Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob7f314eed3ae6473726b523ea1f9aa50771075321
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Target/Mangler.h"
36 #include "llvm/Target/TargetAsmInfo.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetLowering.h"
40 #include "llvm/Target/TargetLoweringObjectFile.h"
41 #include "llvm/Target/TargetOptions.h"
42 #include "llvm/Target/TargetRegisterInfo.h"
43 #include "llvm/Assembly/Writer.h"
44 #include "llvm/ADT/SmallString.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/Timer.h"
49 using namespace llvm;
51 static const char *DWARFGroupName = "DWARF Emission";
52 static const char *DbgTimerName = "DWARF Debug Writer";
53 static const char *EHTimerName = "DWARF Exception Writer";
55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
57 char AsmPrinter::ID = 0;
59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60 static gcp_map_type &getGCMap(void *&P) {
61 if (P == 0)
62 P = new gcp_map_type();
63 return *(gcp_map_type*)P;
67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
68 /// value in log2 form. This rounds up to the preferred alignment if possible
69 /// and legal.
70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71 unsigned InBits = 0) {
72 unsigned NumBits = 0;
73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74 NumBits = TD.getPreferredAlignmentLog(GVar);
76 // If InBits is specified, round it to it.
77 if (InBits > NumBits)
78 NumBits = InBits;
80 // If the GV has a specified alignment, take it into account.
81 if (GV->getAlignment() == 0)
82 return NumBits;
84 unsigned GVAlign = Log2_32(GV->getAlignment());
86 // If the GVAlign is larger than NumBits, or if we are required to obey
87 // NumBits because the GV has an assigned section, obey it.
88 if (GVAlign > NumBits || GV->hasSection())
89 NumBits = GVAlign;
90 return NumBits;
96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97 : MachineFunctionPass(ID),
98 TM(tm), MAI(tm.getMCAsmInfo()),
99 OutContext(Streamer.getContext()),
100 OutStreamer(Streamer),
101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102 DD = 0; DE = 0; MMI = 0; LI = 0;
103 GCMetadataPrinters = 0;
104 VerboseAsm = Streamer.isVerboseAsm();
107 AsmPrinter::~AsmPrinter() {
108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110 if (GCMetadataPrinters != 0) {
111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114 delete I->second;
115 delete &GCMap;
116 GCMetadataPrinters = 0;
119 delete &OutStreamer;
122 /// getFunctionNumber - Return a unique ID for the current function.
124 unsigned AsmPrinter::getFunctionNumber() const {
125 return MF->getFunctionNumber();
128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129 return TM.getTargetLowering()->getObjFileLowering();
133 /// getTargetData - Return information about data layout.
134 const TargetData &AsmPrinter::getTargetData() const {
135 return *TM.getTargetData();
138 /// getCurrentSection() - Return the current section we are emitting to.
139 const MCSection *AsmPrinter::getCurrentSection() const {
140 return OutStreamer.getCurrentSection();
145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.setPreservesAll();
147 MachineFunctionPass::getAnalysisUsage(AU);
148 AU.addRequired<MachineModuleInfo>();
149 AU.addRequired<GCModuleInfo>();
150 if (isVerbose())
151 AU.addRequired<MachineLoopInfo>();
154 bool AsmPrinter::doInitialization(Module &M) {
155 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156 MMI->AnalyzeModule(M);
158 // Initialize TargetLoweringObjectFile.
159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160 .Initialize(OutContext, TM);
162 Mang = new Mangler(OutContext, *TM.getTargetData());
164 // Allow the target to emit any magic that it wants at the start of the file.
165 EmitStartOfAsmFile(M);
167 // Very minimal debug info. It is ignored if we emit actual debug info. If we
168 // don't, this at least helps the user find where a global came from.
169 if (MAI->hasSingleParameterDotFile()) {
170 // .file "foo.c"
171 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178 MP->beginAssembly(*this);
180 // Emit module-level inline asm if it exists.
181 if (!M.getModuleInlineAsm().empty()) {
182 OutStreamer.AddComment("Start of file scope inline assembly");
183 OutStreamer.AddBlankLine();
184 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185 OutStreamer.AddComment("End of file scope inline assembly");
186 OutStreamer.AddBlankLine();
189 if (MAI->doesSupportDebugInformation())
190 DD = new DwarfDebug(this, &M);
192 switch (MAI->getExceptionHandlingType()) {
193 case ExceptionHandling::None:
194 return false;
195 case ExceptionHandling::SjLj:
196 case ExceptionHandling::DwarfCFI:
197 DE = new DwarfCFIException(this);
198 return false;
199 case ExceptionHandling::ARM:
200 DE = new ARMException(this);
201 return false;
202 case ExceptionHandling::Win64:
203 DE = new Win64Exception(this);
204 return false;
207 llvm_unreachable("Unknown exception type.");
210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211 switch ((GlobalValue::LinkageTypes)Linkage) {
212 case GlobalValue::CommonLinkage:
213 case GlobalValue::LinkOnceAnyLinkage:
214 case GlobalValue::LinkOnceODRLinkage:
215 case GlobalValue::WeakAnyLinkage:
216 case GlobalValue::WeakODRLinkage:
217 case GlobalValue::LinkerPrivateWeakLinkage:
218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
219 if (MAI->getWeakDefDirective() != 0) {
220 // .globl _foo
221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
223 if ((GlobalValue::LinkageTypes)Linkage !=
224 GlobalValue::LinkerPrivateWeakDefAutoLinkage)
225 // .weak_definition _foo
226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227 else
228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229 } else if (MAI->getLinkOnceDirective() != 0) {
230 // .globl _foo
231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232 //NOTE: linkonce is handled by the section the symbol was assigned to.
233 } else {
234 // .weak _foo
235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
237 break;
238 case GlobalValue::DLLExportLinkage:
239 case GlobalValue::AppendingLinkage:
240 // FIXME: appending linkage variables should go into a section of
241 // their name or something. For now, just emit them as external.
242 case GlobalValue::ExternalLinkage:
243 // If external or appending, declare as a global symbol.
244 // .globl _foo
245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246 break;
247 case GlobalValue::PrivateLinkage:
248 case GlobalValue::InternalLinkage:
249 case GlobalValue::LinkerPrivateLinkage:
250 break;
251 default:
252 llvm_unreachable("Unknown linkage type!");
257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259 if (GV->hasInitializer()) {
260 // Check to see if this is a special global used by LLVM, if so, emit it.
261 if (EmitSpecialLLVMGlobal(GV))
262 return;
264 if (isVerbose()) {
265 WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266 /*PrintType=*/false, GV->getParent());
267 OutStreamer.GetCommentOS() << '\n';
271 MCSymbol *GVSym = Mang->getSymbol(GV);
272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
274 if (!GV->hasInitializer()) // External globals require no extra code.
