Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / RegAllocBasic.cpp
blob5ea26adc76440e805f30a6d0b4cec7ab7acce2eb
1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "RegAllocBase.h"
17 #include "LiveDebugVariables.h"
18 #include "LiveIntervalUnion.h"
19 #include "LiveRangeEdit.h"
20 #include "RenderMachineFunction.h"
21 #include "Spiller.h"
22 #include "VirtRegMap.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/OwningPtr.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Function.h"
28 #include "llvm/PassAnalysisSupport.h"
29 #include "llvm/CodeGen/CalcSpillWeights.h"
30 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
31 #include "llvm/CodeGen/LiveStackAnalysis.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegAllocRegistry.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #ifndef NDEBUG
42 #include "llvm/ADT/SparseBitVector.h"
43 #endif
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Support/Timer.h"
49 #include <cstdlib>
50 #include <queue>
52 using namespace llvm;
54 STATISTIC(NumAssigned , "Number of registers assigned");
55 STATISTIC(NumUnassigned , "Number of registers unassigned");
56 STATISTIC(NumNewQueued , "Number of new live ranges queued");
58 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
59 createBasicRegisterAllocator);
61 // Temporary verification option until we can put verification inside
62 // MachineVerifier.
63 static cl::opt<bool, true>
64 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
65 cl::desc("Verify during register allocation"));
67 const char *RegAllocBase::TimerGroupName = "Register Allocation";
68 bool RegAllocBase::VerifyEnabled = false;
70 namespace {
71 struct CompSpillWeight {
72 bool operator()(LiveInterval *A, LiveInterval *B) const {
73 return A->weight < B->weight;
78 namespace {
79 /// RABasic provides a minimal implementation of the basic register allocation
80 /// algorithm. It prioritizes live virtual registers by spill weight and spills
81 /// whenever a register is unavailable. This is not practical in production but
82 /// provides a useful baseline both for measuring other allocators and comparing
83 /// the speed of the basic algorithm against other styles of allocators.
84 class RABasic : public MachineFunctionPass, public RegAllocBase
86 // context
87 MachineFunction *MF;
89 // analyses
90 LiveStacks *LS;
91 RenderMachineFunction *RMF;
93 // state
94 std::auto_ptr<Spiller> SpillerInstance;
95 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
96 CompSpillWeight> Queue;
97 public:
98 RABasic();
100 /// Return the pass name.
101 virtual const char* getPassName() const {
102 return "Basic Register Allocator";
105 /// RABasic analysis usage.
106 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
108 virtual void releaseMemory();
110 virtual Spiller &spiller() { return *SpillerInstance; }
112 virtual float getPriority(LiveInterval *LI) { return LI->weight; }
114 virtual void enqueue(LiveInterval *LI) {
115 Queue.push(LI);
118 virtual LiveInterval *dequeue() {
119 if (Queue.empty())
120 return 0;
121 LiveInterval *LI = Queue.top();
122 Queue.pop();
123 return LI;
126 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
127 SmallVectorImpl<LiveInterval*> &SplitVRegs);
129 /// Perform register allocation.
130 virtual bool runOnMachineFunction(MachineFunction &mf);
132 static char ID;
135 char RABasic::ID = 0;
137 } // end anonymous namespace
139 RABasic::RABasic(): MachineFunctionPass(ID) {
140 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
141 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
142 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
143 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
144 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
145 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
146 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
147 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
148 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
149 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
150 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
153 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.setPreservesCFG();
155 AU.addRequired<AliasAnalysis>();
156 AU.addPreserved<AliasAnalysis>();
157 AU.addRequired<LiveIntervals>();
158 AU.addPreserved<SlotIndexes>();
159 AU.addRequired<LiveDebugVariables>();
160 AU.addPreserved<LiveDebugVariables>();
161 if (StrongPHIElim)
162 AU.addRequiredID(StrongPHIEliminationID);
163 AU.addRequiredTransitive<RegisterCoalescer>();
164 AU.addRequired<CalculateSpillWeights>();
165 AU.addRequired<LiveStacks>();
166 AU.addPreserved<LiveStacks>();
167 AU.addRequiredID(MachineDominatorsID);
168 AU.addPreservedID(MachineDominatorsID);
169 AU.addRequired<MachineLoopInfo>();
170 AU.addPreserved<MachineLoopInfo>();
171 AU.addRequired<VirtRegMap>();
172 AU.addPreserved<VirtRegMap>();
173 DEBUG(AU.addRequired<RenderMachineFunction>());
174 MachineFunctionPass::getAnalysisUsage(AU);
177 void RABasic::releaseMemory() {
178 SpillerInstance.reset(0);
179 RegAllocBase::releaseMemory();
182 #ifndef NDEBUG
183 // Verify each LiveIntervalUnion.
