitInvokeInst(InvokeInst &II);
322 void visitGetElementPtrInst(GetElementPtrInst &GEP);
323 void visitLoadInst(LoadInst &LI);
324 void visitStoreInst(StoreInst &SI);
325 void visitInstruction(Instruction &I);
326 void visitTerminatorInst(TerminatorInst &I);
327 void visitBranchInst(BranchInst &BI);
328 void visitReturnInst(ReturnInst &RI);
329 void visitSwitchInst(SwitchInst &SI);
330 void visitIndirectBrInst(IndirectBrInst &BI);
331 void visitSelectInst(SelectInst &SI);
332 void visitUserOp1(Instruction &I);
333 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
334 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
335 void visitAllocaInst(AllocaInst &AI);
336 void visitExtractValueInst(ExtractValueInst &EVI);
337 void visitInsertValueInst(InsertValueInst &IVI);
339 void VerifyCallSite(CallSite CS);
340 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
341 int VT, unsigned ArgNo, std::string &Suffix);
342 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
343 unsigned RetNum, unsigned ParamNum, ...);
344 void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
345 bool isReturnValue, const Value *V);
346 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
347 const Value *V);
348 void VerifyType(const Type *Ty);
350 void WriteValue(const Value *V) {
351 if (!V) return;
352 if (isa<Instruction>(V)) {
353 MessagesStr << *V << '\n';
354 } else {
355 WriteAsOperand(MessagesStr, V, true, Mod);
356 MessagesStr << '\n';
360 void WriteType(const Type *T) {
361 if (!T) return;
362 MessagesStr << ' ';
363 WriteTypeSymbolic(MessagesStr, T, Mod);
367 // CheckFailed - A check failed, so print out the condition and the message
368 // that failed. This provides a nice place to put a breakpoint if you want
369 // to see why something is not correct.
370 void CheckFailed(const Twine &Message,
371 const Value *V1 = 0, const Value *V2 = 0,
372 const Value *V3 = 0, const Value *V4 = 0) {
373 MessagesStr << Message.str() << "\n";
374 WriteValue(V1);
375 WriteValue(V2);
376 WriteValue(V3);
377 WriteValue(V4);
378 Broken = true;
381 void CheckFailed(const Twine &Message, const Value *V1,
382 const Type *T2, const Value *V3 = 0) {
383 MessagesStr << Message.str() << "\n";
384 WriteValue(V1);
385 WriteType(T2);
386 WriteValue(V3);
387 Broken = true;
390 void CheckFailed(const Twine &Message, const Type *T1,
391 const Type *T2 = 0, const Type *T3 = 0) {
392 MessagesStr << Message.str() << "\n";
393 WriteType(T1);
394 WriteType(T2);
395 WriteType(T3);
396 Broken = true;
399 } // End anonymous namespace
401 char Verifier::ID = 0;
402 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
403 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
404 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
405 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
407 // Assert - We know that cond should be true, if not print an error message.
408 #define Assert(C, M) \
409 do { if (!(C)) { CheckFailed(M); return; } } while (0)
410 #define Assert1(C, M, V1) \
411 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
412 #define Assert2(C, M, V1, V2) \
413 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
414 #define Assert3(C, M, V1, V2, V3) \
415 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
416 #define Assert4(C, M, V1, V2, V3, V4) \
417 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
419 void Verifier::visit(Instruction &I) {
420 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
421 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
422 InstVisitor<Verifier>::visit(I);
426 void Verifier::visitGlobalValue(GlobalValue &GV) {
427 Assert1(!GV.isDeclaration() ||
428 GV.isMaterializable() ||
429 GV.hasExternalLinkage() ||
430 GV.hasDLLImportLinkage() ||
431 GV.hasExternalWeakLinkage() ||
432 (isa<GlobalAlias>(GV) &&
433 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
434 "Global is external, but doesn't have external or dllimport or weak linkage!",
435 &GV);
437 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
438 "Global is marked as dllimport, but not external", &GV);
440 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
441 "Only global variables can have appending linkage!", &GV);
443 if (GV.hasAppendingLinkage()) {
444 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
445 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
446 "Only global arrays can have appending linkage!", GVar);
449 Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
450 "linker_private_weak_def_auto can only have default visibility!",
451 &GV);
454 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
455 if (GV.hasInitializer()) {
456 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
457 "Global variable initializer type does not match global "
458 "variable type!", &GV);
460 // If the global has common linkage, it must have a zero initializer and
461 // cannot be constant.
462 if (GV.hasCommonLinkage()) {
463 Assert1(GV.getInitializer()->isNullValue(),
464 "'common' global must have a zero initializer!", &GV);
465 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
466 &GV);
468 } else {
469 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
470 GV.hasExternalWeakLinkage(),
471 "invalid linkage type for global declaration", &GV);
474 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
475 GV.getName() == "llvm.global_dtors")) {
476 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
477 "invalid linkage for intrinsic global variable", &GV);
478 // Don't worry about emitting an error for it not being an array,
479 // visitGlobalValue will complain on appending non-array.
480 if (const ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
481 const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
482 const PointerType *FuncPtrTy =
483 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
484 Assert1(STy && STy->getNumElements() == 2 &&
485 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
486 STy->getTypeAtIndex(1) == FuncPtrTy,
487 "wrong type for intrinsic global variable", &GV);
491 visitGlobalValue(GV);
494 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
495 Assert1(!GA.getName().empty(),
496 "Alias name cannot be empty!", &GA);
497 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
498 GA.hasWeakLinkage(),
499 "Alias should have external or external weak linkage!", &GA);
500 Assert1(GA.getAliasee(),
501 "Aliasee cannot be NULL!", &GA);
502 Assert1(GA.getType() == GA.getAliasee()->getType(),
503 "Alias and aliasee types should match!", &GA);
504 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
506 if (!isa<GlobalValue>(GA.getAliasee())) {
507 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
508 Assert1(CE &&
509 (CE->getOpcode() == Instruction::BitCast ||
510 CE->getOpcode() == Instruction::GetElementPtr) &&
511 isa<GlobalValue>(CE->getOperand(0)),
512 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
513 &GA);
516 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
517 Assert1(Aliasee,
518 "Aliasing chain should end with function or global variable", &GA);
520 visitGlobalValue(GA);
523 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
524 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
525 MDNode *MD = NMD.getOperand(i);
526 if (!MD)
527 continue;
529 Assert1(!MD->isFunctionLocal(),
530 "Named metadata operand cannot be function local!", MD);
531 visitMDNode(*MD, 0);
535 void Verifier::visitMDNode(MDNode &MD, Function *F) {
536 // Only visit each node once. Metadata can be mutually recursive, so this
537 // avoids infinite recursion here, as well as being an optimization.