275 return;
277 if (MAI->hasDotTypeDotSizeDirective())
278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
282 const TargetData *TD = TM.getTargetData();
283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
285 // If the alignment is specified, we *must* obey it. Overaligning a global
286 // with a specified alignment is a prompt way to break globals emitted to
287 // sections and expected to be contiguous (e.g. ObjC metadata).
288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
290 // Handle common and BSS local symbols (.lcomm).
291 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
294 // Handle common symbols.
295 if (GVKind.isCommon()) {
296 unsigned Align = 1 << AlignLog;
297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298 Align = 0;
300 // .comm _foo, 42, 4
301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302 return;
305 // Handle local BSS symbols.
306 if (MAI->hasMachoZeroFillDirective()) {
307 const MCSection *TheSection =
308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309 // .zerofill __DATA, __bss, _foo, 400, 5
310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
311 return;
314 if (MAI->hasLCOMMDirective()) {
315 // .lcomm _foo, 42
316 OutStreamer.EmitLocalCommonSymbol(GVSym, Size);
317 return;
320 unsigned Align = 1 << AlignLog;
321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322 Align = 0;
324 // .local _foo
325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326 // .comm _foo, 42, 4
327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328 return;
331 const MCSection *TheSection =
332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
334 // Handle the zerofill directive on darwin, which is a special form of BSS
335 // emission.
336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
339 // .globl _foo
340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341 // .zerofill __DATA, __common, _foo, 400, 5
342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343 return;
346 // Handle thread local data for mach-o which requires us to output an
347 // additional structure of data and mangle the original symbol so that we
348 // can reference it later.
350 // TODO: This should become an "emit thread local global" method on TLOF.
351 // All of this macho specific stuff should be sunk down into TLOFMachO and
352 // stuff like "TLSExtraDataSection" should no longer be part of the parent
353 // TLOF class. This will also make it more obvious that stuff like
354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355 // specific code.
356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357 // Emit the .tbss symbol
358 MCSymbol *MangSym =
359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
361 if (GVKind.isThreadBSS())
362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363 else if (GVKind.isThreadData()) {
364 OutStreamer.SwitchSection(TheSection);
366 EmitAlignment(AlignLog, GV);
367 OutStreamer.EmitLabel(MangSym);
369 EmitGlobalConstant(GV->getInitializer());
372 OutStreamer.AddBlankLine();
374 // Emit the variable struct for the runtime.
375 const MCSection *TLVSect
376 = getObjFileLowering().getTLSExtraDataSection();
378 OutStreamer.SwitchSection(TLVSect);
379 // Emit the linkage here.
380 EmitLinkage(GV->getLinkage(), GVSym);
381 OutStreamer.EmitLabel(GVSym);
383 // Three pointers in size:
384 // - __tlv_bootstrap - used to make sure support exists
385 // - spare pointer, used when mapped by the runtime
386 // - pointer to mangled symbol above with initializer
387 unsigned PtrSize = TD->getPointerSizeInBits()/8;
388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389 PtrSize, 0);
390 OutStreamer.EmitIntValue(0, PtrSize, 0);
391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
393 OutStreamer.AddBlankLine();
394 return;
397 OutStreamer.SwitchSection(TheSection);
399 EmitLinkage(GV->getLinkage(), GVSym);
400 EmitAlignment(AlignLog, GV);
402 OutStreamer.EmitLabel(GVSym);
404 EmitGlobalConstant(GV->getInitializer());
406 if (MAI->hasDotTypeDotSizeDirective())
407 // .size foo, 42
408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
410 OutStreamer.AddBlankLine();
413 /// EmitFunctionHeader - This method emits the header for the current
414 /// function.
415 void AsmPrinter::EmitFunctionHeader() {
416 // Print out constants referenced by the function
417 EmitConstantPool();
419 // Print the 'header' of function.
420 const Function *F = MF->getFunction();
422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423 EmitVisibility(CurrentFnSym, F->getVisibility());
425 EmitLinkage(F->getLinkage(), CurrentFnSym);
426 EmitAlignment(MF->getAlignment(), F);
428 if (MAI->hasDotTypeDotSizeDirective())
429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
431 if (isVerbose()) {
432 WriteAsOperand(OutStreamer.GetCommentOS(), F,
433 /*PrintType=*/false, F->getParent());
434 OutStreamer.GetCommentOS() << '\n';
437 // Emit the CurrentFnSym. This is a virtual function to allow targets to
438 // do their wild and crazy things as required.
439 EmitFunctionEntryLabel();
441 // If the function had address-taken blocks that got deleted, then we have
442 // references to the dangling symbols. Emit them at the start of the function
443 // so that we don't get references to undefined symbols.
444 std::vector<MCSymbol*> DeadBlockSyms;
445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447 OutStreamer.AddComment("Address taken block that was later removed");
448 OutStreamer.EmitLabel(DeadBlockSyms[i]);
451 // Add some workaround for linkonce linkage on Cygwin\MinGW.
452 if (MAI->getLinkOnceDirective() != 0 &&
453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454 // FIXME: What is this?
455 MCSymbol *FakeStub =
456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457 CurrentFnSym->getName());
458 OutStreamer.EmitLabel(FakeStub);
461 // Emit pre-function debug and/or EH information.
462 if (DE) {
463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464 DE->BeginFunction(MF);
466 if (DD) {
467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468 DD->beginFunction(MF);
472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473 /// function. This can be overridden by targets as required to do custom stuff.
474 void AsmPrinter::EmitFunctionEntryLabel() {
475 // The function label could have already been emitted if two symbols end up
476 // conflicting due to asm renaming. Detect this and emit an error.
477 if (CurrentFnSym->isUndefined())
478 return OutStreamer.EmitLabel(CurrentFnSym);
480 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
481 "' label emitted multiple times to assembly file");
485 /// EmitComments - Pretty-print comments for instructions.
486 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
487 const MachineFunction *MF = MI.getParent()->getParent();
488 const TargetMachine &TM = MF->getTarget();
490 // Check for spills and reloads
491 int FI;
493 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
495 // We assume a single instruction only has a spill or reload, not
496 // both.
497 const MachineMemOperand *MMO;
498 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
499 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
500 MMO = *MI.memoperands_begin();
501 CommentOS << MMO->getSize() << "-byte Reload\n";
503 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
504 if (FrameInfo->isSpillSlotObjectIndex(FI))
505 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
506 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
507 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
508 MMO = *MI.memoperands_begin();
509 CommentOS << MMO->getSize() << "-byte Spill\n";
511 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
512 if (FrameInfo->isSpillSlotObjectIndex(FI))
513 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
516 // Check for spill-induced copies
517 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
518 CommentOS << " Reload Reuse\n";
521 /// EmitImplicitDef - This method emits the specified machine instruction
522 /// that is an implicit def.
