1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "RegAllocBase.h"
17 #include "LiveDebugVariables.h"
18 #include "LiveIntervalUnion.h"
19 #include "LiveRangeEdit.h"
20 #include "RenderMachineFunction.h"
22 #include "VirtRegMap.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/OwningPtr.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Function.h"
28 #include "llvm/PassAnalysisSupport.h"
29 #include "llvm/CodeGen/CalcSpillWeights.h"
30 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
31 #include "llvm/CodeGen/LiveStackAnalysis.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegAllocRegistry.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/ADT/SparseBitVector.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Support/Timer.h"
54 STATISTIC(NumAssigned
, "Number of registers assigned");
55 STATISTIC(NumUnassigned
, "Number of registers unassigned");
56 STATISTIC(NumNewQueued
, "Number of new live ranges queued");
58 static RegisterRegAlloc
basicRegAlloc("basic", "basic register allocator",
59 createBasicRegisterAllocator
);
61 // Temporary verification option until we can put verification inside
63 static cl::opt
<bool, true>
64 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled
),
65 cl::desc("Verify during register allocation"));
67 const char *RegAllocBase::TimerGroupName
= "Register Allocation";
68 bool RegAllocBase::VerifyEnabled
= false;
71 struct CompSpillWeight
{
72 bool operator()(LiveInterval
*A
, LiveInterval
*B
) const {
73 return A
->weight
< B
->weight
;
79 /// RABasic provides a minimal implementation of the basic register allocation
80 /// algorithm. It prioritizes live virtual registers by spill weight and spills
81 /// whenever a register is unavailable. This is not practical in production but
82 /// provides a useful baseline both for measuring other allocators and comparing
83 /// the speed of the basic algorithm against other styles of allocators.
84 class RABasic
: public MachineFunctionPass
, public RegAllocBase
91 RenderMachineFunction
*RMF
;
94 std::auto_ptr
<Spiller
> SpillerInstance
;
95 std::priority_queue
<LiveInterval
*, std::vector
<LiveInterval
*>,
96 CompSpillWeight
> Queue
;
100 /// Return the pass name.
101 virtual const char* getPassName() const {
102 return "Basic Register Allocator";
105 /// RABasic analysis usage.
106 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const;
108 virtual void releaseMemory();
110 virtual Spiller
&spiller() { return *SpillerInstance
; }
112 virtual float getPriority(LiveInterval
*LI
) { return LI
->weight
; }
114 virtual void enqueue(LiveInterval
*LI
) {
118 virtual LiveInterval
*dequeue() {
121 LiveInterval
*LI
= Queue
.top();
126 virtual unsigned selectOrSplit(LiveInterval
&VirtReg
,
127 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
);
129 /// Perform register allocation.
130 virtual bool runOnMachineFunction(MachineFunction
&mf
);
135 char RABasic::ID
= 0;
137 } // end anonymous namespace
139 RABasic::RABasic(): MachineFunctionPass(ID
) {
140 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
141 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
142 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
143 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
144 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
145 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
146 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
147 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
148 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
149 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
150 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
153 void RABasic::getAnalysisUsage(AnalysisUsage
&AU
) const {
154 AU
.setPreservesCFG();
155 AU
.addRequired
<AliasAnalysis
>();
156 AU
.addPreserved
<AliasAnalysis
>();
157 AU
.addRequired
<LiveIntervals
>();
158 AU
.addPreserved
<SlotIndexes
>();
159 AU
.addRequired
<LiveDebugVariables
>();
160 AU
.addPreserved
<LiveDebugVariables
>();
162 AU
.addRequiredID(StrongPHIEliminationID
);
163 AU
.addRequiredTransitive
<RegisterCoalescer
>();
164 AU
.addRequired
<CalculateSpillWeights
>();
165 AU
.addRequired
<LiveStacks
>();
166 AU
.addPreserved
<LiveStacks
>();
167 AU
.addRequiredID(MachineDominatorsID
);
168 AU
.addPreservedID(MachineDominatorsID
);
169 AU
.addRequired
<MachineLoopInfo
>();
170 AU
.addPreserved
<MachineLoopInfo
>();
171 AU
.addRequired
<VirtRegMap
>();
172 AU
.addPreserved
<VirtRegMap
>();
173 DEBUG(AU
.addRequired
<RenderMachineFunction
>());
174 MachineFunctionPass::getAnalysisUsage(AU
);
177 void RABasic::releaseMemory() {
178 SpillerInstance
.reset(0);
179 RegAllocBase::releaseMemory();
183 // Verify each LiveIntervalUnion.