538 if (!MDNodes.insert(&MD))
539 return;
541 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
542 Value *Op = MD.getOperand(i);
543 if (!Op)
544 continue;
545 if (isa<Constant>(Op) || isa<MDString>(Op))
546 continue;
547 if (MDNode *N = dyn_cast<MDNode>(Op)) {
548 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
549 "Global metadata operand cannot be function local!", &MD, N);
550 visitMDNode(*N, F);
551 continue;
553 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
555 // If this was an instruction, bb, or argument, verify that it is in the
556 // function that we expect.
557 Function *ActualF = 0;
558 if (Instruction *I = dyn_cast<Instruction>(Op))
559 ActualF = I->getParent()->getParent();
560 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
561 ActualF = BB->getParent();
562 else if (Argument *A = dyn_cast<Argument>(Op))
563 ActualF = A->getParent();
564 assert(ActualF && "Unimplemented function local metadata case!");
566 Assert2(ActualF == F, "function-local metadata used in wrong function",
567 &MD, Op);
571 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
572 for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
573 VerifyType(I->second);
576 // VerifyParameterAttrs - Check the given attributes for an argument or return
577 // value of the specified type. The value V is printed in error messages.
578 void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
579 bool isReturnValue, const Value *V) {
580 if (Attrs == Attribute::None)
581 return;
583 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
584 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
585 " only applies to the function!", V);
587 if (isReturnValue) {
588 Attributes RetI = Attrs & Attribute::ParameterOnly;
589 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
590 " does not apply to return values!", V);
593 for (unsigned i = 0;
594 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
595 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
596 Assert1(!(MutI & (MutI - 1)), "Attributes " +
597 Attribute::getAsString(MutI) + " are incompatible!", V);
600 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
601 Assert1(!TypeI, "Wrong type for attribute " +
602 Attribute::getAsString(TypeI), V);
604 Attributes ByValI = Attrs & Attribute::ByVal;
605 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
606 Assert1(!ByValI || PTy->getElementType()->isSized(),
607 "Attribute " + Attribute::getAsString(ByValI) +
608 " does not support unsized types!", V);
609 } else {
610 Assert1(!ByValI,
611 "Attribute " + Attribute::getAsString(ByValI) +
612 " only applies to parameters with pointer type!", V);
616 // VerifyFunctionAttrs - Check parameter attributes against a function type.
617 // The value V is printed in error messages.
618 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
619 const AttrListPtr &Attrs,
620 const Value *V) {
621 if (Attrs.isEmpty())
622 return;
624 bool SawNest = false;
626 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
627 const AttributeWithIndex &Attr = Attrs.getSlot(i);
629 const Type *Ty;
630 if (Attr.Index == 0)
631 Ty = FT->getReturnType();
632 else if (Attr.Index-1 < FT->getNumParams())
633 Ty = FT->getParamType(Attr.Index-1);
634 else
635 break; // VarArgs attributes, verified elsewhere.
637 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
639 if (Attr.Attrs & Attribute::Nest) {
640 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
641 SawNest = true;
644 if (Attr.Attrs & Attribute::StructRet)
645 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
648 Attributes FAttrs = Attrs.getFnAttributes();
649 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
650 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
651 " does not apply to the function!", V);
653 for (unsigned i = 0;
654 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
655 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
656 Assert1(!(MutI & (MutI - 1)), "Attributes " +
657 Attribute::getAsString(MutI) + " are incompatible!", V);
661 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
662 if (Attrs.isEmpty())
663 return true;
665 unsigned LastSlot = Attrs.getNumSlots() - 1;
666 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
667 if (LastIndex <= Params
668 || (LastIndex == (unsigned)~0
669 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
670 return true;
672 return false;
675 // visitFunction - Verify that a function is ok.
677 void Verifier::visitFunction(Function &F) {
678 // Check function arguments.
679 const FunctionType *FT = F.getFunctionType();
680 unsigned NumArgs = F.arg_size();
682 Assert1(Context == &F.getContext(),
683 "Function context does not match Module context!", &F);
685 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
686 Assert2(FT->getNumParams() == NumArgs,
687 "# formal arguments must match # of arguments for function type!",
688 &F, FT);
689 Assert1(F.getReturnType()->isFirstClassType() ||
690 F.getReturnType()->isVoidTy() ||
691 F.getReturnType()->isStructTy(),
692 "Functions cannot return aggregate values!", &F);
694 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
695 "Invalid struct return type!", &F);
697 const AttrListPtr &Attrs = F.getAttributes();
699 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
700 "Attributes after last parameter!", &F);
702 // Check function attributes.
703 VerifyFunctionAttrs(FT, Attrs, &F);
705 // Check that this function meets the restrictions on this calling convention.
706 switch (F.getCallingConv()) {
707 default:
708 break;
709 case CallingConv::C:
710 break;
711 case CallingConv::Fast:
712 case CallingConv::Cold:
713 case CallingConv::X86_FastCall:
714 case CallingConv::X86_ThisCall:
715 case CallingConv::PTX_Kernel:
716 case CallingConv::PTX_Device:
717 Assert1(!F.isVarArg(),
718 "Varargs functions must have C calling conventions!", &F);
719 break;
722 bool isLLVMdotName = F.getName().size() >= 5 &&
723 F.getName().substr(0, 5) == "llvm.";
725 // Check that the argument values match the function type for this function...
726 unsigned i = 0;
727 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
728 I != E; ++I, ++i) {
729 Assert2(I->getType() == FT->getParamType(i),
730 "Argument value does not match function argument type!",
731 I, FT->getParamType(i));
732 Assert1(I->getType()->isFirstClassType(),
733 "Function arguments must have first-class types!", I);
734 if (!isLLVMdotName)
735 Assert2(!I->getType()->isMetadataTy(),
736 "Function takes metadata but isn't an intrinsic", I, &F);
739 if (F.isMaterializable()) {
740 // Function has a body somewhere we can't see.
741 } else if (F.isDeclaration()) {
742 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
743 F.hasExternalWeakLinkage(),
744 "invalid linkage type for function declaration", &F);
745 } else {
746 // Verify that this function (which has a body) is not named "llvm.*". It
747 // is not legal to define intrinsics.
