Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / RegAllocFast.cpp
blobb36a445291b7fedb84aa93ee4627c822b4d49283
1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "RegisterClassInfo.h"
17 #include "llvm/BasicBlock.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/RegAllocRegistry.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include <algorithm>
38 using namespace llvm;
40 STATISTIC(NumStores, "Number of stores added");
41 STATISTIC(NumLoads , "Number of loads added");
42 STATISTIC(NumCopies, "Number of copies coalesced");
44 static RegisterRegAlloc
45 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47 namespace {
48 class RAFast : public MachineFunctionPass {
49 public:
50 static char ID;
51 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
52 isBulkSpilling(false) {
53 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
54 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
56 private:
57 const TargetMachine *TM;
58 MachineFunction *MF;
59 MachineRegisterInfo *MRI;
60 const TargetRegisterInfo *TRI;
61 const TargetInstrInfo *TII;
62 RegisterClassInfo RegClassInfo;
64 // Basic block currently being allocated.
65 MachineBasicBlock *MBB;
67 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
68 // values are spilled.
69 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
71 // Everything we know about a live virtual register.
72 struct LiveReg {
73 MachineInstr *LastUse; // Last instr to use reg.
74 unsigned PhysReg; // Currently held here.
75 unsigned short LastOpNum; // OpNum on LastUse.
76 bool Dirty; // Register needs spill.
78 LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
79 Dirty(false) {}
82 typedef DenseMap<unsigned, LiveReg> LiveRegMap;
83 typedef LiveRegMap::value_type LiveRegEntry;
85 // LiveVirtRegs - This map contains entries for each virtual register
86 // that is currently available in a physical register.
87 LiveRegMap LiveVirtRegs;
89 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
91 // RegState - Track the state of a physical register.
92 enum RegState {
93 // A disabled register is not available for allocation, but an alias may
94 // be in use. A register can only be moved out of the disabled state if
95 // all aliases are disabled.
96 regDisabled,
98 // A free register is not currently in use and can be allocated
99 // immediately without checking aliases.
100 regFree,
102 // A reserved register has been assigned explicitly (e.g., setting up a
103 // call parameter), and it remains reserved until it is used.
104 regReserved
106 // A register state may also be a virtual register number, indication that
107 // the physical register is currently allocated to a virtual register. In
108 // that case, LiveVirtRegs contains the inverse mapping.
111 // PhysRegState - One of the RegState enums, or a virtreg.
112 std::vector<unsigned> PhysRegState;
114 // UsedInInstr - BitVector of physregs that are used in the current
115 // instruction, and so cannot be allocated.
116 BitVector UsedInInstr;
118 // SkippedInstrs - Descriptors of instructions whose clobber list was
119 // ignored because all registers were spilled. It is still necessary to
120 // mark all the clobbered registers as used by the function.
121 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
123 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
124 // completely after spilling all live registers. LiveRegMap entries should
125 // not be erased.
126 bool isBulkSpilling;
128 enum {
129 spillClean = 1,
130 spillDirty = 100,
131 spillImpossible = ~0u
133 public:
134 virtual const char *getPassName() const {
135 return "Fast Register Allocator";
138 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
139 AU.setPreservesCFG();
140 AU.addRequiredID(PHIEliminationID);
141 AU.addRequiredID(TwoAddressInstructionPassID);
142 MachineFunctionPass::getAnalysisUsage(AU);
145 private:
146 bool runOnMachineFunction(MachineFunction &Fn);
147 void AllocateBasicBlock();
148 void handleThroughOperands(MachineInstr *MI,
149 SmallVectorImpl<unsigned> &VirtDead);
150 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
151 bool isLastUseOfLocalReg(MachineOperand&);
153 void addKillFlag(const LiveReg&);
154 void killVirtReg(LiveRegMap::iterator);
155 void killVirtReg(unsigned VirtReg);
156 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
157 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
159 void usePhysReg(MachineOperand&);
160 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
161 unsigned calcSpillCost(unsigned PhysReg) const;
162 void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg);
163 void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint);
164 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
165 unsigned VirtReg, unsigned Hint);
166 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
167 unsigned VirtReg, unsigned Hint);
168 void spillAll(MachineInstr *MI);
169 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
171 char RAFast::ID = 0;
174 /// getStackSpaceFor - This allocates space for the specified virtual register
175 /// to be held on the stack.