523 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
524 unsigned RegNo = MI->getOperand(0).getReg();
525 AP.OutStreamer.AddComment(Twine("implicit-def: ") +
526 AP.TM.getRegisterInfo()->getName(RegNo));
527 AP.OutStreamer.AddBlankLine();
530 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
531 std::string Str = "kill:";
532 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
533 const MachineOperand &Op = MI->getOperand(i);
534 assert(Op.isReg() && "KILL instruction must have only register operands");
535 Str += ' ';
536 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
537 Str += (Op.isDef() ? "<def>" : "<kill>");
539 AP.OutStreamer.AddComment(Str);
540 AP.OutStreamer.AddBlankLine();
543 /// EmitDebugValueComment - This method handles the target-independent form
544 /// of DBG_VALUE, returning true if it was able to do so. A false return
545 /// means the target will need to handle MI in EmitInstruction.
546 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
547 // This code handles only the 3-operand target-independent form.
548 if (MI->getNumOperands() != 3)
549 return false;
551 SmallString<128> Str;
552 raw_svector_ostream OS(Str);
553 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
555 // cast away const; DIetc do not take const operands for some reason.
556 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
557 if (V.getContext().isSubprogram())
558 OS << DISubprogram(V.getContext()).getDisplayName() << ":";
559 OS << V.getName() << " <- ";
561 // Register or immediate value. Register 0 means undef.
562 if (MI->getOperand(0).isFPImm()) {
563 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
564 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
565 OS << (double)APF.convertToFloat();
566 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
567 OS << APF.convertToDouble();
568 } else {
569 // There is no good way to print long double. Convert a copy to
570 // double. Ah well, it's only a comment.
571 bool ignored;
572 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
573 &ignored);
574 OS << "(long double) " << APF.convertToDouble();
576 } else if (MI->getOperand(0).isImm()) {
577 OS << MI->getOperand(0).getImm();
578 } else if (MI->getOperand(0).isCImm()) {
579 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
580 } else {
581 assert(MI->getOperand(0).isReg() && "Unknown operand type");
582 if (MI->getOperand(0).getReg() == 0) {
583 // Suppress offset, it is not meaningful here.
584 OS << "undef";
585 // NOTE: Want this comment at start of line, don't emit with AddComment.
586 AP.OutStreamer.EmitRawText(OS.str());
587 return true;
589 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
592 OS << '+' << MI->getOperand(1).getImm();
593 // NOTE: Want this comment at start of line, don't emit with AddComment.
594 AP.OutStreamer.EmitRawText(OS.str());
595 return true;
598 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
599 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
600 MF->getFunction()->needsUnwindTableEntry())
601 return CFI_M_EH;
603 if (MMI->hasDebugInfo())
604 return CFI_M_Debug;
606 return CFI_M_None;
609 bool AsmPrinter::needsSEHMoves() {
610 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
611 MF->getFunction()->needsUnwindTableEntry();
614 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
615 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
617 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
618 return;
620 if (needsCFIMoves() == CFI_M_None)
621 return;
623 MachineModuleInfo &MMI = MF->getMMI();
624 std::vector<MachineMove> &Moves = MMI.getFrameMoves();
625 bool FoundOne = false;
626 (void)FoundOne;
627 for (std::vector<MachineMove>::iterator I = Moves.begin(),
628 E = Moves.end(); I != E; ++I) {
629 if (I->getLabel() == Label) {
630 EmitCFIFrameMove(*I);
631 FoundOne = true;
634 assert(FoundOne);
637 /// EmitFunctionBody - This method emits the body and trailer for a
638 /// function.
639 void AsmPrinter::EmitFunctionBody() {
640 // Emit target-specific gunk before the function body.
641 EmitFunctionBodyStart();
643 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
645 // Print out code for the function.
646 bool HasAnyRealCode = false;
647 const MachineInstr *LastMI = 0;
648 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
649 I != E; ++I) {
650 // Print a label for the basic block.
651 EmitBasicBlockStart(I);
652 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
653 II != IE; ++II) {
654 LastMI = II;
656 // Print the assembly for the instruction.
657 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
658 !II->isDebugValue()) {
659 HasAnyRealCode = true;
660 ++EmittedInsts;
663 if (ShouldPrintDebugScopes) {
664 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
665 DD->beginInstruction(II);
668 if (isVerbose())
669 EmitComments(*II, OutStreamer.GetCommentOS());
671 switch (II->getOpcode()) {
672 case TargetOpcode::PROLOG_LABEL:
673 emitPrologLabel(*II);
674 break;
676 case TargetOpcode::EH_LABEL:
677 case TargetOpcode::GC_LABEL:
678 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
679 break;
680 case TargetOpcode::INLINEASM:
681 EmitInlineAsm(II);
682 break;
683 case TargetOpcode::DBG_VALUE:
684 if (isVerbose()) {
685 if (!EmitDebugValueComment(II, *this))
686 EmitInstruction(II);
688 break;
689 case TargetOpcode::IMPLICIT_DEF:
690 if (isVerbose()) EmitImplicitDef(II, *this);
691 break;
692 case TargetOpcode::KILL:
693 if (isVerbose()) EmitKill(II, *this);
694 break;
695 default:
696 if (!TM.hasMCUseLoc())
697 MCLineEntry::Make(&OutStreamer, getCurrentSection());
699 EmitInstruction(II);
700 break;
703 if (ShouldPrintDebugScopes) {
704 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
705 DD->endInstruction(II);
710 // If the last instruction was a prolog label, then we have a situation where
711 // we emitted a prolog but no function body. This results in the ending prolog
712 // label equaling the end of function label and an invalid "row" in the
713 // FDE. We need to emit a noop in this situation so that the FDE's rows are
714 // valid.
715 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
717 // If the function is empty and the object file uses .subsections_via_symbols,
718 // then we need to emit *something* to the function body to prevent the
719 // labels from collapsing together. Just emit a noop.
720 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
721 MCInst Noop;
722 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
723 if (Noop.getOpcode()) {
724 OutStreamer.AddComment("avoids zero-length function");
725 OutStreamer.EmitInstruction(Noop);
726 } else // Target not mc-ized yet.
727 OutStreamer.EmitRawText(StringRef("\tnop\n"));
730 // Emit target-specific gunk after the function body.
731 EmitFunctionBodyEnd();
733 // If the target wants a .size directive for the size of the function, emit
734 // it.
735 if (MAI->hasDotTypeDotSizeDirective()) {
736 // Create a symbol for the end of function, so we can get the size as
737 // difference between the function label and the temp label.
738 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
739 OutStreamer.EmitLabel(FnEndLabel);
741 const MCExpr *SizeExp =
742 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
743 MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
744 OutContext);
745 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
748 // Emit post-function debug information.
