Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / docs / Passes.html
blobb7f70b91cbf30a606786871e5a0927ece07cc148
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM's Analysis and Transform Passes</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8 </head>
9 <body>
11 <!--
13 If Passes.html is up to date, the following "one-liner" should print
14 an empty diff.
16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17 -e '^ <a name=".*">.*</a>$' < Passes.html >html; \
18 perl >help <<'EOT' && diff -u help html; rm -f help html
19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20 while (<HTML>) {
21 m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22 $order{$1} = sprintf("%03d", 1 + int %order);
24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25 while (<HELP>) {
26 m:^ -([^ ]+) +- (.*)$: or next;
27 my $o = $order{$1};
28 $o = "000" unless defined $o;
29 push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30 push @y, "$o <a name=\"$1\">-$1: $2</a>\n";
32 @x = map { s/^\d\d\d//; $_ } sort @x;
33 @y = map { s/^\d\d\d//; $_ } sort @y;
34 print @x, @y;
35 EOT
37 This (real) one-liner can also be helpful when converting comments to HTML:
39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print " <p>\n" if !$on && $_ =~ /\S/; print " </p>\n" if $on && $_ =~ /^\s*$/; print " $_\n"; $on = ($_ =~ /\S/); } print " </p>\n" if $on'
41 -->
43 <h1>LLVM's Analysis and Transform Passes</h1>
45 <ol>
46 <li><a href="#intro">Introduction</a></li>
47 <li><a href="#analyses">Analysis Passes</a>
48 <li><a href="#transforms">Transform Passes</a></li>
49 <li><a href="#utilities">Utility Passes</a></li>
50 </ol>
52 <div class="doc_author">
53 <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54 and Gordon Henriksen</p>
55 </div>
57 <!-- ======================================================================= -->
58 <h2><a name="intro">Introduction</a></h2>
59 <div>
60 <p>This document serves as a high level summary of the optimization features
61 that LLVM provides. Optimizations are implemented as Passes that traverse some
62 portion of a program to either collect information or transform the program.
63 The table below divides the passes that LLVM provides into three categories.
64 Analysis passes compute information that other passes can use or for debugging
65 or program visualization purposes. Transform passes can use (or invalidate)
66 the analysis passes. Transform passes all mutate the program in some way.
67 Utility passes provides some utility but don't otherwise fit categorization.
68 For example passes to extract functions to bitcode or write a module to
69 bitcode are neither analysis nor transform passes.
70 <p>The table below provides a quick summary of each pass and links to the more
71 complete pass description later in the document.</p>
73 <table>
74 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75 <tr><th>Option</th><th>Name</th></tr>
76 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86 <tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87 <tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88 <tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89 <tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93 <tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94 <tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95 <tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96 <tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97 <tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100 <tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103 <tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
104 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
105 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
106 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
107 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
108 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
109 <tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
110 <tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
111 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
112 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
113 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
114 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
115 <tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
116 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
117 <tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
118 <tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
119 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
120 <tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
121 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
124 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
125 <tr><th>Option</th><th>Name</th></tr>
126 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
127 <tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
128 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
129 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
130 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
131 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
132 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
133 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
134 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
135 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
136 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
137 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
138 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
139 <tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
140 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
141 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
142 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
143 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
144 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
145 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
146 <tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
147 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
148 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
149 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
150 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
151 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
152 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
153 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
154 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
155 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
156 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
157 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
158 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
159 <tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
160 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
161 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
162 <tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
163 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
164 <tr><td><a href="#lowersetjmp">-lowersetjmp</a></td><td>Lower Set Jump</td></tr>
165 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
166 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
167 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
168 <tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
169 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
170 <tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
171 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
172 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
173 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
174 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
175 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
176 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
177 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
178 <tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
179 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
180 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
181 <tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
182 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
183 <tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
184 <tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
185 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
186 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
189 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
190 <tr><th>Option</th><th>Name</th></tr>
191 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
192 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
193 <tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
194 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
195 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
196 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
197 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
198 <tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
199 <tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
200 <tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
201 <tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
202 </table>
204 </div>
206 <!-- ======================================================================= -->
207 <h2><a name="analyses">Analysis Passes</a></h2>
208 <div>
209 <p>This section describes the LLVM Analysis Passes.</p>
211 <!-------------------------------------------------------------------------- -->
212 <h3>
213 <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
214 </h3>
215 <div>
216 <p>This is a simple N^2 alias analysis accuracy evaluator.
217 Basically, for each function in the program, it simply queries to see how the
218 alias analysis implementation answers alias queries between each pair of
219 pointers in the function.</p>
221 <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
222 Spadini, and Wojciech Stryjewski.</p>
223 </div>
225 <!-------------------------------------------------------------------------- -->
226 <h3>
227 <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
228 </h3>
229 <div>
231 This is the default implementation of the Alias Analysis interface
232 that simply implements a few identities (two different globals cannot alias,
233 etc), but otherwise does no analysis.
234 </p>
235 </div>
237 <!-------------------------------------------------------------------------- -->
238 <h3>
239 <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
240 </h3>
241 <div>
242 <p>Yet to be written.</p>
243 </div>
245 <!-------------------------------------------------------------------------- -->
246 <h3>
247 <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
248 </h3>
249 <div>
251 A pass which can be used to count how many alias queries
252 are being made and how the alias analysis implementation being used responds.
253 </p>
254 </div>
256 <!-------------------------------------------------------------------------- -->
257 <h3>
258 <a name="debug-aa">-debug-aa: AA use debugger</a>
259 </h3>
260 <div>
262 This simple pass checks alias analysis users to ensure that if they
263 create a new value, they do not query AA without informing it of the value.
264 It acts as a shim over any other AA pass you want.
265 </p>
268 Yes keeping track of every value in the program is expensive, but this is
269 a debugging pass.
270 </p>
271 </div>
273 <!-------------------------------------------------------------------------- -->
274 <h3>
275 <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
276 </h3>
277 <div>
279 This pass is a simple dominator construction algorithm for finding forward
280 dominator frontiers.
281 </p>
282 </div>
284 <!-------------------------------------------------------------------------- -->
285 <h3>
286 <a name="domtree">-domtree: Dominator Tree Construction</a>
287 </h3>
288 <div>
290 This pass is a simple dominator construction algorithm for finding forward
291 dominators.
292 </p>
293 </div>
295 <!-------------------------------------------------------------------------- -->
296 <h3>
297 <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
298 </h3>
299 <div>
301 This pass, only available in <code>opt</code>, prints the call graph into a
302 <code>.dot</code> graph. This graph can then be processed with the "dot" tool
303 to convert it to postscript or some other suitable format.
304 </p>
305 </div>
307 <!-------------------------------------------------------------------------- -->
308 <h3>
309 <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
310 </h3>
311 <div>
313 This pass, only available in <code>opt</code>, prints the control flow graph
314 into a <code>.dot</code> graph. This graph can then be processed with the
315 "dot" tool to convert it to postscript or some other suitable format.
316 </p>
317 </div>
319 <!-------------------------------------------------------------------------- -->
320 <h3>
321 <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
322 </h3>
323 <div>
325 This pass, only available in <code>opt</code>, prints the control flow graph
326 into a <code>.dot</code> graph, omitting the function bodies. This graph can
327 then be processed with the "dot" tool to convert it to postscript or some
328 other suitable format.