176 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
177 // Find the location Reg would belong...
178 int SS = StackSlotForVirtReg[VirtReg];
179 if (SS != -1)
180 return SS; // Already has space allocated?
182 // Allocate a new stack object for this spill location...
183 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
184 RC->getAlignment());
186 // Assign the slot.
187 StackSlotForVirtReg[VirtReg] = FrameIdx;
188 return FrameIdx;
191 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
192 /// its virtual register, and it is guaranteed to be a block-local register.
194 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
195 // Check for non-debug uses or defs following MO.
196 // This is the most likely way to fail - fast path it.
197 MachineOperand *Next = &MO;
198 while ((Next = Next->getNextOperandForReg()))
199 if (!Next->isDebug())
200 return false;
202 // If the register has ever been spilled or reloaded, we conservatively assume
203 // it is a global register used in multiple blocks.
204 if (StackSlotForVirtReg[MO.getReg()] != -1)
205 return false;
207 // Check that the use/def chain has exactly one operand - MO.
208 return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
211 /// addKillFlag - Set kill flags on last use of a virtual register.
212 void RAFast::addKillFlag(const LiveReg &LR) {
213 if (!LR.LastUse) return;
214 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
215 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
216 if (MO.getReg() == LR.PhysReg)
217 MO.setIsKill();
218 else
219 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
223 /// killVirtReg - Mark virtreg as no longer available.
224 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
225 addKillFlag(LRI->second);
226 const LiveReg &LR = LRI->second;
227 assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
228 PhysRegState[LR.PhysReg] = regFree;
229 // Erase from LiveVirtRegs unless we're spilling in bulk.
230 if (!isBulkSpilling)
231 LiveVirtRegs.erase(LRI);
234 /// killVirtReg - Mark virtreg as no longer available.
235 void RAFast::killVirtReg(unsigned VirtReg) {
236 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
237 "killVirtReg needs a virtual register");
238 LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
239 if (LRI != LiveVirtRegs.end())
240 killVirtReg(LRI);
243 /// spillVirtReg - This method spills the value specified by VirtReg into the
244 /// corresponding stack slot if needed.
245 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
246 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
247 "Spilling a physical register is illegal!");
248 LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
249 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
250 spillVirtReg(MI, LRI);
253 /// spillVirtReg - Do the actual work of spilling.
254 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
255 LiveRegMap::iterator LRI) {
256 LiveReg &LR = LRI->second;
257 assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
259 if (LR.Dirty) {
260 // If this physreg is used by the instruction, we want to kill it on the
261 // instruction, not on the spill.
262 bool SpillKill = LR.LastUse != MI;
263 LR.Dirty = false;
264 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->first, TRI)
265 << " in " << PrintReg(LR.PhysReg, TRI));
266 const TargetRegisterClass *RC = MRI->getRegClass(LRI->first);
267 int FI = getStackSpaceFor(LRI->first, RC);
268 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
269 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
270 ++NumStores; // Update statistics
272 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
273 // identify spilled location as the place to find corresponding variable's
274 // value.
275 SmallVector<MachineInstr *, 4> &LRIDbgValues = LiveDbgValueMap[LRI->first];
276 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
277 MachineInstr *DBG = LRIDbgValues[li];
278 const MDNode *MDPtr =
279 DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
280 int64_t Offset = 0;
281 if (DBG->getOperand(1).isImm())
282 Offset = DBG->getOperand(1).getImm();
283 DebugLoc DL;
284 if (MI == MBB->end()) {
285 // If MI is at basic block end then use last instruction's location.
286 MachineBasicBlock::iterator EI = MI;
287 DL = (--EI)->getDebugLoc();
289 else
290 DL = MI->getDebugLoc();
291 if (MachineInstr *NewDV =
292 TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
293 MachineBasicBlock *MBB = DBG->getParent();
294 MBB->insert(MI, NewDV);
295 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
298 // Now this register is spilled there is should not be any DBG_VALUE pointing
299 // to this register because they are all pointing to spilled value now.