748 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
750 // Check the entry node
751 BasicBlock *Entry = &F.getEntryBlock();
752 Assert1(pred_begin(Entry) == pred_end(Entry),
753 "Entry block to function must not have predecessors!", Entry);
755 // The address of the entry block cannot be taken, unless it is dead.
756 if (Entry->hasAddressTaken()) {
757 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
758 "blockaddress may not be used with the entry block!", Entry);
762 // If this function is actually an intrinsic, verify that it is only used in
763 // direct call/invokes, never having its "address taken".
764 if (F.getIntrinsicID()) {
765 const User *U;
766 if (F.hasAddressTaken(&U))
767 Assert1(0, "Invalid user of intrinsic instruction!", U);
771 // verifyBasicBlock - Verify that a basic block is well formed...
773 void Verifier::visitBasicBlock(BasicBlock &BB) {
774 InstsInThisBlock.clear();
776 // Ensure that basic blocks have terminators!
777 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
779 // Check constraints that this basic block imposes on all of the PHI nodes in
780 // it.
781 if (isa<PHINode>(BB.front())) {
782 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
783 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
784 std::sort(Preds.begin(), Preds.end());
785 PHINode *PN;
786 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
787 // Ensure that PHI nodes have at least one entry!
788 Assert1(PN->getNumIncomingValues() != 0,
789 "PHI nodes must have at least one entry. If the block is dead, "
790 "the PHI should be removed!", PN);
791 Assert1(PN->getNumIncomingValues() == Preds.size(),
792 "PHINode should have one entry for each predecessor of its "
793 "parent basic block!", PN);
795 // Get and sort all incoming values in the PHI node...
796 Values.clear();
797 Values.reserve(PN->getNumIncomingValues());
798 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
799 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
800 PN->getIncomingValue(i)));
801 std::sort(Values.begin(), Values.end());
803 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
804 // Check to make sure that if there is more than one entry for a
805 // particular basic block in this PHI node, that the incoming values are
806 // all identical.
808 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
809 Values[i].second == Values[i-1].second,
810 "PHI node has multiple entries for the same basic block with "
811 "different incoming values!", PN, Values[i].first,
812 Values[i].second, Values[i-1].second);
814 // Check to make sure that the predecessors and PHI node entries are
815 // matched up.
816 Assert3(Values[i].first == Preds[i],
817 "PHI node entries do not match predecessors!", PN,
818 Values[i].first, Preds[i]);
824 void Verifier::visitTerminatorInst(TerminatorInst &I) {
825 // Ensure that terminators only exist at the end of the basic block.
826 Assert1(&I == I.getParent()->getTerminator(),
827 "Terminator found in the middle of a basic block!", I.getParent());
828 visitInstruction(I);
831 void Verifier::visitBranchInst(BranchInst &BI) {
832 if (BI.isConditional()) {
833 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
834 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
836 visitTerminatorInst(BI);
839 void Verifier::visitReturnInst(ReturnInst &RI) {
840 Function *F = RI.getParent()->getParent();
841 unsigned N = RI.getNumOperands();
842 if (F->getReturnType()->isVoidTy())
843 Assert2(N == 0,
844 "Found return instr that returns non-void in Function of void "
845 "return type!", &RI, F->getReturnType());
846 else
847 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
848 "Function return type does not match operand "
849 "type of return inst!", &RI, F->getReturnType());
851 // Check to make sure that the return value has necessary properties for
852 // terminators...
853 visitTerminatorInst(RI);
856 void Verifier::visitSwitchInst(SwitchInst &SI) {
857 // Check to make sure that all of the constants in the switch instruction
858 // have the same type as the switched-on value.
859 const Type *SwitchTy = SI.getCondition()->getType();
860 SmallPtrSet<ConstantInt*, 32> Constants;
861 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
862 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
863 "Switch constants must all be same type as switch value!", &SI);
864 Assert2(Constants.insert(SI.getCaseValue(i)),
865 "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
868 visitTerminatorInst(SI);
871 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
872 Assert1(BI.getAddress()->getType()->isPointerTy(),
873 "Indirectbr operand must have pointer type!", &BI);
874 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
875 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
876 "Indirectbr destinations must all have pointer type!", &BI);
878 visitTerminatorInst(BI);
881 void Verifier::visitSelectInst(SelectInst &SI) {
882 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
883 SI.getOperand(2)),
884 "Invalid operands for select instruction!", &SI);
886 Assert1(SI.getTrueValue()->getType() == SI.getType(),
887 "Select values must have same type as select instruction!", &SI);
888 visitInstruction(SI);
891 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
892 /// a pass, if any exist, it's an error.
894 void Verifier::visitUserOp1(Instruction &I) {
895 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
898 void Verifier::visitTruncInst(TruncInst &I) {
899 // Get the source and destination types
900 const Type *SrcTy = I.getOperand(0)->getType();
901 const Type *DestTy = I.getType();
903 // Get the size of the types in bits, we'll need this later
904 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
905 unsigned DestBitSize = DestTy->getScalarSizeInBits();
907 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
908 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
909 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
910 "trunc source and destination must both be a vector or neither", &I);
911 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
913 visitInstruction(I);
916 void Verifier::visitZExtInst(ZExtInst &I) {
917 // Get the source and destination types
918 const Type *SrcTy = I.getOperand(0)->getType();
919 const Type *DestTy = I.getType();
921 // Get the size of the types in bits, we'll need this later
922 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
923 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
924 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
925 "zext source and destination must both be a vector or neither", &I);
926 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
927 unsigned DestBitSize = DestTy->getScalarSizeInBits();
929 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
931 visitInstruction(I);
934 void Verifier::visitSExtInst(SExtInst &I) {
935 // Get the source and destination types
936 const Type *SrcTy = I.getOperand(0)->getType();
937 const Type *DestTy = I.getType();
939 // Get the size of the types in bits, we'll need this later
940 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
941 unsigned DestBitSize = DestTy->getScalarSizeInBits();
943 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
944 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
945 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
946 "sext source and destination must both be a vector or neither", &I);
947 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
949 visitInstruction(I);
952 void Verifier::visitFPTruncInst(FPTruncInst &I) {
953 // Get the source and destination types
954 const Type *SrcTy = I.getOperand(0)->getType();
955 const Type *DestTy = I.getType();
956 // Get the size of the types in bits, we'll need this later
957 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