329 </p>
330 </div>
332 <!-------------------------------------------------------------------------- -->
333 <h3>
334 <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
335 </h3>
336 <div>
338 This pass, only available in <code>opt</code>, prints the dominator tree
339 into a <code>.dot</code> graph. This graph can then be processed with the
340 "dot" tool to convert it to postscript or some other suitable format.
341 </p>
342 </div>
344 <!-------------------------------------------------------------------------- -->
345 <h3>
346 <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
347 </h3>
348 <div>
350 This pass, only available in <code>opt</code>, prints the dominator tree
351 into a <code>.dot</code> graph, omitting the function bodies. This graph can
352 then be processed with the "dot" tool to convert it to postscript or some
353 other suitable format.
354 </p>
355 </div>
357 <!-------------------------------------------------------------------------- -->
358 <h3>
359 <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
360 </h3>
361 <div>
363 This pass, only available in <code>opt</code>, prints the post dominator tree
364 into a <code>.dot</code> graph. This graph can then be processed with the
365 "dot" tool to convert it to postscript or some other suitable format.
366 </p>
367 </div>
369 <!-------------------------------------------------------------------------- -->
370 <h3>
371 <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
372 </h3>
373 <div>
375 This pass, only available in <code>opt</code>, prints the post dominator tree
376 into a <code>.dot</code> graph, omitting the function bodies. This graph can
377 then be processed with the "dot" tool to convert it to postscript or some
378 other suitable format.
379 </p>
380 </div>
382 <!-------------------------------------------------------------------------- -->
383 <h3>
384 <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
385 </h3>
386 <div>
388 This simple pass provides alias and mod/ref information for global values
389 that do not have their address taken, and keeps track of whether functions
390 read or write memory (are "pure"). For this simple (but very common) case,
391 we can provide pretty accurate and useful information.
392 </p>
393 </div>
395 <!-------------------------------------------------------------------------- -->
396 <h3>
397 <a name="instcount">-instcount: Counts the various types of Instructions</a>
398 </h3>
399 <div>
401 This pass collects the count of all instructions and reports them
402 </p>
403 </div>
405 <!-------------------------------------------------------------------------- -->
406 <h3>
407 <a name="intervals">-intervals: Interval Partition Construction</a>
408 </h3>
409 <div>
411 This analysis calculates and represents the interval partition of a function,
412 or a preexisting interval partition.
413 </p>
416 In this way, the interval partition may be used to reduce a flow graph down
417 to its degenerate single node interval partition (unless it is irreducible).
418 </p>
419 </div>
421 <!-------------------------------------------------------------------------- -->
422 <h3>
423 <a name="iv-users">-iv-users: Induction Variable Users</a>
424 </h3>
425 <div>
426 <p>Bookkeeping for "interesting" users of expressions computed from
427 induction variables.</p>
428 </div>
430 <!-------------------------------------------------------------------------- -->
431 <h3>
432 <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
433 </h3>
434 <div>
435 <p>Interface for lazy computation of value constraint information.</p>
436 </div>
438 <!-------------------------------------------------------------------------- -->
439 <h3>
440 <a name="lda">-lda: Loop Dependence Analysis</a>
441 </h3>
442 <div>
443 <p>Loop dependence analysis framework, which is used to detect dependences in
444 memory accesses in loops.</p>
445 </div>
447 <!-------------------------------------------------------------------------- -->
448 <h3>
449 <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
450 </h3>
451 <div>
452 <p>LibCall Alias Analysis.</p>
453 </div>
455 <!-------------------------------------------------------------------------- -->
456 <h3>
457 <a name="lint">-lint: Statically lint-checks LLVM IR</a>
458 </h3>
459 <div>
460 <p>This pass statically checks for common and easily-identified constructs
461 which produce undefined or likely unintended behavior in LLVM IR.</p>
463 <p>It is not a guarantee of correctness, in two ways. First, it isn't
464 comprehensive. There are checks which could be done statically which are
465 not yet implemented. Some of these are indicated by TODO comments, but
466 those aren't comprehensive either. Second, many conditions cannot be
467 checked statically. This pass does no dynamic instrumentation, so it
468 can't check for all possible problems.</p>
470 <p>Another limitation is that it assumes all code will be executed. A store
471 through a null pointer in a basic block which is never reached is harmless,
472 but this pass will warn about it anyway.</p>
474 <p>Optimization passes may make conditions that this pass checks for more or
475 less obvious. If an optimization pass appears to be introducing a warning,
476 it may be that the optimization pass is merely exposing an existing
477 condition in the code.</p>
479 <p>This code may be run before instcombine. In many cases, instcombine checks
480 for the same kinds of things and turns instructions with undefined behavior
481 into unreachable (or equivalent). Because of this, this pass makes some
482 effort to look through bitcasts and so on.
483 </p>
484 </div>
486 <!-------------------------------------------------------------------------- -->
487 <h3>
488 <a name="loops">-loops: Natural Loop Information</a>
489 </h3>
490 <div>
492 This analysis is used to identify natural loops and determine the loop depth
493 of various nodes of the CFG. Note that the loops identified may actually be
494 several natural loops that share the same header node... not just a single
495 natural loop.
496 </p>
497 </div>
499 <!-------------------------------------------------------------------------- -->
500 <h3>
501 <a name="memdep">-memdep: Memory Dependence Analysis</a>
502 </h3>
503 <div>
505 An analysis that determines, for a given memory operation, what preceding
506 memory operations it depends on. It builds on alias analysis information, and
507 tries to provide a lazy, caching interface to a common kind of alias
508 information query.
509 </p>
510 </div>
512 <!-------------------------------------------------------------------------- -->
513 <h3>
514 <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
515 </h3>
516 <div>
517 <p>This pass decodes the debug info metadata in a module and prints in a
518 (sufficiently-prepared-) human-readable form.
520 For example, run this pass from opt along with the -analyze option, and
521 it'll print to standard output.
522 </p>
523 </div>
525 <!-------------------------------------------------------------------------- -->
526 <h3>
527 <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
528 </h3>
529 <div>
531 Always returns "I don't know" for alias queries. NoAA is unlike other alias
532 analysis implementations, in that it does not chain to a previous analysis. As
533 such it doesn't follow many of the rules that other alias analyses must.
534 </p>
535 </div>
537 <!-------------------------------------------------------------------------- -->
538 <h3>
539 <a name="no-profile">-no-profile: No Profile Information</a>
540 </h3>
541 <div>
543 The default "no profile" implementation of the abstract
544 <code>ProfileInfo</code> interface.
545 </p>
546 </div>
548 <!-------------------------------------------------------------------------- -->
549 <h3>
550 <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
551 </h3>
552 <div>
554 This pass is a simple post-dominator construction algorithm for finding
555 post-dominator frontiers.
556 </p>
557 </div>
559 <!-------------------------------------------------------------------------- -->
560 <h3>
561 <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
562 </h3>
563 <div>
565 This pass is a simple post-dominator construction algorithm for finding
566 post-dominators.
567 </p>
568 </div>
570 <!-------------------------------------------------------------------------- -->
571 <h3>
572 <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
573 </h3>
574 <div>
575 <p>Yet to be written.</p>
576 </div>
578 <!-------------------------------------------------------------------------- -->
579 <h3>
580 <a name="print-callgraph">-print-callgraph: Print a call graph</a>
581 </h3>
582 <div>
584 This pass, only available in <code>opt</code>, prints the call graph to
585 standard error in a human-readable form.