300 LRIDbgValues.clear();
301 if (SpillKill)
302 LR.LastUse = 0; // Don't kill register again
304 killVirtReg(LRI);
307 /// spillAll - Spill all dirty virtregs without killing them.
308 void RAFast::spillAll(MachineInstr *MI) {
309 if (LiveVirtRegs.empty()) return;
310 isBulkSpilling = true;
311 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
312 // of spilling here is deterministic, if arbitrary.
313 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
314 i != e; ++i)
315 spillVirtReg(MI, i);
316 LiveVirtRegs.clear();
317 isBulkSpilling = false;
320 /// usePhysReg - Handle the direct use of a physical register.
321 /// Check that the register is not used by a virtreg.
322 /// Kill the physreg, marking it free.
323 /// This may add implicit kills to MO->getParent() and invalidate MO.
324 void RAFast::usePhysReg(MachineOperand &MO) {
325 unsigned PhysReg = MO.getReg();
326 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
327 "Bad usePhysReg operand");
329 switch (PhysRegState[PhysReg]) {
330 case regDisabled:
331 break;
332 case regReserved:
333 PhysRegState[PhysReg] = regFree;
334 // Fall through
335 case regFree:
336 UsedInInstr.set(PhysReg);
337 MO.setIsKill();
338 return;
339 default:
340 // The physreg was allocated to a virtual register. That means the value we
341 // wanted has been clobbered.
342 llvm_unreachable("Instruction uses an allocated register");
345 // Maybe a superregister is reserved?
346 for (const unsigned *AS = TRI->getAliasSet(PhysReg);
347 unsigned Alias = *AS; ++AS) {
348 switch (PhysRegState[Alias]) {
349 case regDisabled:
350 break;
351 case regReserved:
352 assert(TRI->isSuperRegister(PhysReg, Alias) &&
353 "Instruction is not using a subregister of a reserved register");
354 // Leave the superregister in the working set.
355 PhysRegState[Alias] = regFree;
356 UsedInInstr.set(Alias);
357 MO.getParent()->addRegisterKilled(Alias, TRI, true);
358 return;
359 case regFree:
360 if (TRI->isSuperRegister(PhysReg, Alias)) {
361 // Leave the superregister in the working set.
362 UsedInInstr.set(Alias);
363 MO.getParent()->addRegisterKilled(Alias, TRI, true);
364 return;
366 // Some other alias was in the working set - clear it.
367 PhysRegState[Alias] = regDisabled;
368 break;
369 default:
370 llvm_unreachable("Instruction uses an alias of an allocated register");
374 // All aliases are disabled, bring register into working set.
375 PhysRegState[PhysReg] = regFree;
376 UsedInInstr.set(PhysReg);
377 MO.setIsKill();
380 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
381 /// virtregs. This is very similar to defineVirtReg except the physreg is
382 /// reserved instead of allocated.
383 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
384 RegState NewState) {
385 UsedInInstr.set(PhysReg);
386 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
387 case regDisabled:
388 break;
389 default:
390 spillVirtReg(MI, VirtReg);
391 // Fall through.
392 case regFree:
393 case regReserved:
394 PhysRegState[PhysReg] = NewState;
395 return;
398 // This is a disabled register, disable all aliases.
399 PhysRegState[PhysReg] = NewState;
400 for (const unsigned *AS = TRI->getAliasSet(PhysReg);
401 unsigned Alias = *AS; ++AS) {
402 switch (unsigned VirtReg = PhysRegState[Alias]) {
403 case regDisabled:
404 break;
405 default:
406 spillVirtReg(MI, VirtReg);
407 // Fall through.
408 case regFree:
409 case regReserved:
410 PhysRegState[Alias] = regDisabled;
411 if (TRI->isSuperRegister(PhysReg, Alias))
412 return;
413 break;
419 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
420 // aliases so it is free for allocation.
421 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
422 // can be allocated directly.
423 // Returns spillImpossible when PhysReg or an alias can't be spilled.