184 void RegAllocBase::verify() {
185 LiveVirtRegBitSet VisitedVRegs
;
186 OwningArrayPtr
<LiveVirtRegBitSet
>
187 unionVRegs(new LiveVirtRegBitSet
[PhysReg2LiveUnion
.numRegs()]);
189 // Verify disjoint unions.
190 for (unsigned PhysReg
= 0; PhysReg
< PhysReg2LiveUnion
.numRegs(); ++PhysReg
) {
191 DEBUG(PhysReg2LiveUnion
[PhysReg
].print(dbgs(), TRI
));
192 LiveVirtRegBitSet
&VRegs
= unionVRegs
[PhysReg
];
193 PhysReg2LiveUnion
[PhysReg
].verify(VRegs
);
194 // Union + intersection test could be done efficiently in one pass, but
195 // don't add a method to SparseBitVector unless we really need it.
196 assert(!VisitedVRegs
.intersects(VRegs
) && "vreg in multiple unions");
197 VisitedVRegs
|= VRegs
;
200 // Verify vreg coverage.
201 for (LiveIntervals::iterator liItr
= LIS
->begin(), liEnd
= LIS
->end();
202 liItr
!= liEnd
; ++liItr
) {
203 unsigned reg
= liItr
->first
;
204 if (TargetRegisterInfo::isPhysicalRegister(reg
)) continue;
205 if (!VRM
->hasPhys(reg
)) continue; // spilled?
206 unsigned PhysReg
= VRM
->getPhys(reg
);
207 if (!unionVRegs
[PhysReg
].test(reg
)) {
208 dbgs() << "LiveVirtReg " << reg
<< " not in union " <<
209 TRI
->getName(PhysReg
) << "\n";
210 llvm_unreachable("unallocated live vreg");
213 // FIXME: I'm not sure how to verify spilled intervals.
217 //===----------------------------------------------------------------------===//
218 // RegAllocBase Implementation
219 //===----------------------------------------------------------------------===//
221 // Instantiate a LiveIntervalUnion for each physical register.
222 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator
&allocator
,
226 static_cast<LiveIntervalUnion
*>(malloc(sizeof(LiveIntervalUnion
)*NRegs
));
227 for (unsigned r
= 0; r
!= NRegs
; ++r
)
228 new(Array
+ r
) LiveIntervalUnion(r
, allocator
);
231 void RegAllocBase::init(VirtRegMap
&vrm
, LiveIntervals
&lis
) {
232 NamedRegionTimer
T("Initialize", TimerGroupName
, TimePassesIsEnabled
);
233 TRI
= &vrm
.getTargetRegInfo();
234 MRI
= &vrm
.getRegInfo();
237 RegClassInfo
.runOnMachineFunction(vrm
.getMachineFunction());
239 const unsigned NumRegs
= TRI
->getNumRegs();
240 if (NumRegs
!= PhysReg2LiveUnion
.numRegs()) {
241 PhysReg2LiveUnion
.init(UnionAllocator
, NumRegs
);
242 // Cache an interferece query for each physical reg
243 Queries
.reset(new LiveIntervalUnion::Query
[PhysReg2LiveUnion
.numRegs()]);
247 void RegAllocBase::LiveUnionArray::clear() {
250 for (unsigned r
= 0; r
!= NumRegs
; ++r
)
251 Array
[r
].~LiveIntervalUnion();
257 void RegAllocBase::releaseMemory() {
258 for (unsigned r
= 0, e
= PhysReg2LiveUnion
.numRegs(); r
!= e
; ++r
)
259 PhysReg2LiveUnion
[r
].clear();
262 // Visit all the live registers. If they are already assigned to a physical
263 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
264 // them on the priority queue for later assignment.