586 </p>
587 </div>
589 <!-------------------------------------------------------------------------- -->
590 <h3>
591 <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
592 </h3>
593 <div>
595 This pass, only available in <code>opt</code>, prints the SCCs of the call
596 graph to standard error in a human-readable form.
597 </p>
598 </div>
600 <!-------------------------------------------------------------------------- -->
601 <h3>
602 <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
603 </h3>
604 <div>
606 This pass, only available in <code>opt</code>, prints the SCCs of each
607 function CFG to standard error in a human-readable form.
608 </p>
609 </div>
611 <!-------------------------------------------------------------------------- -->
612 <h3>
613 <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
614 </h3>
615 <div>
616 <p>Pass that prints instructions, and associated debug info:</p>
617 <ul>
619 <li>source/line/col information</li>
620 <li>original variable name</li>
621 <li>original type name</li>
622 </ul>
623 </div>
625 <!-------------------------------------------------------------------------- -->
626 <h3>
627 <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
628 </h3>
629 <div>
630 <p>Dominator Info Printer.</p>
631 </div>
633 <!-------------------------------------------------------------------------- -->
634 <h3>
635 <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
636 </h3>
637 <div>
639 This pass, only available in <code>opt</code>, prints out call sites to
640 external functions that are called with constant arguments. This can be
641 useful when looking for standard library functions we should constant fold
642 or handle in alias analyses.
643 </p>
644 </div>
646 <!-------------------------------------------------------------------------- -->
647 <h3>
648 <a name="print-function">-print-function: Print function to stderr</a>
649 </h3>
650 <div>
652 The <code>PrintFunctionPass</code> class is designed to be pipelined with
653 other <code>FunctionPass</code>es, and prints out the functions of the module
654 as they are processed.
655 </p>
656 </div>
658 <!-------------------------------------------------------------------------- -->
659 <h3>
660 <a name="print-module">-print-module: Print module to stderr</a>
661 </h3>
662 <div>
664 This pass simply prints out the entire module when it is executed.
665 </p>
666 </div>
668 <!-------------------------------------------------------------------------- -->
669 <h3>
670 <a name="print-used-types">-print-used-types: Find Used Types</a>
671 </h3>
672 <div>
674 This pass is used to seek out all of the types in use by the program. Note
675 that this analysis explicitly does not include types only used by the symbol
676 table.
677 </div>
679 <!-------------------------------------------------------------------------- -->
680 <h3>
681 <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
682 </h3>
683 <div>
684 <p>Profiling information that estimates the profiling information
685 in a very crude and unimaginative way.
686 </p>
687 </div>
689 <!-------------------------------------------------------------------------- -->
690 <h3>
691 <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
692 </h3>
693 <div>
695 A concrete implementation of profiling information that loads the information
696 from a profile dump file.
697 </p>
698 </div>
700 <!-------------------------------------------------------------------------- -->
701 <h3>
702 <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
703 </h3>
704 <div>
705 <p>Pass that checks profiling information for plausibility.</p>
706 </div>
707 <h3>
708 <a name="regions">-regions: Detect single entry single exit regions</a>
709 </h3>
710 <div>
712 The <code>RegionInfo</code> pass detects single entry single exit regions in a
713 function, where a region is defined as any subgraph that is connected to the
714 remaining graph at only two spots. Furthermore, an hierarchical region tree is
715 built.
716 </p>
717 </div>
719 <!-------------------------------------------------------------------------- -->
720 <h3>
721 <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
722 </h3>
723 <div>
725 The <code>ScalarEvolution</code> analysis can be used to analyze and
726 catagorize scalar expressions in loops. It specializes in recognizing general
727 induction variables, representing them with the abstract and opaque
728 <code>SCEV</code> class. Given this analysis, trip counts of loops and other
729 important properties can be obtained.
730 </p>
733 This analysis is primarily useful for induction variable substitution and
734 strength reduction.
735 </p>
736 </div>
738 <!-------------------------------------------------------------------------- -->
739 <h3>
740 <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
741 </h3>
742 <div>
743 <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
745 This differs from traditional loop dependence analysis in that it tests
746 for dependencies within a single iteration of a loop, rather than
747 dependencies between different iterations.
749 ScalarEvolution has a more complete understanding of pointer arithmetic
750 than BasicAliasAnalysis' collection of ad-hoc analyses.
751 </p>
752 </div>
754 <!-------------------------------------------------------------------------- -->
755 <h3>
756 <a name="targetdata">-targetdata: Target Data Layout</a>
757 </h3>
758 <div>
759 <p>Provides other passes access to information on how the size and alignment
760 required by the the target ABI for various data types.</p>
761 </div>
763 </div>
765 <!-- ======================================================================= -->
766 <h2><a name="transforms">Transform Passes</a></h2>
767 <div>
768 <p>This section describes the LLVM Transform Passes.</p>
770 <!-------------------------------------------------------------------------- -->
771 <h3>
772 <a name="adce">-adce: Aggressive Dead Code Elimination</a>
773 </h3>
774 <div>
775 <p>ADCE aggressively tries to eliminate code. This pass is similar to
776 <a href="#dce">DCE</a> but it assumes that values are dead until proven
777 otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
778 the liveness of values.</p>
779 </div>
781 <!-------------------------------------------------------------------------- -->
782 <h3>
783 <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
784 </h3>
785 <div>
786 <p>A custom inliner that handles only functions that are marked as
787 "always inline".</p>
788 </div>
790 <!-------------------------------------------------------------------------- -->
791 <h3>
792 <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
793 </h3>
794 <div>
796 This pass promotes "by reference" arguments to be "by value" arguments. In
797 practice, this means looking for internal functions that have pointer
798 arguments. If it can prove, through the use of alias analysis, that an
799 argument is *only* loaded, then it can pass the value into the function
800 instead of the address of the value. This can cause recursive simplification
801 of code and lead to the elimination of allocas (especially in C++ template
802 code like the STL).
803 </p>
806 This pass also handles aggregate arguments that are passed into a function,
807 scalarizing them if the elements of the aggregate are only loaded. Note that
808 it refuses to scalarize aggregates which would require passing in more than
809 three operands to the function, because passing thousands of operands for a
810 large array or structure is unprofitable!
811 </p>
814 Note that this transformation could also be done for arguments that are only
815 stored to (returning the value instead), but does not currently. This case
816 would be best handled when and if LLVM starts supporting multiple return
817 values from functions.
818 </p>
819 </div>
821 <!-------------------------------------------------------------------------- -->
822 <h3>
823 <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
824 </h3>
825 <div>
826 <p>This pass is a very simple profile guided basic block placement algorithm.
827 The idea is to put frequently executed blocks together at the start of the
828 function and hopefully increase the number of fall-through conditional
829 branches. If there is no profile information for a particular function, this
830 pass basically orders blocks in depth-first order.</p>
831 </div>
833 <!-------------------------------------------------------------------------- -->
834 <h3>
835 <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
836 </h3>
837 <div>
839 Break all of the critical edges in the CFG by inserting a dummy basic block.
840 It may be "required" by passes that cannot deal with critical edges. This
841 transformation obviously invalidates the CFG, but can update forward dominator
842 (set, immediate dominators, tree, and frontier) information.
843 </p>
844 </div>
846 <!-------------------------------------------------------------------------- -->
847 <h3>
848 <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
849 </h3>
850 <div>
851 This pass munges the code in the input function to better prepare it for
852 SelectionDAG-based code generation. This works around limitations in it's
853 basic-block-at-a-time approach. It should eventually be removed.