749 if (DD) {
750 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
751 DD->endFunction(MF);
753 if (DE) {
754 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
755 DE->EndFunction();
757 MMI->EndFunction();
759 // Print out jump tables referenced by the function.
760 EmitJumpTableInfo();
762 OutStreamer.AddBlankLine();
765 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
766 /// operands.
767 MachineLocation AsmPrinter::
768 getDebugValueLocation(const MachineInstr *MI) const {
769 // Target specific DBG_VALUE instructions are handled by each target.
770 return MachineLocation();
773 /// EmitDwarfRegOp - Emit dwarf register operation.
774 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
775 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
776 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
778 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
779 *SR && Reg < 0; ++SR) {
780 Reg = TRI->getDwarfRegNum(*SR, false);
781 // FIXME: Get the bit range this register uses of the superregister
782 // so that we can produce a DW_OP_bit_piece
785 // FIXME: Handle cases like a super register being encoded as
786 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
788 // FIXME: We have no reasonable way of handling errors in here. The
789 // caller might be in the middle of an dwarf expression. We should
790 // probably assert that Reg >= 0 once debug info generation is more mature.
792 if (int Offset = MLoc.getOffset()) {
793 if (Reg < 32) {
794 OutStreamer.AddComment(
795 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
796 EmitInt8(dwarf::DW_OP_breg0 + Reg);
797 } else {
798 OutStreamer.AddComment("DW_OP_bregx");
799 EmitInt8(dwarf::DW_OP_bregx);
800 OutStreamer.AddComment(Twine(Reg));
801 EmitULEB128(Reg);
803 EmitSLEB128(Offset);
804 } else {
805 if (Reg < 32) {
806 OutStreamer.AddComment(
807 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
808 EmitInt8(dwarf::DW_OP_reg0 + Reg);
809 } else {
810 OutStreamer.AddComment("DW_OP_regx");
811 EmitInt8(dwarf::DW_OP_regx);
812 OutStreamer.AddComment(Twine(Reg));
813 EmitULEB128(Reg);
817 // FIXME: Produce a DW_OP_bit_piece if we used a superregister
820 bool AsmPrinter::doFinalization(Module &M) {
821 // Emit global variables.
822 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
823 I != E; ++I)
824 EmitGlobalVariable(I);
826 // Emit visibility info for declarations
827 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
828 const Function &F = *I;
829 if (!F.isDeclaration())
830 continue;
831 GlobalValue::VisibilityTypes V = F.getVisibility();
832 if (V == GlobalValue::DefaultVisibility)
833 continue;
835 MCSymbol *Name = Mang->getSymbol(&F);
836 EmitVisibility(Name, V, false);
839 // Finalize debug and EH information.
840 if (DE) {
842 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
843 DE->EndModule();
845 delete DE; DE = 0;
847 if (DD) {
849 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
850 DD->endModule();
852 delete DD; DD = 0;
855 // If the target wants to know about weak references, print them all.
856 if (MAI->getWeakRefDirective()) {
857 // FIXME: This is not lazy, it would be nice to only print weak references
858 // to stuff that is actually used. Note that doing so would require targets
859 // to notice uses in operands (due to constant exprs etc). This should
860 // happen with the MC stuff eventually.
862 // Print out module-level global variables here.
863 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
864 I != E; ++I) {
865 if (!I->hasExternalWeakLinkage()) continue;
866 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
869 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
870 if (!I->hasExternalWeakLinkage()) continue;
871 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
875 if (MAI->hasSetDirective()) {
876 OutStreamer.AddBlankLine();
877 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
878 I != E; ++I) {
879 MCSymbol *Name = Mang->getSymbol(I);
881 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
882 MCSymbol *Target = Mang->getSymbol(GV);
884 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
885 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
886 else if (I->hasWeakLinkage())
887 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
888 else
889 assert(I->hasLocalLinkage() && "Invalid alias linkage");
891 EmitVisibility(Name, I->getVisibility());
893 // Emit the directives as assignments aka .set:
894 OutStreamer.EmitAssignment(Name,
895 MCSymbolRefExpr::Create(Target, OutContext));
899 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
900 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
901 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
902 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
903 MP->finishAssembly(*this);
905 // If we don't have any trampolines, then we don't require stack memory
906 // to be executable. Some targets have a directive to declare this.
907 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
908 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
909 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
910 OutStreamer.SwitchSection(S);
912 // Allow the target to emit any magic that it wants at the end of the file,
913 // after everything else has gone out.
914 EmitEndOfAsmFile(M);
916 delete Mang; Mang = 0;
917 MMI = 0;
919 OutStreamer.Finish();
920 return false;
923 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
924 this->MF = &MF;
925 // Get the function symbol.
926 CurrentFnSym = Mang->getSymbol(MF.getFunction());
928 if (isVerbose())
929 LI = &getAnalysis<MachineLoopInfo>();
932 namespace {
933 // SectionCPs - Keep track the alignment, constpool entries per Section.
934 struct SectionCPs {
935 const MCSection *S;
936 unsigned Alignment;
937 SmallVector<unsigned, 4> CPEs;
938 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
942 /// EmitConstantPool - Print to the current output stream assembly
943 /// representations of the constants in the constant pool MCP. This is
944 /// used to print out constants which have been "spilled to memory" by
945 /// the code generator.
947 void AsmPrinter::EmitConstantPool() {
948 const MachineConstantPool *MCP = MF->getConstantPool();
949 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
950 if (CP.empty()) return;
952 // Calculate sections for constant pool entries. We collect entries to go into
953 // the same section together to reduce amount of section switch statements.
954 SmallVector<SectionCPs, 4> CPSections;
955 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
956 const MachineConstantPoolEntry &CPE = CP[i];
957 unsigned Align = CPE.getAlignment();
959 SectionKind Kind;
960 switch (CPE.getRelocationInfo()) {
961 default: llvm_unreachable("Unknown section kind");
962 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
963 case 1:
964 Kind = SectionKind::getReadOnlyWithRelLocal();
965 break;
966 case 0:
967 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
968 case 4: Kind = SectionKind::getMergeableConst4(); break;
969 case 8: Kind = SectionKind::getMergeableConst8(); break;
970 case 16: Kind = SectionKind::getMergeableConst16();break;
971 default: Kind = SectionKind::getMergeableConst(); break;
975 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
977 // The number of sections are small, just do a linear search from the
978 // last section to the first.
979 bool Found = false;
980 unsigned SecIdx = CPSections.size();
981 while (SecIdx != 0) {
982 if (CPSections[--SecIdx].S == S) {
983 Found = true;
984 break;
987 if (!Found) {
988 SecIdx = CPSections.size();
989 CPSections.push_back(SectionCPs(S, Align));
992 if (Align > CPSections[SecIdx].Alignment)
993 CPSections[SecIdx].Alignment = Align;
994 CPSections[SecIdx].CPEs.push_back(i);
997 // Now print stuff into the calculated sections.