265 void RegAllocBase::seedLiveRegs() {
266 NamedRegionTimer
T("Seed Live Regs", TimerGroupName
, TimePassesIsEnabled
);
267 for (LiveIntervals::iterator I
= LIS
->begin(), E
= LIS
->end(); I
!= E
; ++I
) {
268 unsigned RegNum
= I
->first
;
269 LiveInterval
&VirtReg
= *I
->second
;
270 if (TargetRegisterInfo::isPhysicalRegister(RegNum
))
271 PhysReg2LiveUnion
[RegNum
].unify(VirtReg
);
277 void RegAllocBase::assign(LiveInterval
&VirtReg
, unsigned PhysReg
) {
278 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg
.reg
, TRI
)
279 << " to " << PrintReg(PhysReg
, TRI
) << '\n');
280 assert(!VRM
->hasPhys(VirtReg
.reg
) && "Duplicate VirtReg assignment");
281 VRM
->assignVirt2Phys(VirtReg
.reg
, PhysReg
);
282 MRI
->setPhysRegUsed(PhysReg
);
283 PhysReg2LiveUnion
[PhysReg
].unify(VirtReg
);
287 void RegAllocBase::unassign(LiveInterval
&VirtReg
, unsigned PhysReg
) {
288 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg
.reg
, TRI
)
289 << " from " << PrintReg(PhysReg
, TRI
) << '\n');
290 assert(VRM
->getPhys(VirtReg
.reg
) == PhysReg
&& "Inconsistent unassign");
291 PhysReg2LiveUnion
[PhysReg
].extract(VirtReg
);
292 VRM
->clearVirt(VirtReg
.reg
);
296 // Top-level driver to manage the queue of unassigned VirtRegs and call the
297 // selectOrSplit implementation.
298 void RegAllocBase::allocatePhysRegs() {
301 // Continue assigning vregs one at a time to available physical registers.
302 while (LiveInterval
*VirtReg
= dequeue()) {
303 assert(!VRM
->hasPhys(VirtReg
->reg
) && "Register already assigned");
305 // Unused registers can appear when the spiller coalesces snippets.
306 if (MRI
->reg_nodbg_empty(VirtReg
->reg
)) {
307 DEBUG(dbgs() << "Dropping unused " << *VirtReg
<< '\n');
308 LIS
->removeInterval(VirtReg
->reg
);
312 // Invalidate all interference queries, live ranges could have changed.
313 invalidateVirtRegs();
315 // selectOrSplit requests the allocator to return an available physical
316 // register if possible and populate a list of new live intervals that
317 // result from splitting.
318 DEBUG(dbgs() << "\nselectOrSplit "
319 << MRI
->getRegClass(VirtReg
->reg
)->getName()
320 << ':' << *VirtReg
<< '\n');
321 typedef SmallVector
<LiveInterval
*, 4> VirtRegVec
;
322 VirtRegVec SplitVRegs
;
323 unsigned AvailablePhysReg
= selectOrSplit(*VirtReg
, SplitVRegs
);
325 if (AvailablePhysReg
== ~0u) {
326 // selectOrSplit failed to find a register!
327 const char *Msg
= "ran out of registers during register allocation";
328 // Probably caused by an inline asm.
330 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(VirtReg
->reg
);
331 (MI
= I
.skipInstruction());)
332 if (MI
->isInlineAsm())
337 report_fatal_error(Msg
);
338 // Keep going after reporting the error.
339 VRM
->assignVirt2Phys(VirtReg
->reg
,
340 RegClassInfo
.getOrder(MRI
->getRegClass(VirtReg
->reg
)).front());
344 if (AvailablePhysReg
)
345 assign(*VirtReg
, AvailablePhysReg
);
347 for (VirtRegVec::iterator I
= SplitVRegs
.begin(), E
= SplitVRegs
.end();
349 LiveInterval
*SplitVirtReg
= *I
;
350 assert(!VRM
->hasPhys(SplitVirtReg
->reg
) && "Register already assigned");
351 if (MRI
->reg_nodbg_empty(SplitVirtReg
->reg
)) {
352 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg
<< '\n');
353 LIS
->removeInterval(SplitVirtReg
->reg
);
356 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg
<< "\n");
357 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg
->reg
) &&
358 "expect split value in virtual register");
359 enqueue(SplitVirtReg
);
365 // Check if this live virtual register interferes with a physical register. If
366 // not, then check for interference on each register that aliases with the
367 // physical register. Return the interfering register.
368 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval
&VirtReg
,
370 for (const unsigned *AliasI
= TRI
->getOverlaps(PhysReg
); *AliasI
; ++AliasI
)
371 if (query(VirtReg
, *AliasI
).checkInterference())
376 // Helper for spillInteferences() that spills all interfering vregs currently
377 // assigned to this physical register.