958 unsigned DestBitSize = DestTy->getScalarSizeInBits();
960 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
961 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
962 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
963 "fptrunc source and destination must both be a vector or neither",&I);
964 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
966 visitInstruction(I);
969 void Verifier::visitFPExtInst(FPExtInst &I) {
970 // Get the source and destination types
971 const Type *SrcTy = I.getOperand(0)->getType();
972 const Type *DestTy = I.getType();
974 // Get the size of the types in bits, we'll need this later
975 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
976 unsigned DestBitSize = DestTy->getScalarSizeInBits();
978 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
979 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
980 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
981 "fpext source and destination must both be a vector or neither", &I);
982 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
984 visitInstruction(I);
987 void Verifier::visitUIToFPInst(UIToFPInst &I) {
988 // Get the source and destination types
989 const Type *SrcTy = I.getOperand(0)->getType();
990 const Type *DestTy = I.getType();
992 bool SrcVec = SrcTy->isVectorTy();
993 bool DstVec = DestTy->isVectorTy();
995 Assert1(SrcVec == DstVec,
996 "UIToFP source and dest must both be vector or scalar", &I);
997 Assert1(SrcTy->isIntOrIntVectorTy(),
998 "UIToFP source must be integer or integer vector", &I);
999 Assert1(DestTy->isFPOrFPVectorTy(),
1000 "UIToFP result must be FP or FP vector", &I);
1002 if (SrcVec && DstVec)
1003 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1004 cast<VectorType>(DestTy)->getNumElements(),
1005 "UIToFP source and dest vector length mismatch", &I);
1007 visitInstruction(I);
1010 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1011 // Get the source and destination types
1012 const Type *SrcTy = I.getOperand(0)->getType();
1013 const Type *DestTy = I.getType();
1015 bool SrcVec = SrcTy->isVectorTy();
1016 bool DstVec = DestTy->isVectorTy();
1018 Assert1(SrcVec == DstVec,
1019 "SIToFP source and dest must both be vector or scalar", &I);
1020 Assert1(SrcTy->isIntOrIntVectorTy(),
1021 "SIToFP source must be integer or integer vector", &I);
1022 Assert1(DestTy->isFPOrFPVectorTy(),
1023 "SIToFP result must be FP or FP vector", &I);
1025 if (SrcVec && DstVec)
1026 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1027 cast<VectorType>(DestTy)->getNumElements(),
1028 "SIToFP source and dest vector length mismatch", &I);
1030 visitInstruction(I);
1033 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1034 // Get the source and destination types
1035 const Type *SrcTy = I.getOperand(0)->getType();
1036 const Type *DestTy = I.getType();
1038 bool SrcVec = SrcTy->isVectorTy();
1039 bool DstVec = DestTy->isVectorTy();
1041 Assert1(SrcVec == DstVec,
1042 "FPToUI source and dest must both be vector or scalar", &I);
1043 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1044 &I);
1045 Assert1(DestTy->isIntOrIntVectorTy(),
1046 "FPToUI result must be integer or integer vector", &I);
1048 if (SrcVec && DstVec)
1049 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1050 cast<VectorType>(DestTy)->getNumElements(),
1051 "FPToUI source and dest vector length mismatch", &I);
1053 visitInstruction(I);
1056 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1057 // Get the source and destination types
1058 const Type *SrcTy = I.getOperand(0)->getType();
1059 const Type *DestTy = I.getType();
1061 bool SrcVec = SrcTy->isVectorTy();
1062 bool DstVec = DestTy->isVectorTy();
1064 Assert1(SrcVec == DstVec,
1065 "FPToSI source and dest must both be vector or scalar", &I);
1066 Assert1(SrcTy->isFPOrFPVectorTy(),
1067 "FPToSI source must be FP or FP vector", &I);
1068 Assert1(DestTy->isIntOrIntVectorTy(),
1069 "FPToSI result must be integer or integer vector", &I);
1071 if (SrcVec && DstVec)
1072 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1073 cast<VectorType>(DestTy)->getNumElements(),
1074 "FPToSI source and dest vector length mismatch", &I);
1076 visitInstruction(I);
1079 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1080 // Get the source and destination types
1081 const Type *SrcTy = I.getOperand(0)->getType();
1082 const Type *DestTy = I.getType();
1084 Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
1085 Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
1087 visitInstruction(I);
1090 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1091 // Get the source and destination types
1092 const Type *SrcTy = I.getOperand(0)->getType();
1093 const Type *DestTy = I.getType();
1095 Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
1096 Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
1098 visitInstruction(I);
1101 void Verifier::visitBitCastInst(BitCastInst &I) {
1102 // Get the source and destination types
1103 const Type *SrcTy = I.getOperand(0)->getType();
1104 const Type *DestTy = I.getType();
1106 // Get the size of the types in bits, we'll need this later
1107 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1108 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1110 // BitCast implies a no-op cast of type only. No bits change.
1111 // However, you can't cast pointers to anything but pointers.
1112 Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
1113 "Bitcast requires both operands to be pointer or neither", &I);
1114 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1116 // Disallow aggregates.
1117 Assert1(!SrcTy->isAggregateType(),
1118 "Bitcast operand must not be aggregate", &I);
1119 Assert1(!DestTy->isAggregateType(),
1120 "Bitcast type must not be aggregate", &I);
1122 visitInstruction(I);
1125 /// visitPHINode - Ensure that a PHI node is well formed.
1127 void Verifier::visitPHINode(PHINode &PN) {
1128 // Ensure that the PHI nodes are all grouped together at the top of the block.
1129 // This can be tested by checking whether the instruction before this is
1130 // either nonexistent (because this is begin()) or is a PHI node. If not,
1131 // then there is some other instruction before a PHI.
1132 Assert2(&PN == &PN.getParent()->front() ||
1133 isa<PHINode>(--BasicBlock::iterator(&PN)),
1134 "PHI nodes not grouped at top of basic block!",
1135 &PN, PN.getParent());
1137 // Check that all of the values of the PHI node have the same type as the
1138 // result, and that the incoming blocks are really basic blocks.
1139 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1140 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1141 "PHI node operands are not the same type as the result!", &PN);
1142 Assert1(isa<BasicBlock>(PN.getOperand(
1143 PHINode::getOperandNumForIncomingBlock(i))),
1144 "PHI node incoming block is not a BasicBlock!", &PN);
1147 // All other PHI node constraints are checked in the visitBasicBlock method.
1149 visitInstruction(PN);
1152 void Verifier::VerifyCallSite(CallSite CS) {
1153 Instruction *I = CS.getInstruction();
1155 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1156 "Called function must be a pointer!", I);
1157 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1159 Assert1(FPTy->getElementType()->isFunctionTy(),
1160 "Called function is not pointer to function type!", I);
1161 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1163 // Verify that the correct number of arguments are being passed
1164 if (FTy->isVarArg())
1165 Assert1(CS.arg_size() >= FTy->getNumParams(),
1166 "Called function requires more parameters than were provided!",I);
1167 else
1168 Assert1(CS.arg_size() == FTy->getNumParams(),
1169 "Incorrect number of arguments passed to called function!", I);
1171 // Verify that all arguments to the call match the function type.