424 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
425 if (UsedInInstr.test(PhysReg)) {
426 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
427 return spillImpossible;
429 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
430 case regDisabled:
431 break;
432 case regFree:
433 return 0;
434 case regReserved:
435 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
436 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
437 return spillImpossible;
438 default:
439 return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
442 // This is a disabled register, add up cost of aliases.
443 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
444 unsigned Cost = 0;
445 for (const unsigned *AS = TRI->getAliasSet(PhysReg);
446 unsigned Alias = *AS; ++AS) {
447 if (UsedInInstr.test(Alias))
448 return spillImpossible;
449 switch (unsigned VirtReg = PhysRegState[Alias]) {
450 case regDisabled:
451 break;
452 case regFree:
453 ++Cost;
454 break;
455 case regReserved:
456 return spillImpossible;
457 default:
458 Cost += LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean;
459 break;
462 return Cost;
466 /// assignVirtToPhysReg - This method updates local state so that we know
467 /// that PhysReg is the proper container for VirtReg now. The physical
468 /// register must not be used for anything else when this is called.
470 void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) {
471 DEBUG(dbgs() << "Assigning " << PrintReg(LRE.first, TRI) << " to "
472 << PrintReg(PhysReg, TRI) << "\n");
473 PhysRegState[PhysReg] = LRE.first;
474 assert(!LRE.second.PhysReg && "Already assigned a physreg");
475 LRE.second.PhysReg = PhysReg;
478 /// allocVirtReg - Allocate a physical register for VirtReg.
479 void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) {
480 const unsigned VirtReg = LRE.first;
482 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
483 "Can only allocate virtual registers");
485 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
487 // Ignore invalid hints.
488 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
489 !RC->contains(Hint) || !RegClassInfo.isAllocatable(Hint)))
490 Hint = 0;
492 // Take hint when possible.
493 if (Hint) {
494 // Ignore the hint if we would have to spill a dirty register.
495 unsigned Cost = calcSpillCost(Hint);
496 if (Cost < spillDirty) {
497 if (Cost)
498 definePhysReg(MI, Hint, regFree);
499 return assignVirtToPhysReg(LRE, Hint);
503 ArrayRef<unsigned> AO = RegClassInfo.getOrder(RC);
505 // First try to find a completely free register.
506 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
507 unsigned PhysReg = *I;
508 if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg))
509 return assignVirtToPhysReg(LRE, PhysReg);
512 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
513 << RC->getName() << "\n");
515 unsigned BestReg = 0, BestCost = spillImpossible;
516 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
517 unsigned Cost = calcSpillCost(*I);
518 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
519 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
520 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
521 // Cost is 0 when all aliases are already disabled.
522 if (Cost == 0)
523 return assignVirtToPhysReg(LRE, *I);
524 if (Cost < BestCost)
525 BestReg = *I, BestCost = Cost;
528 if (BestReg) {
529 definePhysReg(MI, BestReg, regFree);
530 return assignVirtToPhysReg(LRE, BestReg);
533 // Nothing we can do. Report an error and keep going with a bad allocation.
534 MI->emitError("ran out of registers during register allocation");
535 definePhysReg(MI, *AO.begin(), regFree);
536 assignVirtToPhysReg(LRE, *AO.begin());
539 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
540 RAFast::LiveRegMap::iterator
541 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
542 unsigned VirtReg, unsigned Hint) {
543 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
544 "Not a virtual register");
545 LiveRegMap::iterator LRI;
546 bool New;
547 tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
548 LiveReg &LR = LRI->second;
549 if (New) {
550 // If there is no hint, peek at the only use of this register.
551 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
552 MRI->hasOneNonDBGUse(VirtReg)) {
553 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
554 // It's a copy, use the destination register as a hint.
555 if (UseMI.isCopyLike())
556 Hint = UseMI.getOperand(0).getReg();
558 allocVirtReg(MI, *LRI, Hint);
559 } else if (LR.LastUse) {
560 // Redefining a live register - kill at the last use, unless it is this
561 // instruction defining VirtReg multiple times.