998 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
999 OutStreamer.SwitchSection(CPSections[i].S);
1000 EmitAlignment(Log2_32(CPSections[i].Alignment));
1002 unsigned Offset = 0;
1003 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1004 unsigned CPI = CPSections[i].CPEs[j];
1005 MachineConstantPoolEntry CPE = CP[CPI];
1007 // Emit inter-object padding for alignment.
1008 unsigned AlignMask = CPE.getAlignment() - 1;
1009 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1010 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1012 const Type *Ty = CPE.getType();
1013 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1014 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1016 if (CPE.isMachineConstantPoolEntry())
1017 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1018 else
1019 EmitGlobalConstant(CPE.Val.ConstVal);
1024 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1025 /// by the current function to the current output stream.
1027 void AsmPrinter::EmitJumpTableInfo() {
1028 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1029 if (MJTI == 0) return;
1030 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1031 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1032 if (JT.empty()) return;
1034 // Pick the directive to use to print the jump table entries, and switch to
1035 // the appropriate section.
1036 const Function *F = MF->getFunction();
1037 bool JTInDiffSection = false;
1038 if (// In PIC mode, we need to emit the jump table to the same section as the
1039 // function body itself, otherwise the label differences won't make sense.
1040 // FIXME: Need a better predicate for this: what about custom entries?
1041 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1042 // We should also do if the section name is NULL or function is declared
1043 // in discardable section
1044 // FIXME: this isn't the right predicate, should be based on the MCSection
1045 // for the function.
1046 F->isWeakForLinker()) {
1047 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1048 } else {
1049 // Otherwise, drop it in the readonly section.
1050 const MCSection *ReadOnlySection =
1051 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1052 OutStreamer.SwitchSection(ReadOnlySection);
1053 JTInDiffSection = true;
1056 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1058 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1059 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1061 // If this jump table was deleted, ignore it.
1062 if (JTBBs.empty()) continue;
1064 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1065 // .set directive for each unique entry. This reduces the number of
1066 // relocations the assembler will generate for the jump table.
1067 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1068 MAI->hasSetDirective()) {
1069 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1070 const TargetLowering *TLI = TM.getTargetLowering();
1071 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1072 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1073 const MachineBasicBlock *MBB = JTBBs[ii];
1074 if (!EmittedSets.insert(MBB)) continue;
1076 // .set LJTSet, LBB32-base
1077 const MCExpr *LHS =
1078 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1079 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1080 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1084 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1085 // before each jump table. The first label is never referenced, but tells
1086 // the assembler and linker the extents of the jump table object. The
1087 // second label is actually referenced by the code.
1088 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1089 // FIXME: This doesn't have to have any specific name, just any randomly
1090 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1091 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1093 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1095 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1096 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1100 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1101 /// current stream.
1102 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1103 const MachineBasicBlock *MBB,
1104 unsigned UID) const {
1105 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1106 const MCExpr *Value = 0;
1107 switch (MJTI->getEntryKind()) {
1108 case MachineJumpTableInfo::EK_Inline:
1109 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break;
1110 case MachineJumpTableInfo::EK_Custom32:
1111 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1112 OutContext);
1113 break;
1114 case MachineJumpTableInfo::EK_BlockAddress:
1115 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1116 // .word LBB123
1117 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1118 break;
1119 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1120 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1121 // with a relocation as gp-relative, e.g.:
1122 // .gprel32 LBB123
1123 MCSymbol *MBBSym = MBB->getSymbol();
1124 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1125 return;
1128 case MachineJumpTableInfo::EK_LabelDifference32: {
1129 // EK_LabelDifference32 - Each entry is the address of the block minus
1130 // the address of the jump table. This is used for PIC jump tables where
1131 // gprel32 is not supported. e.g.:
1132 // .word LBB123 - LJTI1_2
1133 // If the .set directive is supported, this is emitted as:
1134 // .set L4_5_set_123, LBB123 - LJTI1_2
1135 // .word L4_5_set_123
1137 // If we have emitted set directives for the jump table entries, print
1138 // them rather than the entries themselves. If we're emitting PIC, then
1139 // emit the table entries as differences between two text section labels.
1140 if (MAI->hasSetDirective()) {
1141 // If we used .set, reference the .set's symbol.
1142 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1143 OutContext);
1144 break;
1146 // Otherwise, use the difference as the jump table entry.
1147 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1148 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1149 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1150 break;
1154 assert(Value && "Unknown entry kind!");
1156 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1157 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1161 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1162 /// special global used by LLVM. If so, emit it and return true, otherwise
1163 /// do nothing and return false.
1164 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1165 if (GV->getName() == "llvm.used") {
1166 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1167 EmitLLVMUsedList(GV->getInitializer());
1168 return true;
1171 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1172 if (GV->getSection() == "llvm.metadata" ||
1173 GV->hasAvailableExternallyLinkage())
1174 return true;
1176 if (!GV->hasAppendingLinkage()) return false;
1178 assert(GV->hasInitializer() && "Not a special LLVM global!");
1180 const TargetData *TD = TM.getTargetData();
1181 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1182 if (GV->getName() == "llvm.global_ctors") {
1183 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
1184 EmitAlignment(Align);
1185 EmitXXStructorList(GV->getInitializer());
1187 if (TM.getRelocationModel() == Reloc::Static &&
1188 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1189 StringRef Sym(".constructors_used");
1190 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1191 MCSA_Reference);
1193 return true;
1196 if (GV->getName() == "llvm.global_dtors") {
1197 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
1198 EmitAlignment(Align);
1199 EmitXXStructorList(GV->getInitializer());
1201 if (TM.getRelocationModel() == Reloc::Static &&
1202 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1203 StringRef Sym(".destructors_used");
1204 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1205 MCSA_Reference);
1207 return true;
1210 return false;
1213 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1214 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1215 /// is true, as being used with this directive.
1216 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1217 // Should be an array of 'i8*'.
1218 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1219 if (InitList == 0) return;
1221 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1222 const GlobalValue *GV =
1223 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1224 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1225 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1229 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
1230 /// function pointers, ignoring the init priority.
1231 void AsmPrinter::EmitXXStructorList(const Constant *List) {
1232 // Should be an array of '{ int, void ()* }' structs. The first value is the
1233 // init priority, which we ignore.
1234 if (!isa<ConstantArray>(List)) return;
1235 const ConstantArray *InitList = cast<ConstantArray>(List);
1236 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1237 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1238 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1240 if (CS->getOperand(1)->isNullValue())
1241 return; // Found a null terminator, exit printing.
1242 // Emit the function pointer.