1172 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1173 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1174 "Call parameter type does not match function signature!",
1175 CS.getArgument(i), FTy->getParamType(i), I);
1177 const AttrListPtr &Attrs = CS.getAttributes();
1179 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1180 "Attributes after last parameter!", I);
1182 // Verify call attributes.
1183 VerifyFunctionAttrs(FTy, Attrs, I);
1185 if (FTy->isVarArg())
1186 // Check attributes on the varargs part.
1187 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1188 Attributes Attr = Attrs.getParamAttributes(Idx);
1190 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1192 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1193 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1194 " cannot be used for vararg call arguments!", I);
1197 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1198 if (!CS.getCalledFunction() ||
1199 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1200 for (FunctionType::param_iterator PI = FTy->param_begin(),
1201 PE = FTy->param_end(); PI != PE; ++PI)
1202 Assert1(!PI->get()->isMetadataTy(),
1203 "Function has metadata parameter but isn't an intrinsic", I);
1206 visitInstruction(*I);
1209 void Verifier::visitCallInst(CallInst &CI) {
1210 VerifyCallSite(&CI);
1212 if (Function *F = CI.getCalledFunction())
1213 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1214 visitIntrinsicFunctionCall(ID, CI);
1217 void Verifier::visitInvokeInst(InvokeInst &II) {
1218 VerifyCallSite(&II);
1219 visitTerminatorInst(II);
1222 /// visitBinaryOperator - Check that both arguments to the binary operator are
1223 /// of the same type!
1225 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1226 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1227 "Both operands to a binary operator are not of the same type!", &B);
1229 switch (B.getOpcode()) {
1230 // Check that integer arithmetic operators are only used with
1231 // integral operands.
1232 case Instruction::Add:
1233 case Instruction::Sub:
1234 case Instruction::Mul:
1235 case Instruction::SDiv:
1236 case Instruction::UDiv:
1237 case Instruction::SRem:
1238 case Instruction::URem:
1239 Assert1(B.getType()->isIntOrIntVectorTy(),
1240 "Integer arithmetic operators only work with integral types!", &B);
1241 Assert1(B.getType() == B.getOperand(0)->getType(),
1242 "Integer arithmetic operators must have same type "
1243 "for operands and result!", &B);
1244 break;
1245 // Check that floating-point arithmetic operators are only used with
1246 // floating-point operands.
1247 case Instruction::FAdd:
1248 case Instruction::FSub:
1249 case Instruction::FMul:
1250 case Instruction::FDiv:
1251 case Instruction::FRem:
1252 Assert1(B.getType()->isFPOrFPVectorTy(),
1253 "Floating-point arithmetic operators only work with "
1254 "floating-point types!", &B);
1255 Assert1(B.getType() == B.getOperand(0)->getType(),
1256 "Floating-point arithmetic operators must have same type "
1257 "for operands and result!", &B);
1258 break;
1259 // Check that logical operators are only used with integral operands.
1260 case Instruction::And:
1261 case Instruction::Or:
1262 case Instruction::Xor:
1263 Assert1(B.getType()->isIntOrIntVectorTy(),
1264 "Logical operators only work with integral types!", &B);
1265 Assert1(B.getType() == B.getOperand(0)->getType(),
1266 "Logical operators must have same type for operands and result!",
1267 &B);
1268 break;
1269 case Instruction::Shl:
1270 case Instruction::LShr:
1271 case Instruction::AShr:
1272 Assert1(B.getType()->isIntOrIntVectorTy(),
1273 "Shifts only work with integral types!", &B);
1274 Assert1(B.getType() == B.getOperand(0)->getType(),
1275 "Shift return type must be same as operands!", &B);
1276 break;
1277 default:
1278 llvm_unreachable("Unknown BinaryOperator opcode!");
1281 visitInstruction(B);
1284 void Verifier::visitICmpInst(ICmpInst &IC) {
1285 // Check that the operands are the same type
1286 const Type *Op0Ty = IC.getOperand(0)->getType();
1287 const Type *Op1Ty = IC.getOperand(1)->getType();
1288 Assert1(Op0Ty == Op1Ty,
1289 "Both operands to ICmp instruction are not of the same type!", &IC);
1290 // Check that the operands are the right type
1291 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
1292 "Invalid operand types for ICmp instruction", &IC);
1293 // Check that the predicate is valid.
1294 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1295 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1296 "Invalid predicate in ICmp instruction!", &IC);
1298 visitInstruction(IC);
1301 void Verifier::visitFCmpInst(FCmpInst &FC) {
1302 // Check that the operands are the same type
1303 const Type *Op0Ty = FC.getOperand(0)->getType();
1304 const Type *Op1Ty = FC.getOperand(1)->getType();
1305 Assert1(Op0Ty == Op1Ty,
1306 "Both operands to FCmp instruction are not of the same type!", &FC);
1307 // Check that the operands are the right type
1308 Assert1(Op0Ty->isFPOrFPVectorTy(),
1309 "Invalid operand types for FCmp instruction", &FC);
1310 // Check that the predicate is valid.