562 if (LR.LastUse != MI || LR.LastUse->getOperand(LR.LastOpNum).isUse())
563 addKillFlag(LR);
565 assert(LR.PhysReg && "Register not assigned");
566 LR.LastUse = MI;
567 LR.LastOpNum = OpNum;
568 LR.Dirty = true;
569 UsedInInstr.set(LR.PhysReg);
570 return LRI;
573 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
574 RAFast::LiveRegMap::iterator
575 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
576 unsigned VirtReg, unsigned Hint) {
577 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
578 "Not a virtual register");
579 LiveRegMap::iterator LRI;
580 bool New;
581 tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
582 LiveReg &LR = LRI->second;
583 MachineOperand &MO = MI->getOperand(OpNum);
584 if (New) {
585 allocVirtReg(MI, *LRI, Hint);
586 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
587 int FrameIndex = getStackSpaceFor(VirtReg, RC);
588 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
589 << PrintReg(LR.PhysReg, TRI) << "\n");
590 TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI);
591 ++NumLoads;
592 } else if (LR.Dirty) {
593 if (isLastUseOfLocalReg(MO)) {
594 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
595 if (MO.isUse())
596 MO.setIsKill();
597 else
598 MO.setIsDead();
599 } else if (MO.isKill()) {
600 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
601 MO.setIsKill(false);
602 } else if (MO.isDead()) {
603 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
604 MO.setIsDead(false);
606 } else if (MO.isKill()) {
607 // We must remove kill flags from uses of reloaded registers because the
608 // register would be killed immediately, and there might be a second use:
609 // %foo = OR %x<kill>, %x
610 // This would cause a second reload of %x into a different register.
611 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
612 MO.setIsKill(false);
613 } else if (MO.isDead()) {
614 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
615 MO.setIsDead(false);
617 assert(LR.PhysReg && "Register not assigned");
618 LR.LastUse = MI;
619 LR.LastOpNum = OpNum;
620 UsedInInstr.set(LR.PhysReg);
621 return LRI;
624 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
625 // subregs. This may invalidate any operand pointers.
626 // Return true if the operand kills its register.
627 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
628 MachineOperand &MO = MI->getOperand(OpNum);
629 if (!MO.getSubReg()) {
630 MO.setReg(PhysReg);
631 return MO.isKill() || MO.isDead();
634 // Handle subregister index.
635 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
636 MO.setSubReg(0);
638 // A kill flag implies killing the full register. Add corresponding super
639 // register kill.
640 if (MO.isKill()) {
641 MI->addRegisterKilled(PhysReg, TRI, true);
642 return true;
644 return MO.isDead();
647 // Handle special instruction operand like early clobbers and tied ops when
648 // there are additional physreg defines.
649 void RAFast::handleThroughOperands(MachineInstr *MI,
650 SmallVectorImpl<unsigned> &VirtDead) {
651 DEBUG(dbgs() << "Scanning for through registers:");
652 SmallSet<unsigned, 8> ThroughRegs;
653 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
654 MachineOperand &MO = MI->getOperand(i);
655 if (!MO.isReg()) continue;
656 unsigned Reg = MO.getReg();
657 if (!TargetRegisterInfo::isVirtualRegister(Reg))
658 continue;
659 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
660 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
661 if (ThroughRegs.insert(Reg))
662 DEBUG(dbgs() << ' ' << PrintReg(Reg));
666 // If any physreg defines collide with preallocated through registers,
667 // we must spill and reallocate.
668 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
669 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
670 MachineOperand &MO = MI->getOperand(i);
671 if (!MO.isReg() || !MO.isDef()) continue;
672 unsigned Reg = MO.getReg();
673 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
674 UsedInInstr.set(Reg);
675 if (ThroughRegs.count(PhysRegState[Reg]))
676 definePhysReg(MI, Reg, regFree);
677 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
678 UsedInInstr.set(*AS);
679 if (ThroughRegs.count(PhysRegState[*AS]))
680 definePhysReg(MI, *AS, regFree);
684 SmallVector<unsigned, 8> PartialDefs;
685 DEBUG(dbgs() << "Allocating tied uses and early clobbers.\n");
686 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
687 MachineOperand &MO = MI->getOperand(i);
688 if (!MO.isReg()) continue;
689 unsigned Reg = MO.getReg();
690 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
691 if (MO.isUse()) {
692 unsigned DefIdx = 0;
693 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
694 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
695 << DefIdx << ".\n");
696 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
697 unsigned PhysReg = LRI->second.PhysReg;
698 setPhysReg(MI, i, PhysReg);
699 // Note: we don't update the def operand yet. That would cause the normal
700 // def-scan to attempt spilling.