1243 EmitGlobalConstant(CS->getOperand(1));
1247 //===--------------------------------------------------------------------===//
1248 // Emission and print routines
1251 /// EmitInt8 - Emit a byte directive and value.
1253 void AsmPrinter::EmitInt8(int Value) const {
1254 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1257 /// EmitInt16 - Emit a short directive and value.
1259 void AsmPrinter::EmitInt16(int Value) const {
1260 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1263 /// EmitInt32 - Emit a long directive and value.
1265 void AsmPrinter::EmitInt32(int Value) const {
1266 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1269 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1270 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1271 /// labels. This implicitly uses .set if it is available.
1272 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1273 unsigned Size) const {
1274 // Get the Hi-Lo expression.
1275 const MCExpr *Diff =
1276 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1277 MCSymbolRefExpr::Create(Lo, OutContext),
1278 OutContext);
1280 if (!MAI->hasSetDirective()) {
1281 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1282 return;
1285 // Otherwise, emit with .set (aka assignment).
1286 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1287 OutStreamer.EmitAssignment(SetLabel, Diff);
1288 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1291 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1292 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1293 /// specify the labels. This implicitly uses .set if it is available.
1294 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1295 const MCSymbol *Lo, unsigned Size)
1296 const {
1298 // Emit Hi+Offset - Lo
1299 // Get the Hi+Offset expression.
1300 const MCExpr *Plus =
1301 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1302 MCConstantExpr::Create(Offset, OutContext),
1303 OutContext);
1305 // Get the Hi+Offset-Lo expression.
1306 const MCExpr *Diff =
1307 MCBinaryExpr::CreateSub(Plus,
1308 MCSymbolRefExpr::Create(Lo, OutContext),
1309 OutContext);
1311 if (!MAI->hasSetDirective())
1312 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1313 else {
1314 // Otherwise, emit with .set (aka assignment).
1315 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1316 OutStreamer.EmitAssignment(SetLabel, Diff);
1317 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1321 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1322 /// where the size in bytes of the directive is specified by Size and Label
1323 /// specifies the label. This implicitly uses .set if it is available.
1324 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1325 unsigned Size)
1326 const {
1328 // Emit Label+Offset
1329 const MCExpr *Plus =
1330 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1331 MCConstantExpr::Create(Offset, OutContext),
1332 OutContext);
1334 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1338 //===----------------------------------------------------------------------===//
1340 // EmitAlignment - Emit an alignment directive to the specified power of
1341 // two boundary. For example, if you pass in 3 here, you will get an 8
1342 // byte alignment. If a global value is specified, and if that global has
1343 // an explicit alignment requested, it will override the alignment request
1344 // if required for correctness.
1346 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1347 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1349 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1351 if (getCurrentSection()->getKind().isText())
1352 OutStreamer.EmitCodeAlignment(1 << NumBits);
1353 else
1354 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1357 //===----------------------------------------------------------------------===//
1358 // Constant emission.
1359 //===----------------------------------------------------------------------===//
1361 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1363 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1364 MCContext &Ctx = AP.OutContext;
1366 if (CV->isNullValue() || isa<UndefValue>(CV))
1367 return MCConstantExpr::Create(0, Ctx);
1369 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1370 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1372 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1373 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1375 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1376 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1378 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1379 if (CE == 0) {
1380 llvm_unreachable("Unknown constant value to lower!");
1381 return MCConstantExpr::Create(0, Ctx);
1384 switch (CE->getOpcode()) {
1385 default:
1386 // If the code isn't optimized, there may be outstanding folding
1387 // opportunities. Attempt to fold the expression using TargetData as a
1388 // last resort before giving up.
1389 if (Constant *C =
1390 ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1391 if (C != CE)
1392 return LowerConstant(C, AP);
1394 // Otherwise report the problem to the user.
1396 std::string S;
1397 raw_string_ostream OS(S);
1398 OS << "Unsupported expression in static initializer: ";
1399 WriteAsOperand(OS, CE, /*PrintType=*/false,
1400 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1401 report_fatal_error(OS.str());
1403 return MCConstantExpr::Create(0, Ctx);
1404 case Instruction::GetElementPtr: {
1405 const TargetData &TD = *AP.TM.getTargetData();
1406 // Generate a symbolic expression for the byte address
1407 const Constant *PtrVal = CE->getOperand(0);
1408 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1409 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), &IdxVec[0],
1410 IdxVec.size());
1412 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1413 if (Offset == 0)
1414 return Base;
1416 // Truncate/sext the offset to the pointer size.
1417 if (TD.getPointerSizeInBits() != 64) {
1418 int SExtAmount = 64-TD.getPointerSizeInBits();
1419 Offset = (Offset << SExtAmount) >> SExtAmount;
1422 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1423 Ctx);
1426 case Instruction::Trunc:
1427 // We emit the value and depend on the assembler to truncate the generated
1428 // expression properly. This is important for differences between
1429 // blockaddress labels. Since the two labels are in the same function, it
1430 // is reasonable to treat their delta as a 32-bit value.
1431 // FALL THROUGH.
1432 case Instruction::BitCast:
1433 return LowerConstant(CE->getOperand(0), AP);
1435 case Instruction::IntToPtr: {
1436 const TargetData &TD = *AP.TM.getTargetData();
1437 // Handle casts to pointers by changing them into casts to the appropriate
1438 // integer type. This promotes constant folding and simplifies this code.
1439 Constant *Op = CE->getOperand(0);
1440 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1441 false/*ZExt*/);
1442 return LowerConstant(Op, AP);
1445 case Instruction::PtrToInt: {
1446 const TargetData &TD = *AP.TM.getTargetData();
1447 // Support only foldable casts to/from pointers that can be eliminated by
1448 // changing the pointer to the appropriately sized integer type.
1449 Constant *Op = CE->getOperand(0);
1450 const Type *Ty = CE->getType();
1452 const MCExpr *OpExpr = LowerConstant(Op, AP);
1454 // We can emit the pointer value into this slot if the slot is an
1455 // integer slot equal to the size of the pointer.
1456 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1457 return OpExpr;
1459 // Otherwise the pointer is smaller than the resultant integer, mask off
1460 // the high bits so we are sure to get a proper truncation if the input is
1461 // a constant expr.
1462 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1463 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1464 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1467 // The MC library also has a right-shift operator, but it isn't consistently
1468 // signed or unsigned between different targets.
1469 case Instruction::Add:
1470 case Instruction::Sub:
1471 case Instruction::Mul:
1472 case Instruction::SDiv:
1473 case Instruction::SRem:
1474 case Instruction::Shl:
1475 case Instruction::And:
1476 case Instruction::Or:
1477 case Instruction::Xor: {
1478 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1479 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1480 switch (CE->getOpcode()) {
1481 default: llvm_unreachable("Unknown binary operator constant cast expr");
1482 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1483 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1484 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1485 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1486 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1487 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1488 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1489 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1490 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1496 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1497 AsmPrinter &AP);
1499 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1500 AsmPrinter &AP) {
1501 if (AddrSpace != 0 || !CA->isString()) {
1502 // Not a string. Print the values in successive locations
1503 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1504 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1505 return;
1508 // Otherwise, it can be emitted as .ascii.