1311 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1312 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1313 "Invalid predicate in FCmp instruction!", &FC);
1315 visitInstruction(FC);
1318 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1319 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1320 EI.getOperand(1)),
1321 "Invalid extractelement operands!", &EI);
1322 visitInstruction(EI);
1325 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1326 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1327 IE.getOperand(1),
1328 IE.getOperand(2)),
1329 "Invalid insertelement operands!", &IE);
1330 visitInstruction(IE);
1333 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1334 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1335 SV.getOperand(2)),
1336 "Invalid shufflevector operands!", &SV);
1337 visitInstruction(SV);
1340 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1341 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1342 const Type *ElTy =
1343 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1344 Idxs.begin(), Idxs.end());
1345 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1346 Assert2(GEP.getType()->isPointerTy() &&
1347 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1348 "GEP is not of right type for indices!", &GEP, ElTy);
1349 visitInstruction(GEP);
1352 void Verifier::visitLoadInst(LoadInst &LI) {
1353 const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1354 Assert1(PTy, "Load operand must be a pointer.", &LI);
1355 const Type *ElTy = PTy->getElementType();
1356 Assert2(ElTy == LI.getType(),
1357 "Load result type does not match pointer operand type!", &LI, ElTy);
1358 visitInstruction(LI);
1361 void Verifier::visitStoreInst(StoreInst &SI) {
1362 const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1363 Assert1(PTy, "Store operand must be a pointer.", &SI);
1364 const Type *ElTy = PTy->getElementType();
1365 Assert2(ElTy == SI.getOperand(0)->getType(),
1366 "Stored value type does not match pointer operand type!",
1367 &SI, ElTy);
1368 visitInstruction(SI);
1371 void Verifier::visitAllocaInst(AllocaInst &AI) {
1372 const PointerType *PTy = AI.getType();
1373 Assert1(PTy->getAddressSpace() == 0,
1374 "Allocation instruction pointer not in the generic address space!",
1375 &AI);
1376 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1377 &AI);
1378 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1379 "Alloca array size must have integer type", &AI);
1380 visitInstruction(AI);
1383 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1384 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1385 EVI.idx_begin(), EVI.idx_end()) ==
1386 EVI.getType(),
1387 "Invalid ExtractValueInst operands!", &EVI);
1389 visitInstruction(EVI);
1392 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1393 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1394 IVI.idx_begin(), IVI.idx_end()) ==
1395 IVI.getOperand(1)->getType(),
1396 "Invalid InsertValueInst operands!", &IVI);
1398 visitInstruction(IVI);
1401 /// verifyInstruction - Verify that an instruction is well formed.
1403 void Verifier::visitInstruction(Instruction &I) {
1404 BasicBlock *BB = I.getParent();
1405 Assert1(BB, "Instruction not embedded in basic block!", &I);
1407 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1408 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1409 UI != UE; ++UI)
1410 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1411 "Only PHI nodes may reference their own value!", &I);
1414 // Check that void typed values don't have names
1415 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1416 "Instruction has a name, but provides a void value!", &I);
1418 // Check that the return value of the instruction is either void or a legal
1419 // value type.
1420 Assert1(I.getType()->isVoidTy() ||
1421 I.getType()->isFirstClassType(),
1422 "Instruction returns a non-scalar type!", &I);
1424 // Check that the instruction doesn't produce metadata. Calls are already
1425 // checked against the callee type.
1426 Assert1(!I.getType()->isMetadataTy() ||
1427 isa<CallInst>(I) || isa<InvokeInst>(I),
1428 "Invalid use of metadata!", &I);
1430 // Check that all uses of the instruction, if they are instructions
1431 // themselves, actually have parent basic blocks. If the use is not an
1432 // instruction, it is an error!
1433 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1434 UI != UE; ++UI) {
1435 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1436 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1437 " embedded in a basic block!", &I, Used);
1438 else {
1439 CheckFailed("Use of instruction is not an instruction!", *UI);
1440 return;
1444 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1445 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1447 // Check to make sure that only first-class-values are operands to
1448 // instructions.
1449 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1450 Assert1(0, "Instruction operands must be first-class values!", &I);
1453 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1454 // Check to make sure that the "address of" an intrinsic function is never
1455 // taken.
1456 Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
1457 "Cannot take the address of an intrinsic!", &I);
1458 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1459 &I);
1460 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1461 Assert1(OpBB->getParent() == BB->getParent(),
1462 "Referring to a basic block in another function!", &I);
1463 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1464 Assert1(OpArg->getParent() == BB->getParent(),
1465 "Referring to an argument in another function!", &I);
1466 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1467 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1468 &I);
1469 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1470 BasicBlock *OpBlock = Op->getParent();
1472 // Check that a definition dominates all of its uses.
1473 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1474 // Invoke results are only usable in the normal destination, not in the
1475 // exceptional destination.
1476 BasicBlock *NormalDest = II->getNormalDest();
1478 Assert2(NormalDest != II->getUnwindDest(),
1479 "No uses of invoke possible due to dominance structure!",
1480 Op, &I);
1482 // PHI nodes differ from other nodes because they actually "use" the
1483 // value in the predecessor basic blocks they correspond to.
1484 BasicBlock *UseBlock = BB;
1485 if (isa<PHINode>(I))
1486 UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
1487 Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
1488 Op, &I);
1490 if (isa<PHINode>(I) && UseBlock == OpBlock) {
1491 // Special case of a phi node in the normal destination or the unwind
1492 // destination.
1493 Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
1494 "Invoke result not available in the unwind destination!",
1495 Op, &I);
1496 } else {
1497 Assert2(DT->dominates(NormalDest, UseBlock) ||
1498 !DT->isReachableFromEntry(UseBlock),
1499 "Invoke result does not dominate all uses!", Op, &I);
1501 // If the normal successor of an invoke instruction has multiple
1502 // predecessors, then the normal edge from the invoke is critical,
1503 // so the invoke value can only be live if the destination block
1504 // dominates all of it's predecessors (other than the invoke).
1505 if (!NormalDest->getSinglePredecessor() &&
1506 DT->isReachableFromEntry(UseBlock))
1507 // If it is used by something non-phi, then the other case is that
1508 // 'NormalDest' dominates all of its predecessors other than the
1509 // invoke. In this case, the invoke value can still be used.
1510 for (pred_iterator PI = pred_begin(NormalDest),
1511 E = pred_end(NormalDest); PI != E; ++PI)
1512 if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
1513 DT->isReachableFromEntry(*PI)) {
1514 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
1515 return;
1518 } else if (isa<PHINode>(I)) {
1519 // PHI nodes are more difficult than other nodes because they actually
1520 // "use" the value in the predecessor basic blocks they correspond to.
1521 BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
1522 Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
1523 !DT->isReachableFromEntry(PredBB)),
1524 "Instruction does not dominate all uses!", Op, &I);
1525 } else {
1526 if (OpBlock == BB) {
1527 // If they are in the same basic block, make sure that the definition
1528 // comes before the use.
1529 Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
1530 "Instruction does not dominate all uses!", Op, &I);
1533 // Definition must dominate use unless use is unreachable!
1534 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1535 !DT->isReachableFromEntry(BB),
1536 "Instruction does not dominate all uses!", Op, &I);
1538 } else if (isa<InlineAsm>(I.getOperand(i))) {
1539 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1540 (i + 3 == e && isa<InvokeInst>(I)),
1541 "Cannot take the address of an inline asm!", &I);
1544 InstsInThisBlock.insert(&I);
1546 VerifyType(I.getType());
1549 /// VerifyType - Verify that a type is well formed.