184 void RegAllocBase::verify() {
185 LiveVirtRegBitSet VisitedVRegs;
186 OwningArrayPtr<LiveVirtRegBitSet>
187 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
189 // Verify disjoint unions.
190 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
191 DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
192 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
193 PhysReg2LiveUnion[PhysReg].verify(VRegs);
194 // Union + intersection test could be done efficiently in one pass, but
195 // don't add a method to SparseBitVector unless we really need it.
196 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
197 VisitedVRegs |= VRegs;
200 // Verify vreg coverage.
201 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
202 liItr != liEnd; ++liItr) {
203 unsigned reg = liItr->first;
204 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
205 if (!VRM->hasPhys(reg)) continue; // spilled?
206 unsigned PhysReg = VRM->getPhys(reg);
207 if (!unionVRegs[PhysReg].test(reg)) {
208 dbgs() << "LiveVirtReg " << reg << " not in union " <<
209 TRI->getName(PhysReg) << "\n";
210 llvm_unreachable("unallocated live vreg");
213 // FIXME: I'm not sure how to verify spilled intervals.
215 #endif //!NDEBUG
217 //===----------------------------------------------------------------------===//
218 // RegAllocBase Implementation
219 //===----------------------------------------------------------------------===//
221 // Instantiate a LiveIntervalUnion for each physical register.
222 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
223 unsigned NRegs) {
224 NumRegs = NRegs;
225 Array =
226 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
227 for (unsigned r = 0; r != NRegs; ++r)
228 new(Array + r) LiveIntervalUnion(r, allocator);
231 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
232 NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
233 TRI = &vrm.getTargetRegInfo();
234 MRI = &vrm.getRegInfo();
235 VRM = &vrm;
236 LIS = &lis;
237 RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
239 const unsigned NumRegs = TRI->getNumRegs();
240 if (NumRegs != PhysReg2LiveUnion.numRegs()) {
241 PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
242 // Cache an interferece query for each physical reg
243 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
247 void RegAllocBase::LiveUnionArray::clear() {
248 if (!Array)
249 return;
250 for (unsigned r = 0; r != NumRegs; ++r)
251 Array[r].~LiveIntervalUnion();
252 free(Array);
253 NumRegs = 0;
254 Array = 0;
257 void RegAllocBase::releaseMemory() {
258 for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
259 PhysReg2LiveUnion[r].clear();
262 // Visit all the live registers. If they are already assigned to a physical
263 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
264 // them on the priority queue for later assignment.
265 void RegAllocBase::seedLiveRegs() {
266 NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
267 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
268 unsigned RegNum = I->first;
269 LiveInterval &VirtReg = *I->second;
270 if (TargetRegisterInfo::isPhysicalRegister(RegNum))
271 PhysReg2LiveUnion[RegNum].unify(VirtReg);
272 else
273 enqueue(&VirtReg);
277 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
278 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
279 << " to " << PrintReg(PhysReg, TRI) << '\n');
280 assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
281 VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
282 MRI->setPhysRegUsed(PhysReg);
283 PhysReg2LiveUnion[PhysReg].unify(VirtReg);
284 ++NumAssigned;
287 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
288 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
289 << " from " << PrintReg(PhysReg, TRI) << '\n');
290 assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
291 PhysReg2LiveUnion[PhysReg].extract(VirtReg);
292 VRM->clearVirt(VirtReg.reg);
293 ++NumUnassigned;
296 // Top-level driver to manage the queue of unassigned VirtRegs and call the
297 // selectOrSplit implementation.
298 void RegAllocBase::allocatePhysRegs() {
299 seedLiveRegs();
301 // Continue assigning vregs one at a time to available physical registers.