1509 SmallVector<char, 128> TmpVec;
1510 TmpVec.reserve(CA->getNumOperands());
1511 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1512 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
1514 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
1517 static void EmitGlobalConstantVector(const ConstantVector *CV,
1518 unsigned AddrSpace, AsmPrinter &AP) {
1519 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1520 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1522 const TargetData &TD = *AP.TM.getTargetData();
1523 unsigned Size = TD.getTypeAllocSize(CV->getType());
1524 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1525 CV->getType()->getNumElements();
1526 if (unsigned Padding = Size - EmittedSize)
1527 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1530 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1531 unsigned AddrSpace, AsmPrinter &AP) {
1532 // Print the fields in successive locations. Pad to align if needed!
1533 const TargetData *TD = AP.TM.getTargetData();
1534 unsigned Size = TD->getTypeAllocSize(CS->getType());
1535 const StructLayout *Layout = TD->getStructLayout(CS->getType());
1536 uint64_t SizeSoFar = 0;
1537 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1538 const Constant *Field = CS->getOperand(i);
1540 // Check if padding is needed and insert one or more 0s.
1541 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1542 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1543 - Layout->getElementOffset(i)) - FieldSize;
1544 SizeSoFar += FieldSize + PadSize;
1546 // Now print the actual field value.
1547 EmitGlobalConstantImpl(Field, AddrSpace, AP);
1549 // Insert padding - this may include padding to increase the size of the
1550 // current field up to the ABI size (if the struct is not packed) as well
1551 // as padding to ensure that the next field starts at the right offset.
1552 AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1554 assert(SizeSoFar == Layout->getSizeInBytes() &&
1555 "Layout of constant struct may be incorrect!");
1558 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1559 AsmPrinter &AP) {
1560 // FP Constants are printed as integer constants to avoid losing
1561 // precision.
1562 if (CFP->getType()->isDoubleTy()) {
1563 if (AP.isVerbose()) {
1564 double Val = CFP->getValueAPF().convertToDouble();
1565 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
1568 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1569 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1570 return;
1573 if (CFP->getType()->isFloatTy()) {
1574 if (AP.isVerbose()) {
1575 float Val = CFP->getValueAPF().convertToFloat();
1576 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
1578 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1579 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1580 return;
1583 if (CFP->getType()->isX86_FP80Ty()) {
1584 // all long double variants are printed as hex
1585 // API needed to prevent premature destruction
1586 APInt API = CFP->getValueAPF().bitcastToAPInt();
1587 const uint64_t *p = API.getRawData();
1588 if (AP.isVerbose()) {
1589 // Convert to double so we can print the approximate val as a comment.
1590 APFloat DoubleVal = CFP->getValueAPF();
1591 bool ignored;
1592 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1593 &ignored);
1594 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1595 << DoubleVal.convertToDouble() << '\n';
1598 if (AP.TM.getTargetData()->isBigEndian()) {
1599 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1600 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1601 } else {
1602 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1603 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1606 // Emit the tail padding for the long double.
1607 const TargetData &TD = *AP.TM.getTargetData();
1608 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1609 TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1610 return;
1613 assert(CFP->getType()->isPPC_FP128Ty() &&
1614 "Floating point constant type not handled");
1615 // All long double variants are printed as hex
1616 // API needed to prevent premature destruction.
1617 APInt API = CFP->getValueAPF().bitcastToAPInt();
1618 const uint64_t *p = API.getRawData();
1619 if (AP.TM.getTargetData()->isBigEndian()) {
1620 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1621 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1622 } else {
1623 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1624 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1628 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1629 unsigned AddrSpace, AsmPrinter &AP) {
1630 const TargetData *TD = AP.TM.getTargetData();
1631 unsigned BitWidth = CI->getBitWidth();
1632 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1634 // We don't expect assemblers to support integer data directives
1635 // for more than 64 bits, so we emit the data in at most 64-bit
1636 // quantities at a time.
1637 const uint64_t *RawData = CI->getValue().getRawData();
1638 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1639 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1640 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1644 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1645 AsmPrinter &AP) {
1646 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
1647 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1648 return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1651 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1652 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1653 switch (Size) {
1654 case 1:
1655 case 2:
1656 case 4:
1657 case 8:
1658 if (AP.isVerbose())
1659 AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue());
1660 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1661 return;
1662 default:
1663 EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1664 return;
1668 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1669 return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1671 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1672 return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1674 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1675 return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1677 if (isa<ConstantPointerNull>(CV)) {
1678 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1679 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1680 return;
1683 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1684 return EmitGlobalConstantVector(V, AddrSpace, AP);
1686 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
1687 // thread the streamer with EmitValue.
1688 AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
1689 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
1690 AddrSpace);
1693 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1694 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1695 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1696 if (Size)
1697 EmitGlobalConstantImpl(CV, AddrSpace, *this);
1698 else if (MAI->hasSubsectionsViaSymbols()) {
1699 // If the global has zero size, emit a single byte so that two labels don't
1700 // look like they are at the same location.
1701 OutStreamer.EmitIntValue(0, 1, AddrSpace);
1705 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1706 // Target doesn't support this yet!
1707 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1710 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1711 if (Offset > 0)
1712 OS << '+' << Offset;
1713 else if (Offset < 0)
1714 OS << Offset;
1717 //===----------------------------------------------------------------------===//
1718 // Symbol Lowering Routines.
1719 //===----------------------------------------------------------------------===//
1721 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1722 /// temporary label with the specified stem and unique ID.
1723 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1724 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1725 Name + Twine(ID));
1728 /// GetTempSymbol - Return an assembler temporary label with the specified
1729 /// stem.
1730 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1731 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1732 Name);
1736 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1737 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1740 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1741 return MMI->getAddrLabelSymbol(BB);
1744 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
1745 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1746 return OutContext.GetOrCreateSymbol
1747 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1748 + "_" + Twine(CPID));
1751 /// GetJTISymbol - Return the symbol for the specified jump table entry.
1752 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1753 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1756 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1757 /// FIXME: privatize to AsmPrinter.
1758 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1759 return OutContext.GetOrCreateSymbol
1760 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1761 Twine(UID) + "_set_" + Twine(MBBID));
1764 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1765 /// global value name as its base, with the specified suffix, and where the
1766 /// symbol is forced to have private linkage if ForcePrivate is true.