1551 void Verifier::VerifyType(const Type *Ty) {
1552 if (!Types.insert(Ty)) return;
1554 Assert1(Context == &Ty->getContext(),
1555 "Type context does not match Module context!", Ty);
1557 switch (Ty->getTypeID()) {
1558 case Type::FunctionTyID: {
1559 const FunctionType *FTy = cast<FunctionType>(Ty);
1561 const Type *RetTy = FTy->getReturnType();
1562 Assert2(FunctionType::isValidReturnType(RetTy),
1563 "Function type with invalid return type", RetTy, FTy);
1564 VerifyType(RetTy);
1566 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1567 const Type *ElTy = FTy->getParamType(i);
1568 Assert2(FunctionType::isValidArgumentType(ElTy),
1569 "Function type with invalid parameter type", ElTy, FTy);
1570 VerifyType(ElTy);
1572 break;
1574 case Type::StructTyID: {
1575 const StructType *STy = cast<StructType>(Ty);
1576 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1577 const Type *ElTy = STy->getElementType(i);
1578 Assert2(StructType::isValidElementType(ElTy),
1579 "Structure type with invalid element type", ElTy, STy);
1580 VerifyType(ElTy);
1582 break;
1584 case Type::ArrayTyID: {
1585 const ArrayType *ATy = cast<ArrayType>(Ty);
1586 Assert1(ArrayType::isValidElementType(ATy->getElementType()),
1587 "Array type with invalid element type", ATy);
1588 VerifyType(ATy->getElementType());
1589 break;
1591 case Type::PointerTyID: {
1592 const PointerType *PTy = cast<PointerType>(Ty);
1593 Assert1(PointerType::isValidElementType(PTy->getElementType()),
1594 "Pointer type with invalid element type", PTy);
1595 VerifyType(PTy->getElementType());
1596 break;
1598 case Type::VectorTyID: {
1599 const VectorType *VTy = cast<VectorType>(Ty);
1600 Assert1(VectorType::isValidElementType(VTy->getElementType()),
1601 "Vector type with invalid element type", VTy);
1602 VerifyType(VTy->getElementType());
1603 break;
1605 default:
1606 break;
1610 // Flags used by TableGen to mark intrinsic parameters with the
1611 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1612 static const unsigned ExtendedElementVectorType = 0x40000000;
1613 static const unsigned TruncatedElementVectorType = 0x20000000;
1615 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1617 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1618 Function *IF = CI.getCalledFunction();
1619 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1620 IF);
1622 #define GET_INTRINSIC_VERIFIER
1623 #include "llvm/Intrinsics.gen"
1624 #undef GET_INTRINSIC_VERIFIER
1626 // If the intrinsic takes MDNode arguments, verify that they are either global
1627 // or are local to *this* function.
1628 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1629 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1630 visitMDNode(*MD, CI.getParent()->getParent());
1632 switch (ID) {
1633 default:
1634 break;
1635 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1636 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1637 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1638 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1639 Assert1(MD->getNumOperands() == 1,
1640 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1641 } break;
1642 case Intrinsic::memcpy:
1643 case Intrinsic::memmove:
1644 case Intrinsic::memset:
1645 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1646 "alignment argument of memory intrinsics must be a constant int",
1647 &CI);
1648 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
1649 "isvolatile argument of memory intrinsics must be a constant int",
1650 &CI);
1651 break;
1652 case Intrinsic::gcroot:
1653 case Intrinsic::gcwrite:
1654 case Intrinsic::gcread:
1655 if (ID == Intrinsic::gcroot) {
1656 AllocaInst *AI =
1657 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1658 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1659 Assert1(isa<Constant>(CI.getArgOperand(1)),
1660 "llvm.gcroot parameter #2 must be a constant.", &CI);
1661 if (!AI->getType()->getElementType()->isPointerTy()) {
1662 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1663 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1664 "or argument #2 must be a non-null constant.", &CI);
1668 Assert1(CI.getParent()->getParent()->hasGC(),
1669 "Enclosing function does not use GC.", &CI);
1670 break;
1671 case Intrinsic::init_trampoline:
1672 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1673 "llvm.init_trampoline parameter #2 must resolve to a function.",
1674 &CI);
1675 break;
1676 case Intrinsic::prefetch:
1677 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1678 isa<ConstantInt>(CI.getArgOperand(2)) &&
1679 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1680 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1681 "invalid arguments to llvm.prefetch",
1682 &CI);
1683 break;
1684 case Intrinsic::stackprotector:
1685 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1686 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1687 &CI);
1688 break;
1689 case Intrinsic::lifetime_start:
1690 case Intrinsic::lifetime_end:
1691 case Intrinsic::invariant_start:
1692 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1693 "size argument of memory use markers must be a constant integer",
1694 &CI);
1695 break;
1696 case Intrinsic::invariant_end:
1697 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1698 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1699 break;
1703 /// Produce a string to identify an intrinsic parameter or return value.
1704 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1705 /// parameters beginning with NumRets.
1707 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1708 if (ArgNo >= NumRets)
1709 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1710 if (NumRets == 1)
1711 return "Intrinsic result type";
1712 return "Intrinsic result type #" + utostr(ArgNo);
1715 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1716 int VT, unsigned ArgNo, std::string &Suffix) {
1717 const FunctionType *FTy = F->getFunctionType();
1719 unsigned NumElts = 0;
1720 const Type *EltTy = Ty;
1721 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1722 if (VTy) {
1723 EltTy = VTy->getElementType();
1724 NumElts = VTy->getNumElements();
1727 const Type *RetTy = FTy->getReturnType();
1728 const StructType *ST = dyn_cast<StructType>(RetTy);
1729 unsigned NumRetVals;
1730 if (RetTy->isVoidTy())
1731 NumRetVals = 0;
1732 else if (ST)
1733 NumRetVals = ST->getNumElements();
1734 else
1735 NumRetVals = 1;
1737 if (VT < 0) {
1738 int Match = ~VT;
1740 // Check flags that indicate a type that is an integral vector type with
1741 // elements that are larger or smaller than the elements of the matched
1742 // type.
1743 if ((Match & (ExtendedElementVectorType |
1744 TruncatedElementVectorType)) != 0) {
1745 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1746 if (!VTy || !IEltTy) {
1747 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1748 "an integral vector type.", F);
1749 return false;
1751 // Adjust the current Ty (in the opposite direction) rather than
1752 // the type being matched against.