854 </div>
856 <!-------------------------------------------------------------------------- -->
857 <h3>
858 <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
859 </h3>
860 <div>
862 Merges duplicate global constants together into a single constant that is
863 shared. This is useful because some passes (ie TraceValues) insert a lot of
864 string constants into the program, regardless of whether or not an existing
865 string is available.
866 </p>
867 </div>
869 <!-------------------------------------------------------------------------- -->
870 <h3>
871 <a name="constprop">-constprop: Simple constant propagation</a>
872 </h3>
873 <div>
874 <p>This file implements constant propagation and merging. It looks for
875 instructions involving only constant operands and replaces them with a
876 constant value instead of an instruction. For example:</p>
877 <blockquote><pre>add i32 1, 2</pre></blockquote>
878 <p>becomes</p>
879 <blockquote><pre>i32 3</pre></blockquote>
880 <p>NOTE: this pass has a habit of making definitions be dead. It is a good
881 idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
882 sometime after running this pass.</p>
883 </div>
885 <!-------------------------------------------------------------------------- -->
886 <h3>
887 <a name="dce">-dce: Dead Code Elimination</a>
888 </h3>
889 <div>
891 Dead code elimination is similar to <a href="#die">dead instruction
892 elimination</a>, but it rechecks instructions that were used by removed
893 instructions to see if they are newly dead.
894 </p>
895 </div>
897 <!-------------------------------------------------------------------------- -->
898 <h3>
899 <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
900 </h3>
901 <div>
903 This pass deletes dead arguments from internal functions. Dead argument
904 elimination removes arguments which are directly dead, as well as arguments
905 only passed into function calls as dead arguments of other functions. This
906 pass also deletes dead arguments in a similar way.
907 </p>
910 This pass is often useful as a cleanup pass to run after aggressive
911 interprocedural passes, which add possibly-dead arguments.
912 </p>
913 </div>
915 <!-------------------------------------------------------------------------- -->
916 <h3>
917 <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
918 </h3>
919 <div>
921 This pass is used to cleanup the output of GCC. It eliminate names for types
922 that are unused in the entire translation unit, using the <a
923 href="#findusedtypes">find used types</a> pass.
924 </p>
925 </div>
927 <!-------------------------------------------------------------------------- -->
928 <h3>
929 <a name="die">-die: Dead Instruction Elimination</a>
930 </h3>
931 <div>
933 Dead instruction elimination performs a single pass over the function,
934 removing instructions that are obviously dead.
935 </p>
936 </div>
938 <!-------------------------------------------------------------------------- -->
939 <h3>
940 <a name="dse">-dse: Dead Store Elimination</a>
941 </h3>
942 <div>
944 A trivial dead store elimination that only considers basic-block local
945 redundant stores.
946 </p>
947 </div>
949 <!-------------------------------------------------------------------------- -->
950 <h3>
951 <a name="functionattrs">-functionattrs: Deduce function attributes</a>
952 </h3>
953 <div>
954 <p>A simple interprocedural pass which walks the call-graph, looking for
955 functions which do not access or only read non-local memory, and marking them
956 readnone/readonly. In addition, it marks function arguments (of pointer type)
957 'nocapture' if a call to the function does not create any copies of the pointer
958 value that outlive the call. This more or less means that the pointer is only
959 dereferenced, and not returned from the function or stored in a global.
960 This pass is implemented as a bottom-up traversal of the call-graph.
961 </p>
962 </div>
964 <!-------------------------------------------------------------------------- -->
965 <h3>
966 <a name="globaldce">-globaldce: Dead Global Elimination</a>
967 </h3>
968 <div>
970 This transform is designed to eliminate unreachable internal globals from the
971 program. It uses an aggressive algorithm, searching out globals that are
972 known to be alive. After it finds all of the globals which are needed, it
973 deletes whatever is left over. This allows it to delete recursive chunks of
974 the program which are unreachable.
975 </p>
976 </div>
978 <!-------------------------------------------------------------------------- -->
979 <h3>
980 <a name="globalopt">-globalopt: Global Variable Optimizer</a>
981 </h3>
982 <div>
984 This pass transforms simple global variables that never have their address
985 taken. If obviously true, it marks read/write globals as constant, deletes
986 variables only stored to, etc.
987 </p>
988 </div>
990 <!-------------------------------------------------------------------------- -->
991 <h3>
992 <a name="gvn">-gvn: Global Value Numbering</a>
993 </h3>
994 <div>
996 This pass performs global value numbering to eliminate fully and partially
997 redundant instructions. It also performs redundant load elimination.
998 </p>
999 </div>
1001 <!-------------------------------------------------------------------------- -->
1002 <h3>
1003 <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1004 </h3>
1005 <div>
1007 This transformation analyzes and transforms the induction variables (and
1008 computations derived from them) into simpler forms suitable for subsequent
1009 analysis and transformation.
1010 </p>
1013 This transformation makes the following changes to each loop with an
1014 identifiable induction variable:
1015 </p>
1017 <ol>
1018 <li>All loops are transformed to have a <em>single</em> canonical
1019 induction variable which starts at zero and steps by one.</li>
1020 <li>The canonical induction variable is guaranteed to be the first PHI node
1021 in the loop header block.</li>
1022 <li>Any pointer arithmetic recurrences are raised to use array
1023 subscripts.</li>
1024 </ol>
1027 If the trip count of a loop is computable, this pass also makes the following
1028 changes:
1029 </p>
1031 <ol>
1032 <li>The exit condition for the loop is canonicalized to compare the
1033 induction value against the exit value. This turns loops like:
1034 <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1035 into
1036 <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1037 <li>Any use outside of the loop of an expression derived from the indvar
1038 is changed to compute the derived value outside of the loop, eliminating
1039 the dependence on the exit value of the induction variable. If the only
1040 purpose of the loop is to compute the exit value of some derived
1041 expression, this transformation will make the loop dead.</li>
1042 </ol>
1045 This transformation should be followed by strength reduction after all of the
1046 desired loop transformations have been performed. Additionally, on targets
1047 where it is profitable, the loop could be transformed to count down to zero
1048 (the "do loop" optimization).
1049 </p>
1050 </div>
1052 <!-------------------------------------------------------------------------- -->
1053 <h3>
1054 <a name="inline">-inline: Function Integration/Inlining</a>
1055 </h3>
1056 <div>
1058 Bottom-up inlining of functions into callees.
1059 </p>
1060 </div>
1062 <!-------------------------------------------------------------------------- -->
1063 <h3>
1064 <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1065 </h3>
1066 <div>
1068 This pass instruments the specified program with counters for edge profiling.
1069 Edge profiling can give a reasonable approximation of the hot paths through a
1070 program, and is used for a wide variety of program transformations.
1071 </p>
1074 Note that this implementation is very naïve. It inserts a counter for
1075 <em>every</em> edge in the program, instead of using control flow information
1076 to prune the number of counters inserted.
1077 </p>
1078 </div>
1080 <!-------------------------------------------------------------------------- -->
1081 <h3>
1082 <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1083 </h3>
1084 <div>
1085 <p>This pass instruments the specified program with counters for edge profiling.
1086 Edge profiling can give a reasonable approximation of the hot paths through a
1087 program, and is used for a wide variety of program transformations.