378 void RegAllocBase::spillReg(LiveInterval
& VirtReg
, unsigned PhysReg
,
379 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
380 LiveIntervalUnion::Query
&Q
= query(VirtReg
, PhysReg
);
381 assert(Q
.seenAllInterferences() && "need collectInterferences()");
382 const SmallVectorImpl
<LiveInterval
*> &PendingSpills
= Q
.interferingVRegs();
384 for (SmallVectorImpl
<LiveInterval
*>::const_iterator I
= PendingSpills
.begin(),
385 E
= PendingSpills
.end(); I
!= E
; ++I
) {
386 LiveInterval
&SpilledVReg
= **I
;
387 DEBUG(dbgs() << "extracting from " <<
388 TRI
->getName(PhysReg
) << " " << SpilledVReg
<< '\n');
390 // Deallocate the interfering vreg by removing it from the union.
391 // A LiveInterval instance may not be in a union during modification!
392 unassign(SpilledVReg
, PhysReg
);
394 // Spill the extracted interval.
395 LiveRangeEdit
LRE(SpilledVReg
, SplitVRegs
, 0, &PendingSpills
);
396 spiller().spill(LRE
);
398 // After extracting segments, the query's results are invalid. But keep the
399 // contents valid until we're done accessing pendingSpills.
403 // Spill or split all live virtual registers currently unified under PhysReg
404 // that interfere with VirtReg. The newly spilled or split live intervals are
405 // returned by appending them to SplitVRegs.
407 RegAllocBase::spillInterferences(LiveInterval
&VirtReg
, unsigned PhysReg
,
408 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
409 // Record each interference and determine if all are spillable before mutating
410 // either the union or live intervals.
411 unsigned NumInterferences
= 0;
412 // Collect interferences assigned to any alias of the physical register.
413 for (const unsigned *asI
= TRI
->getOverlaps(PhysReg
); *asI
; ++asI
) {
414 LiveIntervalUnion::Query
&QAlias
= query(VirtReg
, *asI
);
415 NumInterferences
+= QAlias
.collectInterferingVRegs();
416 if (QAlias
.seenUnspillableVReg()) {
420 DEBUG(dbgs() << "spilling " << TRI
->getName(PhysReg
) <<
421 " interferences with " << VirtReg
<< "\n");
422 assert(NumInterferences
> 0 && "expect interference");
424 // Spill each interfering vreg allocated to PhysReg or an alias.
425 for (const unsigned *AliasI
= TRI
->getOverlaps(PhysReg
); *AliasI
; ++AliasI
)
426 spillReg(VirtReg
, *AliasI
, SplitVRegs
);
430 // Add newly allocated physical registers to the MBB live in sets.
431 void RegAllocBase::addMBBLiveIns(MachineFunction
*MF
) {
432 NamedRegionTimer
T("MBB Live Ins", TimerGroupName
, TimePassesIsEnabled
);
433 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
437 LiveIntervalUnion::SegmentIter SI
;
438 for (unsigned PhysReg
= 0; PhysReg
< PhysReg2LiveUnion
.numRegs(); ++PhysReg
) {
439 LiveIntervalUnion
&LiveUnion
= PhysReg2LiveUnion
[PhysReg
];
440 if (LiveUnion
.empty())
442 MachineFunction::iterator MBB
= llvm::next(MF
->begin());
443 MachineFunction::iterator MFE
= MF
->end();
444 SlotIndex Start
, Stop
;
445 tie(Start
, Stop
) = Indexes
->getMBBRange(MBB
);
446 SI
.setMap(LiveUnion
.getMap());
449 if (SI
.start() <= Start
) {
450 if (!MBB
->isLiveIn(PhysReg
))
451 MBB
->addLiveIn(PhysReg
);
452 } else if (SI
.start() > Stop
)
453 MBB
= Indexes
->getMBBFromIndex(SI
.start().getPrevIndex());
456 tie(Start
, Stop
) = Indexes
->getMBBRange(MBB
);
463 //===----------------------------------------------------------------------===//
464 // RABasic Implementation
465 //===----------------------------------------------------------------------===//
467 // Driver for the register assignment and splitting heuristics.
468 // Manages iteration over the LiveIntervalUnions.