302 while (LiveInterval *VirtReg = dequeue()) {
303 assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
305 // Unused registers can appear when the spiller coalesces snippets.
306 if (MRI->reg_nodbg_empty(VirtReg->reg)) {
307 DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
308 LIS->removeInterval(VirtReg->reg);
309 continue;
312 // Invalidate all interference queries, live ranges could have changed.
313 invalidateVirtRegs();
315 // selectOrSplit requests the allocator to return an available physical
316 // register if possible and populate a list of new live intervals that
317 // result from splitting.
318 DEBUG(dbgs() << "\nselectOrSplit "
319 << MRI->getRegClass(VirtReg->reg)->getName()
320 << ':' << *VirtReg << '\n');
321 typedef SmallVector<LiveInterval*, 4> VirtRegVec;
322 VirtRegVec SplitVRegs;
323 unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
325 if (AvailablePhysReg == ~0u) {
326 // selectOrSplit failed to find a register!
327 const char *Msg = "ran out of registers during register allocation";
328 // Probably caused by an inline asm.
329 MachineInstr *MI;
330 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
331 (MI = I.skipInstruction());)
332 if (MI->isInlineAsm())
333 break;
334 if (MI)
335 MI->emitError(Msg);
336 else
337 report_fatal_error(Msg);
338 // Keep going after reporting the error.
339 VRM->assignVirt2Phys(VirtReg->reg,
340 RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
341 continue;
344 if (AvailablePhysReg)
345 assign(*VirtReg, AvailablePhysReg);
347 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
348 I != E; ++I) {
349 LiveInterval *SplitVirtReg = *I;
350 assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
351 if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
352 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
353 LIS->removeInterval(SplitVirtReg->reg);
354 continue;
356 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
357 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
358 "expect split value in virtual register");
359 enqueue(SplitVirtReg);
360 ++NumNewQueued;
365 // Check if this live virtual register interferes with a physical register. If
366 // not, then check for interference on each register that aliases with the
367 // physical register. Return the interfering register.
368 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
369 unsigned PhysReg) {
370 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
371 if (query(VirtReg, *AliasI).checkInterference())
372 return *AliasI;
373 return 0;
376 // Helper for spillInteferences() that spills all interfering vregs currently
377 // assigned to this physical register.
378 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
379 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
380 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
381 assert(Q.seenAllInterferences() && "need collectInterferences()");
382 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
384 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
385 E = PendingSpills.end(); I != E; ++I) {
386 LiveInterval &SpilledVReg = **I;
387 DEBUG(dbgs() << "extracting from " <<
388 TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
390 // Deallocate the interfering vreg by removing it from the union.
391 // A LiveInterval instance may not be in a union during modification!
392 unassign(SpilledVReg, PhysReg);
394 // Spill the extracted interval.
395 LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
396 spiller().spill(LRE);
398 // After extracting segments, the query's results are invalid. But keep the
399 // contents valid until we're done accessing pendingSpills.
400 Q.clear();
403 // Spill or split all live virtual registers currently unified under PhysReg
404 // that interfere with VirtReg. The newly spilled or split live intervals are
405 // returned by appending them to SplitVRegs.
406 bool
407 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
408 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
409 // Record each interference and determine if all are spillable before mutating
410 // either the union or live intervals.
411 unsigned NumInterferences = 0;
412 // Collect interferences assigned to any alias of the physical register.
413 for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
414 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
415 NumInterferences += QAlias.collectInterferingVRegs();
416 if (QAlias.seenUnspillableVReg()) {
417 return false;
420 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
421 " interferences with " << VirtReg << "\n");
422 assert(NumInterferences > 0 && "expect interference");
424 // Spill each interfering vreg allocated to PhysReg or an alias.
425 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
426 spillReg(VirtReg, *AliasI, SplitVRegs);
427 return true;
430 // Add newly allocated physical registers to the MBB live in sets.