1088 </p>
1089 </div>
1091 <!-------------------------------------------------------------------------- -->
1092 <h3>
1093 <a name="instcombine">-instcombine: Combine redundant instructions</a>
1094 </h3>
1095 <div>
1097 Combine instructions to form fewer, simple
1098 instructions. This pass does not modify the CFG This pass is where algebraic
1099 simplification happens.
1100 </p>
1103 This pass combines things like:
1104 </p>
1106 <blockquote><pre
1107 >%Y = add i32 %X, 1
1108 %Z = add i32 %Y, 1</pre></blockquote>
1111 into:
1112 </p>
1114 <blockquote><pre
1115 >%Z = add i32 %X, 2</pre></blockquote>
1118 This is a simple worklist driven algorithm.
1119 </p>
1122 This pass guarantees that the following canonicalizations are performed on
1123 the program:
1124 </p>
1126 <ul>
1127 <li>If a binary operator has a constant operand, it is moved to the right-
1128 hand side.</li>
1129 <li>Bitwise operators with constant operands are always grouped so that
1130 shifts are performed first, then <code>or</code>s, then
1131 <code>and</code>s, then <code>xor</code>s.</li>
1132 <li>Compare instructions are converted from <code>&lt;</code>,
1133 <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1134 <code>=</code> or <code>≠</code> if possible.</li>
1135 <li>All <code>cmp</code> instructions on boolean values are replaced with
1136 logical operations.</li>
1137 <li><code>add <var>X</var>, <var>X</var></code> is represented as
1138 <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1139 <li>Multiplies with a constant power-of-two argument are transformed into
1140 shifts.</li>
1141 <li>… etc.</li>
1142 </ul>
1143 </div>
1145 <!-------------------------------------------------------------------------- -->
1146 <h3>
1147 <a name="internalize">-internalize: Internalize Global Symbols</a>
1148 </h3>
1149 <div>
1151 This pass loops over all of the functions in the input module, looking for a
1152 main function. If a main function is found, all other functions and all
1153 global variables with initializers are marked as internal.
1154 </p>
1155 </div>
1157 <!-------------------------------------------------------------------------- -->
1158 <h3>
1159 <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1160 </h3>
1161 <div>
1163 This pass implements an <em>extremely</em> simple interprocedural constant
1164 propagation pass. It could certainly be improved in many different ways,
1165 like using a worklist. This pass makes arguments dead, but does not remove
1166 them. The existing dead argument elimination pass should be run after this
1167 to clean up the mess.
1168 </p>
1169 </div>
1171 <!-------------------------------------------------------------------------- -->
1172 <h3>
1173 <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1174 </h3>
1175 <div>
1177 An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1178 Propagation</a>.
1179 </p>
1180 </div>
1182 <!-------------------------------------------------------------------------- -->
1183 <h3>
1184 <a name="jump-threading">-jump-threading: Jump Threading</a>
1185 </h3>
1186 <div>
1188 Jump threading tries to find distinct threads of control flow running through
1189 a basic block. This pass looks at blocks that have multiple predecessors and
1190 multiple successors. If one or more of the predecessors of the block can be
1191 proven to always cause a jump to one of the successors, we forward the edge
1192 from the predecessor to the successor by duplicating the contents of this
1193 block.
1194 </p>
1196 An example of when this can occur is code like this:
1197 </p>
1199 <pre
1200 >if () { ...
1201 X = 4;
1203 if (X &lt; 3) {</pre>
1206 In this case, the unconditional branch at the end of the first if can be
1207 revectored to the false side of the second if.
1208 </p>
1209 </div>
1211 <!-------------------------------------------------------------------------- -->
1212 <h3>
1213 <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1214 </h3>
1215 <div>
1217 This pass transforms loops by placing phi nodes at the end of the loops for
1218 all values that are live across the loop boundary. For example, it turns
1219 the left into the right code:
1220 </p>
1222 <pre
1223 >for (...) for (...)
1224 if (c) if (c)
1225 X1 = ... X1 = ...
1226 else else
1227 X2 = ... X2 = ...
1228 X3 = phi(X1, X2) X3 = phi(X1, X2)
1229 ... = X3 + 4 X4 = phi(X3)
1230 ... = X4 + 4</pre>
1233 This is still valid LLVM; the extra phi nodes are purely redundant, and will
1234 be trivially eliminated by <code>InstCombine</code>. The major benefit of
1235 this transformation is that it makes many other loop optimizations, such as
1236 LoopUnswitching, simpler.
1237 </p>
1238 </div>
1240 <!-------------------------------------------------------------------------- -->
1241 <h3>
1242 <a name="licm">-licm: Loop Invariant Code Motion</a>
1243 </h3>
1244 <div>
1246 This pass performs loop invariant code motion, attempting to remove as much
1247 code from the body of a loop as possible. It does this by either hoisting
1248 code into the preheader block, or by sinking code to the exit blocks if it is
1249 safe. This pass also promotes must-aliased memory locations in the loop to
1250 live in registers, thus hoisting and sinking "invariant" loads and stores.
1251 </p>
1254 This pass uses alias analysis for two purposes:
1255 </p>
1257 <ul>
1258 <li>Moving loop invariant loads and calls out of loops. If we can determine
1259 that a load or call inside of a loop never aliases anything stored to,
1260 we can hoist it or sink it like any other instruction.</li>
1261 <li>Scalar Promotion of Memory - If there is a store instruction inside of
1262 the loop, we try to move the store to happen AFTER the loop instead of
1263 inside of the loop. This can only happen if a few conditions are true:
1264 <ul>
1265 <li>The pointer stored through is loop invariant.</li>
1266 <li>There are no stores or loads in the loop which <em>may</em> alias
1267 the pointer. There are no calls in the loop which mod/ref the
1268 pointer.</li>
1269 </ul>
1270 If these conditions are true, we can promote the loads and stores in the
1271 loop of the pointer to use a temporary alloca'd variable. We then use
1272 the mem2reg functionality to construct the appropriate SSA form for the
1273 variable.</li>
1274 </ul>
1275 </div>
1277 <!-------------------------------------------------------------------------- -->
1278 <h3>
1279 <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1280 </h3>
1281 <div>
1283 This file implements the Dead Loop Deletion Pass. This pass is responsible
1284 for eliminating loops with non-infinite computable trip counts that have no
1285 side effects or volatile instructions, and do not contribute to the
1286 computation of the function's return value.
1287 </p>
1288 </div>
1290 <!-------------------------------------------------------------------------- -->
1291 <h3>
1292 <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1293 </h3>
1294 <div>
1296 A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1297 extract each top-level loop into its own new function. If the loop is the
1298 <em>only</em> loop in a given function, it is not touched. This is a pass most
1299 useful for debugging via bugpoint.
1300 </p>
1301 </div>
1303 <!-------------------------------------------------------------------------- -->
1304 <h3>
1305 <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1306 </h3>
1307 <div>
1309 Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1310 this pass extracts one natural loop from the program into a function if it
1311 can. This is used by bugpoint.
1312 </p>
1313 </div>
1315 <!-------------------------------------------------------------------------- -->
1316 <h3>
1317 <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1318 </h3>
1319 <div>
1321 This pass performs a strength reduction on array references inside loops that
1322 have as one or more of their components the loop induction variable. This is
1323 accomplished by creating a new value to hold the initial value of the array
1324 access for the first iteration, and then creating a new GEP instruction in
1325 the loop to increment the value by the appropriate amount.