1767 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1768 StringRef Suffix,
1769 bool ForcePrivate) const {
1770 SmallString<60> NameStr;
1771 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1772 NameStr.append(Suffix.begin(), Suffix.end());
1773 return OutContext.GetOrCreateSymbol(NameStr.str());
1776 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1777 /// ExternalSymbol.
1778 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1779 SmallString<60> NameStr;
1780 Mang->getNameWithPrefix(NameStr, Sym);
1781 return OutContext.GetOrCreateSymbol(NameStr.str());
1786 /// PrintParentLoopComment - Print comments about parent loops of this one.
1787 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1788 unsigned FunctionNumber) {
1789 if (Loop == 0) return;
1790 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
1791 OS.indent(Loop->getLoopDepth()*2)
1792 << "Parent Loop BB" << FunctionNumber << "_"
1793 << Loop->getHeader()->getNumber()
1794 << " Depth=" << Loop->getLoopDepth() << '\n';
1798 /// PrintChildLoopComment - Print comments about child loops within
1799 /// the loop for this basic block, with nesting.
1800 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1801 unsigned FunctionNumber) {
1802 // Add child loop information
1803 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
1804 OS.indent((*CL)->getLoopDepth()*2)
1805 << "Child Loop BB" << FunctionNumber << "_"
1806 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
1807 << '\n';
1808 PrintChildLoopComment(OS, *CL, FunctionNumber);
1812 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
1813 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
1814 const MachineLoopInfo *LI,
1815 const AsmPrinter &AP) {
1816 // Add loop depth information
1817 const MachineLoop *Loop = LI->getLoopFor(&MBB);
1818 if (Loop == 0) return;
1820 MachineBasicBlock *Header = Loop->getHeader();
1821 assert(Header && "No header for loop");
1823 // If this block is not a loop header, just print out what is the loop header
1824 // and return.
1825 if (Header != &MBB) {
1826 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
1827 Twine(AP.getFunctionNumber())+"_" +
1828 Twine(Loop->getHeader()->getNumber())+
1829 " Depth="+Twine(Loop->getLoopDepth()));
1830 return;
1833 // Otherwise, it is a loop header. Print out information about child and
1834 // parent loops.
1835 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
1837 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
1839 OS << "=>";
1840 OS.indent(Loop->getLoopDepth()*2-2);
1842 OS << "This ";
1843 if (Loop->empty())
1844 OS << "Inner ";
1845 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
1847 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
1851 /// EmitBasicBlockStart - This method prints the label for the specified
1852 /// MachineBasicBlock, an alignment (if present) and a comment describing
1853 /// it if appropriate.
1854 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1855 // Emit an alignment directive for this block, if needed.
1856 if (unsigned Align = MBB->getAlignment())
1857 EmitAlignment(Log2_32(Align));
1859 // If the block has its address taken, emit any labels that were used to
1860 // reference the block. It is possible that there is more than one label
1861 // here, because multiple LLVM BB's may have been RAUW'd to this block after
1862 // the references were generated.
1863 if (MBB->hasAddressTaken()) {
1864 const BasicBlock *BB = MBB->getBasicBlock();
1865 if (isVerbose())
1866 OutStreamer.AddComment("Block address taken");
1868 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
1870 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
1871 OutStreamer.EmitLabel(Syms[i]);
1874 // Print the main label for the block.
1875 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
1876 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
1877 if (const BasicBlock *BB = MBB->getBasicBlock())
1878 if (BB->hasName())
1879 OutStreamer.AddComment("%" + BB->getName());
1881 EmitBasicBlockLoopComments(*MBB, LI, *this);
1883 // NOTE: Want this comment at start of line, don't emit with AddComment.
1884 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
1885 Twine(MBB->getNumber()) + ":");
1887 } else {
1888 if (isVerbose()) {
1889 if (const BasicBlock *BB = MBB->getBasicBlock())
1890 if (BB->hasName())
1891 OutStreamer.AddComment("%" + BB->getName());
1892 EmitBasicBlockLoopComments(*MBB, LI, *this);
1895 OutStreamer.EmitLabel(MBB->getSymbol());
1899 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
1900 bool IsDefinition) const {
1901 MCSymbolAttr Attr = MCSA_Invalid;
1903 switch (Visibility) {
1904 default: break;
1905 case GlobalValue::HiddenVisibility:
1906 if (IsDefinition)
1907 Attr = MAI->getHiddenVisibilityAttr();
1908 else
1909 Attr = MAI->getHiddenDeclarationVisibilityAttr();
1910 break;
1911 case GlobalValue::ProtectedVisibility:
1912 Attr = MAI->getProtectedVisibilityAttr();
1913 break;
1916 if (Attr != MCSA_Invalid)
1917 OutStreamer.EmitSymbolAttribute(Sym, Attr);
1920 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
1921 /// exactly one predecessor and the control transfer mechanism between
1922 /// the predecessor and this block is a fall-through.
1923 bool AsmPrinter::
1924 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
1925 // If this is a landing pad, it isn't a fall through. If it has no preds,
1926 // then nothing falls through to it.
1927 if (MBB->isLandingPad() || MBB->pred_empty())
1928 return false;
1930 // If there isn't exactly one predecessor, it can't be a fall through.
1931 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
1932 ++PI2;
1933 if (PI2 != MBB->pred_end())
1934 return false;
1936 // The predecessor has to be immediately before this block.
1937 MachineBasicBlock *Pred = *PI;
1939 if (!Pred->isLayoutSuccessor(MBB))
1940 return false;
1942 // If the block is completely empty, then it definitely does fall through.
1943 if (Pred->empty())
1944 return true;
1946 // Check the terminators in the previous blocks
1947 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
1948 IE = Pred->end(); II != IE; ++II) {
1949 MachineInstr &MI = *II;
1951 // If it is not a simple branch, we are in a table somewhere.
1952 if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch())
1953 return false;
1955 // If we are the operands of one of the branches, this is not
1956 // a fall through.
1957 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1958 OE = MI.operands_end(); OI != OE; ++OI) {
1959 const MachineOperand& OP = *OI;
1960 if (OP.isJTI())
1961 return false;
1962 if (OP.isMBB() && OP.getMBB() == MBB)
1963 return false;
1967 return true;
1972 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1973 if (!S->usesMetadata())
1974 return 0;
1976 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
1977 gcp_map_type::iterator GCPI = GCMap.find(S);
1978 if (GCPI != GCMap.end())
1979 return GCPI->second;
1981 const char *Name = S->getName().c_str();
1983 for (GCMetadataPrinterRegistry::iterator
1984 I = GCMetadataPrinterRegistry::begin(),
1985 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1986 if (strcmp(Name, I->getName()) == 0) {
1987 GCMetadataPrinter *GMP = I->instantiate();
1988 GMP->S = S;
1989 GCMap.insert(std::make_pair(S, GMP));
1990 return GMP;
1993 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
1994 return 0;