1753 if ((Match & ExtendedElementVectorType) != 0) {
1754 if ((IEltTy->getBitWidth() & 1) != 0) {
1755 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
1756 "element bit-width is odd.", F);
1757 return false;
1759 Ty = VectorType::getTruncatedElementVectorType(VTy);
1760 } else
1761 Ty = VectorType::getExtendedElementVectorType(VTy);
1762 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1765 if (Match <= static_cast<int>(NumRetVals - 1)) {
1766 if (ST)
1767 RetTy = ST->getElementType(Match);
1769 if (Ty != RetTy) {
1770 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1771 "match return type.", F);
1772 return false;
1774 } else {
1775 if (Ty != FTy->getParamType(Match - NumRetVals)) {
1776 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1777 "match parameter %" + utostr(Match - NumRetVals) + ".", F);
1778 return false;
1781 } else if (VT == MVT::iAny) {
1782 if (!EltTy->isIntegerTy()) {
1783 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1784 "an integer type.", F);
1785 return false;
1788 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1789 Suffix += ".";
1791 if (EltTy != Ty)
1792 Suffix += "v" + utostr(NumElts);
1794 Suffix += "i" + utostr(GotBits);
1796 // Check some constraints on various intrinsics.
1797 switch (ID) {
1798 default: break; // Not everything needs to be checked.
1799 case Intrinsic::bswap:
1800 if (GotBits < 16 || GotBits % 16 != 0) {
1801 CheckFailed("Intrinsic requires even byte width argument", F);
1802 return false;
1804 break;
1806 } else if (VT == MVT::fAny) {
1807 if (!EltTy->isFloatingPointTy()) {
1808 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1809 "a floating-point type.", F);
1810 return false;
1813 Suffix += ".";
1815 if (EltTy != Ty)
1816 Suffix += "v" + utostr(NumElts);
1818 Suffix += EVT::getEVT(EltTy).getEVTString();
1819 } else if (VT == MVT::vAny) {
1820 if (!VTy) {
1821 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
1823 return false;
1825 Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
1826 } else if (VT == MVT::iPTR) {
1827 if (!Ty->isPointerTy()) {
1828 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1829 "pointer and a pointer is required.", F);
1830 return false;
1832 } else if (VT == MVT::iPTRAny) {
1833 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1834 // and iPTR. In the verifier, we can not distinguish which case we have so
1835 // allow either case to be legal.
1836 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1837 EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
1838 if (PointeeVT == MVT::Other) {
1839 CheckFailed("Intrinsic has pointer to complex type.");
1840 return false;
1842 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1843 PointeeVT.getEVTString();
1844 } else {
1845 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1846 "pointer and a pointer is required.", F);
1847 return false;
1849 } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
1850 EVT VVT = EVT((MVT::SimpleValueType)VT);
1852 // If this is a vector argument, verify the number and type of elements.
1853 if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
1854 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1855 return false;
1858 if (VVT.getVectorNumElements() != NumElts) {
1859 CheckFailed("Intrinsic prototype has incorrect number of "
1860 "vector elements!", F);
1861 return false;
1863 } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
1864 EltTy) {
1865 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
1866 return false;
1867 } else if (EltTy != Ty) {
1868 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
1869 "and a scalar is required.", F);
1870 return false;
1873 return true;
1876 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1877 /// Intrinsics.gen. This implements a little state machine that verifies the
1878 /// prototype of intrinsics.
1879 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1880 unsigned NumRetVals,
1881 unsigned NumParams, ...) {
1882 va_list VA;
1883 va_start(VA, NumParams);
1884 const FunctionType *FTy = F->getFunctionType();
1886 // For overloaded intrinsics, the Suffix of the function name must match the
1887 // types of the arguments. This variable keeps track of the expected
1888 // suffix, to be checked at the end.
1889 std::string Suffix;
1891 if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
1892 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1893 return;
1896 const Type *Ty = FTy->getReturnType();
1897 const StructType *ST = dyn_cast<StructType>(Ty);
1899 if (NumRetVals == 0 && !Ty->isVoidTy()) {
1900 CheckFailed("Intrinsic should return void", F);
1901 return;
1904 // Verify the return types.
1905 if (ST && ST->getNumElements() != NumRetVals) {
1906 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1907 return;
1910 for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
1911 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1913 if (ST) Ty = ST->getElementType(ArgNo);
1914 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1915 break;
1918 // Verify the parameter types.
1919 for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
1920 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1922 if (VT == MVT::isVoid && ArgNo > 0) {
1923 if (!FTy->isVarArg())
1924 CheckFailed("Intrinsic prototype has no '...'!", F);
1925 break;
1928 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
1929 ArgNo + NumRetVals, Suffix))
1930 break;
1933 va_end(VA);
1935 // For intrinsics without pointer arguments, if we computed a Suffix then the
1936 // intrinsic is overloaded and we need to make sure that the name of the
1937 // function is correct. We add the suffix to the name of the intrinsic and
1938 // compare against the given function name. If they are not the same, the
1939 // function name is invalid. This ensures that overloading of intrinsics
1940 // uses a sane and consistent naming convention. Note that intrinsics with
1941 // pointer argument may or may not be overloaded so we will check assuming it
1942 // has a suffix and not.
1943 if (!Suffix.empty()) {
1944 std::string Name(Intrinsic::getName(ID));
1945 if (Name + Suffix != F->getName()) {
1946 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1947 F->getName().substr(Name.length()) + "'. It should be '" +
1948 Suffix + "'", F);
1952 // Check parameter attributes.
1953 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1954 "Intrinsic has wrong parameter attributes!", F);
1958 //===----------------------------------------------------------------------===//
1959 // Implement the public interfaces to this file...
1960 //===----------------------------------------------------------------------===//
1962 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1963 return new Verifier(action);
1967 /// verifyFunction - Check a function for errors, printing messages on stderr.
1968 /// Return true if the function is corrupt.
1970 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1971 Function &F = const_cast<Function&>(f);
1972 assert(!F.isDeclaration() && "Cannot verify external functions");
1974 FunctionPassManager FPM(F.getParent());
1975 Verifier *V = new Verifier(action);
1976 FPM.add(V);
1977 FPM.run(F);
1978 return V->Broken;
1981 /// verifyModule - Check a module for errors, printing messages on stderr.
1982 /// Return true if the module is corrupt.
1984 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1985 std::string *ErrorInfo) {
1986 PassManager PM;
1987 Verifier *V = new Verifier(action);
1988 PM.add(V);
1989 PM.run(const_cast<Module&>(M));
1991 if (ErrorInfo && V->Broken)
1992 *ErrorInfo = V->MessagesStr.str();
1993 return V->Broken;