1326 </p>
1327 </div>
1329 <!-------------------------------------------------------------------------- -->
1330 <h3>
1331 <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1332 </h3>
1333 <div>
1334 <p>A simple loop rotation transformation.</p>
1335 </div>
1337 <!-------------------------------------------------------------------------- -->
1338 <h3>
1339 <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1340 </h3>
1341 <div>
1343 This pass performs several transformations to transform natural loops into a
1344 simpler form, which makes subsequent analyses and transformations simpler and
1345 more effective.
1346 </p>
1349 Loop pre-header insertion guarantees that there is a single, non-critical
1350 entry edge from outside of the loop to the loop header. This simplifies a
1351 number of analyses and transformations, such as LICM.
1352 </p>
1355 Loop exit-block insertion guarantees that all exit blocks from the loop
1356 (blocks which are outside of the loop that have predecessors inside of the
1357 loop) only have predecessors from inside of the loop (and are thus dominated
1358 by the loop header). This simplifies transformations such as store-sinking
1359 that are built into LICM.
1360 </p>
1363 This pass also guarantees that loops will have exactly one backedge.
1364 </p>
1367 Note that the simplifycfg pass will clean up blocks which are split out but
1368 end up being unnecessary, so usage of this pass should not pessimize
1369 generated code.
1370 </p>
1373 This pass obviously modifies the CFG, but updates loop information and
1374 dominator information.
1375 </p>
1376 </div>
1378 <!-------------------------------------------------------------------------- -->
1379 <h3>
1380 <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1381 </h3>
1382 <div>
1384 This pass implements a simple loop unroller. It works best when loops have
1385 been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1386 allowing it to determine the trip counts of loops easily.
1387 </p>
1388 </div>
1390 <!-------------------------------------------------------------------------- -->
1391 <h3>
1392 <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1393 </h3>
1394 <div>
1396 This pass transforms loops that contain branches on loop-invariant conditions
1397 to have multiple loops. For example, it turns the left into the right code:
1398 </p>
1400 <pre
1401 >for (...) if (lic)
1402 A for (...)
1403 if (lic) A; B; C
1404 B else
1405 C for (...)
1406 A; C</pre>
1409 This can increase the size of the code exponentially (doubling it every time
1410 a loop is unswitched) so we only unswitch if the resultant code will be
1411 smaller than a threshold.
1412 </p>
1415 This pass expects LICM to be run before it to hoist invariant conditions out
1416 of the loop, to make the unswitching opportunity obvious.
1417 </p>
1418 </div>
1420 <!-------------------------------------------------------------------------- -->
1421 <h3>
1422 <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1423 </h3>
1424 <div>
1426 This pass lowers atomic intrinsics to non-atomic form for use in a known
1427 non-preemptible environment.
1428 </p>
1431 The pass does not verify that the environment is non-preemptible (in
1432 general this would require knowledge of the entire call graph of the
1433 program including any libraries which may not be available in bitcode form);
1434 it simply lowers every atomic intrinsic.
1435 </p>
1436 </div>
1438 <!-------------------------------------------------------------------------- -->
1439 <h3>
1440 <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1441 </h3>
1442 <div>
1444 This transformation is designed for use by code generators which do not yet
1445 support stack unwinding. This pass supports two models of exception handling
1446 lowering, the 'cheap' support and the 'expensive' support.
1447 </p>
1450 'Cheap' exception handling support gives the program the ability to execute
1451 any program which does not "throw an exception", by turning 'invoke'
1452 instructions into calls and by turning 'unwind' instructions into calls to
1453 abort(). If the program does dynamically use the unwind instruction, the
1454 program will print a message then abort.
1455 </p>
1458 'Expensive' exception handling support gives the full exception handling
1459 support to the program at the cost of making the 'invoke' instruction
1460 really expensive. It basically inserts setjmp/longjmp calls to emulate the
1461 exception handling as necessary.
1462 </p>
1465 Because the 'expensive' support slows down programs a lot, and EH is only
1466 used for a subset of the programs, it must be specifically enabled by the
1467 <tt>-enable-correct-eh-support</tt> option.
1468 </p>
1471 Note that after this pass runs the CFG is not entirely accurate (exceptional
1472 control flow edges are not correct anymore) so only very simple things should
1473 be done after the lowerinvoke pass has run (like generation of native code).
1474 This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1475 support the invoke instruction yet" lowering pass.
1476 </p>
1477 </div>
1479 <!-------------------------------------------------------------------------- -->
1480 <h3>
1481 <a name="lowersetjmp">-lowersetjmp: Lower Set Jump</a>
1482 </h3>
1483 <div>
1485 Lowers <tt>setjmp</tt> and <tt>longjmp</tt> to use the LLVM invoke and unwind
1486 instructions as necessary.
1487 </p>
1490 Lowering of <tt>longjmp</tt> is fairly trivial. We replace the call with a
1491 call to the LLVM library function <tt>__llvm_sjljeh_throw_longjmp()</tt>.
1492 This unwinds the stack for us calling all of the destructors for
1493 objects allocated on the stack.
1494 </p>
1497 At a <tt>setjmp</tt> call, the basic block is split and the <tt>setjmp</tt>
1498 removed. The calls in a function that have a <tt>setjmp</tt> are converted to
1499 invoke where the except part checks to see if it's a <tt>longjmp</tt>
1500 exception and, if so, if it's handled in the function. If it is, then it gets
1501 the value returned by the <tt>longjmp</tt> and goes to where the basic block
1502 was split. <tt>invoke</tt> instructions are handled in a similar fashion with
1503 the original except block being executed if it isn't a <tt>longjmp</tt>
1504 except that is handled by that function.
1505 </p>
1506 </div>
1508 <!-------------------------------------------------------------------------- -->
1509 <h3>
1510 <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1511 </h3>
1512 <div>
1514 Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1515 allows targets to get away with not implementing the switch instruction until
1516 it is convenient.
1517 </p>
1518 </div>
1520 <!-------------------------------------------------------------------------- -->
1521 <h3>
1522 <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1523 </h3>
1524 <div>
1526 This file promotes memory references to be register references. It promotes
1527 <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1528 <tt>store</tt>s as uses. An <tt>alloca</tt> is transformed by using dominator
1529 frontiers to place <tt>phi</tt> nodes, then traversing the function in
1530 depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1531 appropriate. This is just the standard SSA construction algorithm to construct
1532 "pruned" SSA form.
1533 </p>
1534 </div>
1536 <!-------------------------------------------------------------------------- -->
1537 <h3>
1538 <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1539 </h3>
1540 <div>
1542 This pass performs various transformations related to eliminating memcpy
1543 calls, or transforming sets of stores into memset's.
1544 </p>
1545 </div>
1547 <!-------------------------------------------------------------------------- -->
1548 <h3>
1549 <a name="mergefunc">-mergefunc: Merge Functions</a>
1550 </h3>
1551 <div>
1552 <p>This pass looks for equivalent functions that are mergable and folds them.
1554 A hash is computed from the function, based on its type and number of
1555 basic blocks.
1557 Once all hashes are computed, we perform an expensive equality comparison
1558 on each function pair. This takes n^2/2 comparisons per bucket, so it's
1559 important that the hash function be high quality. The equality comparison
1560 iterates through each instruction in each basic block.
1562 When a match is found the functions are folded. If both functions are
1563 overridable, we move the functionality into a new internal function and
1564 leave two overridable thunks to it.