701 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
702 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
703 // Reload the register, but don't assign to the operand just yet.
704 // That would confuse the later phys-def processing pass.
705 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
706 PartialDefs.push_back(LRI->second.PhysReg);
707 } else if (MO.isEarlyClobber()) {
708 // Note: defineVirtReg may invalidate MO.
709 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
710 unsigned PhysReg = LRI->second.PhysReg;
711 if (setPhysReg(MI, i, PhysReg))
712 VirtDead.push_back(Reg);
716 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
717 UsedInInstr.reset();
718 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
719 MachineOperand &MO = MI->getOperand(i);
720 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
721 unsigned Reg = MO.getReg();
722 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
723 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
724 << " as used in instr\n");
725 UsedInInstr.set(Reg);
728 // Also mark PartialDefs as used to avoid reallocation.
729 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
730 UsedInInstr.set(PartialDefs[i]);
733 void RAFast::AllocateBasicBlock() {
734 DEBUG(dbgs() << "\nAllocating " << *MBB);
736 // FIXME: This should probably be added by instruction selection instead?
737 // If the last instruction in the block is a return, make sure to mark it as
738 // using all of the live-out values in the function. Things marked both call
739 // and return are tail calls; do not do this for them. The tail callee need
740 // not take the same registers as input that it produces as output, and there
741 // are dependencies for its input registers elsewhere.
742 if (!MBB->empty() && MBB->back().getDesc().isReturn() &&
743 !MBB->back().getDesc().isCall()) {
744 MachineInstr *Ret = &MBB->back();
746 for (MachineRegisterInfo::liveout_iterator
747 I = MF->getRegInfo().liveout_begin(),
748 E = MF->getRegInfo().liveout_end(); I != E; ++I) {
749 assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
750 "Cannot have a live-out virtual register.");
752 // Add live-out registers as implicit uses.
753 Ret->addRegisterKilled(*I, TRI, true);
757 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
758 assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
760 MachineBasicBlock::iterator MII = MBB->begin();
762 // Add live-in registers as live.
763 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
764 E = MBB->livein_end(); I != E; ++I)
765 if (RegClassInfo.isAllocatable(*I))
766 definePhysReg(MII, *I, regReserved);
768 SmallVector<unsigned, 8> VirtDead;
769 SmallVector<MachineInstr*, 32> Coalesced;
771 // Otherwise, sequentially allocate each instruction in the MBB.
772 while (MII != MBB->end()) {
773 MachineInstr *MI = MII++;
774 const MCInstrDesc &MCID = MI->getDesc();
775 DEBUG({
776 dbgs() << "\n>> " << *MI << "Regs:";
777 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
778 if (PhysRegState[Reg] == regDisabled) continue;
779 dbgs() << " " << TRI->getName(Reg);
780 switch(PhysRegState[Reg]) {
781 case regFree:
782 break;
783 case regReserved:
784 dbgs() << "*";
785 break;
786 default:
787 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
788 if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
789 dbgs() << "*";
790 assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
791 "Bad inverse map");
792 break;
795 dbgs() << '\n';
796 // Check that LiveVirtRegs is the inverse.
797 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
798 e = LiveVirtRegs.end(); i != e; ++i) {
799 assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
800 "Bad map key");
801 assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
802 "Bad map value");
803 assert(PhysRegState[i->second.PhysReg] == i->first &&
804 "Bad inverse map");
808 // Debug values are not allowed to change codegen in any way.
809 if (MI->isDebugValue()) {
810 bool ScanDbgValue = true;
811 while (ScanDbgValue) {
812 ScanDbgValue = false;
813 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
814 MachineOperand &MO = MI->getOperand(i);
815 if (!MO.isReg()) continue;
816 unsigned Reg = MO.getReg();
817 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
818 LiveDbgValueMap[Reg].push_back(MI);
819 LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg);
820 if (LRI != LiveVirtRegs.end())
821 setPhysReg(MI, i, LRI->second.PhysReg);
822 else {
823 int SS = StackSlotForVirtReg[Reg];
824 if (SS == -1) {
825 // We can't allocate a physreg for a DebugValue, sorry!