470 // This is a minimal implementation of register assignment and splitting that
471 // spills whenever we run out of registers.
473 // selectOrSplit can only be called once per live virtual register. We then do a
474 // single interference test for each register the correct class until we find an
475 // available register. So, the number of interference tests in the worst case is
476 // |vregs| * |machineregs|. And since the number of interference tests is
477 // minimal, there is no value in caching them outside the scope of
479 unsigned RABasic::selectOrSplit(LiveInterval
&VirtReg
,
480 SmallVectorImpl
<LiveInterval
*> &SplitVRegs
) {
481 // Populate a list of physical register spill candidates.
482 SmallVector
<unsigned, 8> PhysRegSpillCands
;
484 // Check for an available register in this class.
485 ArrayRef
<unsigned> Order
=
486 RegClassInfo
.getOrder(MRI
->getRegClass(VirtReg
.reg
));
487 for (ArrayRef
<unsigned>::iterator I
= Order
.begin(), E
= Order
.end(); I
!= E
;
489 unsigned PhysReg
= *I
;
491 // Check interference and as a side effect, intialize queries for this
492 // VirtReg and its aliases.
493 unsigned interfReg
= checkPhysRegInterference(VirtReg
, PhysReg
);
494 if (interfReg
== 0) {
495 // Found an available register.
498 LiveInterval
*interferingVirtReg
=
499 Queries
[interfReg
].firstInterference().liveUnionPos().value();
501 // The current VirtReg must either be spillable, or one of its interferences
502 // must have less spill weight.
503 if (interferingVirtReg
->weight
< VirtReg
.weight
) {
504 PhysRegSpillCands
.push_back(PhysReg
);
507 // Try to spill another interfering reg with less spill weight.
508 for (SmallVectorImpl
<unsigned>::iterator PhysRegI
= PhysRegSpillCands
.begin(),
509 PhysRegE
= PhysRegSpillCands
.end(); PhysRegI
!= PhysRegE
; ++PhysRegI
) {
511 if (!spillInterferences(VirtReg
, *PhysRegI
, SplitVRegs
)) continue;
513 assert(checkPhysRegInterference(VirtReg
, *PhysRegI
) == 0 &&
514 "Interference after spill.");
515 // Tell the caller to allocate to this newly freed physical register.
519 // No other spill candidates were found, so spill the current VirtReg.
520 DEBUG(dbgs() << "spilling: " << VirtReg
<< '\n');
521 if (!VirtReg
.isSpillable())
523 LiveRangeEdit
LRE(VirtReg
, SplitVRegs
);
524 spiller().spill(LRE
);
526 // The live virtual register requesting allocation was spilled, so tell
527 // the caller not to allocate anything during this round.
531 bool RABasic::runOnMachineFunction(MachineFunction
&mf
) {
532 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
533 << "********** Function: "
534 << ((Value
*)mf
.getFunction())->getName() << '\n');
537 DEBUG(RMF
= &getAnalysis
<RenderMachineFunction
>());
539 RegAllocBase::init(getAnalysis
<VirtRegMap
>(), getAnalysis
<LiveIntervals
>());
540 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
));
546 // Diagnostic output before rewriting
547 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM
<< "\n");
549 // optional HTML output
550 DEBUG(RMF
->renderMachineFunction("After basic register allocation.", VRM
));
552 // FIXME: Verification currently must run before VirtRegRewriter. We should
553 // make the rewriter a separate pass and override verifyAnalysis instead. When
554 // that happens, verification naturally falls under VerifyMachineCode.
557 // Verify accuracy of LiveIntervals. The standard machine code verifier
558 // ensures that each LiveIntervals covers all uses of the virtual reg.
560 // FIXME: MachineVerifier is badly broken when using the standard
561 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
562 // inline spiller, some tests fail to verify because the coalescer does not
563 // always generate verifiable code.
564 MF
->verify(this, "In RABasic::verify");
566 // Verify that LiveIntervals are partitioned into unions and disjoint within
573 VRM
->rewrite(LIS
->getSlotIndexes());
575 // Write out new DBG_VALUE instructions.
576 getAnalysis
<LiveDebugVariables
>().emitDebugValues(VRM
);
578 // The pass output is in VirtRegMap. Release all the transient data.
584 FunctionPass
* llvm::createBasicRegisterAllocator()
586 return new RABasic();