1565 </p>
1566 </div>
1568 <!-------------------------------------------------------------------------- -->
1569 <h3>
1570 <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1571 </h3>
1572 <div>
1574 Ensure that functions have at most one <tt>ret</tt> instruction in them.
1575 Additionally, it keeps track of which node is the new exit node of the CFG.
1576 </p>
1577 </div>
1579 <!-------------------------------------------------------------------------- -->
1580 <h3>
1581 <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1582 </h3>
1583 <div>
1584 <p>This pass performs partial inlining, typically by inlining an if
1585 statement that surrounds the body of the function.
1586 </p>
1587 </div>
1589 <!-------------------------------------------------------------------------- -->
1590 <h3>
1591 <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1592 </h3>
1593 <div>
1595 This file implements a simple interprocedural pass which walks the call-graph,
1596 turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1597 only if the callee cannot throw an exception. It implements this as a
1598 bottom-up traversal of the call-graph.
1599 </p>
1600 </div>
1602 <!-------------------------------------------------------------------------- -->
1603 <h3>
1604 <a name="reassociate">-reassociate: Reassociate expressions</a>
1605 </h3>
1606 <div>
1608 This pass reassociates commutative expressions in an order that is designed
1609 to promote better constant propagation, GCSE, LICM, PRE, etc.
1610 </p>
1613 For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1614 </p>
1617 In the implementation of this algorithm, constants are assigned rank = 0,
1618 function arguments are rank = 1, and other values are assigned ranks
1619 corresponding to the reverse post order traversal of current function
1620 (starting at 2), which effectively gives values in deep loops higher rank
1621 than values not in loops.
1622 </p>
1623 </div>
1625 <!-------------------------------------------------------------------------- -->
1626 <h3>
1627 <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1628 </h3>
1629 <div>
1631 This file demotes all registers to memory references. It is intented to be
1632 the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>. By converting to
1633 <tt>load</tt> instructions, the only values live across basic blocks are
1634 <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1635 <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1636 easier. To make later hacking easier, the entry block is split into two, such
1637 that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1638 entry block.
1639 </p>
1640 </div>
1642 <!-------------------------------------------------------------------------- -->
1643 <h3>
1644 <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1645 </h3>
1646 <div>
1648 The well-known scalar replacement of aggregates transformation. This
1649 transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1650 or array) into individual <tt>alloca</tt> instructions for each member if
1651 possible. Then, if possible, it transforms the individual <tt>alloca</tt>
1652 instructions into nice clean scalar SSA form.
1653 </p>
1656 This combines a simple scalar replacement of aggregates algorithm with the <a
1657 href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1658 especially for C++ programs. As such, iterating between <tt>scalarrepl</tt>,
1659 then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1660 promote works well.
1661 </p>
1662 </div>
1664 <!-------------------------------------------------------------------------- -->
1665 <h3>
1666 <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1667 </h3>
1668 <div>
1670 Sparse conditional constant propagation and merging, which can be summarized
1672 </p>
1674 <ol>
1675 <li>Assumes values are constant unless proven otherwise</li>
1676 <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1677 <li>Proves values to be constant, and replaces them with constants</li>
1678 <li>Proves conditional branches to be unconditional</li>
1679 </ol>
1682 Note that this pass has a habit of making definitions be dead. It is a good
1683 idea to to run a DCE pass sometime after running this pass.
1684 </p>
1685 </div>
1687 <!-------------------------------------------------------------------------- -->
1688 <h3>
1689 <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1690 </h3>
1691 <div>
1693 Applies a variety of small optimizations for calls to specific well-known
1694 function calls (e.g. runtime library functions). For example, a call
1695 <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1696 transformed into simply <tt>return 3</tt>.
1697 </p>
1698 </div>
1700 <!-------------------------------------------------------------------------- -->
1701 <h3>
1702 <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1703 </h3>
1704 <div>
1706 Performs dead code elimination and basic block merging. Specifically:
1707 </p>
1709 <ol>
1710 <li>Removes basic blocks with no predecessors.</li>
1711 <li>Merges a basic block into its predecessor if there is only one and the
1712 predecessor only has one successor.</li>
1713 <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1714 <li>Eliminates a basic block that only contains an unconditional
1715 branch.</li>
1716 </ol>
1717 </div>
1719 <!-------------------------------------------------------------------------- -->
1720 <h3>
1721 <a name="sink">-sink: Code sinking</a>
1722 </h3>
1723 <div>
1724 <p>This pass moves instructions into successor blocks, when possible, so that
1725 they aren't executed on paths where their results aren't needed.
1726 </p>
1727 </div>
1729 <!-------------------------------------------------------------------------- -->
1730 <h3>
1731 <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1732 </h3>
1733 <div>
1735 This pass finds functions that return a struct (using a pointer to the struct
1736 as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1737 replaces them with a new function that simply returns each of the elements of
1738 that struct (using multiple return values).
1739 </p>
1742 This pass works under a number of conditions:
1743 </p>
1745 <ul>
1746 <li>The returned struct must not contain other structs</li>
1747 <li>The returned struct must only be used to load values from</li>
1748 <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1749 </ul>
1750 </div>
1752 <!-------------------------------------------------------------------------- -->
1753 <h3>
1754 <a name="strip">-strip: Strip all symbols from a module</a>
1755 </h3>
1756 <div>
1758 performs code stripping. this transformation can delete:
1759 </p>
1761 <ol>
1762 <li>names for virtual registers</li>
1763 <li>symbols for internal globals and functions</li>
1764 <li>debug information</li>
1765 </ol>
1768 note that this transformation makes code much less readable, so it should
1769 only be used in situations where the <tt>strip</tt> utility would be used,
1770 such as reducing code size or making it harder to reverse engineer code.
1771 </p>
1772 </div>
1774 <!-------------------------------------------------------------------------- -->
1775 <h3>
1776 <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1777 </h3>
1778 <div>
1780 performs code stripping. this transformation can delete:
1781 </p>
1783 <ol>
1784 <li>names for virtual registers</li>
1785 <li>symbols for internal globals and functions</li>
1786 <li>debug information</li>
1787 </ol>
1790 note that this transformation makes code much less readable, so it should
1791 only be used in situations where the <tt>strip</tt> utility would be used,
1792 such as reducing code size or making it harder to reverse engineer code.
1793 </p>
1794 </div>
1796 <!-------------------------------------------------------------------------- -->
1797 <h3>
1798 <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1799 </h3>
1800 <div>
1802 This pass loops over all of the functions in the input module, looking for
1803 dead declarations and removes them. Dead declarations are declarations of
1804 functions for which no implementation is available (i.e., declarations for
1805 unused library functions).
1806 </p>
1807 </div>
1809 <!-------------------------------------------------------------------------- -->
1810 <h3>
1811 <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1812 </h3>
1813 <div>
1814 <p>This pass implements code stripping. Specifically, it can delete:</p>
1815 <ul>
1816 <li>names for virtual registers</li>
1817 <li>symbols for internal globals and functions</li>
1818 <li>debug information</li>
1819 </ul>
1821 Note that this transformation makes code much less readable, so it should
1822 only be used in situations where the 'strip' utility would be used, such as
1823 reducing code size or making it harder to reverse engineer code.
1824 </p>
1825 </div>
1827 <!-------------------------------------------------------------------------- -->
1828 <h3>
1829 <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1830 </h3>
1831 <div>
1832 <p>This pass implements code stripping. Specifically, it can delete:</p>
1833 <ul>
1834 <li>names for virtual registers</li>
1835 <li>symbols for internal globals and functions</li>
1836 <li>debug information</li>
1837 </ul>
1839 Note that this transformation makes code much less readable, so it should
1840 only be used in situations where the 'strip' utility would be used, such as
1841 reducing code size or making it harder to reverse engineer code.