826 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
827 MO.setReg(0);
829 else {
830 // Modify DBG_VALUE now that the value is in a spill slot.
831 int64_t Offset = MI->getOperand(1).getImm();
832 const MDNode *MDPtr =
833 MI->getOperand(MI->getNumOperands()-1).getMetadata();
834 DebugLoc DL = MI->getDebugLoc();
835 if (MachineInstr *NewDV =
836 TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
837 DEBUG(dbgs() << "Modifying debug info due to spill:" <<
838 "\t" << *MI);
839 MachineBasicBlock *MBB = MI->getParent();
840 MBB->insert(MBB->erase(MI), NewDV);
841 // Scan NewDV operands from the beginning.
842 MI = NewDV;
843 ScanDbgValue = true;
844 break;
845 } else {
846 // We can't allocate a physreg for a DebugValue; sorry!
847 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
848 MO.setReg(0);
854 // Next instruction.
855 continue;
858 // If this is a copy, we may be able to coalesce.
859 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
860 if (MI->isCopy()) {
861 CopyDst = MI->getOperand(0).getReg();
862 CopySrc = MI->getOperand(1).getReg();
863 CopyDstSub = MI->getOperand(0).getSubReg();
864 CopySrcSub = MI->getOperand(1).getSubReg();
867 // Track registers used by instruction.
868 UsedInInstr.reset();
870 // First scan.
871 // Mark physreg uses and early clobbers as used.
872 // Find the end of the virtreg operands
873 unsigned VirtOpEnd = 0;
874 bool hasTiedOps = false;
875 bool hasEarlyClobbers = false;
876 bool hasPartialRedefs = false;
877 bool hasPhysDefs = false;
878 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
879 MachineOperand &MO = MI->getOperand(i);
880 if (!MO.isReg()) continue;
881 unsigned Reg = MO.getReg();
882 if (!Reg) continue;
883 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
884 VirtOpEnd = i+1;
885 if (MO.isUse()) {
886 hasTiedOps = hasTiedOps ||
887 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
888 } else {
889 if (MO.isEarlyClobber())
890 hasEarlyClobbers = true;
891 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
892 hasPartialRedefs = true;
894 continue;
896 if (!RegClassInfo.isAllocatable(Reg)) continue;
897 if (MO.isUse()) {
898 usePhysReg(MO);
899 } else if (MO.isEarlyClobber()) {
900 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
901 regFree : regReserved);
902 hasEarlyClobbers = true;
903 } else
904 hasPhysDefs = true;
907 // The instruction may have virtual register operands that must be allocated
908 // the same register at use-time and def-time: early clobbers and tied
909 // operands. If there are also physical defs, these registers must avoid
910 // both physical defs and uses, making them more constrained than normal
911 // operands.
912 // Similarly, if there are multiple defs and tied operands, we must make
913 // sure the same register is allocated to uses and defs.
914 // We didn't detect inline asm tied operands above, so just make this extra
915 // pass for all inline asm.
916 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
917 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
918 handleThroughOperands(MI, VirtDead);
919 // Don't attempt coalescing when we have funny stuff going on.
920 CopyDst = 0;
921 // Pretend we have early clobbers so the use operands get marked below.
922 // This is not necessary for the common case of a single tied use.
923 hasEarlyClobbers = true;
926 // Second scan.
927 // Allocate virtreg uses.
928 for (unsigned i = 0; i != VirtOpEnd; ++i) {
929 MachineOperand &MO = MI->getOperand(i);
930 if (!MO.isReg()) continue;
931 unsigned Reg = MO.getReg();
932 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
933 if (MO.isUse()) {
934 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
935 unsigned PhysReg = LRI->second.PhysReg;
936 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
937 if (setPhysReg(MI, i, PhysReg))
938 killVirtReg(LRI);
942 MRI->addPhysRegsUsed(UsedInInstr);
944 // Track registers defined by instruction - early clobbers and tied uses at
945 // this point.