431 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
432 NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
433 SlotIndexes *Indexes = LIS->getSlotIndexes();
434 if (MF->size() <= 1)
435 return;
437 LiveIntervalUnion::SegmentIter SI;
438 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
439 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
440 if (LiveUnion.empty())
441 continue;
442 MachineFunction::iterator MBB = llvm::next(MF->begin());
443 MachineFunction::iterator MFE = MF->end();
444 SlotIndex Start, Stop;
445 tie(Start, Stop) = Indexes->getMBBRange(MBB);
446 SI.setMap(LiveUnion.getMap());
447 SI.find(Start);
448 while (SI.valid()) {
449 if (SI.start() <= Start) {
450 if (!MBB->isLiveIn(PhysReg))
451 MBB->addLiveIn(PhysReg);
452 } else if (SI.start() > Stop)
453 MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
454 if (++MBB == MFE)
455 break;
456 tie(Start, Stop) = Indexes->getMBBRange(MBB);
457 SI.advanceTo(Start);
463 //===----------------------------------------------------------------------===//
464 // RABasic Implementation
465 //===----------------------------------------------------------------------===//
467 // Driver for the register assignment and splitting heuristics.
468 // Manages iteration over the LiveIntervalUnions.
470 // This is a minimal implementation of register assignment and splitting that
471 // spills whenever we run out of registers.
473 // selectOrSplit can only be called once per live virtual register. We then do a
474 // single interference test for each register the correct class until we find an
475 // available register. So, the number of interference tests in the worst case is
476 // |vregs| * |machineregs|. And since the number of interference tests is
477 // minimal, there is no value in caching them outside the scope of
478 // selectOrSplit().
479 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
480 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
481 // Populate a list of physical register spill candidates.
482 SmallVector<unsigned, 8> PhysRegSpillCands;
484 // Check for an available register in this class.
485 ArrayRef<unsigned> Order =
486 RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
487 for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
488 ++I) {
489 unsigned PhysReg = *I;
491 // Check interference and as a side effect, intialize queries for this
492 // VirtReg and its aliases.
493 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
494 if (interfReg == 0) {
495 // Found an available register.
496 return PhysReg;
498 LiveInterval *interferingVirtReg =
499 Queries[interfReg].firstInterference().liveUnionPos().value();
501 // The current VirtReg must either be spillable, or one of its interferences
502 // must have less spill weight.
503 if (interferingVirtReg->weight < VirtReg.weight ) {
504 PhysRegSpillCands.push_back(PhysReg);
507 // Try to spill another interfering reg with less spill weight.
508 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
509 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
511 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
513 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
514 "Interference after spill.");
515 // Tell the caller to allocate to this newly freed physical register.
516 return *PhysRegI;
519 // No other spill candidates were found, so spill the current VirtReg.
520 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
521 if (!VirtReg.isSpillable())
522 return ~0u;
523 LiveRangeEdit LRE(VirtReg, SplitVRegs);
524 spiller().spill(LRE);
526 // The live virtual register requesting allocation was spilled, so tell
527 // the caller not to allocate anything during this round.
528 return 0;
531 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
532 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
533 << "********** Function: "
534 << ((Value*)mf.getFunction())->getName() << '\n');
536 MF = &mf;
537 DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
539 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
540 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
542 allocatePhysRegs();
544 addMBBLiveIns(MF);
546 // Diagnostic output before rewriting
547 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
549 // optional HTML output
550 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
552 // FIXME: Verification currently must run before VirtRegRewriter. We should
553 // make the rewriter a separate pass and override verifyAnalysis instead. When
554 // that happens, verification naturally falls under VerifyMachineCode.
555 #ifndef NDEBUG
556 if (VerifyEnabled) {
557 // Verify accuracy of LiveIntervals. The standard machine code verifier
558 // ensures that each LiveIntervals covers all uses of the virtual reg.
560 // FIXME: MachineVerifier is badly broken when using the standard
561 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
562 // inline spiller, some tests fail to verify because the coalescer does not
563 // always generate verifiable code.
564 MF->verify(this, "In RABasic::verify");
566 // Verify that LiveIntervals are partitioned into unions and disjoint within
567 // the unions.
568 verify();
570 #endif // !NDEBUG
572 // Run rewriter
573 VRM->rewrite(LIS->getSlotIndexes());
575 // Write out new DBG_VALUE instructions.
576 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
578 // The pass output is in VirtRegMap. Release all the transient data.
579 releaseMemory();
581 return true;
584 FunctionPass* llvm::createBasicRegisterAllocator()
586 return new RABasic();