1842 </p>
1843 </div>
1845 <!-------------------------------------------------------------------------- -->
1846 <h3>
1847 <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1848 </h3>
1849 <div>
1851 This file transforms calls of the current function (self recursion) followed
1852 by a return instruction with a branch to the entry of the function, creating
1853 a loop. This pass also implements the following extensions to the basic
1854 algorithm:
1855 </p>
1857 <ul>
1858 <li>Trivial instructions between the call and return do not prevent the
1859 transformation from taking place, though currently the analysis cannot
1860 support moving any really useful instructions (only dead ones).
1861 <li>This pass transforms functions that are prevented from being tail
1862 recursive by an associative expression to use an accumulator variable,
1863 thus compiling the typical naive factorial or <tt>fib</tt> implementation
1864 into efficient code.
1865 <li>TRE is performed if the function returns void, if the return
1866 returns the result returned by the call, or if the function returns a
1867 run-time constant on all exits from the function. It is possible, though
1868 unlikely, that the return returns something else (like constant 0), and
1869 can still be TRE'd. It can be TRE'd if <em>all other</em> return
1870 instructions in the function return the exact same value.
1871 <li>If it can prove that callees do not access theier caller stack frame,
1872 they are marked as eligible for tail call elimination (by the code
1873 generator).
1874 </ul>
1875 </div>
1877 <!-------------------------------------------------------------------------- -->
1878 <h3>
1879 <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1880 </h3>
1881 <div>
1883 This pass performs a limited form of tail duplication, intended to simplify
1884 CFGs by removing some unconditional branches. This pass is necessary to
1885 straighten out loops created by the C front-end, but also is capable of
1886 making other code nicer. After this pass is run, the CFG simplify pass
1887 should be run to clean up the mess.
1888 </p>
1889 </div>
1891 </div>
1893 <!-- ======================================================================= -->
1894 <h2><a name="utilities">Utility Passes</a></h2>
1895 <div>
1896 <p>This section describes the LLVM Utility Passes.</p>
1898 <!-------------------------------------------------------------------------- -->
1899 <h3>
1900 <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1901 </h3>
1902 <div>
1904 Same as dead argument elimination, but deletes arguments to functions which
1905 are external. This is only for use by <a
1906 href="Bugpoint.html">bugpoint</a>.</p>
1907 </div>
1909 <!-------------------------------------------------------------------------- -->
1910 <h3>
1911 <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1912 </h3>
1913 <div>
1915 This pass is used by bugpoint to extract all blocks from the module into their
1916 own functions.</p>
1917 </div>
1919 <!-------------------------------------------------------------------------- -->
1920 <h3>
1921 <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1922 </h3>
1923 <div>
1924 <p>This is a little utility pass that gives instructions names, this is mostly
1925 useful when diffing the effect of an optimization because deleting an
1926 unnamed instruction can change all other instruction numbering, making the
1927 diff very noisy.
1928 </p>
1929 </div>
1931 <!-------------------------------------------------------------------------- -->
1932 <h3>
1933 <a name="preverify">-preverify: Preliminary module verification</a>
1934 </h3>
1935 <div>
1937 Ensures that the module is in the form required by the <a
1938 href="#verifier">Module Verifier</a> pass.
1939 </p>
1942 Running the verifier runs this pass automatically, so there should be no need
1943 to use it directly.
1944 </p>
1945 </div>
1947 <!-------------------------------------------------------------------------- -->
1948 <h3>
1949 <a name="verify">-verify: Module Verifier</a>
1950 </h3>
1951 <div>
1953 Verifies an LLVM IR code. This is useful to run after an optimization which is
1954 undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1955 emitting bitcode, and also that malformed bitcode is likely to make LLVM
1956 crash. All language front-ends are therefore encouraged to verify their output
1957 before performing optimizing transformations.
1958 </p>
1960 <ul>
1961 <li>Both of a binary operator's parameters are of the same type.</li>
1962 <li>Verify that the indices of mem access instructions match other
1963 operands.</li>
1964 <li>Verify that arithmetic and other things are only performed on
1965 first-class types. Verify that shifts and logicals only happen on
1966 integrals f.e.</li>
1967 <li>All of the constants in a switch statement are of the correct type.</li>
1968 <li>The code is in valid SSA form.</li>
1969 <li>It is illegal to put a label into any other type (like a structure) or
1970 to return one.</li>
1971 <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1972 invalid.</li>
1973 <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1974 <li>PHI nodes must be the first thing in a basic block, all grouped
1975 together.</li>
1976 <li>PHI nodes must have at least one entry.</li>
1977 <li>All basic blocks should only end with terminator insts, not contain
1978 them.</li>
1979 <li>The entry node to a function must not have predecessors.</li>
1980 <li>All Instructions must be embedded into a basic block.</li>
1981 <li>Functions cannot take a void-typed parameter.</li>
1982 <li>Verify that a function's argument list agrees with its declared
1983 type.</li>
1984 <li>It is illegal to specify a name for a void value.</li>
1985 <li>It is illegal to have a internal global value with no initializer.</li>
1986 <li>It is illegal to have a ret instruction that returns a value that does
1987 not agree with the function return value type.</li>
1988 <li>Function call argument types match the function prototype.</li>
1989 <li>All other things that are tested by asserts spread about the code.</li>
1990 </ul>
1993 Note that this does not provide full security verification (like Java), but
1994 instead just tries to ensure that code is well-formed.
1995 </p>
1996 </div>
1998 <!-------------------------------------------------------------------------- -->
1999 <h3>
2000 <a name="view-cfg">-view-cfg: View CFG of function</a>
2001 </h3>
2002 <div>
2004 Displays the control flow graph using the GraphViz tool.
2005 </p>
2006 </div>
2008 <!-------------------------------------------------------------------------- -->
2009 <h3>
2010 <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
2011 </h3>
2012 <div>
2014 Displays the control flow graph using the GraphViz tool, but omitting function
2015 bodies.
2016 </p>
2017 </div>
2019 <!-------------------------------------------------------------------------- -->
2020 <h3>
2021 <a name="view-dom">-view-dom: View dominance tree of function</a>
2022 </h3>
2023 <div>
2025 Displays the dominator tree using the GraphViz tool.
2026 </p>
2027 </div>
2029 <!-------------------------------------------------------------------------- -->
2030 <h3>
2031 <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2032 </h3>
2033 <div>
2035 Displays the dominator tree using the GraphViz tool, but omitting function
2036 bodies.
2037 </p>
2038 </div>
2040 <!-------------------------------------------------------------------------- -->
2041 <h3>
2042 <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2043 </h3>
2044 <div>
2046 Displays the post dominator tree using the GraphViz tool.
2047 </p>
2048 </div>
2050 <!-------------------------------------------------------------------------- -->
2051 <h3>
2052 <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2053 </h3>
2054 <div>
2056 Displays the post dominator tree using the GraphViz tool, but omitting
2057 function bodies.
2058 </p>
2059 </div>
2061 </div>
2063 <!-- *********************************************************************** -->
2065 <hr>
2066 <address>
2067 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2068 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2069 <a href="http://validator.w3.org/check/referer"><img
2070 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2072 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2073 <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2074 Last modified: $Date$
2075 </address>
2077 </body>
2078 </html>