946 UsedInInstr.reset();
947 if (hasEarlyClobbers) {
948 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
949 MachineOperand &MO = MI->getOperand(i);
950 if (!MO.isReg()) continue;
951 unsigned Reg = MO.getReg();
952 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
953 // Look for physreg defs and tied uses.
954 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
955 UsedInInstr.set(Reg);
956 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
957 UsedInInstr.set(*AS);
961 unsigned DefOpEnd = MI->getNumOperands();
962 if (MCID.isCall()) {
963 // Spill all virtregs before a call. This serves two purposes: 1. If an
964 // exception is thrown, the landing pad is going to expect to find
965 // registers in their spill slots, and 2. we don't have to wade through
966 // all the <imp-def> operands on the call instruction.
967 DefOpEnd = VirtOpEnd;
968 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
969 spillAll(MI);
971 // The imp-defs are skipped below, but we still need to mark those
972 // registers as used by the function.
973 SkippedInstrs.insert(&MCID);
976 // Third scan.
977 // Allocate defs and collect dead defs.
978 for (unsigned i = 0; i != DefOpEnd; ++i) {
979 MachineOperand &MO = MI->getOperand(i);
980 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
981 continue;
982 unsigned Reg = MO.getReg();
984 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
985 if (!RegClassInfo.isAllocatable(Reg)) continue;
986 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
987 regFree : regReserved);
988 continue;
990 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
991 unsigned PhysReg = LRI->second.PhysReg;
992 if (setPhysReg(MI, i, PhysReg)) {
993 VirtDead.push_back(Reg);
994 CopyDst = 0; // cancel coalescing;
995 } else
996 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
999 // Kill dead defs after the scan to ensure that multiple defs of the same
1000 // register are allocated identically. We didn't need to do this for uses
1001 // because we are crerating our own kill flags, and they are always at the
1002 // last use.
1003 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1004 killVirtReg(VirtDead[i]);
1005 VirtDead.clear();
1007 MRI->addPhysRegsUsed(UsedInInstr);
1009 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1010 DEBUG(dbgs() << "-- coalescing: " << *MI);
1011 Coalesced.push_back(MI);
1012 } else {
1013 DEBUG(dbgs() << "<< " << *MI);
1017 // Spill all physical registers holding virtual registers now.
1018 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1019 spillAll(MBB->getFirstTerminator());
1021 // Erase all the coalesced copies. We are delaying it until now because
1022 // LiveVirtRegs might refer to the instrs.
1023 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1024 MBB->erase(Coalesced[i]);
1025 NumCopies += Coalesced.size();
1027 DEBUG(MBB->dump());
1030 /// runOnMachineFunction - Register allocate the whole function
1032 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1033 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1034 << "********** Function: "
1035 << ((Value*)Fn.getFunction())->getName() << '\n');
1036 MF = &Fn;
1037 MRI = &MF->getRegInfo();
1038 TM = &Fn.getTarget();
1039 TRI = TM->getRegisterInfo();
1040 TII = TM->getInstrInfo();
1041 RegClassInfo.runOnMachineFunction(Fn);
1042 UsedInInstr.resize(TRI->getNumRegs());
1044 // initialize the virtual->physical register map to have a 'null'
1045 // mapping for all virtual registers
1046 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1048 // Loop over all of the basic blocks, eliminating virtual register references
1049 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1050 MBBi != MBBe; ++MBBi) {
1051 MBB = &*MBBi;
1052 AllocateBasicBlock();
1055 // Make sure the set of used physregs is closed under subreg operations.
1056 MRI->closePhysRegsUsed(*TRI);
1058 // Add the clobber lists for all the instructions we skipped earlier.
1059 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1060 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1061 if (const unsigned *Defs = (*I)->getImplicitDefs())
1062 while (*Defs)
1063 MRI->setPhysRegUsed(*Defs++);
1065 SkippedInstrs.clear();
1066 StackSlotForVirtReg.clear();
1067 LiveDbgValueMap.clear();
1068 return true;
1071 FunctionPass *llvm::createFastRegisterAllocator() {
1072 return new RAFast();